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Abstract

Random number generators (RNGs) are commonly used in simu-
lations. The overlapping serial test is an important test that examines
the randomness of RNGs. Its theory has been well-developed but its
true ability for rejecting poor RNGs is not known. In this paper, we
study the power of the test against the RNGs included in the widely
spread GNU Scientific Library. By systematically varying the choices
of parameters of the test, we find a fine-tuned version that rejects 29
RNGs out of the total of 57 in the library. We will like to warn users
not to use these 29 RNGs.

Keyword: random number generator, test of randomness, overlapping
serial test

1 Introduction

Nowadays, random number generators (RNGs) are routinely used in simula-
tions and key generation in cryptographic applications. As poor generators
will lead to biased results in simulations and successful guesses on crypto-
graphic keys, the quality assurance of generators has drawn much attention
ever since computers began to thrive. A basic requirement of a good gen-
erator is that it passes all commonly known statistical tests of randomness.
The overlapping serial test is an important test of randomness developed by
Good in 1951 [2]. It is recommended by Knuth [3] and Marsaglia [4] [5]. It
is also called the overlapping m-tuple test by Marsaglia.

Consider an experiment whose outcome is 0, 1, ..., d − 1 with probabil-
ity P (0), P (1), ..., P (d − 1), respectively. For the efficiency in representing
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samples and in generating samples in our experiments, d is restricted to
be powers of 2 and k =log2d is an integer. The experiment is repeated
n times and the outcomes are Y1, Y2, ..., Yn. The overlapping serial test
treats the outcomes as a cyclic string and examines the distributions of
two kinds of overlapped samples. The first kind of samples consist of t
outcomes. They are S1 = (Y1, Y2, ..., Yt), S2 = (Y2, Y3, ..., Yt+1), . . . , and
Sn = (Yn, Y1, ..., Yt−1). The second kind of samples consist of t − 1 out-
comes. They are S′

1 = (Y1, Y2, ..., Yt−1), S′
2 = (Y2, Y3, ..., Yt), . . . , and

S′
n = (Yn, Y1, ..., Yt−2). The number of samples in both kinds are equal

to n. The test statistic is the difference between two Pearson forms [9] [10].

V =
∑
|α|=t

(N(α)− nP (α))2

nP (α)
−

∑
|α|=t−1

(N(α)− nP (α))2

nP (α)
. (1)

In the first summation of the formula, α = a1a2 . . . at with 0 ≤ ai < d.
N(α) is the number of times that Si = α, for i = 1, . . . , n. P (α) =
P (a1)P (a2) . . . P (at) is the probability that a particular sample, say, S1,
is equal to α. The significances of the symbols appearing in the second sum-
mation are similar, except that each sample only consists of t− 1 outcomes.
Asymptotically, V follows the chi-square distribution of dt − dt−1 degrees
of freedom. Note that when t = 1, the test degenerates to the standard
chi-square test.

The most important feature of a test of randomness is its power, i.e., its
ability to reject poor RNGs. However, because of the difficulty in theory, the
powers of these tests are seldom studied analytically. In this paper, we take
an empirical approach to explore the power of the overlapping serial test.
We first choose a pool consisting of RNGs of different types and of various
quality. We then define the stringency of a test as the number of RNGs it
fails in the pool. By systematically varying the choices of k and t of the
overlapping serial test, we fine-tune the test for maximum stringency. We
also take the same approach to compare the stringency of the test with the
gorilla test. The gorilla test is chosen because it is one of the most powerful
tests of randomness [7]. Moreover, it examines the Yi’s in a way very similar
to the overlapping serial test.

Our study reveals that the overlapping serial test is most stringent when
k = 1. Moreover, t shall be set to the largest possible value, subject to a
constraint imposed by the size of the main memory in the platform computer
used for testing. Finally, we find that the power of the fine-tuned test is at
par with the gorilla test. The overlapping serial test rejects 29 out of the 57
RNGs in the pool while the gorilla test rejects 28. The two sets of rejected
RNGs are mostly overlapping. We would like to alert users not to use these
RNGs in simulations.
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2 The GSL Pool for Gauging Stringency

We would like to have a pool of RNGs such that a powerful test will fail
more RNGs in the pool than a weaker one. The pool shall contain RNGs
of different types and of various levels of randomness. One adequate candi-
date is the RNGs contained in the GNU Scientific Library (GSL). GSL is a
free and widely used library for scientific applications. It contains 57 RNGs
suggested by experts in random number generation, including 17 linear con-
gruential generators (LCG) and 18 linear feedback shift-register generators
(LFSR). Figure 1 lists the names of these generators and the numbers of
bits in the words they generate.

num name bits num name bits num name bits num name bits
1 borosh13 32 16 ran1 31 31 random64-glibc2 31 46 ranlxs1 24
2 coveyou 32 17 ran2 31 32 random64-libc5 31 47 ranlxs2 24
3 cmrg 31 18 ran3 29 33 random8-bsd 31 48 ranmar 24
4 fishman18 31 19 rand 31 34 random8-glibc2 31 49 slatec 22
5 fishman20 31 20 rand48 32 35 random8-libc5 31 50 taus 32
6 fishman2x 31 21 random128-bsd 31 36 random-bsd 31 51 transputer 32
7 gfsr4 32 22 random128-glibc2 31 37 random-glibc2 31 52 tt800 32
8 knuthran 30 23 random128-libc5 31 38 random-libc5 31 53 uni 15
9 knuthran2 31 24 random256-bsd 31 39 randu 31 54 uni32 31
10 lecuyer21 31 25 random256-glibc2 31 40 ranf 32 55 vax 32
11 minstd 31 26 random256-libc5 31 41 ranlux 24 56 waterman14 32
12 mrg 31 27 random32-bsd 31 42 ranlux389 24 57 zuf 24
13 mt19937 32 28 random32-glibc2 31 43 ranlxd1 32
14 r250 32 29 random32-libc5 31 44 ranlxd2 32
15 ran0 31 30 random64-bsd 31 45 ranlxs0 24

Figure 1: The names and word lengths of the RNGs in GSL.

The quality of the RNGs in GSL varies in a large range. A good
RNG passes all known tests whereas a poor one passes only a few. This
phenomenon can be used to distinguish powerful tests from weaker ones.
Namely, a weak test can reject only few RNGs in GSL whereas a powerful
test can reject many. For examples, the serial correlation test in [3] fails
only 1 RNG in GSL but the birthday spacing test [3] [7] fails up to 31.

Let us define the stringency of a test as the number of GSL RNGs failed
by the test. Suppose the stringency of Test A is higher than Test B and
the RNGs failed by Test A is a superset of the RNGs failed by Test B, we
conclude that Test A is more powerful than Test B. The superset condition
does not necessarily hold between any two tests as they may check different
deficiencies of RNGs. For example, the GSL RNGs rejected by the gorilla
test does not have substantial overlap with that of the birthday spacing test.
However, in the cases where two tests inspect similar features of samples,
the superset condition often holds. Take, for example, the overlapping serial
test and the gorilla test. These two tests extract same samples from RNG
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outcomes but compute different statistics. The RNGs rejected by the two
tests are mostly overlapped.

As test outcomes are probabilistic in nature, the superset condition may
not hold even if Test A is truely more powerful than Test B. Thus, we
will only use this condition as an auxiliary reference instead of a necessary
requirement in determining whether a test is more powerful than another.

The GSL pool is a useful tool for tuning the parameters of a test because
different versions of the test inspect samples in the same way. The RNGs
failed by a low stringency version are likely a subset of the RNGs failed by
a higher stringency version.

3 Two-Phase Testing

In this section, we describe the procedure of examining the outcomes of an
RNG using the overlapping serial test. First, we describe how to examine a
bit sequence using the test. Second, we explain how to extract bit sequences
from the RNG outcomes and how to combine the results from testing the
bit sequences into a single statistic, and eventually, how to determine pass
or fail.

Consider applying the overlapping serial test on a bit sequence b1b2b3...bm.
m is a multiple of k, and n = m/k. Each Yi in Formula (1) is mapped
into k bits. Si consists of kt bits while S′

i consists of k(t − 1) bits. As
an example, suppose we examine a bit sequence of length m = 224 with
the test [k = 4, t = 6]. The sample size then is n = 222, while out-
comes are Y1 = b1b2b3b4, Y2 = b5b6b7b8, ... and S1 = (Y1, Y2, Y3, Y4, Y5, Y6),
S2 = (Y2, Y3, Y4, Y5, Y6, Y7), ..., etc. V is computed according to Formula
(1) and its value is substituted in the chi-square distribution of dt − dt−1

degrees of freedom. If the bit sequence is truly random, the resulting value,
p = Chisq(V, dt − dt−1), is a uniform random number in [0, 1). If the sam-
ples, Si’s and S′

i’s, are too evenly distributed, p will tend to be close to 0.
If the samples are too unevenly distributed, p will tend to be close to 1.

Now, we are ready to describe a two-phase procedure for examining an
RNG. Suppose w1, w2, ..., wm is a sequence of words generated by the RNG
and each word consists of s bits. With reference to Figure 2, bij is the jth

bit of wi. < bi >, 1 ≤ i ≤ s, is the bit sequence formed by concatenating
the ith bits of each word (bits in the ith column).

In Phase 1, we apply the test to each < bi > to obtain pi. In Phase 2,
the Anderson-Darling Goodness-of-fit Test (AD Test) [1] [6], is applied on
the p’s to check whether they are truly uniformly distributed. We reject the
RNG if the resulting p-value is less than the significance level of 0.01.

The upper portion of Figure 3 shows the values of the 31 p’s obtained in
testing the lecuyer21 RNG using the overlapping serial test of [k = 12, t = 2]
in Phase 1. The p-value returned from the AD test on these 31 pi’s in Phase
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b1,1b1,2b1,s

...

... b2,1b2,2b2,s

bm,1bm,2bm,s

......

<b1><b2>...

w1

w2

wm

......

...

...

<bs>

Figure 2: The bit sequences extracted from the outcomes of an RNG.

2 is 0.148. The generator passes this version of the test. The lower portion
of the figure shows the pi’s when we test the same generator with the test
of [k = 1, t = 24]. Note that five of the pi’s are zero or close to zero. The
p-value returned by the AD test is 0.000. The generator is rejected.

[k = 12, t = 2] p-value = 0.148
p1 - p7 0.315 0.012 0.046 0.227 0.524 0.779 0.726

p8 - p14 0.200 0.559 0.425 0.372 0.554 0.068 0.232
p15 - p21 0.506 0.178 0.835 0.352 0.344 0.541 0.717
p22 - p28 0.124 0.034 0.761 0.451 0.425 0.383 0.645
p29 - p31 0.741 0.146 0.770
[k = 1, t = 24] p-value = 0.000

p1 - p7 0.418 0.251 0.026 0.975 0.048 0.071 0.428
p8 - p14 0.409 0.927 0.655 0.041 0.063 0.269 0.417
p15 - p21 0.005 0.041 0.177 0.000 0.002 0.023 0.024
p22 - p28 0.151 0.095 0.381 0.117 0.181 0.000 0.033
p29 - p31 0.007 0.025 0.110

Figure 3: Tables of the pi’s obtained from testing the lecuyer21 RNG using
the overlapping serial test of [k = 1, t = 24] and [k = 12, t = 2].

4 Tuning the Parameters for Maximum Stringency

Consider examining m words generated by an RNG. We want to determine
the values of k and t such that the overlapping serial test reaches its maxi-
mum stringency. As the test needs to use a large amount of main memory,
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2kt + 2k(t−1) integer variables, for keeping the numbers of the occurrences
of all possible samples of lengths kt and k(t − 1), the memory size of the
platform computer imposes a key constraint on the choices of k and t. As
an example, the test of [k = 4, t = 6] uses 224 + 220 integer variables. As-
suming an integer variable is represented using 4 bytes, the memory needed
is 68Mbytes.

4.1 Tuning k

Given m, we want to find a choice for k such that the test reaches its maxi-
mum stringency. Since the main memory is a key resource, we only consider
those versions of the test that use approximately 2kt integer variables. Con-
sidering the cases of m = 224, we gauged the stringencies of the versions
of [k = 1, t = 24], [k = 2, t = 12], [k = 3, t = 8], [k = 4, t = 6], [k = 8, t =
3], [k = 12, t = 2], and [k = 24, t = 1]. Each of these versions examines all m
words being tested. The amount of main memory used lies in [224, 224+223].
The results are shown in Figure 4. There is a clear trend that the stringency
decreases as k increases. The version of k = 1 rejects most RNGs. It rejects
all the generators failed by the version of k = 12 and three more: lecuyer21,
a multiplicative RNG (pp.106-108 of [3]); minst, Park and Miller’s “mini-
mal standard” RNG; and ran0, another minst RNG with modified seeding
procedure.
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Figure 4: The stringency of the overlapping serial test against k for m = 224,
t = 24/k.

The experiment of tuning k was repeated for other values of m. In all
cases, the version of k = 1 always prevails. We conclude that k shall always
be set to 1. In such cases, the amount of overlapping bits between adjacent
samples, say, Si and Si+1, reaches maximum.
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4.2 Tuning t

Given m and k = 1, we want to find a choice for t such that the test
reaches its maximum stringency, subject to the constraint imposed by the
memory size of the platform computer. Consider the case where m = 226

and the platform computer has up to 512M bytes free memory. The size
of memory imposes a constraint of t ≤ 26 on the test. Thus, we gauged
the stringencies of the versions: [k = 1, t = 2], [k = 1, t = 6], ..., and [k =
1, t = 26]. The results are shown in Figure 5. The stringency of the test
rises progressively as t increases. Moreover, an RNG rejected by a version
of low stringency is also rejected by the more stringent versions. Figure 6
shows eight generators in the GSL pool which pass the test when t = 6 but
are gradually rejected by the test when t increases to 26. The same trend
was observed in the experiments with other m values. We conclude that t
shall be set to the largest value, subject to the constraint imposed by the
memory of the platform computer.
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Figure 5: The stringency of the overlapping serial test against t for m = 226

and k = 1.

5 Comparison with the Gorilla Test

The gorilla test is the most powerful version of the monkey test and is among
the most difficult-to-pass tests for RNGs [7] [8]. It extracts Si’s from < bi >
in the same way as the overlapping serial test, but counts the number of all
possible Si’s which are missing. Comparing the overlapping serial test with
the gorilla test gives us an idea of how powerful the latter really is.

The gorilla test given in [7] examines m = 226 words of an RNG. To
be fair, we compare it with the overlapping serial test of [k = 1, t = 26],
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t=2 t=6 t=10 t=14 t=18 t=22 t=26
fishman18 P P F F F F F
fishman20 P P F F F F F
lecuyer21 P P P F F F F

minstd P P P F F F F
ran0 P P P F F F F

random256-bsd P P P P P F F
uni P P P P P P F

uni32 P P P P P P F

Figure 6: Eight GSL generators which pass (P) the test when t = 6 but
gradually fail (F) when t = 26.

which examines same number of words. We apply both tests to check the
RNGs in the GSL pool. The results are shown in Figure 7. The gorilla test
rejects 28 out of the 57 RNGs in the pool while the overlapping serial test
rejects 29. 27 RNGs are rejected by both tests. Some of these RNGs are
widely used in standard C library, e.g., rand and rand48. The only RNG
that fails the gorilla test but passes the overlapping serial test is knuthran2,
a second-order multiple recursive generator suggested by Knuth. The two
RNGs that pass the gorilla test but fail the overlapping serial test are ran3
and random256-bsd. As the two sets of RNGs rejected by the two tests are
mostly overlapped, we conclude that the power of the overlapping serial test
is at par with the gorilla test.

The overlapping serial test uses an integer variable (4 bytes) for keeping
the count of the occurrence of a possible sample, whereas the gorilla test
uses only 1 bit for keeping track whether the sample has occurred. Thus, the
gorilla test uses far less memory. On the other hand, the gorilla test suffers
from a major drawback. The cumulative distribution function (CDF) of its
statistic cannot be derived analytically. The p-value of the test is computed
from an empirical cumulative distribution obtained via extensive simulation.

6 Future Work

In deriving the CDF of the V defined in Formula (1), the N(α)’s are assumed
following a joint normal distribution. This assumption is severely violated
in the extreme sparse versions of the test, i.e., when m is small and t is
very large. So far, we have not yet encountered any noticeable discrepancy
between the CDF derived and the true CDF. However, we shall be aware of
this possible hazard in practice, and find out how sparse we can go before
the theory breaks down.
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Num Name OS Gorilla Num Name OS Gorilla Num Name OS Gorilla
1 borosh13 F F 21 random128-bsd P P 41 ranlux P P
2 coveyou F F 22 random128-glibc2 P P 42 ranlux389 P P
3 cmrg P P 23 random128-libc5 P P 43 ranlxd1 P P
4 fishman18 F F 24 random256-bsd F P 44 ranlxd2 P P
5 fishman20 F F 25 random256-glibc2 P P 45 ranlxs0 P P
6 fishman2x P P 26 random256-libc5 P P 46 ranlxs1 P P
7 gfsr4 P P 27 random32-bsd F F 47 ranlxs2 P P
8 knuthran P P 28 random32-glibc2 F F 48 ranmar P P
9 knuthran2 P F 29 random32-libc5 F F 49 slatec F F
10 lecuyer21 F F 30 random64-bsd F F 50 taus P P
11 minstd F F 31 random64-glibc2 F F 51 transputer F F
12 mrg P P 32 random64-libc5 F F 52 tt800 P P
13 mt19937 P P 33 random8-bsd F F 53 uni F F
14 r250 F F 34 random8-glibc2 F F 54 uni32 F F
15 ran0 F F 35 random8-libc5 F F 55 vax F F
16 ran1 P P 36 random-bsd P P 56 waterman14 F F
17 ran2 P P 37 random-glibc2 P P 57 zuf P P
18 ran3 F P 38 random-libc5 P P
19 rand F F 39 randu F F
20 rand48 F F 40 ranf F F

Figure 7: The results of testing the GSL generators using the overlapping
serial test and the gorilla test.
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