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Abstract— The Voronoi diagram is an important technique
for answering nearest-neighbor queries for spatial databaes. In
this paper, we study how the Voronoi diagram can be used on
uncertain data, which are inherent in scientific and busines
applications. In particular, we propose the Uncertain-Voronoi
Diagram (or UV-diagramin short). Conceptually, the data space is
divided into distinct “UV-partitions”, where each UV-part ition P
is associated with a sef5 of objects; any pointq located in P has
the setS as its nearest neighbor with non-zero probabilities. The
UV-diagram facilitates queries that inquire objects for having

non-zero chances of being the nearest neighbor of a given qye @ ®
point. It also allows analysis of nearest neighbor informabn,

e.g., finding out how many objects are the nearest neighborsi Fig. 1. (a)Voronoi Diagram. (b) UV-Diagram.
a given area.

However, a UV-diagram requires exponential construction ad 14 the noisy transmission of satellite data, the qualityhefse
storage costs. To tackle these problems, we devise an altative

representation for UV-partitions, and develop an adaptiveindex images can be aff_ected, and we may_ not bg able t(_) obtain
for the UV-diagram. This index can be constructed in polynonial ~ Very accurate locations. Moreover, if this location infation

time. We examine how it can be extended to support other relad is released to the public (e.g, for research purposes), f ma
querigs. We also perform extensive experiments to validatthe need to be preprocessed for privacy purposes. In fact, recen
effectiveness of our approach. proposals like [9], [10] have suggested to represent a siser’
position as a larger region, in order to lower the likelihood
that a user is identified at a particular site. Uncertainty is
The Voronoi Diagram, primarily designed for evaluatalso inherent in biological data management. For example,
ing nearest-neighbor queries over two-dimensional Spatimicroscopy images have been actively used to analyze the
points [1], has raised plenty of research interest. Thifi-techickness of neuron layers in the retina, as well as the éxten
nigue has been extended to handle different related praf-the area of a cell. Due to factors like image resolution and
lems, including database services in wireless broadcast emeasurement accuracy, it is hard to obtain exact valueseof th
vironments [2], [3]; high-dimensional query evaluation;[4 objects of interest [11], [12]. For this kind of data, tedums
continuous location-based services [5]-[7]; and viruseagr for evaluating range queries, nearest-neighbor queried, a
analysis among mobile devices [8]. Conceptually, the Voronjoins, have been developed. These queries return answers
diagram partitions the data space into disjoint “Vorondiste with probabilistic guarantees, which reflect the confideote
so that all points in the same Voronoi cell have the sanamswers due to data uncertainty. For these applicationks to
nearest neighbor. The task of finding the nearest neighbar ahat resemble the Voronoi diagram can be potentially useful
query point is then reduced to a point query. Figure 1 ilatss Specifically, we would like to examine space-partitioning
a Voronoi diagram of seven points. Since the query pg@iist techniques for performing &robabilistic Nearest-Neighbor
located in the Voronoi cell 0D, O, is the nearest neighborQuery (PNN). Given a query poing, a PNN returns the IDs
of ¢. of objects with non-zero probabilities for being the cldses
Is it possible to use the Voronoi diagram to perform nearest ¢, as well as their probabilities. In the sequel, we denote
neighbor search on objects whose values are imprecise? Dhtobjects returned by the PNN asswer objectsand their
values can be uncertain for a variety of reasons. Consigepbability values agjualification probabilities
a satellite image, which depicts geographical objects like An uncertainty model that has been commonly used is
airports, vehicles, and people. Using machine learning atal assume that an objed; has an “uncertainty region”
human effort (e.g., community-based systems like Wikiragpi and a probability distribution function (pdf). This meahstt
the location of each object on the image can be obtained. Dihe precise position of); can only be located inside the
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(closed) region, with a pdf that describes the distributidn where MBRs that may contain answer objects are traversed.
the object’s position within the region. The uncertaintgiom However, this involves a lot of overhead in reading index
can have any shape, and the pdf is arbitrary (e.g., it can hedes and leaf pages [14], [15]. Similar issues also occtlr wi
a uniform distribution, Gaussian, or a histogram). Here wgrids [16].However, retrieving answer objects from the UV-
assume thaD; has a two-dimensional circular uncertaintyiagram is essentially a point query search: given a p@int
region. However, our solution can be extended to handle ndimd the objects associated with the UV-partition that corgta
circular-shaped regions. g. Hence, a UV-diagram can support more efficient PNN
To our best knowledge, no prior work has addressed h@earch. It is also not clear how an R-tree or grid over uncer-
a Voronoi diagram, primarily developed for spatial pointain objects can provide pattern analysis of nearest-heigh
datasets, can be used to query uncertain data. Our goals aiaeformation (e.g., displaying the extent of a UV-partitjon
investigate how such a diagram should be defined to supporChallenges of constructing UV-diagram. It is not
nearest-neighbor query execution. Specifically, we preposivial to generate a UV-diagram, since this involves preidg
the Uncertain-Voronoidiagram (orUV-diagran), where the space partitions based on uncertainty regions, which may
nearest-neighbor information of every point in the datacepanot be points. Unfortunately, efficient computational geem
is recorded, based on the uncertain objects involved. The U methods for generating the Voronoi diagram (e.g., line-
diagram provides a basis for studying solutions that used tsweeping [17]) cannot be readily used for creating a UV-
Voronoi diagram for point data. It could be interesting, fodiagram, since these methods are primarily designed fdiaspa
instance, to extend the solution of [2] to support uncentizita points, rather than uncertainty regions. Figure 2 depiats t
in broadcasting services. Figure 1(b) illustrates an examp space partition based on three uncertainty regions reexse
the UV-diagram of seven uncertain objects, where the sgaceas circles. Each UV-partition (nameg;, wherei =1,...,7)
divided into disjoint regions calletVV-partitions Each UV- is irregular in shape and contains different answer ohjects
partition P is associated with a s&t of one or more objects. listed on the side of the figure. In general, given a set of
For any pointg located insideP, S is the set of answer objectsuncertain regions, an exponential number of UV-partitioas
of ¢ (i.e., each object it has a non-zero probability for beingbe created. For example, Figure 2 shows that for three ahject
the nearest neighbor af). The highlighted regions containthere are seven UV-partitions, each of which contains one of
points that have two or more nearest neighbor objects. 88— 1 = 7 combinations of the three objects. To make the
an example, since; is inside the dashed regiod), has a problem worse, the number of edges of each UV-partitioncan
non-zero probability for being the nearest neighboggfon also be exponentially large! This makes it computationaly
the other handy, is located inside the dotted region, aflg feasible to generate and store these partitions. It is éffsoudt
and O; are the answer objects for the PNN with as the to find out which of these irregular UV-partitions contain a
guery point. Observe that the Voronoi diagram, which indexgiven query point. Indeed, our experimental results shawah
on spatial points, is a special case of the UV-diagram, sinbeute-force approach of computing and indexing UV-pantis
a point can be viewed as an uncertainty region with a zeover 50k objects require about 97 hours. Therefore, a dealab
radius. Figure 1 compares the two diagrams. method for constructing a UV-diagram is highly desirable.
Besides answering nearest-neighbor queries, the Voraénoi d

agram is useful for doing data analysis or observing intengs Partition | Answer
patterns of nearest-neighbor information. In [8], for exden Ll
the Voronoi diagram is used to investigate the spreading :; Z;
pattern of bluetooth viruses among mobile users. A UV- R, o,
diagram can also provide valuable information about these R 0,0,
“nearest-neighbor patterns”. For instance, in Figure,ifithe Rs 0,05
dashed region is large, theém, has high chance to be placed Ra 0.0
in different clusters, assuming a nearest-neighbor dlingte R On 0200

algorithm is used. Another interesting query is: given daeg
R, display all UV-partitions that intersect witR, as well as
the density of objects that can be the nearest neighbor im eac
UV-partition. Through the UV-diagram, a user can visualize
or extract patterns about the nearest-neighbor informatio Our solution. In order to avoid computing UV-partitions
Drawback of existing solutions. As far as we know, the directly, we have developed an alternative representaifon
only indexing method available for nearest-neighbor deart/V-partitions. Particularly, we propose the novel concept
over uncertain data is to use an index like the R-tree and ttee UV-cell. A UV-cell of an uncertain objeaD; is essentially
grid. R-tree is a disk-based structure that uses the Minimum region, such that a query point insidg’s UV-cell hasO;
Bounding Rectangles (MBRs in short) to cluster the uras an answer object. Figure 2 illustrates the UV-cells(or
certainty regions of the objects, and organizes MBRs in @, and O3. The boundary of each UV-cell is labeled with
hierarchical manner [13]. To evaluate PNN using the Rhe ID of the object. For example, the UV-cell 6, is a
tree, a branch-and-prune strategy has been proposed in [tddion enclosed by solid-line segments. The intersection o

Fig. 2. A UV-Diagram for 3 uncertain objects.



one or more UV-cells constitutes a UV-partition. For instan In these works, the R-tree was used to support object ratreiv
the UV-cells of bothO; and O3 intersect at partition®2s and An interesting direction is to study how to use the UV-diagra
R;. This means wheg is located at any of these partitionsjn these solutions.
both O; and O3 are the answer objects. Notice thAt is The Voronoi diagram is an important technique for an-
intersected byO,'s UV-cell, and hence), is also associated swering nearest-neighbor queries over spatial pointdfhps
with R7. Hence, a UV-diagram can be considered as the unibsen extended to support other applications (e.g., [2]-[6]
of all objects’ UV-cells. By finding the UV-cells that contai also facilitates the analysis of spreading patterns of fobi
q, objects with non-zero probabilities can be retrieved. viruses [8]. In [30], thek-th order Voronoi diagram is used to
Although a UV-cell is still expensive to compute, we shovevaluate ak-NN query. The Voronoi diagram has also been
how to represent a UV-cell as a set of “candidate referendefined for boundaries of circular objects in [31]. However,
objects”, orcr-objectsin short. Conceptually, cr-objects arethese objects aneot uncertain, and the method of [31] cannot
those that define the shape of a UV-cell. These objects canidgeused to answer PNN queries.
efficiently obtained. More importantly, by using cr-objgctve Few works have studied the application of the Voronoi
devise a polynomial-time method for constructing an index f diagram on uncertain data. [29] consider the “uncertair@rne
the UV-partitions. We have adopted an adaptive-grid intgxi est neighbor query (UNN) over spatial points. Differentrifro
scheme, which has the advantage of adapting to differé?XIN, the query is an uncertain region, not a query point. To
distributions of uncertain objects’ positions. We will gidetail evaluate a UNN, the authors propose to use a Voronoi diagram
about how this index can be created. Our experimental eeswlver 2D points. The portions of the Voronoi cells that overla
show that for both synthetic and real dataset, this index caith the query’s uncertainty region are then used to compute
be constructed in a much shorter time. We also demonstraigswer probabilities. [32] consider the clustering of utaia
how to use this index to support PNN and nearest-neightsitrioute data, where a Voronoi diagram is constructed for
pattern queries. centroid points. Notice that [29] and [32] do not construct a
The rest of the paper is as follows. Section || summariz&sronoi diagram for uncertain data. On the other hand, the UV
related work. In Section Il we present basic concepts of thitagram is a Voronoi diagram tailored for attribute undetia
UV-diagram. We explain how to represent UV-cell efficientlywe also address how to build and use a UV-diagram index,
in Section IV, and discuss an adaptive index based on théich have not been studied before.
UV-diagram in Section V. We present experimental results in
Section VI. Section VIl concludes the paper. I1l. THE UV-DIAGRAM

Il. RELATED WORK As mentioned in Section |, we can use a “UV-cell” to derive
a UV-diagram. Section llI-A presents the definition of a UV-

Data Uncertainty Management. Recently, researchers . .
- : e .. cell. We then study a simple method for constructing a UV-cel
have proposed to consider uncertainty as a “first-clasgeciti . i . .
brop y n Section llI-B. The mathematical formulation of a UV-cell

in a DBMS [15], [18]-[20]. Two models can be used tg . . i

represent uncertain data: tuple- and attribute- unceleytainIS described in Section III-C.

For tuple-uncertainty, each database tuple has a protyabitl& The UV-cell

of being correct [20]. Here we assume attribute-uncemaint -

which represents an attribute as a range of possible valueés discussed before, a UV-cell of an object is essentially a

and a probability distribution function (pdf) bounded ireth region where the object has non-zero chance to be the nearest

range [18]. Common queries for attribute uncertainty idelu neighbor of any query point located inside it. Formally, let

range queries [21]k-nearest-neighbors [11], skylines [22]01,02,...,0, be the IDs of a seO of uncertain objects,

[23] and top-k queries [24]. and D be a two-dimensional space that contains these objects.
A few works have been proposed to evaluate PNN queridgtice thatD can have any shape in general; for the sake of

over attribute uncertainty. In [14], numerical integratitech- discussions, we assume thatis a square.

niques have been present@®fobabilistic verifiers described  Definition 1: A UV-cell of O;, denoted byU;, is a region

in [15], can generate answer objects’ probability bounds D such thatO; has a non-zero probability to be the nearest

without performing expensive integration operations. thep neighbor (NN) of a poiny iff ¢ is located inUs;.

way to compute answer probabilities is based on samplingHence,O, cannot be;’s nearest neighbor if is outsidel;.

[25]. Here we focus on the efficient retrieval of answer otgiec The UV-cell can be used to recover the UV-partitions (i.e.,

An R-tree-based solution has been proposed in [14], whidisjoint regions of a UV-diagram). In fact, a UV-partitioméit

uses a branch-and-prune strategy to look for nearest ngighbcontainsqg is the intersection of all UV-cells that contain

This solution can involve multiple traversals over the Betr This is because the objects associated with these UV-aalls h

resulting in a high 1/0O cost. With the use of the UV-diagranmon-zero qualification probabilities. Thus, given the WAlls

we show how answer objects can be retrieved more efficientdf. all objects, we can use them to find out which object(s)
Other types of nearest-neighbor queries, like the “groug/are the nearest neighbor @fwith non-zero probabilities.

nearest-neighbors” [26], “reverse-nearest-neighbor27],[  Notice that if there is at least one uncertain object in domai

[28], and “uncertain queries” [29], have also been proposeB, any point inD must be covered by at least one UV-cell.
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Algorithm 1 UV-cell Generation
Input: Uncertain object®) = {O1, O, ...
Output: Uy,Us,...,U,
1: for each O; € O do

,On}

2: Let P, — D;
mw 3 for each O; € O A j # i do
.\ ° p's max 4: E;(j) < UV-edge ofO; w.r.t. O;;
s’ distan: . . . .
e G o O 5: X;(j) < outside region off;(5);
ot O 6: P, — P, —X;(4);
EO 7. end for
8 U —F;
Fig. 3. The UV-edge. o end for

10: return Uy,Us, ..., U,

In particular, if O; is the only object in domairD, then its

UV-cell is exactly D. . _ . Given an objectO;, if we know all the outside regions
We now study the re_Iatlpnshlp between a query point ar:;@li(j) (where j 1,...,n Aj # i), then Os’s UV-cell
UV-cells. Letp be a point inD, and letdistyin(Oi,p) @ad  can be constructed by excluding all these regions fibm
distmaz(Oi, p) be the minimum and the maximum distanceggorithm 1 illustrates the basic method for constructing-U
of object O; from p respectively. Figure 3 illustrates tWwoce|| for , objects. The possible region of each objéltis
uncertain objects(; and O;. For any pointp on the solid first injtialized as the whole space (Step 2). Then, for @agh
line shown, we require the following property to hold: we compute the UV-edge @, and its corresponding outside
distmin(0;,p) = distmas(0;,p) 1) region_(Steps 4 and 5). The possible region, which cgntéins a
the points that may haw@; as one of their nearest neighbors,
We call this solid line the “UV-edge o0; with respect to is then “reduced” by the outside region that overlaps with it
O,", denoted byFE; (j). A special property of this edge is tha(Step 6). The UV-cell ofO; is then assigned to be the final
any pointp at the region on the side df;(j) closer toO; has possible region (Step 8).
its maximum distance frond;, i.e., dist;mq.(Oj, p), shorter  The order of selecting the object for refinidy’s possible
than its minimum distance fror®;, i.e., dist;in(O;,p). On  region (Steps 4-6) does not affect the correctness of the alg
the other hand, ifp is on the opposite side of;(j), then rithm. This is because the UV-cell is produced by “shrinking
distimaz(Oj,p) > distimin(Oi, p). the possible regions by using the outside regions of other
The UV-edge allows us to decide whether an object #bjects. Moreover, as we will see, not all objects are useful
an answer object(i.e., an object with non-zero qualificationin shaping the UV-cell. Once all the UV-cells are generated,
probabilities). In Figure 3¢ is on the right ofE;(j), which  then they can be used to answer PNN queries. Table | shows
is also closer toO; than O;. Thus, dist;..:(0j,90) < the symbols used in this paper.
distmin(0i, qo). In other words,0; is always closer toqq

than O;, and O; has no chance to be the nearest neighbfir Notation | Meaning
of go. As another exampleg; is on the left of E;(j). Objects and query
Sincedistymin(O;, q1) < distmaz(0;,¢1), O; has a non-zero D Domain space (a square)
o ZS."”"( ! ql.).— istmaa - (h). iy . (0] A set of uncertain objectsi, O, ..., 0Oy)
qualification probability. Hence, giveR; (j), if the query point ;
. . ) (ci,mi) Center and radius a;
is on the right ofE;(j), O; can be pruned. q Query point of a PNN
. UV-diagram

B. Constructing a UV-cell Cir(c,r) A circle centered at with radiusr

We now present a simple method of constructing a UV-cel||.  dist(q,c:) Euclidean distance betwegnand c;

Let us define the following:
Definition 2: A possible regionof object O;, denoted by

diSt'nLaw (q7 OL)

min. distance of0; from ¢
max. distance oD, from ¢

. Us; UV-cell of O;

P;, is an area that completely covers the UV-cell(@f P, Possible region of);
An example of an object’s possible region is the dom&in Ei(5) UV-edge ofO; w.r.t. O;
since D must cover any UV-cell. Xi(j) Outside region oD; w.r.t. O,

Definition 3: The outside region of UV-edge E;(j), de- E r-objects ofO;, where F; € O
noted byX;(j), is the region on one side df;(j) such that ¢ cr-objects of0;, whereC; € O

. } . M max. no. of non-leaf nodes

for any pointq € X;(j), O; is always closer tg thanO;. Ty split threshold

In Figure 3, the outside region of the UV-edd#&(j) is the
area on the right of the solid line. Notice that singgis in
the outside region oF;(j), O; is closer togy than O;, and
thus O; cannot beyy’s nearest neighbor.

TABLE |
NOTATIONS AND MEANINGS.




C. The Shape of a UV-cell UV-cell size. Then Algorithm 1 can be used to construct an
Let us assume that the uncertainty regiorgfis a circle, aPproximate UV-diagram for these uncertainty regions. The
with centerc; and radiusr;. (Later we discuss how otherCOIrectness is guaranteed by the following Corollary.
shapes can be supported.) We only present the general cageorollary 1: Given a set of arbitrary shaped uncertain ob-
(r; > 0); the special case (i.er, = 0) is discussed in in jects{O;}i_,, and a query poiny, if Oy is ¢’'s possible nearest
Appendix . For any pointl € D, we observe from Figure 3 neighbor amongO;}i ,, then M BC(O;) must also bej's

that: nearest neighbor among/ BC(0;)}7,.
Proof:
distyn(Onq) — | distlac) =i a g Cirleiri) o) O1 is ¢'s possible NN
t8tmin\ L0 d) = 0 otherwise o ,
distmaz(0;,q) = dist(q,c;) +1; 3) = Vi : distmin(q,01) < distmaz(q, O;) (6)
Obviously,

whereC'ir(c;, ;) denotes a circle with centey with radius
r;. Sincer; > 0, distpmqe(0;,q) must also be positive. Thus, {

by substituting Equations 2 and 3 into Equation 1, we have: distmin (¢, MBC(05)) < distmin(g; O),

distmaz(q, MBC(O;)) > distmaz(q, O;) Y

dist(q, ci) — dist(q, ¢;) =i + 7 ) From Equation 6 and Equation 7, we get:

Let the coordinates of; andc; be (z;,y;) and(z;,y;). Let

fo = 5@+ ﬂ(cg‘_)ﬁa‘nd fy =30+ ;). Let cost = dikor) v 'dﬁiﬁf&g )B<Cégézzaj(jfj\t[§égbgl)) S @
and sin = #cyc)]) Then, Equation 4 becomes:
) ) = Vi : distyin(q, MBC(O1)) < distmaz(q, MBC(O;))
To Yo _q (5) ®)
a? b = MBC(0,) is ¢'s possible NN amond M BC(0;)}?,.
where So, Corollary 1 ensures that if an obje&gt is ¢'s possible
e a="30c= d“t(;“cf), andb = V2 — a2; NN, M BC(0O;) must also be g's possible NN. ]
o 9= (x— fy)cosf+ (y— fy)sinb; Complexity. The problem of Algorithm 1 is that it is very
o Yo = (fz —x)sinb + (y — fy) cosb. costly. For each object, its UV-edge with respect to other

Essentially, Equation 5 is a hyperbolic equation, withand ©objects is used to refine its possible region (Step 6). This
¢; as the foci, rotated by in an anti-clockwise sense [33].réquires computing the intersections of all edges of theeur
Figure 3 illustrates that the UV-edge 6k w.r.t. O; (the solid Possible region K;) with a new UV-edgeE;(j) from O;.
line) is a hyperbola. As shown in Figure 4(b),E;(j) intersects withU;’s UV-
Equation 5 shows that a UV-cell is composed of the interse@dgeeies at e; and eg. Thus, eres and eges are removed.
tions of one or more UV-edges, which are hyperbolas. Sind&€ edgee; e, in Figure 4(a) is replaced byses, eses and
a hyperbola is a conic curve, an UV-edge mustbacavein  €se7 in Figure 4(b). Notice that;(j), a hyperbolic curve,
shape. In Figure 2, apart from the edges of the domain spaé@h create three new edges with each concave edde.of
the UV-cells of the three objects have concave edges. Néfethe worst case, the number of edgesfgfincreases by
that Equation 5 has two curves, which represent the UV-eddBiee times whenever a new UV-edge is considered in Step
for each pair of objects involved. For example, in Figure $. As a result, the number of edges of the UV-cell can be

the solid line is the UV-edge ab; w.r.t. O;, and the dotted be exponential. Moreover, computing intersections betwee
line is the UV-edge oD, w.r.t. O;. hyperbolas is complex. In fact, this needs 97 hours to create

If two objects overlap, themist(c;,c;) < r; +r;, and in & UV-diagram of 50K objects in our implementation. Let us

Equation 5, is not real. Physically, this mear (j) cannot investigate how to tackle these problems.
be found, and we can tre&,(j) as a zero-area region.

Let us revisit Algorithm 1. Step 4 is done using Equation 5.
Step 5 is performed by observing that the outside region of
a UV-edge must be convex in shape. To perform Step 6 (i.e.,
cutting the possible region by an outside region), we comput
the intersections of hyperbola equations by using linegelaia
techniques [33], which are detailed in Appendix .

Non-circular uncertainty regions. Algorithm 1 can
be extended to support non-circular uncertainty regions. |
particular, we convert the (non-circular) uncertaintyioegto
a circle that minimally contains it. With a larger (circular
uncertainty region, the object has more chance to be the
nearest neighbor of any given point, thereby increasing the

(b)

Fig. 4. (a)Before insertingZ; (7). (b)After insertingE; (j).



Corollary 2: The number of edges of a UV-cell can be b&V-cell of O;. In Figure 2, for example, the set of r-objects
exponential. of O3, i.e., F3, is to {O1,02}.

Proof: O;'s UV-cell is constructed by excludes all the Given that the r-objects for each object is known, our
outside regionX;(j). For eachO;, the time for constructing solution (to be shown in Section V) can use r-objects to
then—1 outside regions is proportional to-1. For computing develop an alternative representation of the UV-diagrahnis T
the intersections, we first considgy, which is the whole space solution is much cheaper than Algorithm 1, which requires
(containing 4 boundary edges). exact UV-cells to be computed. However, findify itself is

Then P; is reduced by another outside region, obtaining difficult, because we do not know the UV-cell @f;. Our
polygon with concave curve and straight line segments as $fsategy is to find a small se&t; of objects, whereF; C C.
edges. The edge number now is at most 4 times 3, since evéfg call C; the candidate reference objectsr cr-objectsin
hyperbola will at most have 2 intersections with each edgshort). We next show how; can be derived without acquiring
thus one edge might become 3 edges at most. the exact UV-cell of0;. In Section V, we study an indexing

Next, we insert the second outside region and so on. $alution based on cr-objects.
the k-th step of the procedure, the polygon will have 3* Algorithm 2 outlines the three steps required for deriving t
edges at the worst case. Then the time for constructing o¢feobjects forO;. Step 1 ( ni t Possi bl eRegi on) creates
UV-cell would be (time unit for construction and intersecti a possible regior”; based on a small number of objects. In

is constant, denoted as a and b respectively): Step 2, the “index level” pruning (drndexPr une) yields a
set! of objects that may contribute edges to the UV-cell. Step
T=ax(n—1)+4bx 3"t =0(3") (10) 3 applies “computational level” pruning (eonmpPr une) on

I, and produceg’;. Here we assume that an R-tree index

B has been built on the uncertain objects’ uncertainty region
Each object’s information (e.g., uncertainty region and),pd
is stored in the disk.

Algorithm 2 Deriving cr-objects
Input: Uncertain objecD;
Output: cr-objectC;
1: P, — initPossibl eRegi on(0;,0 —{0;})
2: (P;,I) < i ndexPrune( P;,0)
3: C; « conmpPrune( P;, I)

B. Step 1: Generating a Possible Region

In Step 1 of Algorithm 2), we retrieve a small number of
objects, calledseedsfrom the setD — {O;}. These seeds are
used to generate an “initial” possible region, using a rauti
similar to Steps 3 to 7 of Algorithm 1. This region is used by

Since generating a UV-cell is inefficient, our strategy igther pruning methods to produce cr-objects.
to avoid computing it directly. Instead, we represent a UV- Seeds have to be selected with care. If seeds are randomly
cell as a set ofr-objects which can be efficiently derived. selected, a big initial region can be produced. This region
Section IV-A outlines the algorithm of yielding cr-objec¥e may be intersected by many outside regions, resulting in
explain the preparation phase of this algorithm in Sectldhs poor pruning efficiency. To produce small regions, we issue
B, and two techniques for finding these objects quickly, ia k-Nearest-Neighbor Query:{NN) on the R-tree, using the
Sections IV-C and IV-D. centerc; of O;’s uncertainty region as the query point. The
objects, whose uncertainty regions’ minimum distancemfro
c; are the shortest, are obtained. We then seleabut of k&

Recall from Algorithm 1 that the UV-cell of an obje€;, objects to be the seeds. This is done by dividing the domain
i.e., U;, is the result of repeatedly subtracting the outsidP into ks sectors centered af. For each partition, the object
region of other objects (i.eX;(j)) from its possible region, closest toc; is assigned as a seed.

P;. In fact, not all outside regions are useful for refinifg The above method does not guarantee that aeeds can

In particular, if the UV-edge 0D, corresponding t@);, i.e., be found (e.g., no seeds can be found if a sector is empty).
E;(j), does not intersect witt®;, then P, cannot be shrinked Even if this happens, however, we can still obtain an initial
by X;(j). We call an objec; areference objector r-objec) possible region without affecting the latter steps. Thigior

of O, if O; defines an edge ad;'s UV-cell. We also denote may be larger though. In our experimerits,= 8, and in most

F; C O to be the set of r-objects @b;. The setF; contains cases all seeds can be found. For each object, evaluating a
objects whose outside regions are responsible for defilieg NN query requiresO(n) times, selecting seeds cost§k)

Fig. 5. Proof for Corollary 3.

IV. EFFICIENT UV-CELL GENERATION

A. r-Objects and cr-Objects



times, and constructing an initial region nee@$l) times. of p’. This implies thap’ must be excluded fron®; after O,
Hence, the cost of this step 3(n + k). is considered, i.e., using the operatiBn— X;(j). Hence,P;
] cannot be equal t&; — X;(j). This results in a contradiction.

C. Step 2: Index Level Pruning Thus, the lemma is correct. -

Once the possible region has been initialized, we performLemma 2: P, = P, — X,(j) if and only if for every point
I-pruning (Step 2 of Algorithm 2), in order to remove ob-p on the boundary of;, dist,ax(p, O;) > distmin(p, O;).
jects that cannot constitute an UV-edge to the UV-cell. To Proof: Let P/ be the regionP; — X,(j), which must
understand this step, let us consider an objggctits possible be connected as proved by Corrollary 3. Now, suppose there
region P;, and another objecD;, which has not yet been exists a pointp’ inside P; but not on the boundary of;,
considered in refining;. Our goal is to establish the necessarguch thatdist,,..(p’, 0;) < distmin(p’,0;). This implies
and sufficient condition(s) fof, to have effect on the shapethatp’ cannot be inside?/. However, as all pointp on P;'s

of P;. boundary satisfieslist ez (p, Oj) > distmin(p, O;), p Will
Corollary 3: The UV-cell of an uncertain object is a con+¥emain inP;. Thus,P/ must have a “hole” inside it. However,
nected region. this cannot occur, because each UV-edge is a segment of a
Proof: hyperbolic curve, which has open ends. The regionPpf

First of all, we claim that all points irO;’s uncertainty therefore, cannot have any “holes” inside it.
region, i.e.Cir(c;,;), must belong to its UV-cell. This is Hence, for any poing inside P;, p must satisfy the condition
because the minimum distance betwe@n and any point distmaes(p’, O5) > distymin(p’, O;). By using Lemma 1, we
inside Ciir(c;, ;) is zero, andO; always has some chancedave P; = P; — X;(j). u
to be the nearest-neighbor of these points. Hence, there mugEssentially, if we want to examine wheth@y has any effect
be a sub-region 0D;’s UV-cell which is connected, e.g. itson P;, it suffices to consider the points of;’s boundary,
uncertainty region. instead of all points inP;.

Now suppose the UV-cell of; is a non-connected region,
for example, in Figure 5, the UV-cell is separated into two
parts. As discussed above, there should be a sub-regiois,e.g
of this UV-cell which is connected and coveps's uncertainty
region. For any sub-region which is not connectedstce.qg.
S1, we can randomly choose a point inside it, egg.and
connectg with the center of0;’s uncertainty region. On this |
line segment, there must be some points which are outside |
Oy;’s UV-cell. For example, in Figure 5/ is such a point.
Sinceq’ does not belong t@;’'s UV-cell, there must exist an
object, sayOy, such that the minimum distance betwegn
and O; is larger than the maximum distance betweérand
Oy, i.e.

(@) I-pruning (b) C-pruning
|l A|l > |¢'B] (11) Fig. 6. Our pruning methods.
Now consider point g, we will have Lemma 3:Given an objec; with centere; and radius-;,

let d be the maximum distance d@; from ¢;. Let C,,; be a
circle, with centere; and radius2d — r;. For another object

|qC| |qc},€|+rlj . . X Oj, if Cj %Couti thenPZ:PZ—Xl(j)
< lag'| +g'cx| + 7w (triangleinequality) Proof: DenoteC;, be a circle with center; and radius
= |ad'| +|¢'B| d. Figure 6(a) illustrate®);, its possible regionP; (in solid
< lqd'| + | Al (Equation 11) lines), C;, andC,,,;. Let us suppose on the contrary thiat
— g4 is not equal taP;, — X;(j), i.e., P; can be reshaped by the UV-

edge ofO;. Then, using Lemma 2, there must exist a pgint
From this, we can see thatmust not be a point insid®;’s on the boundary of>; such that:
UV-cell. This conflicts with our initial assumption. Hencg's

. di tma;ﬂ 70' S di tmin ,Oi 12
UV-cell must be connected, and our proof is completed. ' (p, 05) ' (p, 0:) (12)
m Using Equations 2 and 3, we have:
ilr_éirg;n; 1;11'31%: PE —gg(g,dif ?nd (onlé i;‘ for every point dist(p,c;) +r; < dist(p,ci) —rq

p 1y AlSlmaz\P, U 15tmin\P, Ui )- . ) . ) < . A
Proof: Suppose there exists a poipt inside P;, such = dwt(p’_cj) * dwt(p’_cl) TS 2d?8t(p’cl) "
that distae(p', O;) < distmin(p’,0;). ThenO; is always = dist(p, cj) + dist(p,c;) < 2dist(p,c;) — 14

closer top’ thenO;, and O; cannot be the nearest neighbor = dist(c;,c;) < 2dist(p,c;) — r{13)



sincedist(c;, ¢;) < dist(p, c;)+dist(p, ¢;) due to the triangu-  Hence, to check whetheD; can refineP;, we just need
lar inequality. Now,dist(p, ¢;) < d, so Equation 13 becomes:to check the set ofi-boundsS’ = {Cir (v, dist(vm,c;))}
. (where S C S). If ¢; is located outside alt-bounds in

dist(ci, ¢j) < 24 =i (14) S, then CH(P;) = CZH(Pi) — X,(j). Finally, sinceP; is

This implies thatc; is in the circle C,,., contradicting the completely covered by'H(P;), P; = P; — X;(j) must also
assumption of Lemma 3. Hence, this lemma is correct® be true. This completes the proof. ]

The I-pruning method uses Lemma 3 by issuing a circular Step 3 of Algorithm 2 uses Lemma 4 to prune unqualified
range query, centered at with radius2d — r;, on the dataset. objects returned by I-pruning. This can be done efficiently,
This operation can be easily implemented by using the R-trecause only the vertices &f H(P;) are used. Moreover,
created for the uncertain objects. The range query firstthges |C H(P;)| is small, since the possible region is only derived
R-tree to filter all objects that do not overlap with the rangdy eight seeds. The complexity of this phas&ig).

For the remaining objects, they are removed if their centersWe consider the objects that are not pruned away in this step

are beyond the circular range. Hence, in this phase, a costagfcr-objects (i.e(;). The overall complexity of Algorithm 2,

O(n) is needed for each object. for generatingC;'s of n objects, isO(n(n + k)). Here one

D. Step 3: Computational Level Pruning may consider to usé?i to generate thg exact UV-cell @¥;.
However, our experiments showed singg| may be large,

Next, we discuss a simple method, based on distangg,erating the UV-cell can still be costly. Next, we show how
comparison, for checking whether obje§ can affect the 5 ;56 directly to construct an index for the UV-diagram.
possible region of objeaD,. We call this methodC-pruning

(Step 3 of Algorithm 2). Lemma 4, discussed below, serves as V. THE UV-INDEX

the foundation of C-pruning. We now present a index, calledV-index based on the
Lemma 4:Given an uncertain objead;(c;,r;) and F;'s  yv-diagram. Designing the UV-index presents a few technica

convex hull CH(F;), let vi,vs,...,v, be CH(F;)'s ver- challenges. The extremely large number of UV-partitiong an

tex. If another objectO;’s centerc; is not in any of yy.edges make it infeasible to compute and store a UV-

{Cir(vm, dist(vm, ci))} =1, thenP; = Py — X;(j). partition. Moreover, the sizes and distributions of the UV-

Proof: First, the convex hulU'H (P;), which completely partitions vary significantly (see Figures 1 and 2). Our inde
containsP;, must also b&);’s possible region. For every pointsglves these problems, and still yields a high query perfor-
p on CH(F;)'s boundary, suppose; is located outside the mance. We examine the UV-index and PNN evaluation in
circle Cir(p, dist(p, ¢;)). Then we have: Section V-A. We then discuss the construction of the UV-

dist(p,c;) > dist(p,c;) index in Section V-B. We study how to extend the UV-index

to support other queries in Section V-C.
= dist(p,c;) +r; > dist(p,c;) —r; bp g

= distimas(p, 05) > distimin(p, Oi) (15) A. An Adaptive Grid for UV-partitions

Second, Lemma 2 states that ist,,..(p,0;) >
distmin(p, O;), thenCH(P;) = CH(P;) — X;(j). Therefore,
if ¢; is outsideC'ir(p, dist(p,c;)) for everyp on CH(P;)'s
boundary,O; can be safely pruned.

For convenience, letCir(p,dist(p,c;)) be a d-bound
(whered = dist(p,c;)). We also define a se&f of d-bounds
for every pointp in U;. We now show that instead of checkinc
all the d-bounds inS, it is only necessary to check thode
bounds constructed for the vertices @ (P;). Specifically,
the d-bounds of the vertices must contain all otlkkEbounds
of all points on the boundary o€ H(F;). To see this, let
di be the distance of vertex, from O;’s center. We extend Fig. 7. UV-index: (a) Structure, (b) Overlap checking.
each vertexv;, by the distancel; to obtain a new vertem;- _

(black dot in Figure 6(b)). These new vertices are connectedndex Structure. ~ The UV-index adopts a framework
to form a polygon. We use;, ande, to represent theé-bounds similar to a quad-tree [34], in order to index the irregular

Cir(vy,dy) and Cir (v, d2), respectively. and non-overlapping UV-partitions. Figure 7 (a) illusasithis
We next show that, for any point/ on CH(P)'s index.! Each non-leaf node, 16 bytes each, records a pointer to
edge viva, Cir(v,dist(v/,c;)) C e; U e (We lete’ = each ofits four child nodes, where the square region spanned

Cir(v, dist(v', ¢;))). We draw a linec; ¢}, which is perpen- by each child node is one-fourth of that of its parent. The
dicular with v, and vjv}, and intersects them at points region covered by the root node is the whole domairEach

, X : ) .
and “1 respectively. Asuiv is the perpendicular bisector of 10ur design adopts quad-tree rather than R-tree. While ®BRs may

/ /o /
cl-_cl, we see thati_cl is the Comm_on Chor_d ofy, ez ande’. overlap, quad-tree grids do not. Issuing a point query on-cwamlapping
Sincee; or ey is bigger thare/, €’ is contained bye; or es.  UV-partitions in quad-tree is thus more convenient tharre:t



leaf node stores all the objects whose UV-cells overlap withgorithm 3 InsertObj
the region defined for the node. To save space, a node’s region Input: cr-objectsC;; Node g;
is not stored, since we can easily derive the dimension of thé if (CheckOverlap(;, g.region) = truejthen

region based on the level of the node in the tree. Also, due t& if g is a non-leaf nod¢hen
approximation, a UV-cell that does not overlap with the leaf3: for k=1to4do
node’s region may be included. However, a UV-cell that tyuel 4: I nsert Qoj (Cy, hy);
overlaps with the region will not be excluded. For each leaf: end for
nodel, we store a linked list of disk pages, which containé: else
tuples< ID,MBC,pointer>, where: 7 state «— CheckSplit(C;, g);
« ID is the identity of objecO; whose UV-cell may overlap & switch (statg
with the region covered by, 9 caseNORVAL :
« MBCis the circle that minimally bounds the uncertainty'®: g-listadd(, MBC(0y), ptr(0:));
region of O;; and 1 break;
12: caseOVERFLOW

« pointer stores the disk page address of the object.

. 13:
We allocate a maximum of/ non-leaf nodes that can be "
stored in the main memory. The leaf nodes, which contain trlg:

Allocate new page fop;
g.list.add¢, MBC(O;), ptr(0y));

i ¢ d'in the disk break;
ists of pages, are stored in the disk. _ caseSPLI T
PNN processing with UV-index. We first useq as the deleteg.list;

guery point, and traverse the index, to find out the leghose 18: for k—1to 4 do
region containg;. We then retrieve the disk pages associateP9:

. - . . Assign hy, as child ofg;
with [, which contains thdD and theMBC of the objects

: end for
stored in the pages. Since these objects may have their Uy nonleafnum — nonleafnum + 1;
cells overlap with the region df it is also possible thag is ' break: ’

located in their respective UV-cells. Lé&tbe the set of objects 23;
associated witlh, and A be the answer objects @f Our goal is
to retrieveA from L, whereA C L. To do this, we perform a
verification method of [14]: based on thMBC's of the objects
in L, find out the minimum of the maximum distances of the
objects frony. We call this distancé,,,;,maqz - ANy object with
the minimum distance larger thak),;,,.;nq. 1S removed, since
this object cannot have a non-zero qualification probabilit
The remaining objects must be the answer objects, wh
probabilities are computed and returned to the user.

end if
24: end if

% OVERFLOW (Steps 12-15)y's pages are full, and a new
disk page has to be associated wjthbefore the information
aboutO; is inserted to the new page.

3. SPLI T (Steps 16-22)y’s pages are full. The page ligt
R emoved. Theng becomes the parent of four nodés),
which have been previously generated@yeckSpl i t. The
region of each child nodg;, covers each of the four quarters
of the region defined foy. Also, nonleafnumis incremented

Recall that a UV-cell can be represented by a set of asy a value of 1. Essentially, The information about the UV-
objects,C;. Let us examine how this facilitates the construcsells previously associated withare now represented by its
tion of the UV-index. child nodes, and/ becomes a non-leaf node.

Framework. Let g be the grid node being examined, and Decision on Splitting. When g’s pages are full, either
hi (wherek = 1,...,4) be the four child nodes of. We O,’s information is inserted to a new pageMERFLOW, or
define a variablewonleafnumwhich indicates the number of split into four child nodesSPLI T). Ideally, the region of the
non-leaf nodes allocated to the index and has an initialevalleaf node that coverg is completely covered by a true UV-
of 1. Originally, ther oot of the grid is a leaf node, whosepartition. This guarantees that the set of objects retuined
region coveredr(oot .region) is the domainD. the UV-index is the true answer objects. The UV-index, which

We use Algorithm 3i(nsert Obj ) to insert an objecO; contains grids, is just an approximation of the UV-diagram.
to the index. This algorithm, whose inputs a&'eand nodey, Apparently, the more the splitting is performed, the claber
is a recursive procedure, wheraser t Qbj (C;, root) is index can resemble the actual UV-diagram, and yield better
first invoked. In Step 1CheckOver | ap investigates if the query performance.

UV-cell represented by’; overlaps with the region of grig. In fact, splitting is not always useful. Suppose thakgion

If so, we check whethey is a non-leaf node. If this is true, is associated with 100 UV-cells. Moreovetregion is com-

I nsert Qbj is called recursively (Steps 2-4). Otherwise, weletely covered by each of these UV-cells. Then it is not
performCheckSpl it (Step 7), which returns: necessary to redistributginto four child nodes. If splitting is

1. NORVAL (Steps 9-11)y’s pages still have space left, andoerformed in this case, then the UV-cells associated with ea
so (@, M BC;, ptr(0;)) is inserted tay's page, whereitr(O;) child node are exactly the same. Thus, more space is wasted
is the pointer to0;’s uncertainty region and pdf. to store duplicated information about the UV-cells. This ca

B. Index Construction



happen if the corresponding 100 objects of these UV-cedls dtlgorithm 4 CheckSplit
close to each other. Then, these UV-cells have similar shape Input: cr-objectsC;; nodeg;
and significant overlapping. To decide whether to split, we Outputs: NORVAL, SPLIT, OVERFLON

definesplit fraction, ¢, as follows: 1: if there is space on any disk pagegdlist then
ming—1 . 4 |hg.list| 2: r(_eturn NORMAL ;
0= ol (16) 3 end if
4

|g.list| . if nonleafnum +1 > M then

which is the minimum fraction of UV-cells in one of the child 5. return OVERFLOW

nodesh;, that are also iry (note that the UV-cells associated g: else

with hy must be the subset of the ones attached))tocA 7. Create node#; (k = 1,...,4) with hy.region equal
small & means that the number of UV-cells overlapping with  to each quarter of.region

hi.regionis small compared with that gf. We now define a g: Let A — O; U g.list;

splitting condition of a node: o:  foreach O; € A do
Split if 8 < T, 10: for _each h;, do _
11: if (CheckOverlap(;, hy.region) = true then
whereT) € [0, 1] is called thesplit threshold A larger value 12 hy. list.add(, M BC(0;), ptr(0;));
of Ty implies a higher tendency of splitting. 13: end if
Algorithm 4 (CheckSpl i t ) implements these ideas. Stepsia- end for

1-3 returnNORMAL if the pages ofg are not full. Steps 4-5 15 end for
return OVERFLOWif the number of non-leaf nodes allocated;: Let  «— (ming—,
is higher thanM. In Steps 7-16, we compute the valuetf 17 if & < T, then

4 |hi list])/|g list];

.....

by creating four nodes,;, (Step 7), and checking the overlapsg: returnSPLI T;

of each UV-cell withh.region (Steps 11-12). If the splitting 19 else

condition is satisfied (Step 17), then tB®LI T decision is 2g. deleteh, wherek = 1,...,4;
returned, where Algorithm 3 (Steps 18-19) will assign the. return OVERFLOW

nodesh; to be the child nodes of. Otherwise, the child 2. end if
nodes are deleted and @VERFLOWdecision is made (Steps 23: end if
20-21).

Overlap Checking. Algorithm 5 tests if the UV-cell of an -
object O; overlaps with a gridg’s region r. For every cr- AIgorlthrr? 5 ChetckOve.rIap ___
objectOy, € C, if any of their corresponding outside region ~ NPut: cr-objectsC;; Regionr;

(X:(k)) totally containsr, then CheckOverl ap returns Output: true if U; andr overlap, false otherwise;

fal se (Steps 1-3). Otherwise,r ue is returned (Step 6). L for each Oy € C; do _ _

To prove the correctness we use the following lemma: 2. if r C X;(k) then /[ Use 4-point testing
Lemma 5:If region r is totally covered byX;(k), where 3 returnf al se;

Oy € C;, thenr must not overlap with the UV-cell/;. 4 end if

Proof: We want to show that iHO;, such that- ¢ 5 end for
X,(k), thenr N U; = ¢. Suppose we have such an object® returntrue;
Oyr. Now, let us denoteX;(j) to be D — X;(j). Then,U;

is essentially the intersection of all the regiaks(;), for all

objects inO, i.e., in shape. If all its four corner points are confirmed to be in
U = m|‘o_|1 X0 (17) X_i(j), then we can conclude _thatg Xi(j). For examp!e,
J=Ing# Figure 7(b) shows that the region @f must not overlap with
Moreover, sincer C X;(k), we have U, since all the four corner of are located on the outside
region of one of the UV-edges. Moreover, checking whether a

0] rnXik) = ¢ point is in X;(j) is easy, because we can simply check if the
= (rNXi(k) N2 pingen Xild) = @ point’s minimum distance fron®; is larger than its maximum
o 7 i ‘ o ;
= rn (X (k) QIJ_ZIM#W# X,(7) = ¢ dlstan.ce fronD);. Herlce, we use the four pom.t test in Step 2.
A A Notice that Algorithm 5 may incorrectly judge thdf;

overlaps withr. Figure 7(b) shows that/; does not overlap
from Equation 17. Hence, the lemma is correct. m with the region of gridy,. However, some corners ¢$.region

To check whether a region is in the outside region of are not on the outside region of two of the UV-edges of
Xi(j) (Step 2), it is not necessary to generate and test with. If this is true for all UV-edges ofU;, then U; would
the UV-edgeE;(j). Instead, we can check this efficiently bybe decided to be associated with! The consequence is
using a4-point test. To understand this method, observe thdhat, during query evaluatior(); will be retrieved fromgs,.
r is a square, and the UV-edge Of; w.rt. O; is concave This increases the query evaluation time sidggis not in



go. However, query accuracy is not affected. In fact, odNe represent an uncertainty pdf as 20 histogram bars, where a
experimental results show thaf;| is small with effective histogram bar records the probability that the object ishit t
pruning, and the scenario in Figure 7(b) is rare. Since dhgck area. We also use three real datasets of geographical ®bject
with C; is much more efficient than testing with UV-cells, thisGermany, namelyutility, roads andrrlines, with respective
extra cost is worthwhile. Hence, we use Algorithm 5 to dsizes 17K, 30K, 36K. These objects are represented as<ircle
overlap checking. before indexing, and has the same uncertainty pdf infoonati
Since |C;] = O(n), Algorithm 5 needsO(n) times to as that of the synthetic data.
complete. Algorithm 4 use®(n?) times, mainly for perform-  To compare with R-tree, we use a packed R*-tree [35] to
ing splitting and overlap checking with four child nodesr Foindex uncertain objects. The R-tree usdsdisk pages, and
Algorithm 3, each UV-cell, in the worst case, needs to penforhas a fanout of 100. We keep all its non-leaf nodes in the
overlap and split tests with/ non-leaf nodes. Hence, its totalmain memory. For the UV-index, each non-leaf node has four
complexity isO(Mn?). The index has a maximum height of4-byte pointers to its children. We also sett, the number of
M/4, if, the data distribution is very skewed, and splittinghon-leaf nodes in the main memory, to 4@0, andTy to be
always happen in one single quadrant. However, all non-lebfin our experiments, the amount of memory occupied by the
nodes, 16-byte long, can all be put to the main memory. ThRstree is higher than that of the UV-index. The leaf nodes of
the tree height has little effect on query performance. both indexes, as well as the uncertainty information abloeit t
objects, are stored in the disk.
. ) . ) ~_ We examine the running time of 50 PNN queries, whose
The UV-diagram index can be easily used to retrieve distdyery points are uniformly distributed in the domain. For
bution and pattern information about nearest neighbor&wh gimplicity, we use the numerical integration method of [e]
is useful for stat_lsucal a_naIyS|s (e.g., [8]). Let us dézsethese implement probability computation of answer objects. téa
“pattern-analysis” queries: . . methods such as [15] are used, the fraction of time spent on
1. UV-cell retrieval. This returns the information aboGt’s  retrieving answer objects from the index will be higher, and
UV-cell (e.g., its area and extent). For example, Suppos&ea Uihys it would be important to optimize the index (which is the
wants to know the approximate area of the region where focus of our work). All our programs were implemented in

can be the nearest neighbor. Then, a query that returns the YW ;. 5nd tested on a Core2 Duo 2.66GHz PC.
cell U; of O; can be useful. To process this query, we scan the

leaf nodes that are associateég and compute the total areaB. Results

of the regions covered.by these Iegf nodes. The process ,‘:"L".’mSensitivity Testing. We perform a sensitivity test on the
be _sped up b_y computing and storing these area mformat\%rl]ue of Ty (the splitting threshold). Under a wide range of
offline. A similar procedure can also be used to support tlﬁ, the indexes only have a slight difference. For very small

operation of displaying the approximate shape of the UV-Cly 5 of7, (e.g., 0.2), however, the adaptive grid tends not

on2the USErs screen. LG _ , | © split, and degrades into long linked lists of pages. In our
. UV-partition retrieval. Given a regionR, retrieve a experiments, we sef, to be 1.

U\/r;parl]rt_itions inlsideﬁ, and tEe “d?nii_ty" of each part(ijti(?\gi 2. Query Performance. We compare the PNN performance
(which is equal to the number of objects associated Wllh ¢ 1o y.index and the R-tree on uncertain objects. Fig-

d;vidsd by tr:f a_r;a.oiRl-)].c Thhis allows a u_sre]rb to e_xarr?ir;ﬁure 8(a) shows the query running timé.) against synthetic
the density distribution of the nearest neighbors in his atasets, with sizes frot K to 100K. The running time of

mteresrt]e:j a?rea. dTo sug)port tfg;shquery, \éve a;;pequ a couryt, queries increase, because with a larger dataset tjaditen

o ((jeac m_ea .?ﬁ €, and record the .n#m eroto Jegts at tr|]r"i‘(5re objects qualify as query answers, which increase the
rlode otine. en arange query wit ranges issued over yime tor index retrieval and probability computation. Th¥-U

th_e adapiive gr!d, all regions of the leaf nodes that Overl%?agram outperforms R-tree in all cases. For example, when
with 12, and their density values, are returned. |O] = 60K, the UV-diagram needs about 50% of the time

VI. EXPERIMENTAL RESULTS needed by the R-tree.

We now report the results on different datasets. Section /- 10 understand why our method performs better, let us

A describes settings, and Section VI-B discusses the gesulfi’St consider the traversal time of the UV-index, which is
composed of the time costs for visiting non-leaf and leaf

A. Setup nodes. Since its non-leaf traversal time takes little timall

We use Theodoridis et al's data generatdp obtain30k €xperiments (up to 3.8s), we only present the 1/O overhead.
objects, which are uniformly distributed in1@% x 10k space. In Figure 8(b) we compare the 1/O performance of the UV-
Each object has a circular uncertainty region with a dianwte index and the R-tree. The UV-index requires significantisle
40 units, and a Gaussian uncertainty pdf. For each uncgrtaifumber of I/Os than the R-tree (e.g., whign| = 60K, the
pdf, its mean is the center of the circle, and its variance iv-index consumes about one-eighth of the 1/Os needed by
the square of one sixth of the uncertainty region’s diametépe R-tree). When the R-tree is used to process a PNN query,

C. Nearest-Neighbor Pattern Analysis

2http://www.rtreeportal.org/software/SpatialDataGerer. zip Shitp://www.rtreeportal.org/
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Fig. 8. Query Performance

plenty of leaf nodes needed to be retrieved. For the UV-inderdex for the three method®Basic increases sharply with
we only need to look for the leaf node that contains the quetlye dataset size; handling K dataset requires about 97
point. Since the number of disk pages for each leaf nodeds alsours. This is because constructing a UV-cell requires an
small, a high 1/0O performance can be attained. Also notieé thexponential amount of time and numerous complex hyperbola
the number of I/Os for the R-tree increases wifH, whereas intersections. FotC and ICR, the use of |- and C-pruning
that of the UV-diagram is relatively stable. significantly reduces the number of objects examined. Their
Figure 8(c) shows the time components®f: (1) index effects are shown in Figure 9(b), whesg the pruning ratio,
traversal; (2) retrieval of objects’ pdf; and (3) probaliliom- denotes the fraction of objects fro® that has been filtered.
putation. While object retrieval and probability compigat At |O|=40K, I-pruning and C-pruning achieve a pruning ratio
times are similar for both indexes, R-tree requires a mudf 90.9% and 95.5% respectively. Hence, a large portion of
higher index traversal time. This explains the differenae objects are removed before being considered for congtgcti
Figure 8(a). In Figure 8(d) we can see that the query time thfe UV-cell. Next, we focus ofC andICR.
both indexes increases with uncertainty region size, sihee |C vs. ICR. As shown in Figure 9(c)CR performs much
larger the region, the more probable that the correspondipgtter thaniC. For example, atO| = 70K, the construction
object is a PNN answer. Again, due to the superiority of I/@me of ICR is about 10% of that ofC. To understand why,
performance of the UV-diagram, it performs better than th@e analyze their time components in Figures 9(d) and (e).
R-tree. Here we do not show the initial possible region computation
For real datasets, Table Il shows that the UV-diagratime, since it is only about 0.5% of the I- and C-pruning time.
consistently attains a higher query performance than the Recall the difference between the two methods is iiateeds
tree. Since the trends of other results are similar to thdseto find out the exact r-objects (by constructing an exact UV-
synthetic data, they are omitted here. cell based on the objects returned by pruning), wi@IR does
not. ForlC, Figure 9(d) shows the fraction of the construction

Dataset | [O] | T,(UVD)(ms) | T,(R-tree)(ms)| Tc(s) | p. _||[time spent on: (i) I- and C-pruning, (ii) generating r-oliggc

utility | 17K | 89 141 784 1 89% [land (iii) indexing UV-cells. For most dataset€, spends most

rl;(l)iﬁg: gg? ?(2)7 123 gg% gg(ﬁ of the time to generate exact r-objects, which is very costly
TABLE 1l For ICR, r-object is not produced (Figure 9(e)). Instead, the

cr-objects produced by the pruning methods are immediately
passed to Algorithm 3 for indexing. Although there are more
cr-objects than r-objects, the fact is that the indexingtiines
3. UV-Diagram Analysis. Next, we examine the UV- not increase much. This explains WI§R performs better than
diagram construction issues. Let us deriésicas the method IC.
which constructs a UV-cell using Algorithm 1, and then In Figure 9(f), the construction time € increases sharply
indexes the UV-cells with an adaptive grid. An alternatige iwith the objects’ uncertainty region sizes. With larger emc
to collect cr-objects through I-pruning and C-pruning (&g tainty regions, it is more likely that these regions overtafh
rithm 2), compute UV-cells and obtain the r-objects, anchtheach other, making it harder to prune the objects, so tha¢ mor
index them with Algorithm 3. We call this second methodime is needed to generate r-objects. On the other HaRlis
IC. The third technique, calletCR, only uses cr-objects in relatively insensitive to the change of uncertainty regaes.
Algorithm 3. We assume that the R-tree for uncertain objedtor real datasetdCR also achieves high pruning ratio and
is available for use by these methods. For generating linitl@w construction time (Table Il). From now on, we assume
possible regions (used i€ and ICR), we setk to 300 for thatIlCRis used.
performing thek-NN search. Then, the domaib is divided Skewness. We next examine the effect of object positions’
into eight45° sectors to obtain the seeds. distribution on the UV-index. Figure 9(g) shows the con-
Figure 9(a) describes the development tirfig) (of a UV- struction time under different variances) (of the uncertainty

EXPERIMENT RESULT ON REAL DATASETS



40 60 . 8
Size of Uncertain Region

(AT. vs. uncertainty.

le] x10*

(e)Analysis of ICR.

2500 200 300 400
¢ Size of Query Region

(g)Effect of variance. (h)UV-partition query.

Fig. 9. UV-Diagram Analysis

regions’ centers?, is higher when data is more skewed (i.e.,[3]
with a smaller variance). In a dense area where uncertainty
regions have high degree of overlap, an object's UV-cell i§4]
likely small and associated with many r-objects. THusis
increased. In the most skewed dataset that we testee ( [3]
1500), T. is around an hour, which is still acceptable if the[G]
index is constructed offline.

UV-Partition Query.  Finally, we examine the efficiency [7]
of our index for answering the UV-partition query. In Fig- 8]
ure 9(h), the retrieval time of UV-partition&’) increases with
the size of query rangR, since more UV-partitions are loaded [9]
with larger R. In these experimentdy, is small. [10]

[11]

VII. CONCLUSIONS 121
The UV-diagram is a variant of the Voronoi Diagranii3]

designed for uncertain data. To tackle the complexity Elf“]
constructing and evaluating a UV-diagram, we introduce the
concept of UV-cells and cr-objects. We propose an adaptius]
index for the UV-diagram, and develop efficient algorithms
for building it. As our experiments show, this index effidign [16]
supports PNNs and other UV-diagram-related queries.

We plan to extend various Voronoi-diagram-based solutiof<]
to handle uncertain data. Also, it would be interesting tgg
study how the UV-diagram can be extended to support multi-
dimensional data and incremental updates. Currently, \we &®
investigating the use of the UV-diagram to support oth(f,jo]

gueries (e.g., reverse nearest-neighbor queries).
[21]
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APPENDIX

Special Shapes of a UV-edge.

Here we discuss the shapes of a UV-edge,Bdy), whenr;
and/orr; equal(s) to zero. First of all, we claim that(;) will
not exist ifc; = ¢;. In this case, the equatiatist,,,, (0;, q) =

distmaqs(0j,q) cannot hold ifr; # r;, or is always true if

0. The real value of\, when substituted into Equation 18,
ensures that (1) there is at least one intersection betwgen
and C,, and (2)C, becomes a degenerated hyperbola, in the
form of two straight lines. Finally, for each of the found
from the characteristic equation, we obtain at most foutsoo
that simultaneously satisf¢’y and C,. Each root represents
an intersection point of’; and Cs.

r; = r;. HenceE;(j) will be either an empty set or the whole
data space, and cannot be a curve.
For the case; # c;, suppose only one object definitig(j)

has no uncertainty, the curve &%(j) can still be obtained by

Equation 5, because all variables in that equation gy,

a andb, will be real numbers, and, b are nonzero. Finally,

E;(j) becomes a perpendicular line segment when bp#nd
r; are zero.

Hyperbolic Curve Intersection.
As discussed in Section IlI-A, a vertex of the UV-cell is the
intersection point of two hyperbolic curves. We now outline
the procedure of finding this intersection, using the method
described in [33]. We can represent two hyperbolic curves,
C: and Cs, as homogeneous conic equations:

Ch A1x2 + 2Bizy + Cly2 +2D1xz + 2Fhyz + Flz2 =0
Cy A2x2 + 2Boxy + ng2 +2Dsxz + 2F2yz + ng2 =0

which is obtained by substituting/~ into  and y/z into
y for the hyperbolas (Equation 5) @, and C5. Next, we
construct equatiod’y:

Cyr:C1+2XC2=0 (18)

where )\ is a real value, and’y, a linear combination of’;
and (s, is a system of hyperbolas. We then rewiitg in the
form of W Hw = 0, where w = (z,y, 2)”, and

Let det(H) be the determinant off. Our aim is to find the
value(s) of) that satisfy the characteristic equatiét(

A1+ AAs Bi+AB2 D1+ AD»
H = B1 + A\Bs> C1+ XCs FE1+ \E>
Dy +XD2 Ev+ME> i+ )F

H) =





