
To appear in Proceedings of the 32nd Annual International Computer Software and Applications Conference (COMPSAC 2008),

IEEE Computer Society Press, Los Alamitos, California (2008)

Fault Propagation in Tabular Expression-Based Specifications ∗

Xin Feng and David Lorge Parnas

Software Quality Research Laboratory

Faculty of Informatics and Electronics

Limerick University, Limerick, Ireland

{xin.feng, david.parnas}@ul.ie

T. H. Tse

Department of Computer Science

The University of Hong Kong

Pokfulam, Hong Kong

thtse@cs.hku.hk

Abstract

Tabular expressions have been used in industry for many

years to precisely document software in a readable

notation. In this paper, we propose a fault-based testing

technique that traces the propagation of faults from the

expression in each cell of a tabular expression to the

output of the program under test. The technique has been

formalized in the form of abstract test case constraints

also represented by tabular expressions, so that it can be

easily applied and automated.

1. Introduction

In the past decades, many formal specification methods

have been developed in an effort to document software

specifications precisely and unambiguously, mostly by

means of mathematical expressions. However, conven-

tional mathematical expressions are too complex and

difficult to read. To alleviate the problem, functional doc-

∗ c© 2008 IEEE. This material is presented to ensure timely dissem-

ination of scholarly and technical work. Personal use of this material

is permitted. Copyright and all rights therein are retained by authors

or by other copyright holders. All persons copying this information

are expected to adhere to the terms and constraints invoked by each

author’s copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder. Permission to

reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or

lists, or to reuse any copyrighted component of this work in other works

must be obtained from the IEEE.

umentation using tabular expressions was proposed [6,

11]. They were proven to be useful and acceptable in in-

dustrial experiences with the US Navy’s A-7 aircraft [3],

a Bell Laboratories Service Evaluation system [4], the

Darlington Nuclear Power Station [10], a Dell keyboard

test program [13], and so on.

Two testing strategies were developed for tabular

expressions: the partition strategy [9] and the interesting

point selection strategy [1]. Acting as equivalence class

testing and boundary value testing, respectively, they

fulfill basic testing requirements. Test oracles in [12] can

help verify testing results. To ensure a high quality of

the software, however, we need more advanced strategies

such as fault-based testing.

For the ease of discussions, we shall write tabular

expressions interchangeably with their equivalent conven-

tional mathematical expressions in this paper. Consider

the following conventional definition of a simple function.

We shall refer to x > 10 and y > 5 by the Boolean

variables A and B, respectively. They are listed in bold

and in parentheses.

f (x, y) =















x+ y x > 10∧ y > 5∨ x 6 10∧ y 6 5

( A ∧ B ∨ ¬A ∧ ¬B )

x− y x 6 10∧ y > 5∨ x > 10∧ y 6 5

( ¬A ∧ B ∨ A ∧ ¬B )

Many fault-based testing strategies (such as [7, 8, 16])

have been proposed to generate test cases for Boolean

expressions. Although these strategies can propagate

1

Administrator
  HKU CS Tech Report TR-2008-06



faults (such as missing A or the negation of A) to affect the

result of the expression A∧B∨¬A∧¬B, more questions

regarding fault propagation need to be addressed: (i) Can

a change of the operator “>” in x > 10 affect A? (ii) Can

the result of A∧B∨¬A∧¬B affect f (x, y)? (iii) Can a

fault in x + y be propagated to f (x, y)? While there are

studies (such as [5, 14]) addressing the first question, the

other two have almost been ignored.

Fault-based testing in tabular expressions takes into

account all the above-illustrated reflections as well as

other features related to tabular expressions.

2. Tabular Expressions

A tabular expression is an indexed set of grids and

each grid is an indexed set of expressions [6]. Fig. 1

is an example of a two-dimensional inverted table

T consisting of three grids, such that the cardinal-

ity Card(T ) = 3 and the index sets IndexSet(T ) =
{0, 1, 2}, IndexSet(T [1]) = IndexSet(T [2]) = {0, 1, 2},

and IndexSet(T [0]) = IndexSet(T [1])× IndexSet(T [2]).
T [1] and T [0] are predicate grids while T [2] is an

evaluation grid. T [1] and each row of T [0] are proper, that

is, one and only one predicate expression can be true with

respect to an assignment. If T [i][idx] (i∈ IndexSet(T ) and

idx ∈ IndexSet(T [i])) is taken as a Boolean variable, the

expressions in bold are Boolean expressions.

A specification is a statement of all the properties

required of a program; an actual description is a statement

about actual attributes of a program. Accordingly, there

are two kinds of table in this paper: a specification table

(denoted by TS) and a description table (denoted by TD).

For the readers’ convenience, in Fig. 1, the specification

and a description share the same table with different

expressions in T [1][0] and T [1][2]. The expressions in

parentheses are for the description table.

3. Fault Propagation

Fault propagation spreads the faulty result in a problem

to the output and causes a failure of the program. It can

be revealed by an execution of the program [15] or an

analysis of the source code [2].

Boolean expression-based strategies are successful in

detecting faults in single Boolean expressions. For

tabular expressions, however, additional issues need to be

addressed. We discuss these issues based on the example

in Fig. 1.

(1) T [i][idx] represents an expression. Information is

needed about the faults that may affect the expres-

sion, such as a change of “<” in x < 3 of T [1][2],
and a change of “x” in x+ y of T [2][0].

(2) The change in T [1][2] invokes a change in T [1][0]
because T [1] is proper.

(3) A change of result of a Boolean expression does not

always entail a change of the output. Consider the

second Boolean expression. Suppose x = 1 and y =
0. Then, the expression is evaluated to true in TS

but false in TD. Since the first Boolean expression

is evaluated to true in TD, the expressions in various

evaluation grids are computed (namely, x−y and x+
y). However, since y is 0, x + y = x− y. Thus, x =
1, y = 0 fails to propagate the fault.

3.1. Notation and Assumptions

Various programs may be written to implement a spec-

ification, with different kinds of fault. Hence, this

paper considers only a subset of TD. Further, we have

the following assumptions: (i) All the programs are

deterministic. (ii) Faults can either be in a predicate grid

or in a cell of an evaluation grid. (iii) If an input is

undefined in TD, the output is out of the range of the

programs. (iv) Since many techniques (such as fault-

based testing [14] and mutation testing [5]) can be used

for testing fault propagation from an expression in a cell to

the result of the expression, test cases for any propagation

exist.

Test cases are expressed in terms of test case con-

straints. In the sequel, “test case constraint” will be

abbreviated to “constraint”. If no test data can be found,

the constraint for the expression is false. Suppose idx is

the index of an element in grid T [i]. Let C[i][idx] indicate

the set of the constraints for the test data of expression

T [i][idx] in assumption (iv). The following is the notation:

(a) Card(C[i][idx]) denotes the number of constraints in

C[i][idx].

2



Q(intx, inty) =
T [2]

x+ y x− y x× y

x > 3 (x < 3) y < 6 y = 6 y > 6

x = 3 y < x y > x y = x

x < 3 (x > 3) y < −x y > −x y = −x

T [1] T [0]

Q(x, y) =































x+ y (x > 3∧ y < 6)∨ (x = 3∧ y < x)∨ (x < 3∧ y < −x)
(T[1][0]∧T[0][0, 0]∨T[1][1]∧T[0][1, 0]∨T[1][2]∧T[0][2, 0])

x− y (x > 3∧ y = 6)∨ (x = 3∧ y > x)∨ (x < 3∧ y > −x)
(T[1][0]∧T[0][0, 1]∨T[1][1]∧T[0][1, 1]∨T[1][2]∧T[0][2, 1])

x× y (x > 3∧ y > 6)∨ (x = 3∧ y = x)∨ (x < 3∧ y > −x)
(T[1][0]∧T[0][0, 2]∨T[1][1]∧T[0][1, 2]∨T[1][2]∧T[0][2, 2])

Figure 1: A specification (description) table.

(b) C[i][idx][k] denotes the kth constraint in C[i][idx].

(c) TS[i][idx][k] and TD[i][idx][k], respectively, denotes

the expected result and actual result of the expression

TS[i][idx] with respect to a test case that satisfies

C[i][idx][k].

(d) P[i][idx] denotes the set of constraints that propagate

the faults in expression TD[i][idx] to the output.

(e) For any predicate grid T [i], CT [i][idx][k] and

CF [i][idx][k] denote C[i][idx][k] ∧ TS[i][idx] and

C[i][idx][k]∧¬TS[i][idx], respectively.

(f) PT [i][idx][k] and PF [i][idx][k] denote the set of

constraints to propagate faults in expression

TD[i][idx] when the test cases satisfy CT [i][idx][k]
or CF [i][idx][k], respectively. They denote /0 when

CT [i][idx][k] or CF [i][idx][k] is false.

(g) P[i][idx][k] denotes the set of constraints to propagate

faults in expression TD[i][idx] when the test cases

satisfy C[i][idx][k].

(h) ∇ is defined by

S1∇S2 =

{

S1 ∪S2 S1 = /0∨S2 = /0

S1 or S2 S1 6= /0∧S2 6= /0

3.2. Test Case Generation

To make the expressions more compact, we use
h
∨

j=1
v[ j] to

denote v[1]∨v[2]∨·· ·∨v[h],
h
∧

j=1
v[ j] to denote v[1]∧v[2]∧

·· ·∧v[h], and di to denote Card(T [i]) (1 6 i 6 Card(T )−
1). The output of an inverted table can be written in the

following form:

O = T [n][ jn]
d1−1
∨

j1=0
· · ·

dn−1−1

∨
jn−1=0

(

T [0][ j1, . . . , jn]

∧ (
n−1
∧

i=1
T [i][ ji])

)

(1)

for 0 6 jn 6 dn − 1, where n = Card(T )− 1. It means

that the output is T [n][ jn] if the conditional expression

subsequent to this output is satisfied. Moreover, an

inverted table has the following characteristics:

• For 1 6 i 6 n−1,
di−1
∨

j=0
T [i][ j] = true.

• For 1 6 i 6 n−1 and 0 6 j, j′ 6 di − 1 such that

j 6= j′, T [i][ j]∧T [i][ j′] = false.

• Given any input, if
n−1
∧

i=1
T [i][ ji] = true,

dn−1
∨

jn=0
T [0][ j1,

. . . , jn−1, jn] = true and, for 0 6 jn, j′n 6

3



dn − 1 such that jn 6= j′n, T [0][ j1, . . . , jn−1, jn] ∧
T [0][ j1, . . . , jn−1, j′n] = false.

Faults may be in T [i] (1 6 i 6 n−1), T [n], or T [0]. Thus,

we have three cases:

(1) The faults are in evaluation expressions in T[n].

Suppose that there are faults in T [n][ j] (0 6 j 6 dn −
1). To propagate the faults, the evaluation expression

must be evaluated with respect to an input, that is,
d1−1
∨

j1=0
· · ·

dn−1−1

∨
jn−1=0

(

T [0][ j1, . . . , jn−1, j] ∧ (
n−1
∧

i=1
T [i][ ji])

)

must be true. Hence, for 0 6 j 6 dn − 1, P[n][ j] =
{

C[n][ j][k]∧
(d1−1

∨
j1=0

· · ·
dn−1−1

∨
jn−1=0

(

T [0][ j1, . . . , jn−1, j]∧

(
n−1
∧

i=1
T [i][ ji])

)) ∣

∣

∣
1 6 k 6 Card(C[n][ j])

}

.

(2) The faults are in the predicate expressions in T[i]

(1 6 i 6 n − 1).

The output function in (1) can be rewritten as

O = T [n][ jn]
di−1
∨

ji=0

(

T [i][ ji]∧Q(i, ji, jn)
)

(2)

where Q(i, ji, jn) =
d1−1
∨

j1=0
· · ·

di−1−1

∨
ji−1=0

di+1−1

∨
ji+1=0

· · ·
dn−1−1

∨
jn−1=0

(

T [0][ j1, . . . , ji, . . . , jn−1, jn] ∧ (
i−1
∧

l=1
T [l][ jl ]) ∧

(
n−1
∧

l=i+1
T [l][ jl ])

)

. If n = 2, we have i = 1 (since

1 6 i 6 n−1) and Q(i, ji, jn) = T [0][ j1, j2]. If n > 2,

i can be any value that satisfies 1 6 i 6 n−1.

Suppose that a test case satisfies C[i][ j][k]. There are

two possibilities:

(a) The test case satisfies CT [i][ j][k].

Obviously, it evaluates T [i][ j] to true, that is,

TS[i][ j][k] = true and TD[i][ j][k] = false. When

TS[i][ j][k] is true, TS[i][ j′][k] = false for 0 6 j′ 6

di −1 such that j′ 6= j. The output in (2) can be

simplified to

O = T [n][ jn] Q(i, j, jn)

There are two sub-cases:

• For all j′ 6= j such that 0 6 j′ 6 di − 1,

TD[i][ j′][k] = false.

In this case, for any ji such that 0 6

ji 6 di − 1, we have TD[i][ ji] = false.

Thus, no matter what jn is,
di−1
∨

ji=0

(

TD[i][ ji]∧

Q(i, ji, jn)
)

is always false. Such a

test case is undefined in the implemen-

tation. According to assumption (iii)

in Section 3.1, the actual output is out

of range and, therefore, different from

any expected output under the predicate

TS[i][ j]. Hence, for 1 6 i 6 n − 1 and

0 6 j 6 di −1, P1
T [i][ j][k] =

{

CT [i][ j][k]∧

(
dn−1
∨

jn=0
Q(i, j, jn))

}

. Since
dn−1
∨

jn=0
Q(i, j, jn)

= true, we have P1
T [i][ j][k] = {CT [i][ j][k]}.

• TD[i][ j′][k] = true for some j′ 6= j such that

0 6 j′ 6 di −1.

Since the test case evaluates TD[i][ j′] to

true, the output function for TD is written

as

O = T [n][ jn] Q(i, j′, jn)

Therefore, P2
T [i][ j][k] =

{

CT [i][ j][k] ∧
(

dn−1
∨

jn=0

(

Q(i, j, jn) ∧ ¬Q(i, j′, jn) ∧

(

dn−1
∨

j′n=0, j′n 6= jn
(Q(i, j′, j′n) → T [n][ j′n] 6=

T [n][ jn])
))) ∣

∣

∣
0 6 j′ 6 di −1 ∧ j 6= j′

}

.

Thus, we can determine PT [i][ j][k] =
P1

T [i][ j][k]∪P2
T [i][ j][k].

(b) The test case satisfies CF [i][ j][k].

It evaluates TS[i][ j] to false and TD[i][ j] to true.

TS[i][ j′][k] = true for some j′ 6= j such that

0 6 j′ 6 di − 1. The analysis is similar to the

second case in (a). The set of constraints is

given by PF [i][ j][k] =
{

CF [i][ j][k]∧ TS[i][ j′]∧
(

dn−1
∨

jn=0

(

Q(i, j′, jn)∧¬Q(i, j, jn)∧
(

dn−1
∨

j′n=0, j′n 6= jn

(Q(i, j, j′n) → T [n][ j′n] 6= T [n][ jn])
))) ∣

∣

∣
0 6

4



j′ 6 di −1∧ j 6= j′
}

.

Thus, we can determine P[i][ j][k] = PT [i][ j][k] ∇

PF [i][ j][k] and hence P[i][ j] = {p ∈ P[i][ j][k] | 0 6

k 6 Card(C[i][ j])−1}.

(3) The faults are in the predicate expressions in T[0].

Suppose that a test case satisfies C[0][ j1,· · · , jn−1,

j][k]. Similarly to the above, there are two possi-

bilities.

(a) The test case satisfies CT [0][ j1, · · · , jn−1, j][k].

Since TS[0][ j1, . . . , jn−1, j][k] = true, we have

TD[0][ j1, . . . , jn−1, j][k] = false. There are two

sub-cases:

• For all j′ 6= j such that 0 6 j′ 6 dn − 1,

TD[0][ j1, . . . , jn−1, j′][k] = false.

For any jn such that 0 6 jn 6 dn − 1, we

have TD[0][ j1, . . . , jn−1, jn][k] = false.

Such a test case is undefined in the imple-

mentation. To propagate faults, TD[0][ j1,

. . . , jn−1, j] must be evaluated. Hence,

P1
T [0][ j1, . . . , jn−1, j][k] =

{

CT [0][ j1, . . . ,

jn−1, j][k]∧
(

n−1
∧

i=1
T [i][ ji]

)}

.

• TD[0][ j1, . . . , jn−1, j′][k] = true for some

j′ 6= j such that 0 6 j′ 6 dn −1.

Since TD[0][ j1, . . . , jn−1, j′] corresponds

to the output T [n][ j′], we must have

T [n][ j′] 6= T [n][ j] to make the output

different. Therefore, P2
T [0][ j1, . . . , jn−1,

j][k] =
{

CT [0][ j1, . . . , jn−1, j][k] ∧
(

n−1
∧

i=1
T [i][ ji]

)

∧ T [n][ j] 6= T [n][ j′]
∣

∣

∣
0 6 j′

6 dn −1 ∧ j′ 6= j
}

.

Hence, we can determine PT [0][ j1, . . . , jn−1,

j][k] = P1
T [0][ j1, . . . , jn−1, j][k]∪P2

T [0][ j1, . . . ,

jn−1, j][k].

(b) The test case satisfies CF [0][ j1, . . . , jn−1, j][k].

TS[0][ j1, . . . , jn−1, j′][k] is evaluated to true for

some j′ such that 0 6 j′ 6 dn − 1. Since

TD[0][ j1, . . . , jn−1, j][k] is true, they cor-

respond to T [n][ j′] and T [n][ j], respectively.

Hence, PF [0][ j1, . . . , jn−1, j][k] =
{

CF [0][ j1,

. . . , jn−1, j][k] ∧ TS[0][ j1, . . . , jn−1, j′] ∧
(

n−1
∧

i=1
T [i][ ji]

)

∧ T [n][ j] 6= T [n][ j′]
∣

∣

∣
0 6 j′ 6

dn −1 ∧ j′ 6= j
}

.

Thus, P[0][ j1, . . . , jn−1, j] =
{

p ∈ P[0][ j1, . . . ,

jn−1, j][k]
∣

∣

∣
0 6 k 6 Card(C[0][ j1, . . . , jn−1, j])

}

,

where P[0][ j1, . . . , jn−1, j][k] = PT [0][ j1, . . . , jn−1,

j][k] ∇ PF [0][ j1, . . . , jn−1, j][k].

Application of the method is simple because all the

formulas have been given. Testers need only copy the

actual expressions from the tables to the formulas. The

constraints for the first step of the propagation can be

obtained by applying the MIST technique in [2]. The

subsequent process can be easily automated.

4. Conclusion and Future Work

We have shown that fault propagation can be taken into

account in tabular expression-based specifications. The

testing method proposed in this paper propagates not only

faults in predicate expressions but also faults in evaluation

expressions. The formulae in our method make test case

generation easier in two ways: (a) they facilitate the

implementation of the tool that automates the method;

and (b) if testers generate test data manually, they only

need to replace the notation in the formulae with actual

expressions in the specification table.

Although we have illustrated our method through

inverted tables, we can also use it in other types of

table. Our SQRL laboratory has been developing the

tools to support this method. We have also designed

the experiments to further compare this method with

other selected testing strategies. On the other hand, we

have noted that some generated constraints are equivalent

because of the completeness of the grids in the table

specification. Hence, we are studying the method to

generate test case constraints for only part of the table but

covering the whole.

5



References

[1] M. Clermont and D. L. Parnas. Using informa-

tion about functions in selecting test cases. ACM

SIGSOFT Software Engineering Notes, 30 (4): 1–7,

2005.

[2] X. Feng. MIST: Towards a MInimum Set of Test

Cases. PhD Thesis. The University of Hong Kong,

Pokfulam, Hong Kong, 2002.

[3] K. L. Heninger. Specifying software requirements

for complex systems: new techniques and their

application. IEEE Transactions on Software Engi-

neering, SE-6 (1): 2–13, 1980.

[4] S. D. Hester, D. L. Parnas, and D. F. Utter. Using

documentation as a software design medium. The

Bell System Technical Journal, 60 (8): 1941–1977,

1981.

[5] W. E. Howden. Weak mutation testing and com-

pleteness of test sets. IEEE Transactions on Soft-

ware Engineering, SE-8 (4): 371–379, 1982.

[6] R. Janicki, D. L. Parnas, and J. Zucker. Tabular

representations in relational documents. In Software

Fundamentals: Collected Papers by David L. Par-

nas, D. M. Hoffman and D. M. Weiss, editors, pages

71–87. Addison Wesley, 2001.

[7] D. R. Kuhn. Fault classes and error detection ca-

pability of specification-based testing. ACM Trans-

actions on Software Engineering and Methodology,

8 (4): 411–424, 1999.

[8] M. F. Lau and Y. T. Yu. An extended fault class hi-

erarchy for specification-based testing. ACM Trans-

actions on Software Engineering and Methodology,

14 (3): 247–276, 2005.

[9] S. Liu. Generating Test Cases from Software Doc-

umentation. Master’s thesis. School of Graduate

Studies, McMaster University, Hamilton, Ontario,

Canada, 2001.

[10] D. L. Parnas, G. J. K. Asmis, and J. Madey. Assess-

ment of safety-critical software in nuclear power

plants. Nuclear Safety, 32 (2): 189–198, 1991.

[11] D. L. Parnas, J. Madey, and M. Iglewski. Precise

documentation of well-structured programs.

IEEE Transactions on Software Engineering,

20 (12): 948–976, 1994.

[12] D. K. Peters and D. L. Parnas. Using test ora-

cles generated from program documentation. IEEE

Transactions on Software Engineering, 24 (3): 161–

173, 1998.

[13] C. Quinn, S. Vilkomir, D. L. Parnas, and S. Kostic.

Specification of software component requirements

using the trace function method. In Proceedings

of the International Conference on Software Engi-

neering Advances (ICSEA 2006). IEEE Computer

Society Press, Los Alamitos, CA, 2006.

[14] K.-C. Tai. Theory of fault-based predicate testing for

computer programs. IEEE Transactions on Software

Engineering, 22 (8): 552–562, 1996.

[15] J. M. Voas. PIE: a dynamic failure-based tech-

nique. IEEE Transactions on Software Engineering,

18 (8): 717–727, 1992.

[16] E. J. Weyuker, T. Goradia, and A. Singh. Automati-

cally generating test data from a Boolean specifica-

tion. IEEE Transactions on Software Engineering,

20 (5): 353–363, 1994.

6




