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Abstract

Wireless sensor network(WSN) applications sense eventsin-situ and compute resultsin-network. Their software
components should run on platforms with stringent constraints on node resources. To meet these constraints,
developers often design their programs by trial-and-error. Such manual process is time-consuming and error-prone.

Based on an existing task view that treats a WSN application as tasks and models resources as constraints, we
propose a new component view that associates components with code optimization techniques and constraints. We
provide a visualization mechanism to help developers select code optimization techniques. We also develop algorithms
to synthesize components running on nodes, fulfilling the constraints, and thus optimizing their quality.
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1. Introduction

A wireless sensor network (WSN) is a computer
network of sensor nodes interconnected by short-
range and short-life wireless communication channels
(Akyildiz et al., 2002). Each sensor node may capture
data, such as temperature and light intensity, from
the environment. Applications running on WSNs,
such as animal surveillances (Szewczyk et al., 2004),
automatic detections of geological events, and hospital
administrations (Shnayder et al., 2005), should sense
physical eventsin-situ (Kuorilehto et al., 2005) and
analyze the sensed datain-network (Srivastava, 2006).

Power-aware applications are common in WSNs
(Chan et al., 2007). Communication consumes the
highest amount of energy in sensor nodes, followed
next by processing, and then storage (Healy et al.,
2007). Akin to design patterns or code refactoring for
general object-oriented development, WSN developers
use diverse code optimization techniques such asloop
unfolding and lookup tables to tune the WSN software
applications to meet the resource constraints. They
apply different tactics to cater for different needs. This
paper will collectively refer to such tactics ascode
optimization techniques, or COTs for short.
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However, incorporating a code optimization tech-
nique in a WSN program currently needs significant
manual effort. When an application does not work
according to a COT, a simple pragmatic approach is to
tune it iteratively and manually by means of trial-and-
error. This is tedious, low-level, and time-consuming.
Also, the underlying WSN platforms, both hardware
and software, are diverse in quality. A seemingly
innocuous change may drastically alter the constraints
that these programs need to fulfill. The WSN software
fit for a specific resource-stringent environment will
need to be adapted further to adjust to the changed
environment. The lack of a system-wide concept to deal
with code optimization techniques further complicates
how developers can apply various COTs for different
software units.

To tackle these challenges, this paper proposes a task-
oriented component-based COT model. It represents
a WSN application as a set of components. In the
task view, resource constraints, known asresource
concerns or simply concerns, are defined at both the
application and node levels. In the component view,
every component is associated with its basis resource
usages and a set of COTs. The resource usages of the
COTs are visualized as a color palette. The developer
can select COTs with higheroptimization capabilities
by choosing the COTs in darker colors in the palette,
and thus decide on a favorable COT combination. We
further present heuristic algorithms to determine the
COT combination automatically. The empirical result
shows that our method is effective and efficient.

The main contributions of the paper are fourfold:
First, it proposes an application-level design optimiza-
tion model for WSN applications. Second, it develops
algorithms to construct components that support the
automatic selection of a suite of COTs. Third, it
provides a visualization mechanism to help developers
manually decide a COT combination. Fourth, it
provides the first empirical study on the topic,
comparing the effectiveness of applying our heuristic
algorithm to a case study with that of the corresponding
manual process.

The rest of this paper is organized as follows: After
reviewing the related work in Section 2, we describe a
motivation example in Section 3. Section 4 presents our
design model and algorithms, followed by an evaluation
in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

Many researchers have conducted studies to adapt
WSN applications to resource constraints. Kuchcinski

(1997) synthesizes an embedded system to meet timing
constraints. Similarly, Wang and Shin (2006) construct
tasks to tackle a similar issue with a view to minimizing
the overall elapsed time. Other than timing constraints,
Teich et al. (1997) study the processing capability of
partitioned processor arrays. Shin et al. (2004) further
investigate how to tackle the energy and code size
constraints. These studies inspire our work.

In the above work, resource usages are optimized
via different techniques including reconfiguration, task
construction, code encoding, and compressing. These
techniques are specific to different situations and,
hence, may adversely affect the modifiability of the
applications. On the other hand, Gay et al. (2005)
implements experimental design patterns in the context
of WSNs. This inspires us to use combined code
optimization techniques to optimize resource usages
to cater for unanticipated fluctuations in environmental
constraints. As in Kaspersky (2003), code optimization
techniques can be embedded into the code similarly to
design patterns. A difference between our method and
that of Kaspersky (2003) is that we consider aggregated
effects of combined code optimization techniques while
they do not.

Adopting code optimization techniques is related
to program synthesis. In this field, Huselius and
Andersson (2005) introduce their model synthesis work
for real-time systems, which focuses on architectures
and observed behaviors. Kuchcinski (1997) tackles
timing constraints by assigning processes to processors.
Our component-based model supports configurations
with multiple resources, and we use combined code
optimization techniques to optimize their overall
usages. A similar concept is also introduced in
Wohlstadter et al. (2004), which only investigates the
interaction relationships of optimization techniques but
not their aggregated effects.

This paper is also related to searching. Kulkarni
et al. (2004) describe two complementary general
approaches, which are designed to achieve faster
searches when genetic algorithms are used. The results
show that evolutionary compilation can be used to tune
embedded applications. Zhao et al. (2006) make use of
an analytic model and heuristic algorithms to investigate
the profitability of optimizations, which can be used to
determine the effectiveness of applying optimizations.
They suggest one can determined from the model
whether an optimization is beneficial and should be
applied, without the need to actually applying it.Özcan
and Onbaşioglu (2007) propose a memetic algorithm to
find the best number of processors and the best data
distribution method for each stage of a parallel program.
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Different crossover operators as well as hill-climbing
methods are used to compare a steady-state memetic
algorithm with a transgenerational memetic algorithm.

We treat WSN applications as components. Zhang
and Cheng (2006) use Petri nets as a model to cater
for the design of adaptive behavior, while Sgroi et al.
(2000) propose a communicating finite state machine
model with a similar aim. Their applicability to WSNs
is yet to be studied.

3. Motivation Example

This section describes a motivation example using
the componentTimer.fired from Surge,1 a real-life
application ofTinyOS. 2 The component, as shown in
Figure 1, resides in a task initiated by periodic time-
driven events. Let us call this versionP0 for the ease of
reference.

inline static resultt
TimerM$Timer$fired (uint8t arg 0xb76cb2c8) {

unsigned charret;
switch (arg 0xb76cb2c8) {

case0U:
ret = SurgeM$Timer$fired();
break;

case1U:
ret = PhotoTempM$PhotoTempTimer$fired();
break;

case2U:
ret = AMPromiscuous$ActivityTimer$fired();
break;

case3U:
ret = MultiHopLEPSM$Timer$fired();
break;

default:
TimerM$Timer$default$fired();

}
returnret;

}

Figure 1: Timer.fired in Surge.

In P0, a switch construct accepts a message-type
identifier (parameterarg 0xb76cb2c8) and invokes the
corresponding processing functions. To do so, the com-
ponent needs to compare the value ofarg 0xb76cb2c8
with the cases inswitch. The mean number of

1 Available athttp://www.tinyos.net/tinyos-1.x/apps/Surge/.
2 TinyOS, available athttp://www.tinyos.net/, is an open-sourced

operating system dedicated and widely used for wireless sensor
network applications.Surge and Timer.fired are available athttp://
www.tinyos.net/tinyos-1.x/apps/Surge/.

comparison operations, denoted by mean(COMP), is
1+2+3+4+252×4

256 ≈ 3.977. This is because, for the
uniform distribution of an unsigned 8-bit integer whose
range is [0U, 255U], almost all of possible values will
fall under thedefault branch, which means that they
should pass through the first fourcase statements before
reaching thedefault branch. In the worst case, all
samples fall into [3U, 255U]. The maximum number of
comparison operations, denoted by max(COMP), is 4.

We observe that this code fragment adopts at least
one COT. The variablesarg 0xb76cb2c8 andret as well
as the case values0U, 1U, 2U, and3U are of the type
uint8 t, that is, unsigned 8-bit integer.3

Suppose that, owing to the concern of low-end
processors in sensor nodes, we plan to reduce the
time complexity by reducing mean(COMP). A simple
COT is to add anif-then-else construct embracing
the switch construct, which decides whether to call
the default processing (see Figure 2). We denote
this code optimization technique bycot1 and the
optimized version byP1. The functional behavior of
the example does not change after introducingcot1,
while mean(COMP) becomes2+3+4+5+252×1

256 ≈ 1.039
and max(COMP) increases to 5.

inline static resultt
TimerM$Timer$fired (uint8t arg 0xb76cb2c8) {

unsigned charret;
if (arg 0x76cb2c8 >= 4U) { // old default

return TimerM$Timer$default$fired();
}
switch (arg 0xb76cb2c8) {

case0U:
ret = SurgeM$Timer$fired();
break;

case1U:
ret = PhotoTempM$PhotoTempTimer$fired();
break;

case2U:
ret = AMPromiscuous$ActivityTimer$fired();
break;

case3U:
ret = MultiHopLEPSM$Timer$fired();
break;

}
returnret;

}

Figure 2: Optimized version 1 ofTimer.fired.

3 The use of unsigned 8-bit integer variables is a general
code optimization technique for embedded applications to produce
executable files of smaller sizes.
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While COTs may reduce the amount of usage for
one resource, they may increase another. Figure 3,
for example, shows another version (P2) that includes
another code optimization technique (cot2) on top
of version P1. cot2 is designed to remove the
time-wastingswitch construct. This is achieved by
introducing alookup table to manage the pointers of the
corresponding functions.P2 has the same functionality
as P1 but needs onlyone comparison operation
for any arg 0xb76cb2c8, so that mean(COMP) =
max(COMP) = 1. Still, it consumes an extra statically-
allocated memory block whose size is 16 bytes, that is,
the size of 4 pointers in a 32-bit environment.

typedef (unsigned char)(*FuncEntry)(void);
inline static resultt
TimerM$Timer$fired (uint8t arg 0xb76cb2c8) {

FuncEntryentries[4] = { // lookup table
SurgeM$Timer$fired,
PhotoTempM$PhotoTempTimer$fired,
AMPromiscuous$ActivityTimer$fired,
MultiHopLEPSM$Timer$fired,

};
if (arg 0x76cb2c8 >= 4U) { // old default

return TimerM$Timer$default$fired();
}
return*(entries[arg 0xb76cb2c8]); // dispatch

}

Figure 3: Optimized version 2 ofTimer.fired.

The effects of optimization of resource usages by
such COTs may be estimated statically. A prerequisite
for implementingcot2 is that thecase block in switch
has nodefault case, which means thatcot2 depends
on cot1. The effects of optimization can be found by
comparing versionP1 with P0, and comparing version
P2 with P1. Table 1 shows the effects ofP1 andP2 in
units of number of comparison operations and memory
blocks.

Considering thatcot2 depends oncot1, legitimate
combinations of code optimization techniques to
synthesize such a component include{cot1} and
{cot1, cot2}. Their resource usages are shown in
Table 2, in which̃γMEM stands for the basis memory usage
of versionP0.

While it cannot be guaranteed that estimated resource
usages will truly reflect runtime resource usages,
developers in practice often assume an approximately
monotonic trend between them. Thus, they target at
code versions with reduced estimated resource usages.
Considering mean(COMP), max(COMP), andMEM in
this example,P2 is the best version.

To deal with different concerns, developers often
use different COTs or their combinations. While
these COTs may have dependencies or conflicting
relationships among one another, such asfunction
inlining conflicting with function pointer table, most
of the work in synthesizing the COTs is done
manually at present. Each time the environment
and the corresponding resource constraints change,
extra manual work must be done to search for and
adopt suitable code optimization techniques. While
many standard approaches to optimization are available
(as in P1 and P2), there may be many functional
components requiring different COTs and many WSN
nodes imposing different environmental constraints. It
is very difficult to manually manage the complexity
involved.

4. Model and Algorithms

This section presents our model and algorithms. Our
component-based model is built on top of a task view
described in Section 4.1. The model consists of a
skeleton component view, basis resource usages, code
optimization techniques, and optimization priority, as
described in Sections 4.2 to 4.6. The visualization
mechanism and the heuristic algorithms are given in
Sections 4.7 to 4.8.

4.1. Task View

A task is a notion used in the real-time and system
communities. It is often realized as a process or a
thread on many platforms includingTinyOS andJava.
It provides a simple and direct means of partitioning
components for the analysis of resource usages. We
adapt the task model from Wang and Shin (2006) as the
formal model to represent a WSN application, where
a task has a run-to-complete semantics, meaning that
the task will complete its execution before another copy
of the same task is being run.4 A task (Wang and
Shin, 2006) is a tupleτ = 〈Φ, Prd, d, o, ω, loc〉, where
Φ = 〈α1, α2, . . . , αm〉 is a list of m WSN components,
Prd is the invocation period of the task,d is its relative
deadline,o is its release time offset,ω: τ→ Q+

0 maps
the task to its resource usages, andloc: τ→ N+ maps
the task to an integer representing the WSN node.

4 Note that tasks are statically allocated in embedded systems.
When there are needs for, say, 10 copies of the same task, we simply
regard them as 10 distinct tasks in our model.
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COTs Effect on mean(COMP) Effect on max(COMP) Effect onMEM

cot1 −2.938 +1 0
cot2 −0.039 −4 +16

Table 1: Effects of code optimization techniques on resource usages.

Version mean(COMP) max(COMP) MEM

P0 3.977 4 γ̃MEM

P1 1.039 5 γ̃MEM

P2 1 1 γ̃MEM +16

Table 2: Resource usages of tasks synthesized.

4.2. Skeleton Component View

By considering all listsΦ of components of all the
tasks τ in a task model, we set up our component
model of WSN applications. We define acomponent
as a tupleα = 〈Prd, d, pre, post, loc〉, wherePrd is
the invocation period of the component,d is its relative
deadline,pre is its previous component in the original
list Φ, post is its next component inΦ, andloc: α→N+

maps the component to an integer representing the WSN
node. In this way, the execution schedule of tasks
in the original task model is converted to that of the
components.

The component view will not be useful for resource
optimization unless we attach to it the basis resource
usages, the code optimization techniques, and the
optimization priority. These concepts will be introduced
in Sections 4.3 to 4.5.

4.3. Resource Concerns and Resource Usages

Resource concerns: We model a concern imposed
by the application environment by means of its bounds.
A concern is a rangeκ = [min, max], where min
represents the lower bound, andmax the upper bound.
For instance, in the motivation example of Section 3,
a concern for CPU may be[0, 2000], which means
that the CPU can support no more than 2000 operations
per second. Similarly, a concern for memory may be
[0K, 30K], which means that the memory available to
a node is no more than 30KB (or 30×1024 bytes). We
useK = 〈κ1, κ2, . . . , κn〉 to denote a list of concerns for
n resources, whereκ j denotes the constraint for thej-th
resource.

Resource usages: For every componentα of a WSN
application, theresource usage γα

j of the j-th resource
is a numerical value within the range specified by the
appropriate concernκ j. We useΓα = 〈γα

1 , γα
2 , . . . , γα

n 〉
to denote a list ofn resource usages.

Basis resource usages: Components should have
resource usages even if software developers do not
optimize them. To acknowledge this fact in our model,
we attach a list ofn basis resource usages Γ̃ α =
〈̃γα

1 , γ̃α
2 , . . . , γ̃α

n 〉 to every componentα of a WSN
application.

After the resource usagesΓα of every component
α have been determined, we can assemble them to
compute the resource usages of a node or the whole
application, and compare them with the givenK
to evaluate the overall impacts. This assembling
computation is related to the executing schedule of the
components. It will be further discussed in Section 5.1.

The basis resource usageΓ̃ α can be improved toΓα

according to a code optimization technique. In the next
section, we will further formulate the COTs.

4.4. Code Optimization Techniques

Eachcode optimization technique (COT) is inscribed
in a component. A COT usually has local effects on
resource usages. In other words, it only affects the
resource usages of the component where it is inscribed.
We model it as effects of optimization of resource
usages.

Thus, we define a code optimization techniquexα

for a componentα as a list xα = 〈δα
1 , δα

2 , . . . , δα
n 〉,

where eachδα
j represents an increment or decrement

of a resource usageγα
j from the corresponding

basis usagẽγα
j . In the example in Section 3, for

instance, Γ̃Timer.fired = 〈1000, 1100, 20K〉 is the list
of basis resource usages of the component. After
adopting a code optimization techniquexTimer.fired =
〈−200, +5, +2K〉, the resource usage will become
ΓTimer.fired = 〈800, 1105, 22K〉.

For every component, developers may define a set of
code optimization techniquesXα = {xα

1 , xα
2 , . . . , xα

|Xα|}.
In this way, we complete our adaptive design

framework(α, Γ̃α
, Xα) for a WSN component.

4.5. Order of Priority

The two code optimization techniquescot1 andcot2
in the example in Section 3 show very different effects
on resource usages, as shown in Table 1. In general,
one code optimization technique may increase a specific
resource usage while another technique may reduce
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it. To remedy this situation, we propose to use an
order of priority P = 〈p1, p2, . . . , pn〉 to optimize the
n resources. Here,〈p1, p2, . . . , pn〉 is a permutation of
〈1, 2, . . . , n〉 and eachp j means that thep j-th resource
is of the j-th highest priority in optimization.

4.6. Objective of our Model

Given the preambles introduced in Sections 4.1 to 4.5
above, we can formulate our problem statement as
follows:

Problem statement: Consider a WSN application
in which there is a resource concernK and each
componentα is associated with a basis resource usage
Γ̃α and a set of code optimization techniquesXα. Our
goal is to find a combination of code optimization
techniquesYopt = {y1, y2, . . . , y|Yopt|} that collectively
satisfy all given concernsK and minimize the overall
resource usagesΓ = 〈Γα1, Γα2, . . . , Γαm〉 for a given
order of priorityP for resource optimization.

If the COTs only provide maximal local effects
of optimization to their assigned components, and if
we can adapt each COT independently, it is easy to
prove that a sufficient condition forYopt to be an
optimal solution for the entire wireless sensor network
application is that there exists an optimal solutionY αi

opt

for every componentαi such thatYopt = Y α1
opt ∪Y α2

opt ∪

. . .∪Y αm
opt . Formally, theoptimal combination of code

optimization techniquesY α
opt for componentα satisfies

the four conditions in Figure 4.

1. ∀xi ∈ Xα andy j ∈Y α
opt, y j ⊲ xi⇒ xi ∈Y α

opt
2. ∀y j, yk ∈Y α

opt, ¬(y j ⋄yk)

3. Y α
opt ⊆ Xα

4. ∀Y ⊆ Xα, Ψ
(
P, F(Γ̃ α, Y α

opt), F(Γ̃α, Y )
)
≤ 0

Figure 4: Conditions for optimal solution.

The first condition ensures that, given any COT in
Y α

opt, all its dependencies are also included inY α
opt. The

second condition guarantees that any two COTs inY α
opt

will not conflict with each other. The last two conditions
ensures thatY α

opt is a subset ofXα and produces the
optimal effects of optimization of resource usages.

Let us explain the notations in Figure 4 in more
detail. The relationy ⊲ x denotes thaty depends
on x, so that x must be adopted whenevery is
adopted. The relationx ⋄ y denotes thatx conflicts
with y, so that onlyx or y can be adopted but not
both.F(Γ̃ α, Y ) = 〈 f1(̃γ α

1 , Y ), f2(̃γ α
2 , Y ), . . . , fn (̃γα

n , Y )〉
is a list of functions calculating the resource usages
according to the basis usagesΓ̃α after implementing
a set Y = {yα

1 , yα
2 , . . . , yα

|Y |} of code optimization

techniquesyα
k = 〈δα

1,k, δα
2,k, . . . , δα

n,k〉. Each functionf j

for the j-th resource usage is given by

f j (̃γ α
j , Y ) = γ̃α

j + ∑ |Y |k=1δα
j,k. (1)

For a givenP, we defineΨ(P, Γ, Γ′) =




−1 if P = 〈p1, p2, . . . , pn〉
andγp1 < γ′p1

;

1 if P = 〈p1, p2, . . . , pn〉
andγp1 > γ′p1

;

Ψ
(
〈p2, p3, . . . , pn〉, Γ, Γ′

)
if P = 〈p1, p2, . . . , pn〉
andγp1 = γ′p1

;

0 if P = /0

It compares two resource usage setsΓ and Γ′. A
negative returned value means thatΓ is preferred toΓ′,
a positive value means thatΓ′ is preferred, and a zero
means no preference.

When a solution is found, we can follow the
description in Section 4.3 to set up a list of
calculation formulas G = 〈g1, g2, . . . , gn〉 to compute
the application-level or node-level resource usages
based on then resource usages at the component level,
whereg j

(
〈̃γα1

j , γ̃α2
j , . . . , γ̃αm

j 〉, Y
)

is a summary of thej-
th resource usage of allm components. For eachg j,
the first argument is a list of basis resource usages in
respective components, and the second argument is a set
of COTs. By comparing the resulting values ofG with
the given concernsK, we can evaluate the solution.

Finding an optimal solution for such a problem is
NP-hard in general (Kulkarni et al., 2004, Zhao et al.,
2006). We propose two options to tackle the problem:
We provide a mechanism for developers to graphically
visualize the optimization capabilities of the code
optimization techniques. This visualization mechanism
helps developers choose the appropriate combination
manually. Alternatively, we can use heuristic searching
to identify a suboptimal solution within a time limit.

Our model can be summarized as three steps.

(1) Represent the target WSN application with a
component-based model, with attached COTsX .
Generate calculation formulasG to compute the
usages of concerned resources.

(2) Either display the COTs as a color palette, which
helps developers manually choose a resultant COT
combinationY , or use heuristic algorithms and
the calculation formulasG to determine a resultant
COT combinationY .

(3) Estimate the concerned resource usages by in-
putting the above resultant COT combinationY to
the calculation formulasG.
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We will explain our visualization mechanism and
algorithms in the next two sections.

4.7. Visualization of Code Optimization Techniques

To help developers manually decide the combination
of code optimization techniques, we use a color palette
to represent the COTs, as shown in Figure 5. Each
column shows the resource usage optimizations of a
COT. Each row shows the resource usage optimizations
of various COTs on one kind of resource. Consider,
for example, the cell marked “•”. It represents the
optimization capability of thek-th COT on the j-th
resource.

j,k
COTs

1 2 … … … 6 … … … … … k … … … … … |X|

R
es
o
u
rc
es

1

2

…

j

…

nn

avg

Figure 5: Using color palette to represent COTs.

We introduce the concept ofoptimization capability.
The optimization capability of each code optimization
technique means how much the COT optimizes within
given concerns. To balance among all resources, we
normalize the resource usage optimization of each code
optimization technique. Thelightness value of each cell
in the grid is calculated using a utility functionlum:

lum(δ j,k) =

255×
max

1≤k≤n
[δ j,k]− δ j,k

max
1≤k≤n

[δ j,k]− min
1≤k≤n

[δ j,k]



Using lum, the resource usage optimization of a COT is
normalized to[0, 255]. The darker the color, the higher
will be the optimization capability.

The lightness values in each row represent the
optimization capabilities with respect to each resource.
To compare them directly with one another, we
normalize them independently for each resource. Then,
for every COT, we simply calculate itsaverage
optimization capability with respect to all resources. Let
us focus on the column enclosed by a thick rectangle,
which stands for the optimization capability of the 6-
th COT. Since it has high optimization capabilities on

most resources, its average optimization capability is
the highest (indicated by the darkest cell in the bottom
row). The average optimization capability is calculated
by:

avglum(δ j,k) =

⌊
1
n

n

∑
k=1

[
lum(δ j,k)

]
⌋

Thus, the developer may choose the 6-th COT together
with some other COTs to form a combination; and
iteratively refine the solution.

4.8. The Searching Algorithms

Our algorithms cover two phases: the sorting of
code optimization techniques and the generation of a
combination.

Sorting of code optimization techniques: The
algorithm first estimates the average optimization capa-
bility of each code optimization technique. Then, the
COTs are sorted using traditional insertion sort. When
the average optimization capabilities of two COTs are
exactly the same, their optimization capabilities on
different resources should be considered according to
the given priority. The algorithm, depicted in Figure 6,
accepts a set of COTsX and an order of priorityP as
arguments and returns an ordered list of COTsZ.

Generation of combination: Given a sorted list
of COTs Z produced in the first phase, the present
phase generates a suboptimal combination. We use
a hill-climbing strategy in the algorithm. Every
possible combination of COTs fulfilling the order of
priority P will be considered in turn. We rank
the combinations before the algorithm begins. For
every combination ofr selections from|Z| choices,
denoted by

{
zs1, zs2, . . . , zsr

}
, its lexicographical index

(Buckles and Lybanon, 1977) is the concatenated string
“s1s2 . . . sr”. We simply sort all the combinations
in ascending order of the lexicographical indexes,
and useC j to denote the j-th combination in the
ordered list. (Since this is a fundamental concept in
combinatorics, we do not include it in the skeleton
algorithm in Figure 7.) The iteration will continue
until the concerns have been satisfied and a locally
optimal result has been found, which means that the first
minimum point has been reached. Then, the algorithm
returns a combination of COTsY = {y1, y2, . . . , y|Y |}.
If all legitimate combinations have been exhausted
but the concerns cannot be fulfilled, the algorithm
returns an empty set. If the iterations always produce
better solutions than before, the algorithm returns the
last one. However, the lexicographical order of the
combinations naturally implies that there is a high
chance for suboptimal solutions to appear early.
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Algorithm: Sorting of Code Optimization Techniques

Input: set of COTsX =
{

x1, x2, . . . , x|X |
}

; order of priorityP = 〈p1, p2, . . . , pn〉

Output: ordered list of COTsZ = 〈z1, z2, . . . , z|X |〉
1. H : 〈h1, h2, . . . , h|X |〉
2. T : 〈t1, t2, . . . , t|X |〉
3. for k = 1, 2, . . . , |X | do
4. hk← avglum(δ j,k)
5. T ← sort(〈1, 2 . . . , |X |〉)
6. Z← 〈xt1, xt2, . . . , xt|X |〉

7. return Z and exit

Procedure: sort
Input: index of list of COTsT = 〈t1, t2, . . . , t|T |〉
Output: index of ordered list of COTs

1. L← 〈〉, R← 〈〉
2. for k = 1, 2, . . . , |T | do
3. if ht1 > htk or

(
ht1 = htk and Ψ(P, xt1, xtk)≥ 0

)

4. L← L∧〈tk〉
5. else
6. R← R∧〈tk〉
7. return sort(L)∧sort(R) and exit

Figure 6: Algorithm to sort code optimization techniques.

The procedureconstruct in the algorithm accepts a
combinationC j and an ordered list of COTsZ as inputs
and returns a set of COTsY = {y1, y2, . . . , y|Y |}, which
can either be empty or includes all the COTs that each
y j ∈ Y depends on. (The meaning of the symbols⊲

and⋄ are first introduced and explained in Section 4.6.)
Note that the set of COTs returned byconstruct can only
be an empty set or a legitimate combination of COTs
that satisfies the concerns. This algorithm is shown in
Figure 7.

The main entry of this algorithm iteratively processes
all legitimate selections of COTs. After some
iterations, when a sufficient number of COTs have been
considered, the result may be able to meet the resource
constraints of the WSN application. When the iteration
process continues, the estimation result is expected to
further improve, but only up to a certain limit. When the
algorithm finds that the resultant resource usage begins
to recede, a heuristic solution has been found and the
algorithm terminates. The experimental results in the
next section show that such a heuristic strategy can be
very helpful in searching for good solutions.

Determination of Ψ: To help understanding, the
algorithm for determiningΨ(P, xi, x j) is given in
Figure 8.

Complexity of algorithms: The algorithm to
determineΨ can be completed inO(n) time, where
n is the number of resource types. The prototype
algorithm for sorting code optimization techniques can

be completed inO(|X | · log(|X |) ·n) time, where|X | is
the number of COTs andn is the count of resource types.

The prototype algorithm for generating combinations
iteratively evaluates possible selections until alocal
optimum is found. A disadvantage of this prototype
is its high time complexity in the worst case, which is
O

(
2|X | ·

(
|X |2 + n

))
. On the other hand, we note from

the experiment in Section 5 that the algorithm can find
solutions much earlier than exhaustive search. We also
note that, in practice, we set an affordable upper bound
of the number of combinations to be checked to find a
solution.

5. Experimental Study

In this section, we first select a few representative
types of resource for experiment and set up their
calculation formulasG. Then, we construct a simulation
model of a real-life application and evaluate the
performance of the algorithms.

5.1. The Resources
We select three most common and widely-used

resources for our experimentation on optimization. For
every individual node, we study the average CPU
operations per second (CPU), the maximum memory
usage (MEM), and the volume of application-level
communication5 (COMM). Hence, in the following

5 That is, the estimated total number of bytes sent or received.
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Algorithm: Generation of Combination
Inputs: ordered list of COTsZ = 〈z1, z2, . . . , z|Z|〉; order of priorityP;

basis resource usages〈Γ̃ α1, Γ̃α2, . . . , Γ̃ αm〉;
list of combinations in lexicographical order〈C1, C2, . . . , C2|X |〉

Output: set of COTsY =
{

y1, y2, . . . , y|Y |
}

1. Y ← /0
2. last← G(〈Γ̃α1, Γ̃α2, . . . , Γ̃αm〉, /0)

3. for j = 1, 2, . . . , 2|Z| do
4. Y ′← construct(C j,Z)

5. curr← G(〈Γ̃α1, Γ̃α2, . . . , Γ̃αm〉, Y ′)
6. if Ψ(P, last, curr) < 0 then goto step 8
7. Y ←Y ′, last← curr
8. return Y and exit

Procedure: construct

Inputs: combinationC =
{

s1, s2, . . . , s|C|
}

;

ordered list of COTsZ = 〈z1, z2, . . . , z|Z|〉

Output: set of COTsY =
{

y1, y2, . . . , y|Y |
}

1. C′←C
2. foreach si ∈C′ do
3. for j = 1, 2, . . . , |X | do
4. if zsi ⊲ z j then C′←C′ ∪{ j}
5. if C′\C , /0 then C←C′ and goto step 2
6. foreach si, s j ∈C do
7. if zsi ⋄ zs j then return /0 and exit
8. foreach si ∈C do
9. Y ←Y ∪{zsi}

10. foreach g j of G do
11. if g j(〈Γ̃ j

α1, Γ̃ j
α2, . . . , Γ̃ j

αm〉, Y ) < κ j then return /0 and exit
12. return Y and exit

Figure 7: Algorithm to generate combination.

Algorithm: Determination ofΨ
Inputs: order of priorityP = 〈p1, p2, . . . , pn〉;

two sets of resource usagesΓi, Γ j

Output: result of comparison:−1, 0, or 1
1. for k = 1, 2, . . . , n do
2. idx← pk
3. if δidx, i < δidx, j then return −1 and exit
4. if δidx, i > δidx, j then return 1 and exit
5. return 0 and exit

Figure 8: Algorithm to compare two code optimization techniques
over a given priority.

experiment, the resource usage can be represented by
Γ = 〈γCPU, γMEM, γCOMM〉 and the resource constraint by
K = 〈κCPU, κMEM, κCOMM〉.

Figure 9 shows the calculation formulasG =
〈gCPU, gMEM, gCOMM〉 for computing application- or node-
level resource usages based on the usages in two
componentsα1 and α2. In particular, gcec

CPU is the

formula for concurrent execution of two components
andgsec

CPU is for sequential execution of the same. For the
case of more than two components, their formulas can
be reasoned hierarchically according to the execution
schedule.

5.2. Subject of Experiment

The subject program isCntToLedsAndRfm 6 written
in nesC for the project TOSSIM. TOSSIM is a
representative emulator ofTinyOS (Levis et al., 2003).
The CntToLedsAndRfm application updates a binary
counter and sends a radio message containing the
current value of the counter to LEDs for display.

A TinyOS application on any node of a wireless
sensor network is designed to support only sequentially
and periodically executed tasks (Gay et al., 2003).

6 Available athttp://www.tinyos.net/tinyos-1.x/apps/CntToLedsAnd
Rfm/.
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gcec
CPU

(
〈̃γα1

CPU, γ̃α2
CPU〉, Y

)
= fCPU (̃γα1

CPU, Y )+ fCPU(̃γ α2
CPU, Y )

gsec
CPU

(
〈̃γα1

CPU, γ̃α2
CPU〉, Y

)
= max

{
fCPU(̃γ α1

CPU, Y ), fCPU (̃γα2
CPU, Y )

}

gMEM

(
〈̃γα1

MEM, γ̃ α2
MEM〉, Y

)
= max

{
fMEM(̃γα1

MEM, Y ), fMEM(̃γ α2
MEM, Y )

}

gCOMM

(
〈̃γ α1

COMM, γ̃ α2
COMM〉, Y

)
= fCOMM(̃γα1

COMM, Y )+ fCOMM(̃γα2
COMM, Y )

Figure 9: Calculation formulas.

Although tasks on different nodes may be executed
concurrently, those on the same node are executed
sequentially. Each task is processed in a run-to-
complete manner. Thus, we can work out the execution
schedule of the components from the tasks and, hence,
set up the functionsF to compute the resource usages.

5.3. Setup of Experiment

CntToLedsAndRfm consists of two nodes of the same
function. Each node periodically increases a local
counter, shows the lower bit values of the counter on
LEDs, and sends the counter value to another node. The
original application consists of five components, namely
Main, Counter, TimerC, IntToRfm, andIntToLeds. 7

For the purpose of experimentation, we remove the
debugging task and expand the application by cloning
nodes and components. The resultant program consists
of three nodes, each having three to four components
with fixed orders of execution without idle time. Each
component is equipped with COTs, some of which have
dependencies or conflicting relationships among one
another. Figure 10 shows a schematic component-and-
connector diagram of the program. The componentsα1,
α2, andα5 are cloned from theTimerC component. The
componentsα3 andα8 are cloned from theIntToLeds
component. The componentα6 is cloned from the
Main component. The componentα7 is cloned from
the Counter component. The componentsα4, α9, and
α10 are cloned from theIntToRfm component.

Suppose we have resource concerns regardingCPU
and MEM at the node level andCOMM at the
application level. They can be calculated using the
formulas in Figure 9. This calculation is illustrated by
Figure 11, wheregCPU represents the average number of
CPU operations per second of an individual node,gMEM

represents the maximum memory usage of an individual
node,gCOMM represents the volume of communication of
the application, andfCPU, fMEM, and fCOMM are calculated
by equation (1).

7Available athttp://cse.yeditepe.edu.tr/tnl/html/LOCAL/files
/docs/tos-source-tree/apps.CntToLedsAndRfm.CntToLedsAnd
Rfm.nc.html.

1 2 3 4

N1

5 6 7

N2

N3

8 9

N3

N1 Node 1 Component Execution Order Data Sync

Figure 10: Infrastructure of testbed.

The subject application is from theTinyOS tool set
TOSSIM version 1.1.15 (December 2005), which can
be downloaded fromhttp://www.TinyOS.net/download.
html. Our driver programs and simulation platform are
coded in C++. All the programs are compiled withncc
version 1.1.EF15 orgcc version 4.0.3 (Ubuntu 4.0.3-
1ubuntu 5). Our experiment is conducted on Ubuntu
6.06 LTS Linux with kernel version 2.6.15-28-386.

5.4. Experimental Evaluation Results

This section presents the experimental evaluation re-
sults with respect to the overall optimization capability,
the order of priority for resource optimization, and
sensitivity.

The COTs used in this experiment include “loop
unfolding”, “lookup table”, “cache”, “serialization”,
and so on. Their optimization effects, basis resource
usages, and resource constraints are given in Table 3.
These raw data are collected by monitoring the WSN
application running on the TOSSIM simulator. Since
the resource usages vary greatly in different WSN
applications, we do not discuss their absolute values,
but always use their normalized values to analyze the
performance of our algorithms.

Comparison with other solutions: Our experiment
can be repeated deterministically. We report the results
with the order of priority for resource optimization to be
set asP = 〈CPU, COMM, MEM〉 and the concernsK
are arbitrarily chosen to be 1.5 times the basis resource
usages.

We compare the result of our method with three
other solutions for code optimization, as shown in
Figure 12. The three other solutions include:(a) Fully
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gCPU

(
〈̃γ α1

CPU, γ̃ α2
CPU, . . . , γ̃ α10

CPU 〉, Y
)

= max
{

∑4
i=1 fCPU (̃γ αi

CPU, Y ), ∑7
i=5 fCPU(̃γ αi

CPU, Y ),∑10
i=8 fCPU(̃γ αi

CPU, Y )
}

gMEM

(
〈̃γα1

MEM, γ̃ α2
MEM, . . . , γ̃α10

MEM〉, Y
)

= max{ fMEM(̃γ α1
MEM, Y ), fMEM(̃γ α2

MEM, Y ), . . . , fMEM (̃γα10
MEM, Y )}

gCOMM

(
〈̃γα1

COMM, γ̃α2
COMM, . . . , γ̃α10

CPU 〉, Y
)

= ∑10
i=1 fCOMM(̃γ αi

COMM, Y )

Figure 11: Calculation formulas for the target program.

Resources
CPU (cycles) MEM (KB) COMM (bytes)

Constraints 1050 to 3000 280 to 1440 70 to 360
Basis usages of component 1500 to 2500 400 to 1200 100 to 300
Optimization effects of COTs −600 to+900 −200 to+300 −20 to+30

Table 3: Raw data used in experiment.

optimal solution: We iterateall legitimate selections
and find the fully optimal solution. (b) Randomly
selected solution: We randomly pick 300 COTs and
then choose from them the COTs with the minimum
resource usages. The magic number 300 is chosen from
experience according to the scale of the problem.(c)
Unoptimized solution: The original subject program
is taken as an “unoptimized” solution. We should
point out that the original subject program is manually
crafted by professional developers. Since it targets for
wireless sensor network applications, code optimization
has been conducted, albeit not to an optimized level.
The resource usages of the subject program (that is,
the random solution) are normalized according to the
unoptimized solution.

Resource usages are classified into three groups,
namely (from top to bottom in Figure 12)CPU ,COMM,
andMEM; the usages in the four solutions are shown
under each group. We notice thatCPU usage is best
optimized, followed byCOMM usage, according to the
order of priority specified byP. This is consistent
with our hypothesis thatCPU andCOMM usages are
reduced at the expense of increasedMEM usage. We
also notice that, for theCPU resource, which is the main
objective of optimization in the empirical study, our
model obviously produces a better usage pattern than
a randomly selected combination of COTs. Our results
are only overtaken by the optimal solution for theMEM
resource, which is at the lowest priority of optimization.

We observe, as expected, that theCPU andCOMM
usages are reduced at the expense ofMEM. For
instance,CPU is reduced to 0.897, whileMEM is
increased to 1.230. If developers would like to
reserve some resources (such asMEM) for the other
applications, they can adjust the upper boundmax for
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Figure 12: Comparison of solutions.

the related resources and rerun our algorithm.
Since a mote has limited memory, the developers may

have already tried their best to fit the existing code into
the limited memory (as indicated by the unoptimized
bar forMEM in Figure 12). One would like to know any
alternative options that our approach may offer to the
developers. The next experiment studies this question.

Changes in resource usages for different orders
of priority: To analyze the adaptive capability of our
algorithm to different orders of priority, we submit all
six possible priority orders for resource optimization
as inputs and present the results in Figure 13. The
results are plotted in six groups, showing the results
for six different orders of priority. Each group consists
of three columns representing the resource usages of
CPU , MEM, and COMM. Take the first group as
an example. It means thatCPU is given the highest
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optimization priority, followed byMEM, whileCOMM
is given the lowest optimization priority. We notice that,
whenever we set a top priority to a resource, the usage
of that resource will automatically be best optimized.
This indicates that our model have a high adaptation
capability for different orders of priority.
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Figure 13: Effects ofP on resource usage.

We also observe from the experiment that resources
may have different properties when being optimized. In
the example, many COTs that target at reducingCPU
or COMM do so at the expense of the increasedMEM.
This is because many COTs are designed to reduce other
resources through additional memory usages, such as
caches and lookup tables, which are very common in
real life. On the other hand,COMM is very difficult to
be reduced. Even inconspicuous reductions inCOMM,
such as groups 5 and 6 in the figure, may result in
disproportionate increases inCPU and MEM usages.
Consider, for instance, the first group again. TheCPU
usage is reduced to 79% of the unoptimized case. Such
result comes with the cost of increasingMEM to 132%
of the unoptimized case. At the same time, theCOMM
usage is also reduced a bit, to 96% of the unoptimized
case.

Next, let us consider cases whereMEM takes the
topmost priority in the optimization process. These
cases are shown as the third and fourth set of bars
in Figure 13. We observe that we can only slightly
optimize MEM (only a small percentage) at great
expenses toCPU and COMM. It is understandable
because mote application usually has been optimized
for MEM.

We note that, in this experiment, the number of
COTs available for individual components is limited.
Intuitively, if the developers are not satisfied with

the optimization, one way to allow a better search
of an optimized solution is to increase the number
of COTs for individual (bottleneck) components.
Identifying these components may not be difficult
because developers can use a memory profiler to find
out existing memory usages of components. In the next
experiment, we study whether increasing the number of
COTs helps resolve the situation.

Variations in resource usages for different COT
counts: Intuitively, the number of code optimization
techniques used in an experiment (referred to as the
COT count) should enhance the results.

In our experiment, we vary the COT count from 2 to
10. Figure 14 shows the variations in resource usages
with respect to different COT counts. The x-axis is the
COT count while the y-axis is the normalized resource
usages. We notice that when the COT count increases
from 2 to 3, all the three resource usages are reduced.
Take theCOMM resource as an example. It changes
from 91% of the unoptimized case to 83% of that.
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Figure 14: Effects of COT on resource usage

When the COT count continues to increase, the
resource usages showed fluctuations; however, they still
show descending trends. We postulate that this is due
to the hill-climbing strategy used in our algorithm. The
results are expected to improve by implementing more
advanced algorithms.

The results also show that having more choices of
code optimization techniques help improveCPU and
MEM. When the COT count increases, however, the
complexity in choosing a promising one from different
combinations increases. It makes our automated
method to synthesize COTs in WSN applications more
attractive.
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Variations in solutions for different resource
constraints:

When stringent resource usage constraints are given,
can our algorithm find effective solutions? We conduct
an empirical experiment to address this question.

We randomly select 50 COTs, varying the resource
usage constraints from 70% of the basis resource
usage to 120% of the usage, and record the resultant
usage of the highest prioritized resource. We repeat
our experiment by giving the highest priority to the
resourcesCPU , MEM, andCOMM in turn. The results
are shown in Table 4.

In Table 4, the three rows in turn show the resultant
resource usages when the highest priority is given
to CPU , MEM, and COMM, respectively. The
resource usage constraints are controlled in the range
of [70%, 120%]. We observe that, for theCPU and
MEM resources, when stringent constraints are given
(such as limited to less than 80% of the basis resource
usage), the resultant resource usages frequently appear
as 1.00. It means that no legitimate and effective COT
combination can be found. An empty set is therefore
returned, so that the resource usage is equal to the
unoptimized one. Consider, for example, the column
entitled 85%. In each of the three independent tests, no
legitimate and effective COT combination can be found.

Performance of solutions in order of iterations:
Since the algorithm iterates all solutions in lexico-

graphical order of COT combinations, no legitimate
solution are missed. On the other hand, the algorithm
stops at the first encountered minimum point (in the
sense of hill-climbing techniques). We are interested
in the time cost to find a solution and the performance
of the solution thus found.

Since it is not easy to figure out theoretically
the capability of such a heuristic algorithm, we
also evaluate it experimentally using the testbed
subject program. We randomly take 50 COTs into
consideration, and check the performance of solution
in each iteration. The result is given in Figure 15.
This test is very time-consuming (with 250 iterations).
Figure 15 shows only part of the searching domain
(which includes the solution position) rather than the
whole domain.

In Figure 15, the X-axis shows the iterations in order,
while the Y-axis shows the normalized resource usages
of the solution in each iteration. We notice that the
resource usages are all equal to 1 whenX = 0, which
corresponds to the basis resource usages when no code
optimization technique is adopted. SinceCPU resource
is of the highest optimization priority and theMEM
resource is assigned a low priority, the optimization
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Figure 15: Performance of solutions in order of iterations.

of CPU is done at the cost of increasing the usage
of MEM. The COTs that have high optimization
capabilities to reduceCPU usage are selected first.
When there is less room for reducingCPU usage, the
COTs that reduceCOMM usage are combined. Within
the given resource usage constraints (which is 150%
of the basis resource usage), the first local minimum
is identified in iteration 30. The final solution in turn
optimizes the usages ofCPU andCOMM to 50% and
77%, respectively, at a cost of increasing theMEM
usage to 148%.

In our experience, the heuristic search algorithm has a
high chance of terminating before the first|X | iterations,
where|X | is the total number of COTs.

5.5. Case Study

In this section, we further evaluate our method on the
same target program and simulation platform used in
Section 5.

Figure 16 shows the resource optimization capabil-
ities of the 50 randomly selected COTs for program
CntToLedsAndRfm. To ease the manual process, we
assume that no dependency relations exist among these
COTs. Starting from a color palette that represents the
optimization capabilities of the COTs, the developer
may manually choose the appropriate COTs, refine the
choices, and finally work out a COT combination.

TheCPU resource is given the highest optimization
priority, followed by MEM, andCOMM is given the
lowest optimization priority. First, we would like to
pick out the COTs with a high optimization capability in
reducingCPU usage. By examining the dark red cells
in the first row, we identify eighteen COTs numbered
4, 5, 8, 10, 11, 15, 17, 20, 21, 26, 29, 34, 35, 37, 40,
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120% 115% 110% 105% 100% 95% 90% 85% 80% 75% 70%

CPU 0.97 0.85 0.96 0.81 0.93 1.00 1.00 1.00 1.00 1.00 1.00
MEM 0.94 0.98 0.76 1.00 0.95 0.93 1.00 1.00 1.00 1.00 1.00
COMM 0.69 0.76 0.71 0.76 0.67 0.62 0.71 1.00 0.75 0.72 0.61

Table 4: Resource usage of solution on different resource constraints.
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Figure 16: Color palette for programCntToLedsAndRfm.

45, 47, and 50. Then, for the remaining COTs, we pick
out the dark blue cells in the second row, which stand
for a relatively high optimization capability in reducing
MEM usage. Ten COTs numbered 1, 2, 6, 16, 22, 27,
31, 32, 38, and 49 are chosen. In the same way, we
choose three more COTs numbered 9, 14, and 43, whose
colors in the third row are dark purple. Intuitively, they
should have a high optimization capability in reducing
COMM usage. Finally, we choose another three COTs
18, 26, and 27 which are dark gray in color in the
fourth row. These COTs also have a high optimization
capability in reducing resource usage. Denoting the set
of the above selected COTs asY , the resource usages are
estimated using the calculation formulas in Figure 11.

Table 5 shows the basis resource usages (see the row
tagged as “Unoptimized”), the resource usages of the
manual process (the row tagged as “Manually chosen”),
the resource usages of the solution generated by our
algorithm (the row tagged as “By algorithm”), and
the resource usages of the optimal COT combination
(the row tagged as “Optimal”, calculated by iterating
all possible combinations). The usages have been
normalized with respect to the unoptimized case. Let
us focus on the row tagged as “Manually chosen” and
use it as an example for explanation. It shows that,
after applying the COTs inY , CPU usage is reduced to
71% of the unoptimized case. Such optimization comes
with the cost of increasingMEM usage to 133% of the
unoptimized case. At the same time,COMM usage is
also reduced to 91% of the unoptimized case. The other
rows can be explained similarly.

Previously, to meet resource constraints, developers
need to manually implement the COTs and iteratively
tune the results. Such a process is time-consuming and
error-prone. With the use of a color palette, developers
can visually compare the optimization capabilities
of different COTs and different resources. At the
same time, the average optimization capability is also
displayed to help select the most valuable and suitable
COT. Contrasted with a comparison of numbers, the
color palette mechanism is more effective. Developers
have an easier time to decide on the appropriate COTs.

In this case study, our algorithm is executed in less
than 0.001 second but outperforms the manual process.
Although both our algorithm and the manual process
cannot, of course, perform better than the optimal
solution, the cost to generate the optimal is fairly high
(having to iterate 250 possible COT combinations). In
real cases, developers may decide on a suitable strategy
by weighing between quality and effort.

5.6. Threats to Validity

We summarize the threats to validity in this section.
A construct validity thread is the target program we

used. The WSN application used in the experiment is a
sample program from the TOSSIM platform. It is very
simple and consists of only five components. Real-life
applications are more complicated. Hence, we clone
components and COTs to increase the complexity of the
subject program. In addition, we vary the count of COTs
in a controlled range to simulate other cases.

Another construct threat to validity is the use of
COTs. In the experiment, we have created various
COTs and specified different resource usages to them.
The related resource usages are estimated according
to our pilot study on monitoring the WSN application
running on the TOSSIM simulator. Although they may
reflect the resource usages of realistic scenarios in WSN
applications, deploying the applications in real WSN
hardware environments may give results different from
our simulation study.

A threat to internal validity is the assumption that
code optimization techniques are applied in WSN
applications. We use the term COT to represent all
optimization-like patterns used in the programs. To
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Normalized resource usages
CPU usage MEM usage COMM usage

Unoptimized 1.00 1.00 1.00
Manually chosen 0.71 1.33 0.91
By algorithm 0.61 1.35 0.82
Optimal 0.50 1.48 0.77

Table 5: Resource usages of various solutions.

obtain reasonable results, we monitor the resource
usages of several WSN applications, and specify the raw
data used in the experiment accordingly.

The next threat is the complexity of the problem.
Although the only safe way to search for the optimal
solution is to iterate all possible combinations, the
time cost is not acceptable. We have introduced a
heuristic algorithm that has a high chance of producing
a suboptimal solution within a reasonable time limit. In
real-life settings, developers can implement their own
version of sorting algorithm and searching algorithm.

A threat to external validity may be due to the
resources chosen for experimentation. Resources used
in WSN applications vary widely. Our model has,
therefore, been designed for the general situation and
does not depend on the types of resource used. We have
taken three representative kinds of resource for study in
the experiment and set up the corresponding calculation
formulas.

We set up our model based on theTinyOS platform
since it is the most widely used platform for WSN
applications.

There is, however, no guarantee that our model work
for other WSN platforms. To address this validity threat,
we design our model from the perspective of tasks and
components. It is independent of hardware and software
architectural issues (such as processes, threads, and
concurrency). It should be portable to other platforms
easily.

6. Conclusion

Optimization is indispensable in the design and
implementation of wireless sensor network applications
because of the stringent resource constraints referred to
as concerns. Developers often need to iteratively select
possible code optimization techniques (COTs) to meet
the resource concerns. Such manual work is inefficient
and error-prone.

In this paper, we present a model to manage COTs
and evaluate its usefulness in optimizing the effective-
ness under given concerns and a user-defined order of
priority. The evaluation is conducted through estimated

usages of resources based on the infrastructure of an
application under study. We provide developers with
a color palette to help them visualize the optimization
capabilities of the COTs and to manually choose a
favorable combination. We also present a heuristic
algorithm that automatically determines a suboptimal
combination. An experimental study shows that our
heuristic algorithm produces a promising solution to
code optimization. A case study further demonstrates
the effectiveness of our visualization mechanism. As
future work, we will conduct experiment in real-life
WSN hardware environments. And it will be interesting
to explore context-awareness, runtime adaptation, and
more elaborate experimentation. We will also study
how to specify COTs and how interactions among COTs
may affect our method.
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