
UV-Diagram: A Voronoi Diagram for
Uncertain Data

Reynold Cheng#1, Xike Xie #2, Man Lung Yiu∗3, Jinchuan Chen#4, Liwen Sun#5

#Dept. Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong
1ckcheng@cs.hku.hk, 2xkxie@cs.hku.hk, 4jcchen@cs.hku.hk, 5lwsun@cs.hku.hk

∗Dept. Computer Science, Aalborg University, Denmark
3mly@cs.aau.dk

Abstract— The Voronoi diagram is an important technique
for answering nearest-neighbor queries for spatial databases. In
this paper, we study how the Voronoi diagram can be used on
uncertain data, which are inherent in scientific and business
applications. In particular, we propose the Uncertain-Voronoi
Diagram (or UV-diagramin short). Conceptually, the data space is
divided into distinct “UV-partitions”, where each UV-part ition P
is associated with a setS of objects; any point q located in P has
the setS as its nearest neighbor with non-zero probabilities. The
UV-diagram facilitates queries that inquire objects for having
non-zero chances of being the nearest neighbor of a given query
point. It also allows analysis of nearest neighbor information,
e.g., finding out how many objects are the nearest neighbors in
a given area.

However, a UV-diagram requires exponential construction and
storage costs. To tackle these problems, we devise an alternative
representation for UV-partitions, and develop an adaptiveindex
for the UV-diagram. This index can be constructed in polynomial
time. We examine how it can be extended to support other related
queries. We also perform extensive experiments to validatethe
effectiveness of our approach.

I. I NTRODUCTION

The Voronoi Diagram, primarily designed for evaluat-
ing nearest-neighbor queries over two-dimensional spatial
points [1], has raised plenty of research interest. This tech-
nique has been extended to handle different related prob-
lems, including database services in wireless broadcast en-
vironments [2], [3]; high-dimensional query evaluation [4];
continuous location-based services [5]–[7]; and virus spread
analysis among mobile devices [8]. Conceptually, the Voronoi
diagram partitions the data space into disjoint “Voronoi cells”,
so that all points in the same Voronoi cell have the same
nearest neighbor. The task of finding the nearest neighbor ofa
query point is then reduced to a point query. Figure 1 illustrates
a Voronoi diagram of seven points. Since the query pointq is
located in the Voronoi cell ofO2, O2 is the nearest neighbor
of q.

Is it possible to use the Voronoi diagram to perform nearest-
neighbor search on objects whose values are imprecise? Data
values can be uncertain for a variety of reasons. Consider
a satellite image, which depicts geographical objects like
airports, vehicles, and people. Using machine learning and
human effort (e.g., community-based systems like Wikimapia),
the location of each object on the image can be obtained. Due

Fig. 1. (a)Voronoi Diagram. (b) UV-Diagram.

to the noisy transmission of satellite data, the quality of these
images can be affected, and we may not be able to obtain
very accurate locations. Moreover, if this location information
is released to the public (e.g, for research purposes), it may
need to be preprocessed for privacy purposes. In fact, recent
proposals like [9], [10] have suggested to represent a user’s
position as a larger region, in order to lower the likelihood
that a user is identified at a particular site. Uncertainty is
also inherent in biological data management. For example,
microscopy images have been actively used to analyze the
thickness of neuron layers in the retina, as well as the extent
of the area of a cell. Due to factors like image resolution and
measurement accuracy, it is hard to obtain exact values of the
objects of interest [11], [12]. For this kind of data, techniques
for evaluating range queries, nearest-neighbor queries, and
joins, have been developed. These queries return answers
with probabilistic guarantees, which reflect the confidenceof
answers due to data uncertainty. For these applications, tools
that resemble the Voronoi diagram can be potentially useful.
Specifically, we would like to examine space-partitioning
techniques for performing aProbabilistic Nearest-Neighbor
Query (PNN). Given a query pointq, a PNN returns the IDs
of objects with non-zero probabilities for being the closest
to q, as well as their probabilities. In the sequel, we denote
the objects returned by the PNN asanswer objects, and their
probability values asqualification probabilities.

An uncertainty model that has been commonly used is
to assume that an objectOi has an “uncertainty region”
and a probability distribution function (pdf). This means that
the precise position ofOi can only be located inside the

Administrator
 HKU CS Tech Report TR-2009-13

(closed) region, with a pdf that describes the distributionof
the object’s position within the region. The uncertainty region
can have any shape, and the pdf is arbitrary (e.g., it can be
a uniform distribution, Gaussian, or a histogram). Here we
assume thatOi has a two-dimensional circular uncertainty
region. However, our solution can be extended to handle non-
circular-shaped regions.

To our best knowledge, no prior work has addressed how
a Voronoi diagram, primarily developed for spatial point
datasets, can be used to query uncertain data. Our goals are to
investigate how such a diagram should be defined to support
nearest-neighbor query execution. Specifically, we propose
the Uncertain-Voronoidiagram (orUV-diagram), where the
nearest-neighbor information of every point in the data space
is recorded, based on the uncertain objects involved. The UV-
diagram provides a basis for studying solutions that used the
Voronoi diagram for point data. It could be interesting, for
instance, to extend the solution of [2] to support uncertaindata
in broadcasting services. Figure 1(b) illustrates an example of
the UV-diagram of seven uncertain objects, where the space is
divided into disjoint regions calledUV-partitions. Each UV-
partitionP is associated with a setS of one or more objects.
For any pointq located insideP , S is the set of answer objects
of q (i.e., each object inS has a non-zero probability for being
the nearest neighbor ofq). The highlighted regions contain
points that have two or more nearest neighbor objects. As
an example, sinceq1 is inside the dashed region,O4 has a
non-zero probability for being the nearest neighbor ofq1; on
the other hand,q2 is located inside the dotted region, andO6

and O7 are the answer objects for the PNN withq2 as the
query point. Observe that the Voronoi diagram, which indexes
on spatial points, is a special case of the UV-diagram, since
a point can be viewed as an uncertainty region with a zero
radius. Figure 1 compares the two diagrams.

Besides answering nearest-neighbor queries, the Voronoi di-
agram is useful for doing data analysis or observing interesting
patterns of nearest-neighbor information. In [8], for example,
the Voronoi diagram is used to investigate the spreading
pattern of bluetooth viruses among mobile users. A UV-
diagram can also provide valuable information about these
“nearest-neighbor patterns”. For instance, in Figure 1(b), if the
dashed region is large, thenO4 has high chance to be placed
in different clusters, assuming a nearest-neighbor clustering
algorithm is used. Another interesting query is: given a region
R, display all UV-partitions that intersect withR, as well as
the density of objects that can be the nearest neighbor in each
UV-partition. Through the UV-diagram, a user can visualize
or extract patterns about the nearest-neighbor information.

Drawback of existing solutions. As far as we know, the
only indexing method available for nearest-neighbor search
over uncertain data is to use an index like the R-tree and the
grid. R-tree is a disk-based structure that uses the Minimum-
Bounding Rectangles (MBRs in short) to cluster the un-
certainty regions of the objects, and organizes MBRs in a
hierarchical manner [13]. To evaluate PNN using the R-
tree, a branch-and-prune strategy has been proposed in [14],

where MBRs that may contain answer objects are traversed.
However, this involves a lot of overhead in reading index
nodes and leaf pages [14], [15]. Similar issues also occur with
grids [16].However, retrieving answer objects from the UV-
diagram is essentially a point query search: given a pointq,
find the objects associated with the UV-partition that contains
q. Hence, a UV-diagram can support more efficient PNN
search. It is also not clear how an R-tree or grid over uncer-
tain objects can provide pattern analysis of nearest-neighbor
information (e.g., displaying the extent of a UV-partition).

Challenges of constructing UV-diagram. It is not
trivial to generate a UV-diagram, since this involves producing
space partitions based on uncertainty regions, which may
not be points. Unfortunately, efficient computational geome-
try methods for generating the Voronoi diagram (e.g., line-
sweeping [17]) cannot be readily used for creating a UV-
diagram, since these methods are primarily designed for spatial
points, rather than uncertainty regions. Figure 2 depicts the
space partition based on three uncertainty regions represented
as circles. Each UV-partition (namedRi, wherei = 1, . . . , 7)
is irregular in shape and contains different answer objects,
listed on the side of the figure. In general, given a set of
uncertain regions, an exponential number of UV-partitionscan
be created. For example, Figure 2 shows that for three objects,
there are seven UV-partitions, each of which contains one of
23 − 1 = 7 combinations of the three objects. To make the
problem worse, the number of edges of each UV-partitioncan
also be exponentially large! This makes it computationallyin-
feasible to generate and store these partitions. It is also difficult
to find out which of these irregular UV-partitions contain a
given query point. Indeed, our experimental results show that a
brute-force approach of computing and indexing UV-partitions
over 50k objects require about 97 hours. Therefore, a scalable
method for constructing a UV-diagram is highly desirable.

Fig. 2. A UV-Diagram for 3 uncertain objects.

Our solution. In order to avoid computing UV-partitions
directly, we have developed an alternative representationof
UV-partitions. Particularly, we propose the novel conceptof
theUV-cell. A UV-cell of an uncertain objectOi is essentially
a region, such that a query point insideOi’s UV-cell hasOi

as an answer object. Figure 2 illustrates the UV-cells forO1,
O2, and O3. The boundary of each UV-cell is labeled with
the ID of the object. For example, the UV-cell ofO2 is a
region enclosed by solid-line segments. The intersection of

one or more UV-cells constitutes a UV-partition. For instance,
the UV-cells of bothO1 andO3 intersect at partitionsR5 and
R7. This means whenq is located at any of these partitions,
both O1 and O3 are the answer objects. Notice thatR7 is
intersected byO2’s UV-cell, and henceO2 is also associated
with R7. Hence, a UV-diagram can be considered as the union
of all objects’ UV-cells. By finding the UV-cells that contain
q, objects with non-zero probabilities can be retrieved.

Although a UV-cell is still expensive to compute, we show
how to represent a UV-cell as a set of “candidate reference
objects”, or cr-objects in short. Conceptually, cr-objects are
those that define the shape of a UV-cell. These objects can be
efficiently obtained. More importantly, by using cr-objects, we
devise a polynomial-time method for constructing an index for
the UV-partitions. We have adopted an adaptive-grid indexing
scheme, which has the advantage of adapting to different
distributions of uncertain objects’ positions. We will give detail
about how this index can be created. Our experimental results
show that for both synthetic and real dataset, this index can
be constructed in a much shorter time. We also demonstrate
how to use this index to support PNN and nearest-neighbor
pattern queries.

The rest of the paper is as follows. Section II summarizes
related work. In Section III we present basic concepts of the
UV-diagram. We explain how to represent UV-cell efficiently
in Section IV, and discuss an adaptive index based on the
UV-diagram in Section V. We present experimental results in
Section VI. Section VII concludes the paper.

II. RELATED WORK

Data Uncertainty Management. Recently, researchers
have proposed to consider uncertainty as a “first-class citizen”
in a DBMS [15], [18]–[20]. Two models can be used to
represent uncertain data: tuple- and attribute- uncertainty.
For tuple-uncertainty, each database tuple has a probability
of being correct [20]. Here we assume attribute-uncertainty,
which represents an attribute as a range of possible values
and a probability distribution function (pdf) bounded in the
range [18]. Common queries for attribute uncertainty include
range queries [21],k-nearest-neighbors [11], skylines [22],
[23] and top-k queries [24].

A few works have been proposed to evaluate PNN queries
over attribute uncertainty. In [14], numerical integration tech-
niques have been presented.Probabilistic verifiers, described
in [15], can generate answer objects’ probability bounds
without performing expensive integration operations. Another
way to compute answer probabilities is based on sampling
[25]. Here we focus on the efficient retrieval of answer objects.
An R-tree-based solution has been proposed in [14], which
uses a branch-and-prune strategy to look for nearest neighbors.
This solution can involve multiple traversals over the R-tree,
resulting in a high I/O cost. With the use of the UV-diagram,
we show how answer objects can be retrieved more efficiently.

Other types of nearest-neighbor queries, like the “group
nearest-neighbors” [26], “reverse-nearest-neighbors” [27],
[28], and “uncertain queries” [29], have also been proposed.

In these works, the R-tree was used to support object retreival.
An interesting direction is to study how to use the UV-diagram
in these solutions.

The Voronoi diagram is an important technique for an-
swering nearest-neighbor queries over spatial points [1].It has
been extended to support other applications (e.g., [2]–[6]). It
also facilitates the analysis of spreading patterns of mobile
viruses [8]. In [30], thek-th order Voronoi diagram is used to
evaluate ak-NN query. The Voronoi diagram has also been
defined for boundaries of circular objects in [31]. However,
these objects arenot uncertain, and the method of [31] cannot
be used to answer PNN queries.

Few works have studied the application of the Voronoi
diagram on uncertain data. [29] consider the “uncertain” near-
est neighbor query (UNN) over spatial points. Different from
PNN, the query is an uncertain region, not a query point. To
evaluate a UNN, the authors propose to use a Voronoi diagram
over 2D points. The portions of the Voronoi cells that overlap
with the query’s uncertainty region are then used to compute
answer probabilities. [32] consider the clustering of uncertain
attribute data, where a Voronoi diagram is constructed for
centroid points. Notice that [29] and [32] do not construct a
Voronoi diagram for uncertain data. On the other hand, the UV-
diagram is a Voronoi diagram tailored for attribute uncertainty.
We also address how to build and use a UV-diagram index,
which have not been studied before.

III. T HE UV-D IAGRAM

As mentioned in Section I, we can use a “UV-cell” to derive
a UV-diagram. Section III-A presents the definition of a UV-
cell. We then study a simple method for constructing a UV-cell
in Section III-B. The mathematical formulation of a UV-cell
is described in Section III-C.

A. The UV-cell

As discussed before, a UV-cell of an object is essentially a
region where the object has non-zero chance to be the nearest
neighbor of any query point located inside it. Formally, let
O1, O2, . . . , On be the IDs of a setO of uncertain objects,
andD be a two-dimensional space that contains these objects.
Notice thatD can have any shape in general; for the sake of
discussions, we assume thatD is a square.

Definition 1: A UV-cell of Oi, denoted byUi, is a region
in D such thatOi has a non-zero probability to be the nearest
neighbor (NN) of a pointq iff q is located inUi.

Hence,Oi cannot beq’s nearest neighbor ifq is outsideUi.
The UV-cell can be used to recover the UV-partitions (i.e.,
disjoint regions of a UV-diagram). In fact, a UV-partition that
containsq is the intersection of all UV-cells that containq.
This is because the objects associated with these UV-cells have
non-zero qualification probabilities. Thus, given the UV-cells
of all objects, we can use them to find out which object(s)
is/are the nearest neighbor ofq with non-zero probabilities.

Notice that if there is at least one uncertain object in domain
D, any point inD must be covered by at least one UV-cell.

0 x

y

F1

M

F2

p

Oi

Oj

p's min
distance
from Oi

ri rj

CjCi

p's max
distance
from Oj

q1

q0

UV-edge
of Oi

(Ei(j))

UV-edge
of Oj

(Ej(i))

Fig. 3. The UV-edge.

In particular, if Oi is the only object in domainD, then its
UV-cell is exactlyD.

We now study the relationship between a query point and
UV-cells. Let p be a point inD, and letdistmin(Oi, p) and
distmax(Oi, p) be the minimum and the maximum distances
of object Oi from p respectively. Figure 3 illustrates two
uncertain objects,Oi and Oj . For any pointp on the solid
line shown, we require the following property to hold:

distmin(Oi, p) = distmax(Oj , p) (1)

We call this solid line the “UV-edge ofOi with respect to
Oj”, denoted byEi(j). A special property of this edge is that
any pointp at the region on the side ofEi(j) closer toOj has
its maximum distance fromOj , i.e., distmax(Oj , p), shorter
than its minimum distance fromOi, i.e., distmin(Oi, p). On
the other hand, ifp is on the opposite side ofEi(j), then
distmax(Oj , p) ≥ distmin(Oi, p).

The UV-edge allows us to decide whether an object is
an answer object(i.e., an object with non-zero qualification
probabilities). In Figure 3,q0 is on the right ofEi(j), which
is also closer toOj than Oi. Thus, distmax(Oj , q0) <
distmin(Oi, q0). In other words,Oj is always closer to q0

than Oi, and Oi has no chance to be the nearest neighbor
of q0. As another example,q1 is on the left of Ei(j).
Sincedistmin(Oi, q1) ≤ distmax(Oj , q1), Oi has a non-zero
qualification probability. Hence, givenEi(j), if the query point
is on the right ofEi(j), Oi can be pruned.

B. Constructing a UV-cell

We now present a simple method of constructing a UV-cell.
Let us define the following:

Definition 2: A possible regionof object Oi, denoted by
Pi, is an area that completely covers the UV-cell ofOi.
An example of an object’s possible region is the domainD,
sinceD must cover any UV-cell.

Definition 3: The outside region of UV-edge Ei(j), de-
noted byXi(j), is the region on one side ofEi(j) such that
for any pointq ∈ Xi(j), Oj is always closer toq thanOi.
In Figure 3, the outside region of the UV-edgeEi(j) is the
area on the right of the solid line. Notice that sinceq0 is in
the outside region ofEi(j), Oj is closer toq0 than Oi, and
thusOi cannot beq0’s nearest neighbor.

Algorithm 1 UV-cell Generation
Input: Uncertain objectsO = {O1, O2, . . . , On}
Output: U1, U2, . . . , Un

1: for each Oi ∈ O do
2: Let Pi ← D;
3: for each Oj ∈ O ∧ j 6= i do
4: Ei(j)← UV-edge ofOi w.r.t. Oj ;
5: Xi(j)← outside region ofEi(j);
6: Pi ← Pi −Xi(j);
7: end for
8: Ui ← Pi;
9: end for

10: return U1, U2, . . . , Un

Given an objectOi, if we know all the outside regions
Xi(j) (where j = 1, . . . , n ∧ j 6= i), then Oi’s UV-cell
can be constructed by excluding all these regions fromD.
Algorithm 1 illustrates the basic method for constructing UV-
cell for n objects. The possible region of each objectOi is
first initialized as the whole space (Step 2). Then, for eachOj ,
we compute the UV-edge ofOi and its corresponding outside
region (Steps 4 and 5). The possible region, which contains all
the points that may haveOi as one of their nearest neighbors,
is then “reduced” by the outside region that overlaps with it
(Step 6). The UV-cell ofOi is then assigned to be the final
possible region (Step 8).

The order of selecting the object for refiningOi’s possible
region (Steps 4-6) does not affect the correctness of the algo-
rithm. This is because the UV-cell is produced by “shrinking”
the possible regions by using the outside regions of other
objects. Moreover, as we will see, not all objects are useful
in shaping the UV-cell. Once all the UV-cells are generated,
then they can be used to answer PNN queries. Table I shows
the symbols used in this paper.

Notation Meaning
Objects and query

D Domain space (a square)
O A set of uncertain objects (O1, O2, . . . , On)

(ci, ri) Center and radius ofOi

q Query point of a PNN
UV-diagram

Cir(c, r) A circle centered atc with radiusr
dist(q, ci) Euclidean distance betweenq andci

distmin(q, Oi) min. distance ofOi from q
distmax(q, Oi) max. distance ofOi from q

Ui UV-cell of Oi

Pi Possible region ofOi

Ei(j) UV-edge ofOi w.r.t. Oj

Xi(j) Outside region ofOi w.r.t. Oj

Fi r-objects ofOi, whereFi ⊆ O
Ci cr-objects ofOi, whereCi ⊆ O
M max. no. of non-leaf nodes
Tθ split threshold

TABLE I

NOTATIONS AND MEANINGS.

C. The Shape of a UV-cell

Let us assume that the uncertainty region ofOi is a circle,
with center ci and radiusri. (Later we discuss how other
shapes can be supported.) We only present the general case
(ri > 0); the special case (i.e.,ri = 0) is discussed in in
Appendix . For any pointd ∈ D, we observe from Figure 3
that:

distmin(Oi, q) =

{

dist(q, ci)− ri q /∈ Cir(ci, ri)
0 otherwise

(2)

distmax(Oj , q) = dist(q, cj) + rj (3)

whereCir(ci, ri) denotes a circle with centerci with radius
ri. Sinceri > 0, distmax(Oj , q) must also be positive. Thus,
by substituting Equations 2 and 3 into Equation 1, we have:

dist(q, ci)− dist(q, cj) = ri + rj (4)

Let the coordinates ofci andcj be(xi, yi) and(xj , yj). Let
fx = 1

2 (xi + xj) andfy = 1
2 (yi + yj). Let cosθ =

(xj−xi)
dist(ci,cj)

andsinθ =
(yj−yi)

dist(ci,cj)
. Then, Equation 4 becomes:

x2
θ

a2
− y2

θ

b2
= 1 (5)

where

• a =
ri+rj

2 , c =
dist(ci,cj)

2 , andb =
√

c2 − a2;
• xθ = (x− fx) cos θ + (y − fy) sin θ;
• yθ = (fx − x) sin θ + (y − fy) cos θ.

Essentially, Equation 5 is a hyperbolic equation, withci and
cj as the foci, rotated byθ in an anti-clockwise sense [33].
Figure 3 illustrates that the UV-edge ofOi w.r.t. Oj (the solid
line) is a hyperbola.

Equation 5 shows that a UV-cell is composed of the intersec-
tions of one or more UV-edges, which are hyperbolas. Since
a hyperbola is a conic curve, an UV-edge must beconcavein
shape. In Figure 2, apart from the edges of the domain space,
the UV-cells of the three objects have concave edges. Note
that Equation 5 has two curves, which represent the UV-edges
for each pair of objects involved. For example, in Figure 3,
the solid line is the UV-edge ofOi w.r.t. Oj , and the dotted
line is the UV-edge ofOj w.r.t. Oi.

If two objects overlap, thendist(ci, cj) < ri + rj , and in
Equation 5,b is not real. Physically, this meansEi(j) cannot
be found, and we can treatXi(j) as a zero-area region.

Let us revisit Algorithm 1. Step 4 is done using Equation 5.
Step 5 is performed by observing that the outside region of
a UV-edge must be convex in shape. To perform Step 6 (i.e.,
cutting the possible region by an outside region), we compute
the intersections of hyperbola equations by using linear algebra
techniques [33], which are detailed in Appendix .

Non-circular uncertainty regions. Algorithm 1 can
be extended to support non-circular uncertainty regions. In
particular, we convert the (non-circular) uncertainty region to
a circle that minimally contains it. With a larger (circular)
uncertainty region, the object has more chance to be the
nearest neighbor of any given point, thereby increasing the

UV-cell size. Then Algorithm 1 can be used to construct an
approximate UV-diagram for these uncertainty regions. The
correctness is guaranteed by the following Corollary.

Corollary 1: Given a set of arbitrary shaped uncertain ob-
jects{Oi}ni=1, and a query pointq, if O1 is q’s possible nearest
neighbor among{Oi}ni=1, thenMBC(O1) must also beq’s
nearest neighbor among{MBC(Oi)}ni=1.

Proof:
O1 is q’s possible NN

⇒ ∀i : distmin(q, O1) < distmax(q, Oi) (6)

Obviously,
{

distmin(q, MBC(Oi)) < distmin(q, Oi),
distmax(q, MBC(Oi)) > distmax(q, Oi)

(7)

From Equation 6 and Equation 7, we get:

∀i : distmin(q, MBC(O1)) < distmin(q, O1) <
distmax(q, Oi) < distmax(q, MBC(Oi))

(8)

⇒ ∀i : distmin(q, MBC(O1)) < distmax(q, MBC(Oi))
(9)

⇒ MBC(O1) is q’s possible NN among{MBC(Oi)}ni=1.
So, Corollary 1 ensures that if an objectOi is q’s possible

NN, MBC(Oi) must also be q’s possible NN.
Complexity. The problem of Algorithm 1 is that it is very

costly. For each object, its UV-edge with respect to other
objects is used to refine its possible region (Step 6). This
requires computing the intersections of all edges of the current
possible region (Pi) with a new UV-edgeEi(j) from Oj .
As shown in Figure 4(b),Ei(j) intersects withUi’s UV-
edgee1e2 at e5 and e6. Thus, e1e5 and e6e2 are removed.
The edgee1e2 in Figure 4(a) is replaced bye4e5, e5e6 and
e6e7 in Figure 4(b). Notice thatEi(j), a hyperbolic curve,
can create three new edges with each concave edge ofPi.
In the worst case, the number of edges ofPi increases by
three times whenever a new UV-edge is considered in Step
6. As a result, the number of edges of the UV-cell can be
be exponential. Moreover, computing intersections between
hyperbolas is complex. In fact, this needs 97 hours to create
a UV-diagram of 50K objects in our implementation. Let us
investigate how to tackle these problems.

e1

e2 e3

(a)

e1

e2 e3

(b)

e4 e5 e6 e7

Oi Oi

Ei(j)

Fig. 4. (a)Before insertingEi(j). (b)After insertingEi(j).

Corollary 2: The number of edges of a UV-cell can be be
exponential.

Proof: Oi’s UV-cell is constructed by excludes all the
outside regionXi(j). For eachOi, the time for constructing
then−1 outside regions is proportional ton−1. For computing
the intersections, we first considerPi, which is the whole space
(containing 4 boundary edges).

ThenPi is reduced by another outside region, obtaining a
polygon with concave curve and straight line segments as its
edges. The edge number now is at most 4 times 3, since every
hyperbola will at most have 2 intersections with each edge,
thus one edge might become 3 edges at most.

Next, we insert the second outside region and so on. In
the k-th step of the procedure, the polygon will have4 × 3k

edges at the worst case. Then the time for constructing one
UV-cell would be (time unit for construction and intersection
is constant, denoted as a and b respectively):

T = a× (n− 1) + 4b× 3n−1 = O(3n) (10)

q
q’

A

B
C

S

S1

Ok

Oi

rk

ck

Fig. 5. Proof for Corollary 3.

IV. EFFICIENT UV-CELL GENERATION

Since generating a UV-cell is inefficient, our strategy is
to avoid computing it directly. Instead, we represent a UV-
cell as a set ofcr-objects, which can be efficiently derived.
Section IV-A outlines the algorithm of yielding cr-objects. We
explain the preparation phase of this algorithm in SectionsIV-
B, and two techniques for finding these objects quickly, in
Sections IV-C and IV-D.

A. r-Objects and cr-Objects

Recall from Algorithm 1 that the UV-cell of an objectOi,
i.e., Ui, is the result of repeatedly subtracting the outside
region of other objects (i.e.,Xi(j)) from its possible region,
Pi. In fact, not all outside regions are useful for refiningPi.
In particular, if the UV-edge ofOi corresponding toOj , i.e.,
Ei(j), does not intersect withPi, thenPi cannot be shrinked
by Xi(j). We call an objectOj a reference object(or r-object)
of Oi, if Oj defines an edge ofOi’s UV-cell. We also denote
Fi ⊆ O to be the set of r-objects ofOi. The setFi contains
objects whose outside regions are responsible for defining the

UV-cell of Oi. In Figure 2, for example, the set of r-objects
of O3, i.e., F3, is to {O1, O2}.

Given that the r-objects for each object is known, our
solution (to be shown in Section V) can use r-objects to
develop an alternative representation of the UV-diagram. This
solution is much cheaper than Algorithm 1, which requires
exact UV-cells to be computed. However, findingFi itself is
difficult, because we do not know the UV-cell ofOi. Our
strategy is to find a small setCi of objects, whereFi ⊆ Ci.
We call Ci the candidate reference objects(or cr-objects in
short). We next show howCi can be derived without acquiring
the exact UV-cell ofOi. In Section V, we study an indexing
solution based on cr-objects.

Algorithm 2 outlines the three steps required for deriving the
cr-objects forOi. Step 1 (initPossibleRegion) creates
a possible regionPi based on a small number of objects. In
Step 2, the “index level” pruning (orindexPrune) yields a
setI of objects that may contribute edges to the UV-cell. Step
3 applies “computational level” pruning (orcompPrune) on
I, and producesCi. Here we assume that an R-tree index
has been built on the uncertain objects’ uncertainty regions.
Each object’s information (e.g., uncertainty region and pdf),
is stored in the disk.

Algorithm 2 Deriving cr-objects
Input: Uncertain objectOi

Output: cr-objectCi

1: Pi ← initPossibleRegion(Oi, O − {Oi})
2: (Pi, I)← indexPrune(Pi, O)
3: Ci ← compPrune(Pi, I)

B. Step 1: Generating a Possible Region

In Step 1 of Algorithm 2), we retrieve a small number of
objects, calledseeds, from the setO−{Oi}. These seeds are
used to generate an “initial” possible region, using a routine
similar to Steps 3 to 7 of Algorithm 1. This region is used by
other pruning methods to produce cr-objects.

Seeds have to be selected with care. If seeds are randomly
selected, a big initial region can be produced. This region
may be intersected by many outside regions, resulting in
poor pruning efficiency. To produce small regions, we issue
a k-Nearest-Neighbor Query (k-NN) on the R-tree, using the
centerci of Oi’s uncertainty region as the query point. Thek
objects, whose uncertainty regions’ minimum distances from
ci are the shortest, are obtained. We then selectks out of k
objects to be the seeds. This is done by dividing the domain
D into ks sectors centered atci. For each partition, the object
closest toci is assigned as a seed.

The above method does not guarantee that allks seeds can
be found (e.g., no seeds can be found if a sector is empty).
Even if this happens, however, we can still obtain an initial
possible region without affecting the latter steps. This region
may be larger though. In our experiments,ks = 8, and in most
cases all seeds can be found. For each object, evaluating ak-
NN query requiresO(n) times, selecting seeds costsO(k)

times, and constructing an initial region needsO(1) times.
Hence, the cost of this step isO(n + k).

C. Step 2: Index Level Pruning

Once the possible region has been initialized, we perform
I-pruning (Step 2 of Algorithm 2), in order to remove ob-
jects that cannot constitute an UV-edge to the UV-cell. To
understand this step, let us consider an objectOi, its possible
region Pi, and another objectOj , which has not yet been
considered in refiningPi. Our goal is to establish the necessary
and sufficient condition(s) forOj to have effect on the shape
of Pi.

Corollary 3: The UV-cell of an uncertain object is a con-
nected region.

Proof:
First of all, we claim that all points inOi’s uncertainty

region, i.e.Cir(ci, ri), must belong to its UV-cell. This is
because the minimum distance betweenOi and any point
inside Cir(ci, ri) is zero, andOi always has some chances
to be the nearest-neighbor of these points. Hence, there must
be a sub-region ofOi’s UV-cell which is connected, e.g. its
uncertainty region.

Now suppose the UV-cell ofOi is a non-connected region,
for example, in Figure 5, the UV-cell is separated into two
parts. As discussed above, there should be a sub-region, e.g. S,
of this UV-cell which is connected and coversOi’s uncertainty
region. For any sub-region which is not connected toS, e.g.
S1, we can randomly choose a point inside it, e.g.q, and
connectq with the center ofOi’s uncertainty region. On this
line segment, there must be some points which are outside of
Oi’s UV-cell. For example, in Figure 5,q′ is such a point.
Sinceq′ does not belong toOi’s UV-cell, there must exist an
object, sayOk, such that the minimum distance betweenq′

and Oi is larger than the maximum distance betweenq′ and
Ok, i.e.

|q′A| > |q′B| (11)

Now consider point q, we will have

|qC| = |qck|+ rk

< |qq′|+ |q′ck|+ rk (triangleinequality)

= |qq′|+ |q′B|
< |qq′|+ |q′A| (Equation 11)

= |qA|

From this, we can see thatq must not be a point insideOi’s
UV-cell. This conflicts with our initial assumption. HenceOi’s
UV-cell must be connected, and our proof is completed.

Lemma 1:Pi = Pi −Xi(j), if and only if for every point
p insidePi, distmax(p, Oj) > distmin(p, Oi).

Proof: Suppose there exists a pointp′ inside Pi, such
that distmax(p′, Oj) ≤ distmin(p′, Oi). Then Oj is always
closer top′ then Oi, andOi cannot be the nearest neighbor

of p′. This implies thatp′ must be excluded fromPi after Oj

is considered, i.e., using the operationPi −Xi(j). Hence,Pi

cannot be equal toPi−Xi(j). This results in a contradiction.
Thus, the lemma is correct.

Lemma 2:Pi = Pi −Xi(j) if and only if for every point
p on the boundary ofPi, distmax(p, Oj) > distmin(p, Oi).

Proof: Let P ′
i be the regionPi − Xi(j), which must

be connected as proved by Corrollary 3. Now, suppose there
exists a pointp′ inside Pi but not on the boundary ofPi,
such thatdistmax(p′, Oj) ≤ distmin(p′, Oi). This implies
that p′ cannot be insideP ′

i . However, as all pointsp on Pi’s
boundary satisfiesdistmax(p, Oj) > distmin(p, Oi), p will
remain inP ′

i . Thus,P ′
i must have a “hole” inside it. However,

this cannot occur, because each UV-edge is a segment of a
hyperbolic curve, which has open ends. The region ofP ′

i ,
therefore, cannot have any “holes” inside it.

Hence, for any pointp insidePi, p must satisfy the condition
distmax(p′, Oj) > distmin(p′, Oi). By using Lemma 1, we
havePi = Pi −Xi(j).

Essentially, if we want to examine whetherOj has any effect
on Pi, it suffices to consider the points onPi’s boundary,
instead of all points inPi.

Oi

d1

d2

v1

v2

V
�e1

e2

e'
C1'

C1

V1'

V2'

d'

(a) I-pruning (b) C-pruning

Fig. 6. Our pruning methods.

Lemma 3:Given an objectOi with centerci and radiusri,
let d be the maximum distance ofPi from ci. Let Cout be a
circle, with centerci and radius2d − ri. For another object
Oj , if cj /∈ Cout, thenPi = Pi −Xi(j).

Proof: DenoteCin be a circle with centerci and radius
d. Figure 6(a) illustratesOi, its possible regionPi (in solid
lines), Cin andCout. Let us suppose on the contrary thatPi

is not equal toPi−Xi(j), i.e.,Pi can be reshaped by the UV-
edge ofOj . Then, using Lemma 2, there must exist a pointp
on the boundary ofPi such that:

distmax(p, Oj) ≤ distmin(p, Oi) (12)

Using Equations 2 and 3, we have:

dist(p, cj) + rj ≤ dist(p, ci)− ri

⇒ dist(p, cj) + dist(p, ci) + rj ≤ 2dist(p, ci)− ri

⇒ dist(p, cj) + dist(p, ci) ≤ 2dist(p, ci)− ri

⇒ dist(ci, cj) ≤ 2dist(p, ci)− ri(13)

sincedist(ci, cj) ≤ dist(p, cj)+dist(p, ci) due to the triangu-
lar inequality. Now,dist(p, ci) ≤ d, so Equation 13 becomes:

dist(ci, cj) ≤ 2d− ri (14)

This implies thatcj is in the circleCout, contradicting the
assumption of Lemma 3. Hence, this lemma is correct.

The I-pruning method uses Lemma 3 by issuing a circular
range query, centered atci with radius2d− ri, on the dataset.
This operation can be easily implemented by using the R-tree
created for the uncertain objects. The range query first usesthe
R-tree to filter all objects that do not overlap with the range.
For the remaining objects, they are removed if their centers
are beyond the circular range. Hence, in this phase, a cost of
O(n) is needed for each object.

D. Step 3: Computational Level Pruning

Next, we discuss a simple method, based on distance
comparison, for checking whether objectOj can affect the
possible region of objectOi. We call this methodC-pruning
(Step 3 of Algorithm 2). Lemma 4, discussed below, serves as
the foundation of C-pruning.

Lemma 4:Given an uncertain objectOi(ci, ri) and Pi’s
convex hull CH(Pi), let v1, v2, . . . , vn be CH(Pi)’s ver-
tex. If another objectOj ’s center cj is not in any of
{Cir(vm, dist(vm, ci))}nm=1, thenPi = Pi −Xi(j).

Proof: First, the convex hullCH(Pi), which completely
containsPi, must also beOi’s possible region. For every point
p on CH(Pi)’s boundary, supposecj is located outside the
circle Cir(p, dist(p, ci)). Then we have:

dist(p, cj) > dist(p, ci)

⇒ dist(p, cj) + rj > dist(p, ci)− ri

⇒ distmax(p, Oj) > distmin(p, Oi) (15)

Second, Lemma 2 states that ifdistmax(p, Oj) >
distmin(p, Oi), thenCH(Pi) = CH(Pi)−Xi(j). Therefore,
if cj is outsideCir(p, dist(p, ci)) for every p on CH(Pi)’s
boundary,Oj can be safely pruned.

For convenience, letCir(p, dist(p, ci)) be a d-bound
(whered = dist(p, ci)). We also define a setS of d-bounds
for every pointp in Ui. We now show that instead of checking
all the d-bounds inS, it is only necessary to check thosed-
bounds constructed for the vertices ofCH(Pi). Specifically,
the d-bounds of the vertices must contain all otherd-bounds
of all points on the boundary ofCH(Pi). To see this, let
dk be the distance of vertexvk from Oi’s center. We extend
each vertexvk by the distancedk to obtain a new vertexv′j
(black dot in Figure 6(b)). These new vertices are connected
to form a polygon. We usee1 ande2 to represent thed-bounds
Cir(v1, d1) andCir(v2, d2), respectively.

We next show that, for any pointv′ on CH(Pi)’s
edge v1v2, Cir(v′, dist(v′, ci)) ⊆ e1 ∪ e2. (We let e′ =
Cir(v′, dist(v′, ci))). We draw a linec1c

′
1, which is perpen-

dicular with v1v2 and v′1v
′
2, and intersects them at pointsc1

and c′1 respectively. Asv1v2 is the perpendicular bisector of
cic

′
1, we see thatcic

′
1 is the common chord ofe1, e2 ande′.

Sincee1 or e2 is bigger thane′, e′ is contained bye1 or e2.

Hence, to check whetherOj can refinePi, we just need
to check the set ofd-boundsS′ = {Cir(vm, dist(vm, ci))}
(where S′ ⊆ S). If cj is located outside alld-bounds in
S′, then CH(Pi) = CH(Pi) − Xi(j). Finally, sincePi is
completely covered byCH(Pi), Pi = Pi −Xi(j) must also
be true. This completes the proof.

Step 3 of Algorithm 2 uses Lemma 4 to prune unqualified
objects returned by I-pruning. This can be done efficiently,
because only the vertices ofCH(Pi) are used. Moreover,
|CH(Pi)| is small, since the possible region is only derived
by eight seeds. The complexity of this phase isO(n).

We consider the objects that are not pruned away in this step
as cr-objects (i.e.,Ci). The overall complexity of Algorithm 2,
for generatingCi’s of n objects, isO(n(n + k)). Here one
may consider to useCi to generate the exact UV-cell ofOi.
However, our experiments showed since|Ci| may be large,
generating the UV-cell can still be costly. Next, we show how
to useCi directly to construct an index for the UV-diagram.

V. THE UV-I NDEX

We now present a index, calledUV-index, based on the
UV-diagram. Designing the UV-index presents a few technical
challenges. The extremely large number of UV-partitions and
UV-edges make it infeasible to compute and store a UV-
partition. Moreover, the sizes and distributions of the UV-
partitions vary significantly (see Figures 1 and 2). Our index
solves these problems, and still yields a high query perfor-
mance. We examine the UV-index and PNN evaluation in
Section V-A. We then discuss the construction of the UV-
index in Section V-B. We study how to extend the UV-index
to support other queries in Section V-C.

A. An Adaptive Grid for UV-partitions

Fig. 7. UV-index: (a) Structure, (b) Overlap checking.

Index Structure. The UV-index adopts a framework
similar to a quad-tree [34], in order to index the irregular
and non-overlapping UV-partitions. Figure 7 (a) illustrates this
index.1 Each non-leaf node, 16 bytes each, records a pointer to
each of its four child nodes, where the square region spanned
by each child node is one-fourth of that of its parent. The
region covered by the root node is the whole domainD. Each

1Our design adopts quad-tree rather than R-tree. While R-tree MBRs may
overlap, quad-tree grids do not. Issuing a point query on non-overlapping
UV-partitions in quad-tree is thus more convenient than R-tree.

leaf node stores all the objects whose UV-cells overlap with
the region defined for the node. To save space, a node’s region
is not stored, since we can easily derive the dimension of the
region based on the level of the node in the tree. Also, due to
approximation, a UV-cell that does not overlap with the leaf
node’s region may be included. However, a UV-cell that truely
overlaps with the region will not be excluded. For each leaf
node l, we store a linked list of disk pages, which contain
tuples< ID,MBC,pointer>, where:

• ID is the identity of objectOi whose UV-cell may overlap
with the region covered byl;

• MBC is the circle that minimally bounds the uncertainty
region ofOi; and

• pointer stores the disk page address of the object.

We allocate a maximum ofM non-leaf nodes that can be
stored in the main memory. The leaf nodes, which contain the
lists of pages, are stored in the disk.

PNN processing with UV-index. We first useq as the
query point, and traverse the index, to find out the leafl whose
region containsq. We then retrieve the disk pages associated
with l, which contains theID and theMBC of the objects
stored in the pages. Since these objects may have their UV
cells overlap with the region ofl, it is also possible thatq is
located in their respective UV-cells. LetL be the set of objects
associated withl, andA be the answer objects ofq. Our goal is
to retrieveA from L, whereA ⊆ L. To do this, we perform a
verification method of [14]: based on theMBC’s of the objects
in L, find out the minimum of the maximum distances of these
objects fromq. We call this distancedminmax. Any object with
the minimum distance larger thandminmax is removed, since
this object cannot have a non-zero qualification probability.
The remaining objects must be the answer objects, whose
probabilities are computed and returned to the user.

B. Index Construction

Recall that a UV-cell can be represented by a set of cr-
objects,Ci. Let us examine how this facilitates the construc-
tion of the UV-index.

Framework. Let g be the grid node being examined, and
hk (where k = 1, . . . , 4) be the four child nodes ofg. We
define a variablenonleafnum, which indicates the number of
non-leaf nodes allocated to the index and has an initial value
of 1. Originally, theroot of the grid is a leaf node, whose
region covered (root.region) is the domainD.

We use Algorithm 3 (InsertObj) to insert an objectOi

to the index. This algorithm, whose inputs areCi and nodeg,
is a recursive procedure, whereInsertObj(Ci, root) is
first invoked. In Step 1,CheckOverlap investigates if the
UV-cell represented byCi overlaps with the region of gridg.
If so, we check whetherg is a non-leaf node. If this is true,
InsertObj is called recursively (Steps 2-4). Otherwise, we
performCheckSplit (Step 7), which returns:
1. NORMAL (Steps 9-11):g’s pages still have space left, and
so (i, MBCi, ptr(Oi)) is inserted tog’s page, whereptr(Oi)
is the pointer toOi’s uncertainty region and pdf.

Algorithm 3 InsertObj
Input: cr-objectsCi; Nodeg;

1: if (CheckOverlap(Ci, g.region) = true)then
2: if g is a non-leaf nodethen
3: for k = 1 to 4 do
4: InsertObj(Ci, hk);
5: end for
6: else
7: state← CheckSplit(Ci, g);
8: switch (state)
9: caseNORMAL:

10: g.list.add(i, MBC(Oi), ptr(Oi));
11: break;
12: caseOVERFLOW:
13: Allocate new page forg;
14: g.list.add(i, MBC(Oi), ptr(Oi));
15: break;
16: caseSPLIT:
17: deleteg.list;
18: for k = 1 to 4 do
19: Assignhk as child ofg;
20: end for
21: nonleafnum ← nonleafnum + 1;
22: break;
23: end if
24: end if

2. OVERFLOW (Steps 12-15):g’s pages are full, and a new
disk page has to be associated withg, before the information
aboutOi is inserted to the new page.
3. SPLIT (Steps 16-22):g’s pages are full. The page listg
is removed. Then,g becomes the parent of four nodes (hk),
which have been previously generated byCheckSplit. The
region of each child nodehk covers each of the four quarters
of the region defined forg. Also, nonleafnumis incremented
by a value of 1. Essentially, The information about the UV-
cells previously associated withg are now represented by its
child nodes, andg becomes a non-leaf node.

Decision on Splitting. When g’s pages are full, either
Oi’s information is inserted to a new page (OVERFLOW), or
split into four child nodes (SPLIT). Ideally, the region of the
leaf node that coversq is completely covered by a true UV-
partition. This guarantees that the set of objects returnedby
the UV-index is the true answer objects. The UV-index, which
contains grids, is just an approximation of the UV-diagram.
Apparently, the more the splitting is performed, the closerthe
index can resemble the actual UV-diagram, and yield better
query performance.

In fact, splitting is not always useful. Suppose thatg.region
is associated with 100 UV-cells. Moreover,g.region is com-
pletely covered by each of these UV-cells. Then it is not
necessary to redistributeg into four child nodes. If splitting is
performed in this case, then the UV-cells associated with each
child node are exactly the same. Thus, more space is wasted
to store duplicated information about the UV-cells. This can

happen if the corresponding 100 objects of these UV-cells are
close to each other. Then, these UV-cells have similar shapes
and significant overlapping. To decide whether to split, we
definesplit fraction, θ, as follows:

θ =
mink=1,...,4 |hk.list|

|g.list| (16)

which is the minimum fraction of UV-cells in one of the child
nodeshk that are also ing (note that the UV-cells associated
with hk must be the subset of the ones attached tog). A
small θ means that the number of UV-cells overlapping with
hk.region is small compared with that ofg. We now define a
splitting condition of a node:

Split if θ < Tθ

whereTθ ∈ [0, 1] is called thesplit threshold. A larger value
of Tθ implies a higher tendency of splitting.

Algorithm 4 (CheckSplit) implements these ideas. Steps
1-3 returnNORMAL if the pages ofg are not full. Steps 4-5
returnOVERFLOW if the number of non-leaf nodes allocated
is higher thanM . In Steps 7-16, we compute the value ofθ,
by creating four nodeshk (Step 7), and checking the overlap
of each UV-cell withhk.region (Steps 11-12). If the splitting
condition is satisfied (Step 17), then theSPLIT decision is
returned, where Algorithm 3 (Steps 18-19) will assign the
nodeshk to be the child nodes ofg. Otherwise, the child
nodes are deleted and anOVERFLOW decision is made (Steps
20-21).

Overlap Checking. Algorithm 5 tests if the UV-cell of an
object Oi overlaps with a gridg’s region r. For every cr-
objectOk ∈ Ci, if any of their corresponding outside region
(Xi(k)) totally contains r, then CheckOverlap returns
false (Steps 1-3). Otherwise,true is returned (Step 6).
To prove the correctness we use the following lemma:

Lemma 5: If region r is totally covered byXi(k), where
Ok ∈ Ci, thenr must not overlap with the UV-cellUi.

Proof: We want to show that if∃Ok, such thatr ⊆
Xi(k), then r ∩ Ui = φ. Suppose we have such an object
Ok. Now, let us denoteXi(j) to be D − Xi(j). Then, Ui

is essentially the intersection of all the regionsXi(j), for all
objects inO, i.e.,

Ui = ∩|O|
j=1∧j 6=iXi(j) (17)

Moreover, sincer ⊆ Xi(k), we have

r ∩Xi(k) = φ

⇒ (r ∩Xi(k)) ∩|O|
j=1∧j 6=i∧j 6=k Xi(j) = φ

⇒ r ∩ (Xi(k) ∩|O|
j=1∧j 6=i∧j 6=k Xi(j)) = φ

⇒ r ∩ Ui = φ

from Equation 17. Hence, the lemma is correct.
To check whether a regionr is in the outside region of

Xi(j) (Step 2), it is not necessary to generate and test with
the UV-edgeEi(j). Instead, we can check this efficiently by
using a4-point test. To understand this method, observe that
r is a square, and the UV-edge ofOi w.r.t. Oj is concave

Algorithm 4 CheckSplit
Input: cr-objectsCi; nodeg;
Outputs: NORMAL, SPLIT, OVERFLOW;

1: if there is space on any disk page ofg.list then
2: returnNORMAL;
3: end if
4: if nonleafnum + 1 > M then
5: returnOVERFLOW;
6: else
7: Create nodeshk (k = 1, . . . , 4) with hk.region equal

to each quarter ofg.region;
8: Let A← Oi ∪ g.list;
9: for each Oj ∈ A do

10: for each hk do
11: if (CheckOverlap(Cj, hk.region)) = true then
12: hk.list.add(j, MBC(Oj), ptr(Oj));
13: end if
14: end for
15: end for
16: Let θ ← (mink=1,...,4 |hk.list|)/|g.list|;
17: if θ < Tθ then
18: returnSPLIT;
19: else
20: deletehk, wherek = 1, . . . , 4;
21: returnOVERFLOW;
22: end if
23: end if

Algorithm 5 CheckOverlap
Input: cr-objectsCi; Regionr;
Output: true if Ui andr overlap, false otherwise;

1: for each Ok ∈ Ci do
2: if r ⊆ Xi(k) then // Use 4-point testing
3: returnfalse;
4: end if
5: end for
6: returntrue;

in shape. If all its four corner points are confirmed to be in
Xi(j), then we can conclude thatr ⊆ Xi(j). For example,
Figure 7(b) shows that the region ofg1 must not overlap with
Ui, since all the four corner ofg are located on the outside
region of one of the UV-edges. Moreover, checking whether a
point is in Xi(j) is easy, because we can simply check if the
point’s minimum distance fromOi is larger than its maximum
distance fromOj . Hence, we use the four-point test in Step 2.

Notice that Algorithm 5 may incorrectly judge thatUi

overlaps withr. Figure 7(b) shows thatUi does not overlap
with the region of gridg2. However, some corners ofg2.region
are not on the outside region of two of the UV-edges of
Ui. If this is true for all UV-edges ofUi, then Ui would
be decided to be associated withg2! The consequence is
that, during query evaluation,Oi will be retrieved fromg2.
This increases the query evaluation time sinceOi is not in

g2. However, query accuracy is not affected. In fact, our
experimental results show that|Ci| is small with effective
pruning, and the scenario in Figure 7(b) is rare. Since checking
with Ci is much more efficient than testing with UV-cells, this
extra cost is worthwhile. Hence, we use Algorithm 5 to do
overlap checking.

Since |Ci| = O(n), Algorithm 5 needsO(n) times to
complete. Algorithm 4 usesO(n2) times, mainly for perform-
ing splitting and overlap checking with four child nodes. For
Algorithm 3, each UV-cell, in the worst case, needs to perform
overlap and split tests withM non-leaf nodes. Hence, its total
complexity isO(Mn2). The index has a maximum height of
M/4, if, the data distribution is very skewed, and splitting
always happen in one single quadrant. However, all non-leaf
nodes, 16-byte long, can all be put to the main memory. Thus
the tree height has little effect on query performance.

C. Nearest-Neighbor Pattern Analysis

The UV-diagram index can be easily used to retrieve distri-
bution and pattern information about nearest neighbors, which
is useful for statistical analysis (e.g., [8]). Let us describe these
“pattern-analysis” queries:

1. UV-cell retrieval. This returns the information aboutOi’s
UV-cell (e.g., its area and extent). For example, suppose a user
wants to know the approximate area of the region whereOi

can be the nearest neighbor. Then, a query that returns the UV-
cell Ui of Oi can be useful. To process this query, we scan the
leaf nodes that are associatedUi, and compute the total area
of the regions covered by these leaf nodes. The process can
be sped up by computing and storing these area information
offline. A similar procedure can also be used to support the
operation of displaying the approximate shape of the UV-cell
on the user’s screen.

2. UV-partition retrieval. Given a regionR, retrieve all
UV-partitions insideR, and the “density” of each partitionRi

(which is equal to the number of objects associated withRi,
divided by the area ofRi). This allows a user to examine
the density distribution of the nearest neighbors in his/her
interested area. To support this query, we append a counter
to each leaf node, and record the number of objects at that
node offline. Then, a range query with rangeR is issued over
the adaptive grid; all regions of the leaf nodes that overlap
with R, and their density values, are returned.

VI. EXPERIMENTAL RESULTS

We now report the results on different datasets. Section VI-
A describes settings, and Section VI-B discusses the results.

A. Setup

We use Theodoridis et al’s data generator2 to obtain30k
objects, which are uniformly distributed in a10k×10k space.
Each object has a circular uncertainty region with a diameter of
40 units, and a Gaussian uncertainty pdf. For each uncertainty
pdf, its mean is the center of the circle, and its variance is
the square of one sixth of the uncertainty region’s diameter.

2http://www.rtreeportal.org/software/SpatialDataGenerator.zip

We represent an uncertainty pdf as 20 histogram bars, where a
histogram bar records the probability that the object is in that
area. We also use three real datasets of geographical objects in
Germany3, namelyutility, roads, and rrlines, with respective
sizes 17K, 30K, 36K. These objects are represented as circles
before indexing, and has the same uncertainty pdf information
as that of the synthetic data.

To compare with R-tree, we use a packed R*-tree [35] to
index uncertain objects. The R-tree uses4k disk pages, and
has a fanout of 100. We keep all its non-leaf nodes in the
main memory. For the UV-index, each non-leaf node has four
4-byte pointers to its children. We also setM , the number of
non-leaf nodes in the main memory, to be4000, andTθ to be
1. In our experiments, the amount of memory occupied by the
R-tree is higher than that of the UV-index. The leaf nodes of
both indexes, as well as the uncertainty information about the
objects, are stored in the disk.

We examine the running time of 50 PNN queries, whose
query points are uniformly distributed in the domain. For
simplicity, we use the numerical integration method of [14]to
implement probability computation of answer objects. If faster
methods such as [15] are used, the fraction of time spent on
retrieving answer objects from the index will be higher, and
thus it would be important to optimize the index (which is the
focus of our work). All our programs were implemented in
C++ and tested on a Core2 Duo 2.66GHz PC.

B. Results

1. Sensitivity Testing. We perform a sensitivity test on the
value of Tθ (the splitting threshold). Under a wide range of
Tθ, the indexes only have a slight difference. For very small
values ofTθ (e.g., 0.2), however, the adaptive grid tends not
to split, and degrades into long linked lists of pages. In our
experiments, we setTθ to be 1.

2. Query Performance. We compare the PNN performance
of the UV-index and the R-tree on uncertain objects. Fig-
ure 8(a) shows the query running time (Tc) against synthetic
datasets, with sizes from10K to 100K. The running time of
both queries increase, because with a larger dataset, potentially
more objects qualify as query answers, which increase the
time for index retrieval and probability computation. The UV-
diagram outperforms R-tree in all cases. For example, when
|O| = 60K, the UV-diagram needs about 50% of the time
needed by the R-tree.

To understand why our method performs better, let us
first consider the traversal time of the UV-index, which is
composed of the time costs for visiting non-leaf and leaf
nodes. Since its non-leaf traversal time takes little time in all
experiments (up to 3.9µs), we only present the I/O overhead.
In Figure 8(b) we compare the I/O performance of the UV-
index and the R-tree. The UV-index requires significantly less
number of I/Os than the R-tree (e.g., when|O| = 60K, the
UV-index consumes about one-eighth of the I/Os needed by
the R-tree). When the R-tree is used to process a PNN query,

3http://www.rtreeportal.org/

1 2 3 4 5 6 7 8
x 10

4

0

50

100

150

200

250

300

|O|

T
q(m

s)

R−tree
UV−diagram

1 2 3 4 5 6 7 8
x 10

4

0

2

4

6

8

|O|

T
q(I

/O
)

R−tree
UV−diagram

R−tree UV−diagram
0

20

40

60

80

T
q(m

s)

Index
Object Retrieval
QP Calculation

20 40 60 80 100
0

50

100

150

200

Size of Uncertain Region

T
q(m

s)

R−tree
UV−diagram

(a) Tq(ms) vs. |O|. (b) Tq(I/O) vs. |O|. (c)Analysis ofTq. (d) Tq vs. Uncertainty.
Fig. 8. Query Performance

plenty of leaf nodes needed to be retrieved. For the UV-index,
we only need to look for the leaf node that contains the query
point. Since the number of disk pages for each leaf node is also
small, a high I/O performance can be attained. Also notice that
the number of I/Os for the R-tree increases with|O|, whereas
that of the UV-diagram is relatively stable.

Figure 8(c) shows the time components ofTq: (1) index
traversal; (2) retrieval of objects’ pdf; and (3) probability com-
putation. While object retrieval and probability computation
times are similar for both indexes, R-tree requires a much
higher index traversal time. This explains the difference in
Figure 8(a). In Figure 8(d) we can see that the query time of
both indexes increases with uncertainty region size, sincethe
larger the region, the more probable that the corresponding
object is a PNN answer. Again, due to the superiority of I/O
performance of the UV-diagram, it performs better than the
R-tree.

For real datasets, Table II shows that the UV-diagram
consistently attains a higher query performance than the R-
tree. Since the trends of other results are similar to those of
synthetic data, they are omitted here.

Dataset |O| Tq(UVD)(ms) Tq(R-tree)(ms) Tc(s) pc

utility 17K 89 141 784 89%
roads 30K 82 135 2207 88%
rrlines 36K 107 159 2723 86%

TABLE II

EXPERIMENT RESULT ON REAL DATASETS.

3. UV-Diagram Analysis. Next, we examine the UV-
diagram construction issues. Let us denoteBasicas the method
which constructs a UV-cell using Algorithm 1, and then
indexes the UV-cells with an adaptive grid. An alternative is
to collect cr-objects through I-pruning and C-pruning (Algo-
rithm 2), compute UV-cells and obtain the r-objects, and then
index them with Algorithm 3. We call this second method
IC. The third technique, calledICR, only uses cr-objects in
Algorithm 3. We assume that the R-tree for uncertain objects
is available for use by these methods. For generating initial
possible regions (used inIC and ICR), we setk to 300 for
performing thek-NN search. Then, the domainD is divided
into eight45o sectors to obtain the seeds.

Figure 9(a) describes the development time (Tc) of a UV-

index for the three methods.Basic increases sharply with
the dataset size; handling a50K dataset requires about 97
hours. This is because constructing a UV-cell requires an
exponential amount of time and numerous complex hyperbola
intersections. ForIC and ICR, the use of I- and C-pruning
significantly reduces the number of objects examined. Their
effects are shown in Figure 9(b), wherepc, the pruning ratio,
denotes the fraction of objects fromO that has been filtered.
At |O|=40k, I-pruning and C-pruning achieve a pruning ratio
of 90.9% and 95.5% respectively. Hence, a large portion of
objects are removed before being considered for constructing
the UV-cell. Next, we focus onIC and ICR.

IC vs. ICR. As shown in Figure 9(c),ICR performs much
better thanIC. For example, at|O| = 70K, the construction
time of ICR is about 10% of that ofIC. To understand why,
we analyze their time components in Figures 9(d) and (e).
Here we do not show the initial possible region computation
time, since it is only about 0.5% of the I- and C-pruning time.
Recall the difference between the two methods is thatIC needs
to find out the exact r-objects (by constructing an exact UV-
cell based on the objects returned by pruning), whileICR does
not. ForIC, Figure 9(d) shows the fraction of the construction
time spent on: (i) I- and C-pruning, (ii) generating r-objects,
and (iii) indexing UV-cells. For most datasets,IC spends most
of the time to generate exact r-objects, which is very costly.
For ICR, r-object is not produced (Figure 9(e)). Instead, the
cr-objects produced by the pruning methods are immediately
passed to Algorithm 3 for indexing. Although there are more
cr-objects than r-objects, the fact is that the indexing time does
not increase much. This explains whyICRperforms better than
IC.

In Figure 9(f), the construction time ofIC increases sharply
with the objects’ uncertainty region sizes. With larger uncer-
tainty regions, it is more likely that these regions overlapwith
each other, making it harder to prune the objects, so that more
time is needed to generate r-objects. On the other hand,ICR is
relatively insensitive to the change of uncertainty regionsizes.
For real datasets,ICR also achieves high pruning ratio and
low construction time (Table II). From now on, we assume
that ICR is used.

Skewness. We next examine the effect of object positions’
distribution on the UV-index. Figure 9(g) shows the con-
struction time under different variances (σ) of the uncertainty

1 2 3 4 5 6 7 8
x 10

4

0

20

40

60

80

100

|O|

T
c(h

ou
r)

Basic
IC
ICR

1 2 3 4 5 6 7 8
x 10

4

75

80

85

90

95

100

|O|

p c(%
)

I−pruning
C−pruning

1 2 3 4 5 6 7 8
x 10

4

0

10

20

30

40

50

|O|

T
c(h

ou
r)

IC
ICR

1 2 3 4 5 6 7 8
x 10

4

0

20

40

60

80

100

|O|

T
c(%

)

I+C Pruning
Gen r−object
Indexing

(a) Tc vs. |O|. (b)I- vs. C- pruning. (c)IC vs. ICR(Tc). (d) Analysis of IC.

1 2 3 4 5 6 7 8
x 10

4

0

20

40

60

80

100

|O|

T
c(%

)

I+C Pruning
Indexing

20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

Size of Uncertain Region

T
c(h

ou
r)

IC
ICR

1500 2000 2500 3000 3500
0.2

0.4

0.6

0.8

1

1.2

σ

T
c(h

ou
r)

100 200 300 400 500
20

40

60

80

100

120

140

160

Size of Query Region

T
q(m

s)

(e)Analysis of ICR. (f)Tc vs. uncertainty. (g)Effect of variance. (h)UV-partition query.
Fig. 9. UV-Diagram Analysis

regions’ centers:Tc is higher when data is more skewed (i.e.,
with a smaller variance). In a dense area where uncertainty
regions have high degree of overlap, an object’s UV-cell is
likely small and associated with many r-objects. ThusTc is
increased. In the most skewed dataset that we tested (σ =
1500), Tc is around an hour, which is still acceptable if the
index is constructed offline.

UV-Partition Query. Finally, we examine the efficiency
of our index for answering the UV-partition query. In Fig-
ure 9(h), the retrieval time of UV-partitions (Tq) increases with
the size of query rangeR, since more UV-partitions are loaded
with largerR. In these experiments,Tq is small.

VII. C ONCLUSIONS

The UV-diagram is a variant of the Voronoi Diagram
designed for uncertain data. To tackle the complexity of
constructing and evaluating a UV-diagram, we introduce the
concept of UV-cells and cr-objects. We propose an adaptive
index for the UV-diagram, and develop efficient algorithms
for building it. As our experiments show, this index efficiently
supports PNNs and other UV-diagram-related queries.

We plan to extend various Voronoi-diagram-based solutions
to handle uncertain data. Also, it would be interesting to
study how the UV-diagram can be extended to support multi-
dimensional data and incremental updates. Currently, we are
investigating the use of the UV-diagram to support other
queries (e.g., reverse nearest-neighbor queries).

REFERENCES

[1] A. Okabe, B. Boots, K. Sugihara, and S. Chiu,Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams, 2nd ed. Wiley, 2000.

[2] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee, “Location-based
spatial queries,” inSIGMOD, 2003.

[3] B. Zheng, J. Xu, W.-C. Lee, and L. Lee, “Grid-partition index: a hybrid
method for nearest-neighbor queries in wireless location-based services,”
VLDB J., vol. 15, no. 1, pp. 21–39, 2006.

[4] S. Berchtold, B. Ertl, D. A. Keim, H. peter Kriegel, and T.Seidl, “Fast
nearest neighbor search in high-dimensional space,” inICDE, 1998.

[5] J. Xu and B. Zheng, “Energy efficient index for querying location-
dependent data in mobile broadcast environments,” inICDE, 2003.

[6] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik, “The V*-Diagram: a
query-dependent approach to moving knn queries,”VLDB, 2008.

[7] G. Albers et al, “Voronoi diagrams of moving points,”Intl. Journal on
Computational Geometry and Applications, vol. 8, no. 3, 1998.

[8] P. Wang et al, “Understanding the spreading patterns of mobile phone
viruses,”Science Express, vol. 324, no. 5930, 2009.

[9] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” in SIG-
MOD, 2000.

[10] C. C. Aggarwal, “On unifying privacy and uncertain datamodels,” in
ICDE, 2008.

[11] V. Ljosa and A. Singh, “APLA: Indexing arbitrary probability distribu-
tions,” in ICDE, 2007.

[12] ——, “Top-k spatial joins of probabilistic objects,” inICDE, 2008.
[13] N. Beckmann et al, “The R*-tree: An efficient and robust access method

for points and rectangles,” inSIGMOD, 1990.
[14] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, “Querying imprecise

data in moving object environments,”TKDE, vol. 16, no. 9, 2004.
[15] R. Cheng, J. Chen, M. Mokbel, and C.-Y. Chow, “Probabilistic verifiers:

Evaluating constrained nearest-neighbor queries over uncertain data,” in
ICDE, 2008.

[16] M. Mokbel, C. Chow, and W. Aref, “The new casper: Query processing
for location services without compromising privacy,” inVLDB, 2006.

[17] M. de Berg et al,Computational Geometry: Algorithms and Applica-
tions. Springer-Verlag, 1997.

[18] P. Sistla et al, “Querying the uncertain position of moving objects,” in
Temporal Databases: Research and Practice, 1998.

[19] R. Cheng, D. Kalashnikov, and S. Prabhakar, “Evaluating probabilistic
queries over imprecise data,” inSIGMOD, 2003.

[20] N. Dalvi and D. Suciu, “Efficient query evaluation on probabilistic
databases,” inVLDB, 2004.

[21] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter,“Efficient
indexing methods for probabilistic threshold queries overuncertain
data,” in VLDB, 2004.

[22] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic skylines on uncertain
data,” in VLDB, 2007.

[23] X. Lian and L. Chen, “Monochromatic and bichromatic reverse skyline
search over uncertain databases,” inSIGMOD, 2008.

[24] M. Hua, J. Pei, W. Zhang, and X. Lin, “Ranking queries on uncertain
data: A probabilistic threshold approach,” inSIGMOD, 2008.

[25] H. Kriegel, P. Kunath, and M. Renz, “Probabilistic nearest-neighbor
query on uncertain objects,” inDASFAA, 2007.

[26] X. Lian and L. Chen, “Probabilistic group nearest neighbor queries in
uncertain databases,”TKDE, vol. 20, no. 6, 2008.

[27] M. Cheema et al, “Probabilistic reverse nearest neighbor queries on
uncertain data,”TKDE, vol. 16, no. 9, 2009.

[28] X. Lian and L. Chen, “Efficient processing of probabilistic reverse
nearest neighbor queries over uncertain data,” inVLDBJ, 2009.

[29] G. Beskales, M. Soliman, and I. Ilyas, “Efficient searchfor the top-k
probable nearest neighbors in uncertain databases,” inVLDB, 2008.

[30] B. Chazelle and H. Edelsbrunner, “An improved algorithm for con-
structing kth-order voronoi diagrams,”IEEE Trans. Computing, vol. 36,
no. 11, 1987.

[31] M. I. Karavelas, “Voronoi diagrams for moving disks andapplications,”
in WADS, 2001.

[32] B. Kao, S. Lee, D. Cheung, W. Ho, and K. Chan, “Clusteringuncertain
data using voronoi diagrams,” inICDM, 2008.

[33] A. Akopyan and A. Zaslavski,Geometry of Conics. American
Mathematical Society, 2007.

[34] W. Aref and I. Ilyas, “Sp-gist: An extensible database index for sup-
porting space partitioning trees,”JIS, vol. 17, no. 1, 2001.

[35] M.Hadjieleftheriou, “Spatial index library version 0.44.2b.” [Online].
Available: http://u-foria.org/marioh/spatialindex/index.html

APPENDIX

Special Shapes of a UV-edge.
Here we discuss the shapes of a UV-edge, sayEi(j), whenri

and/orrj equal(s) to zero. First of all, we claim thatEi(j) will
not exist ifci = cj . In this case, the equationdistmin(Oi, q) =
distmax(Oj , q) cannot hold ifri 6= rj , or is always true if
ri = rj . HenceEi(j) will be either an empty set or the whole
data space, and cannot be a curve.

For the caseci 6= cj , suppose only one object definingEi(j)
has no uncertainty, the curve ofEi(j) can still be obtained by
Equation 5, because all variables in that equation, i.e.xθ, yθ,
a and b, will be real numbers, anda, b are nonzero. Finally,
Ei(j) becomes a perpendicular line segment when bothri and
rj are zero.

Hyperbolic Curve Intersection.
As discussed in Section III-A, a vertex of the UV-cell is the
intersection point of two hyperbolic curves. We now outline
the procedure of finding this intersection, using the method
described in [33]. We can represent two hyperbolic curves,
C1 andC2, as homogeneous conic equations:

C1 : A1x
2 + 2B1xy + C1y

2 + 2D1xz + 2E1yz + F1z
2 = 0

C2 : A2x
2 + 2B2xy + C2y

2 + 2D2xz + 2E2yz + F2z
2 = 0

which is obtained by substitutingx/z into x and y/z into
y for the hyperbolas (Equation 5) ofC1 and C2. Next, we
construct equationCλ:

Cλ : C1 + λC2 = 0 (18)

whereλ is a real value, andCλ, a linear combination ofC1
andC2, is a system of hyperbolas. We then rewriteCλ in the
form of ωT Hω = 0, where ω = (x, y, z)T , and

H =





A1 + λA2 B1 + λB2 D1 + λD2

B1 + λB2 C1 + λC2 E1 + λE2

D1 + λD2 E1 + λE2 F1 + λF2





Let det(H) be the determinant ofH . Our aim is to find the
value(s) ofλ that satisfy the characteristic equationdet(H) =

0. The real value ofλ, when substituted into Equation 18,
ensures that (1) there is at least one intersection betweenC1

andC2, and (2)Cλ becomes a degenerated hyperbola, in the
form of two straight lines. Finally, for each of theλ found
from the characteristic equation, we obtain at most four roots
that simultaneously satisfyCλ and C1. Each root represents
an intersection point ofC1 andC2.

