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Abstract

We investigate the computation and properties of rotation minimizing frame (RMF),
which is a moving orthonormal frame U(u) attached to a smooth curve x(u), called
the spine curve, in 3D such that U(u) does not rotate about the instantaneous tan-
gent of x(u). Due to its minimal-twist property, the RMF is widely used in computer
graphics, including sweep or blending surface modeling, motion design and control in
computer animation and robotics, streamline visualization, and tool path planning
in CAD/CAM. In general, the RMF cannot be computed exactly and therefore one
often needs to approximate the exact RMF by a sequence of orthonormal frames at
sampled points on the spine curve. We present a novel simple and efficient method
for accurate and stable computation of an RMF for any C1 regular curve in 3D.
This method, called the double reflection method, uses two reflections to compute
each frame from its preceding one to yield a sequence of frames to approximate an
exact RMF. The double reflection method is highly accurate – it has the global
fourth order approximation error, thus comparing favorably to the second order ap-
proximation error of two currently prevailing methods – the projection method by
Klok and the rotation method by Bloomenthal, while all these methods have com-
parable per-frame computational cost. Furthermore, the double reflection method
is much simpler and faster than using the standard 4-th order Runge-Kutta method
to integrate the defining ODE of the RMF, which yields the same accuracy as the
double reflection method. We also present further properties and extensions of the
double reflection method for various application scenarios. Finally, we discuss the
variational principles in design moving frames with boundary conditions, based on
the RMF.
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(a) The Frenet frame of a spine curve.
Only the normal vector is shown.

(b) A rotation minimizing frame
(RMF) of the same curve in (a). Only
the reference vector is shown.

(c) A snake modeled using the RMF in (b).

Fig. 1. An example of using the RMF in shape modeling.

1 Introduction

1.1 Background

Let x(u) = (x(u), y(u), z(u))T be a C1 regular curve in E
3, the 3D Euclidean

space. Denote x′(u) = dx(u)/du and t(u) = x′(u)/||x′(u)||, which is the unit
tangent vector of the curve x(u). We define a moving frame associated with
x(u) to be a right-handed orthonormal system composed of an ordered triple
of vectors U(u) = (r(u), s(u), t(u)) satisfying r(u) × s(u) = t(u). The curve
x(u) in this context will be called a spine curve. Since t(u) is known and
s(u) = t(u)×r(u), a moving frame is uniquely determined by the unit normal
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vector r(u). Thus r is called the reference vector of a moving frame.

From the differential geometry point of view, a readily available moving frame
of a curve in 3D is the Frenet frame, whose three orthogonal axis vectors are
defined as

t =
x′(u)

‖x′(u)‖ , s =
x′(u) × x′′(u)

‖x′(u) × x′′(u)‖ , r = s× t.

Although the Frenet frame can easily be computed, its rotation about the tan-
gent of a general spine curve often leads to undesirable twist in motion design
or sweep surface modeling. Moreover, the Frenet frame is not continuously
defined for a C1 spine curve, and even for a C2 spine curve the Frenet frame
becomes undefined at an inflection point (i.e., curvature κ = 0), thus causing
unacceptable discontinuity when used for sweep surface modeling [6].

A moving frame that does not rotate about the instantaneous tangent of the
curve x(u) is called a rotation minimizing frame of x(u), or RMF, for short.
It can be shown that the RMF is defined continuously for any C1 regular
spine curve. Because of its minimal-twist property and stable behavior in the
presence of inflection points, the RMF is preferred to the Frenet frame in many
applications in computer graphics, including free-form deformation with curve
constraints [3,26,23,25,24], sweep surface modeling [7,28,31,32], modeling of
generalized cylinders and tree branches [30,5,8,29], visualization of streamlines
and tubes [1,16,14], simulation of ropes and strings [2], and motion design
and control [18]. Discussion of the RMF and its applications can be found in
the recent book by Hanson [15], where the RMF is treated using a parallel
transport approach.

A typical application of RMF in shape modeling is shown in Figure 1. Here
a canonical snake surface model is first defined along a straight line axis pos-
sessing an RMF generated by translation along the line. Then a new axis
curve (i.e., a spine curve) is designed to produce a novel pose of the snake. For
comparison, both Frenet frame and RMF of this same axis curve are shown
in Figures 1(a) and 1(b). The RMF determines a mapping from the space of
the canonical model of the snake to the space around the new axis curve in
Figure 1(b); this mapping produces the snake in Figure 1(c). Note that the
Frenet frame in this case exhibits excessive rotation compared with the RMF,
so it is less appropriate for shape modeling.

Next consider moving frames of a deforming spine curve x(u; t), as frequently
encountered in computer animation (see Figure 2). While the Frenet frame
does not always experience abrupt twist for a given static spine curve, the
Frenet frame of the deforming spine curve often suddenly exhibits a radical
twist at an instant during deformation, especially when the spine curve has
a nearly curvature vanishing point (i.e., an inflection point). In contrast, the
RMF of the deforming spine curve x(u; t) always varies smoothly and stably
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Fig. 2. Sweep surfaces showing moving frames of a deforming curve: the Frenet
frames in the first row and the RMF in the second row.

over time as well as along the spine curve. The different behaviors of these two
moving frames are illustrated in Figure 2, visualized as sweep surfaces, through
a sequence of snapshots of a deforming spine curve. Here by continuous de-
formation we mean that the rate of change in both position (i.e., ∂x(u; t)/∂t)
and unit tangent (i.e., ∂t(u; t)/∂t) are bounded for any (u, t) in their finite
intervals of definition. Note that, this assumption is reasonable in practical
application but does not imply that the normal vector of x(u; t) changes con-
tinuously with respect to time t, thus explaining the potential instability of
the Frenet frame.

Computation of the RMF is more involved than that of the Frenet frame. The
RMF is first proposed and formulated as the solution of an ordinary differential
equation in [4] and later in [30,21]. Exact (i.e., closed form) RMF computation
is either impossible or very involved for a general spine curve. Hence, a number
of approximation methods have been proposed for RMF computation. These
methods fall under three categories: 1) discrete approximation; 2) spine curve
approximation; and 3) numerical integration. The discrete approximation ap-
proach is versatile for various applications in computer graphics and computer
animation, even when only a sequence of points on a path (i.e., spine curve)
is available, while the approach based on spine curve approximation is useful
for surface modeling in CAGD applications. We will see that direct numerical
integration of the defining ODE of RMF is relatively inefficient and there-
fore not well suited for RMF computation. The new method we are going to
propose is based on discrete approximation.

1.2 Problem formulation

The RMF computation problem as solved by the discrete approximation ap-
proach is formulated as follows. Let U(u) denote an exact RMF of a C1 regular
spine curve x(u) in 3D, u ∈ [0, L], with the initial condition U(0) = U0, which
is some fixed orthonormal frame at the initial point x(0). Suppose that a se-
quence of points xi = x(ui) and the unit tangent vectors ti at xi are sampled
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on the curve x(u), with ui = i ∗ h, i = 0, 1, . . . , n, where h = L/n is called the
step size. The goal of discrete approximation is to compute a sequence of or-
thonormal frames Ui at xi that approximates the exact RMF frame U(u) at the
sampled points, i.e., each Ui is an an approximation to U(ui), i = 0, 1, 2 . . . , n.

Error measurement is needed to evaluate and compare different approxima-
tion schemes. Suppose that the exact RMF U(u) has the same initial frame
as the approximating frame sequence at x(u0), i.e., U(0) = U0. Then the
approximation error between U1 and U(h) is called the one-step error. The
approximation errors at intermediate sampled points are normally accumu-
lated to give a large error at the end of the spine curve. However, due to error
fluctuation, the maximum error may not always occur at the endpoint x(L).
Therefore, we define the global error Eg to be the maximum error of frame
approximation over all the sampled points x(ui), i.e.,

Eg =
n

max
i=0

{|∠(Ui, U(ui))|}, (1)

where |∠(Ui, U(ui))| measures the magnitude of the angle between the refer-
ence vectors ri and r(ui) of the frames Ui and U(ui).

We shall present a new discrete approximation method, called double reflection
method, for RMF computation. The main idea is based on the observation that
the rigid transformation between two consecutive frames for RMF approxima-
tion can be realized by two reflections, each being a reflection in a plane. The
resulting method is simple, fast, and highly accurate – its global approxima-
tion error is of order O(h4), where h = L/n is the step size. This compares
favorably with the second order (i.e., O(h2)) approximation error of two pre-
vailing discrete approximation methods, i.e., the rotation method [6] and the
projection method [21]. The accuracy of the double reflection method matches
that of using the standard 4-th order Runge-Kutta method to integrate the
defining differential equation of RMF, but is much simpler and faster than the
latter.

In the following we will first review related works in Section 2 and present
necessary preliminaries in 3. The double reflection method is presented and
analyzed in Section 4. Then we present experimental verifications in Section 5,
discuss extensions in Section 6 and conclude the paper in Section 7.

Readers interested only in implementation may skip to Section 4.1 for a simple
description of the double reflection method; the pseudo code is given in Table 1
in Section 4.
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2 Related Work

2.1 Discrete approximation

In discrete approximation an RMF is approximated by a sequence of orthog-
onal frames located at sampled points xi on the spine curve x(u). The projec-
tion method, as originally proposed in [21], computes an approximate RMF
for modeling a sweep surface. Suppose that the the sampled points xi and the
unit tangent vectors ti of x(u) at the sampled points xi are provided as input.
For RMF computation, the projection method projects, along the direction
x1−x0, an initial reference vector r0 in the normal plane of the spine curve at
x0 to the next reference vector r1 on the normal plane at x1. Then this step is
repeated to generate on the subsequent normal planes a sequence of reference
vectors ri, which, together with the tangent vectors ti, define a sequence of
orthonormal frames that approximate an exact RMF. The projection method
is empirically demonstrated to have the second order of approximation er-
ror [10]. Note that the above projection between normal planes is not length
preserving. Therefore the reference vectors ri need to be normalized to give
unit vectors.

Another popular discrete approximation method is the rotation method [6,31,27].
The rotation method also needs as input the sampled points xi on the spine
curve and the unit tangent vectors ti of the spine curve at xi. Consider the
first two sampled points x0 and x1. Given the initial frame U0 at x0, suppose
that we need to compute the next frame U1 at x1 from the boundary data
(x0, t0;x1, t1). To minimize the rotation about the tangent of the spine curve,
this method rotates U0 into U1 about an axis b0 perpendicular to t0 and t1,
that is, b0 = t0×t1; the rotation angle θ is such that the frame vector t0 of U0

is brought into alignment with the frame vector t1 of U1, i.e., θ = arccos(t0 ·t1).
Here, for frame computation, we ignore the translational difference between
the origins of U0 and U1. The rotation method has the second order global
approximation error [27].

A major problem with the rotation method is its lack of robustness for nearly
collinear data. When the two consecutive tangent vectors t0 and t1 are collinear,
the rotation axis becomes undefined, since b0 = t0 × t1 = 0; but, since no ro-
tation is needed in this case, we just need to set U1 := U0. However, numerical
problems will be experienced when t0 and t1 approach each other, i.e., becom-
ing closer and closer to being collinear; this happens, for example, when the
spine curve is densely sampled for high accuracy RMF computation. In this
case some threshold value has to be used to avoid the degeneracy of the rota-
tion vector b0 by treating nearly collinear data as collinear data. But if a spine
curve is so densely sampled that all consecutive data segments are deemed as
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collinear due to thresholding, then there will be a large accumulated error in
the computed RMF, because the spine curve will be treated as a straight line
and all the frames Ui will be set to be identical to the initial frame U0. We
note that this numerical problem for nearly collinear data does not exist with
the double reflection method we are going to propose.

2.2 Methods based on spine curve approximation

If a spine curve is first approximated by some simple curves whose RMF
can be computed exactly or more accurately, then the RMF of this simple
approximating curve can be taken as an approximation to the RMF of the
original spine curve. An intuitive argument for this idea is that if two spine
curves are close to each other, then their RMFs should also be. This type of
intuition lacks rigorous justification and could be unreliable for moving frames
defined by differential properties; recall that the Frenet frames of two spine
curves close to each other can be radically different. A related result by Poston
et al [27] basically states that the RMF of a spine curve x̃(u) approaches the
RMF of another spine x(u) if and only if the unit tangent vector t̃(u) of x̃(u)
approaches the unit tangent vector t(u) of x(u).

Discrete approximation methods, such as the projection method or the ro-
tation method, can be regarded as the simplest methods based on spine
curve approximation, using a polygon to approximate the spine curve. A G1

spline curve composed of circular arcs is used to approximate an input spine
curve in [32] to compute an approximate RMF for modeling sweep surfaces in
NURBS form. The spine curve is approximated by PH curves using Hermite
interpolation in [19] for generating sweep surfaces in rational representation.
Exact description of the RMF of a PH curve and its rational approximation
are provided in [18,11,12,9]. A closely related technique is to approximate the
rotation minimizing motions (RMM) by affine motions (cf. [28]) and rational
motions from the point of view of spherical kinematics [17].

2.3 Numerical integration

Since the RMF is defined by a vector-valued ODE of the type y′ = f(x,y) [4,30,21,28],
naturally one may consider computing the RMF using a numerical method to
directly solve this ODE. Suppose that the classical fourth order Runge-Kutta
method is used. Then the RMF thus computed has the 4-th order global ap-
proximation error, which is the same as that of the double reflection method
that we are to propose. However, this general approach to solving the ODE
does not take into account the special geometric property of the problem of
RMF computation and therefore has severe drawbacks.
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Firstly, the Runge-Kutta method requires the spine curve x(u) to be C2, since
the right hand side f of the ODE is a function of the second derivative of
x(u) (cf. Eqn. (5) in Section 3). This requirement is unnecessarily restrictive,
since the RMF is continuously defined for any C1 spine curve. Secondly, de-
riving and evaluating the second derivative of x(u) can be tedious and costly,
rendering the method inefficient. In the RMF computation problem under
consideration, the sampled points xi and the tangent vectors ti are available
as input. But both first and second derivatives of the spine x(u) are required
by the Runge-Kutta method. This mismatch between the input data of the
RMF computation problem and the data it requires makes the Runge-Kutta
method not well suited for RMF computation.

Another problem is that the Runge-Kutta method does not strictly enforce the
orthogonality between the solved reference vectors ri and the tangent vectors
ti, even though in the initial conditions r0 = r(0) is orthogonal to t0 = t(0).
Therefore each ri has to be projected onto the normal plane of the spine curve
to make it perpendicular to ti; this adds further to the cost of the method.

Another method is based on the observation that the RMF and the Frenet
frame differ by a rotation determined by the torsion in the normal plane of
the spine curve. Let θ(u) be the angle of this rotation. Let τ(u) be the torsion
of the spine curve x(u). Then θ(u) is given by [13]

θ(u) = −
∫ u

u0

τ(v)‖x′(v)‖dv. (2)

With this formula, θ(u) may be computed with some quadrature rule and
used to compute the RMF by compensating the rotation of the Frenet frame.
However, at inflection points of a spine curve, the Frenet frame itself becomes
discontinuous and exhibits abrupt change, and the torsion τ(u) becomes ill-
defined (i.e., unbounded), making it difficult to evaluate the integration (2)
accurately; therefore in this case the method becomes unstable. This problem
is further discussed with an example in Appendix II.

3 Preliminaries

3.1 Definition by differential equations

First we introduce the rotation minimizing frame under weak assumptions on
a spine curve, using differential equations. These results will later be connected
to the classical results from differential geometry. Generally, we assume the
spine curve x(u) to be a C1 regular curve, i.e., x′(u) 6= 0 in its domain of
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definition, but higher differentiability is needed for analysis of approximation
orders. Again we use t(u) = x′(u)/||x′(u)|| to denote the unit tangent vector.

Consider a one-parameter family of unit vectors f(u) perpendicular to the
tangent vector t(u). Such a vector function f(u) is said to exhibit the minimal
rotation, and therefore called a rotation minimizing vector, if it is a solution
to the following system of differential–algebraic equations (DAE)

f ′(u) − φ(u) t(u) = 0

f(u) · t(u) = 0







(3)

for the functions f(u) = (f1(u), f2(u), f3(u))
⊤ and some function φ(u). Here

the first equation (in vector form) constrains the evolution of f(u) to be parallel
to the tangent, and the second equation serves to preserve orthogonality.

A rotation minimizing vector f(u) is not necessarily differentiable for a C1

spine curve x(u); (e.g., consider the case of a C1 curve composed of a circular
arc and a straight line segment). In view of this, one may adopt the following
weak form of the DAE (3)

f(u) −
∫ u

0
φ(v) t(v) dv = 0

f(u) · t(u) = 0







(4)

which does not involve any derivative of f(u).

If the spine curve is of the C2 class, then the above DAE is equivalent to the
ODE

f ′(u) = [t(u) × t′(u)] × f(u) (5)

since

φ t = (f ′ · t)t = (−f · t′)t = [t(u) × t′(u)] × f(u) (6)

A rotation minimizing frame (RMF) is determined by a rotation minimizing
vector. Specifically, we have

Definition 1: [Rotation minimizing frame] Given a C1 curve x(u) ⊂ E
3,

u ∈ [0, L], a moving orthonormal frame U(u) = (r(u), s(u), t(u)), where r(u)×
s(u) = t(u), is called a rotation minimizing frame (RMF) of x(u) if t(u) =
x′(u)/||x′(u)|| and r(u) is a solution of Eqn. (4) (or Eqn.(3) if x(u) is C2)
for some initial condition U(0) = U0. Here r(u) is called the reference vector
of the RMF U(u).

Since the frame vector t(u) of U(u) is always constrained to be the unit tangent
vector of x(u), U(u) is uniquely determined by its reference vector r(u), which
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is a rotation minimizing vector. The third frame vector is given by s(u) =
t(u) × r(u).

The evolution defined by DAE (3) preserves the inner product of two vectors.
Indeed, if vectors f(u) and g(u) both satisfy Eqn.(3) with associated functions
φ(u) and ψ(u), then

d

dt
(f · g) = f ′ · g + f · g′ = (φ t) · g + f · (ψ t) = 0 (7)

Hence, the inner product (f ·g) is a constant. From this we have the following
observations:

Corollary 3.1 If two vectors f1(u) and f2(u) satisfy Eqn. (3) and the three
vectors f1(0), f2(0) and t(0) form a right–handed orthonormal frame, then
f1(u), f2(u) and t(u) define an RMF of the spine curve x(u).

Corollary 3.2 Suppose that r(u) is a rotation minimizing vector of a spine
curve x(u). Then another normal vector r̃(u) of x(u) is a rotation minimizing
vector of x(u) if and only if r̃(u) keeps a constant angle with r(u).

Or, equivalently,

Corollary 3.3 Suppose that U(u) = (r(u), s(u), t(u)) is an RMF of a spine
curve x(u). Then another right-handed orthonormal moving frame Ũ(u) =
(r̃(u), s̃(u), t(u)) of x(u) is an RMF of x(u) if and only if Ũ(u) keeps a constant
angle with U(u).

Finally, we note that the RMF is determined only by the geometry of a spine
curve and independent of any particular parameterization x(u) of it.

3.2 Some differential geometry

In this subsection we shall use the arc-length parameterization x(s) of the
spine curve. Using the Frenet formulas one may express (5) as

f ′(s) = κ(s)b(s) × f(s), (8)

where κ(s) and b(s) are the curvature and the binormal vector of x(s). The
vector

ωRMF(s) = κ(s)b(s) (9)

is the angular velocity of the RMF.

The angular velocity of the Frenet frame is the so–called Darboux vector [22]

ωFrenet(s) = κ(s)b(s) + τ(s)t(s) (10)
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This shows that, compared to the RMF, the Frenet frame involves an addi-
tional rotation around the tangent, whose speed equals the torsion τ . This
observation explains the integral formula (2) for computing the RMF by cor-
recting the “unwanted” rotation of the Frenet frame. The Frenet frame coin-
cides with the RMF for planar curves, for which τ ≡ 0.

The RMF is also closely related to developable surfaces and principal curvature
lines of a surface. Suppose that U(u) = (r(u), s(u), t(u)) is an RMF of a curve
x(u). Then the surface D(u, v) = x(u)+ vr(u) is developable. Let g(u) be the
edge of regression of the developable surface D(u, v). Then the spine curve
is an involute of the curve g(u). This observation suggests a natural (but
restrictive) way of modeling a developable ribbon surface along a spine curve
using the RMF.

Suppose that x(u) is a principal curvature line of a surface S. Then the con-
sistent unit normal vector of S along the curve x(u) is a rotation minimizing
vector of x(u), thus determining an RMF of x(u). This follows from the well
known fact that the normals of S along x(u) form developable surface if and
only if x(u) is a principal curvature line of S. It therefore also follows that
the spine curve x(u) is a principal curvature line of the developable D(u, v)
defined in the last paragraph.

Another important property of the RMF is its preservation under conformal
transformation of E

3 [20]. This means that, given a spine curve x(u) ⊂ E
3

and a conformal mapping C of E
3, the RMF of x(u) is mapped by C to the

RMF of the transformed spine curve C(x(u)). In other words, the operation
of computing RMF of a curve and a conformal transformation commute. This
property will be needed later in the analysis of the approximation order of our
new method for computing the RMF.

Note that the group of conformal mappings in 3D is exactly the group gen-
erated by translations, rotations, uniform scalings and sphere inversions (re-
flections with respect to spheres). Since a straight line is mapped to a circle
by a sphere inversion, in the above the transform of a unit vector v is defined
by the unit tangent vector of the circle which is the image of the straight line
associated with v.

4 Double reflection method

In this section we will first give an outline of the double reflection method,
and, through a study of the RMF of a spherical curve, explain why the method
works well. Then we will give a procedural description of the method that has
an optimized number of arithmetic operations, and finally present an analysis
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of the approximation order of the method. The double reflection method is
straightforward and can very easily be described; however, its justification
takes interesting geometric arguments that do not appear to be trivial.

4.1 Outline of method

Given boundary data (x0, t0;x1, t1) and an initial right-handed orthonormal
frame U0 = (r0, s0, t0) at x0, the next frame U1 = (r1, s1, t1) at x1 for RMF
approximation is computed by the double reflection method in the following
two steps.

Step 1 : Let R1 denote the reflection in the bisecting plane of the points x0 and
x1 (see Figure 3). Use R1 to map U0 to a left-handed orthonormal frame
UL

0 = (rL
0 , s

L, tL
0 ).

Step 2 : Let R2 denote the reflection in the bisecting plane of the points x1+tL
0 and

x1 + t1 (see Figure 4). Use R2 to map UL
0 to a right-handed orthonormal

frame U1 = (r1, s1, t1). Output U1.

An efficient implementation of the above steps is given by the pseudo code in
Table 1.

r0

t0

x0

rL
0

tL
0 x1

R1

Fig. 3. The first reflection R1 of the
double reflection method.

r0

t0

x0

rL
0

tL
0 x1

r1
t1

R2

Fig. 4. The second reflection R2 of the
double reflection method.

r

s

t

Fig. 5. An RMF of a spherical curve.
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4.2 Geometric interpretation

In the following we are going to provide an explanation for why the double
reflection method described above computes an accurate approximation of
an RMF, based on two key observations: 1) the double reflection method
computes an exact RMF of any spherical curve; and 2) a spine curve x(u)
with boundary data (x0, t0;x1, t1) is well approximated by a spherical curve
x̂(u) interpolating the same boundary data.

First consider the RMF of a spherical curve. The next lemma indicates that
there is a simple explicit characterization of the RMF of a spherical curve.
(We will treat a planar curve as special case of a spherical curve where the
radius is infinite. )

Lemma 4.1 Let x(u), u ∈ [0, h], be a curve segment lying on a sphere S or
a plane P (see Figure 5). Let n(u) be the outward unit normal vector of the
sphere S along the curve x(u) or a unit (constant) normal vector of the plane
P . Then an RMF of x(u) is given by Ū1 = (r̄, s̄, t1), where

r̄(u) = n(u) and s̄(u) = t(u) × n(u). (11)

Proof. First consider the case of x(u) being on a sphere. Without loss
of generality, suppose that the sphere S is centered at the origin and has
radius r. It is clear that r(u) = n(u), s(u) = t(u) × n(u) and t(u) form a
right-handed orthonormal moving frame. Since n(u) = 1

r
x(u), r′ = n′ = 1

r
x′,

which is parallel to t(u). Therefore, r satisfies Eqn. (3), i.e., it is a rotational
minimizing vector. Hence, by Definition 1, U(u) = (r, s, t) is an RMF of x(u).

The proof is similar when x(u) is a plane curve. �.

Lemma 4.1 suggests that, given the initial frame U0 at x0, the RMF U1 of a
spherical curve x(u) at the point x1 does not depend on the in-between shape
of x(u), but depends only on the boundary data (x0, t0;x1, t1). This will be
referred to as the path independence property, as stated below.

Lemma 4.2 [Path independence property] 1 Let x(u) and y(v) be two curve
segments, u ∈ [0, h1] and v ∈ [0, h2], on a sphere (or a plane) sharing the
same boundary data (x0, t0;x1, t1). Let U(u) and V (v) denote the RMFs of
x(u) and y(v), having the same initial frame U0, i.e., U(0) = V (0) = U0.
Then U(h1) = V (h2).

Proof. We will only consider the case of x(u) and y(u) being on a sphere

1 This property is equivalent to the fact that the integral
∫ b
a τ(s)ds vanishes for

closed spherical curves [22].
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S; the case of their being on a plane can be proved in a similar way. First
suppose that the initial frame U0 is the special frame Ū0 = (r̄0, s̄0, t0) where
r̄0 is the unit outward normal vector of the sphere S at x0 and s̄0 = t0 × r̄0.
Then, by Lemma 4.1, the RMFs Ū1 and V̄1 of x(u) and y(u) at x1 are the
same, i.e., Ū1 = V̄1 = (r̄1, s̄1, t1), where r̄1 is the unit outward normal vector
n1 of the sphere S at x1 and s̄1 = t1 × r̄1.

Now suppose that the initial frame U0 = (r0, s0, t0) is arbitrary. Let α0 be
the angle between U0 and Ū0. Then, by Corollary 3.3, U(h1) and Ū1, as two
RMFs of x(u) at the endpoint x1, keep the same angle α0. Similarly, the angle
between the V (h2) and V̄1, as two RMFs of y(v) at the endpoint x1, is also
α0. It follows that U(h1) = V (h2), since Ū1 = V̄1 . �.

Next we show that the double reflection method yields the exact RMF for a
spherical curve.

Theorem 4.3 Let x(u) be a curve segment, u ∈ [0, h], on a sphere or a plane
with boundary data (x0, t0;x1, t1). Let U(u) be an RMF of x(u). Let U0 = U(0)
and U1 = U(h). Then, given boundary data (x0, t0;x1, t1) and the initial frame
U0, the double reflection method produces the frame U1.

Proof. Again we will only consider the case of the curve x(u) being on a
sphere S; the case of a plane can be proved similarly. First consider the special
case of U0 = Ū0 = (r̄0, s̄0, t0), as defined in the proof of Lemma 4.2. Then, by
Lemma 4.1, U1 = Ū1 = (r̄1, s̄1, t1). Here, r̄0 and r̄1 are unit outward normal
vectors of the sphere S at x0 and x1, respectively. Recall that in the double
reflection method (cf. Section 4.1) the first reflection R1 is in the bisecting
plane (denoted as H1) of x0 and x1, and R1 maps Ū0 to a left-handed frame
ŪL

0 = (r̄L
0 , s̄

L
0 , t

L
0 ). Because the two normals r̄0 and r̄1 of S at x0 and x1 are

symmetric about the plane H1, we have r̄L
0 = r̄1.

Let H2 denote the bisecting plane of the two points x1+tL
0 and x1+t1. Clearly,

r̄L
0 (or r̄1) is contained in H2. Since the second reflection R2 is in the plane
H2, it preserves r̄L

0 = r̄1. Furthermore, by its construction, R2 maps tL
0 to t1.

Therefore, R2 maps ŪL
0 to Ū1 = (r̄1, s̄1, t1). Hence, the theorem holds in the

special case of U0 = Ū0.

Now consider an arbitrary initial frame U0 = (r0, s0, t0). Let α0 denote the
angle between U0 and Ū0. Let R denote the composition of R1 and R2, i.e.,
the total rotation effected by the double reflection method. Clearly, R maps
U0 to a right-handed orthonormal frame Û1 = (r̂1, ŝ1, t̂1) such that t̂1 = t1.
Therefore, Û1 and Ū1 differ by a rotation in the normal plane of x(u) at x1.
Furthermore, since the rotation R is angle-preserving, the angle between Û1

and Ū1 is also α0, since R maps Ū0 to Ū1, and U0 to Û1. On the other hand,
by Corollary 3.3, the angle between U1 = U(h) and Ū1 is also α0. It follows
that Û1 = U1, i.e., the exact RMF U1 of the curve x(u) at x1 is generated by
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the double reflection method. �.

Not only the RMF of a spherical or plane curve x(u) is computed exactly
by the double reflection method, but also this computation does not refer
to the sphere or the plane containing x(u). That is possible because of the
path independence property of the RMF of a spherical curve (cf. Lemma 4.2).
Note that when the curve segment x(u) is C1 regular and parameterizes a
line segment, since x(u) is a plane curve, its RMF is computed exactly by
the double reflection method, with no need of threshold as in the projection
method to avoid numerical instability.

Now consider applying the double reflection method to computing the RMF
of a general spine curve x(u) ⊂ E

3, u ∈ [0, h], which has boundary data
(x0, t0;x1, t1) and is not necessarily spherical or planar. In general, there is
a unique sphere S such that x0 and x1 are on S and t0 and t1 are tangent
to S at x0 and x1. Let x̂(u) denote the projection of the curve x(u) onto
the sphere S through the center of S. Then it is easy to see that the curve
x̂(u) shares the same boundary data (x0, t0;x1, t1) with x(u) and that x̂(u)
approximates x(u) with an approximation error of order O(h4). Since x(u)
is well approximated by x̂(u) and the double reflection method computes an
exact RMF of the spherical curve x̂(u), it is reasonable to believe that the
double reflection method computes an accurate approximation to the RMF of
the original spine curve x(u).

Note that the above argument does not constitute a formal analysis of the
approximation accuracy of the double reflection method; it merely provides a
geometric and intuitive understanding of why the method is expected to work
well for RMF computation. It will be proved in Section 4.6 that the global
approximation error of the double reflection method has the order O(h4).

4.3 Procedural description

The description of the double reflection method in Section 4.1, though simple
in geometric terms, is not for efficient implementation. In this section we will
give a procedural description of the method, aiming at minimizing the number
of arithmetic operations required.

Since only transformation of vectors matters in RMF computation, we may
just use the linear parts, denoted by matrices R1 and R2, of the two reflections
R1 and R2. Since R1 is a reflection in a plane with normal vector v1 ≡ x1−x0,
it can be shown that its linear part is

R1 = I − 2(v1v
T
1 )/(vT

1 v1), (12)
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Table 1
Algorithm — Double Reflection

Input: Points xi and associated unit tangent vectors ti, i = 0, 1, . . . , n.
An initial frame U0 = (r0, s0, t0).

Output: Ui = (ri, si, ti), i = 0, 1, 2, . . . , n, as approximate RMF.

Begin

for i = 0 to n − 1 do

Begin

1) v1 := xi+1−xi; /*compute reflection vector of R1. */

2) c1 := v1 · v1;

3) rL
i := ri − (2/c1) ∗ (v1 · ri) ∗ v1; /*compute rL

i = R1ri. */

4) tL
i := ti − (2/c1) ∗ (v1 · ti) ∗ v1; /*compute tL

i = R1ti. */

5) v2 := ti+1−tL
i ; /*compute reflection vector of R2. */

6) c2 := v2 · v2;

7) ri+1 := rL
i − (2/c2) ∗ (v2 · rL

i ) ∗ v2; /*compute ri+1 = R2r
L
i . */

8) si+1 := ti+1 × ri+1; /*compute vector si+1 of Ui+1. */

9) Ui+1 := (ri+1, si+1, ti+1);
End

End

where I is the 3 × 3 identity matrix. We will call v1 the reflection vector of
R1. (Note that R1 is none other than the Householder transform used for QR
matrix decomposition. )

The reflection R2 has the reflection vector v2 ≡ (x1 +t1)−(x1 +tL
0 ) = t1−tL

0 .
So its linear part is

R2 = I − 2(v2v
T
2 )/(vT

2 v2). (13)

Let r0 be the reference vector of U0. Then r1 = R2R1r0 is the reference vector
r1 of the next frame U1. With the known tangent vector t1, the remaining
vector s1 of U1 = (r1, s1, t1) is given by s1 = t1 × r1.

The procedure of the double reflection method is given in Table 1. For a given
sequence of sampled points xi and associated unit tangent vectors ti, with an
initial frame U0 defined at x0, one just needs to apply the two reflections R1

and R2 to successively generate the approximate RMF Ui at xi. In each step,
from the current frame Ui, we form the first reflection R1 following Eqn.( 12)
and use R1 to map the reference vector ri to rL

i , and also the tangent vector
ti to tL

i . Then we use tL
i and ti+1 to form the second reflection R2 following

Eqn. (13) and use R2 to map rL
i to the reference vector ri+1 of the next frame

Ui+1.
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4.4 Degenerate cases and symmetry

By degeneracy we mean that either of the reflections R1 and R2 becomes
undefined. Clearly, R1 is undefined if and only if x1 − x0 = 0, and R2 is
undefined if and only if x1+tL

0 = x1+t1, i.e., the two points x0+t0 and x1+t1

are symmetric about the bisecting plane of x0 and x1; this is equivalent to
(x1−x0)·(t1+t0) = 0 and (x1−x0)×(t1−t0) = 0. Hence, for proper application
of the double reflection method, we need to ensure that the following two
conditions are satisfied: (1) x1 − x0 6= 0; and (2) (x1 − x0) · (t1 + t0) 6= 0 or
(x1 −x0)× (t1 − t0) 6= 0. Both conditions are simple to test and can easily be
satisfied provided that the spine curve is sufficiently subdivided or sampled.

The double reflection method is symmetric in the following sense. Given a
sequence of sampled points xi, i = 0, 1, . . . , n, on a spine curve x(u), suppose
that the Ui are the frames computed by the double reflection method applied
to x(u) with U0 as the initial frame. Then the same sequence of frames in the
reversed order, i.e., Un−i, i = 0, 1, . . . , n, will be generated by applying the
double reflection method starting from xn, using Un as the initial frame. This
symmetry property can be proved by examining the basic steps of the double
reflection method, but we will skip the proof. The projection method and the
rotation method also possess this symmetry property, while the Runge–Kutta
method does not.

4.5 Invariance under conformal mappings

We have seen that conformal mappings in 3D preserve the RMF of a space
curve (cf. Section 3.2). It turns out that the approximate RMF computed with
the double reflection method is also preserved by conformal mappings, in the
following sense. Suppose that the sampled points xi of a spine curve x(u) are
used to compute the approximate RMF Ui of x(u). Then the images of Ui

under a conformal mapping C are the same as the approximate RMF of the
curve C(x(u)) that are computed by the double reflection method using the
sampled points C(xi).

This property follows easily from the fact that the basic step of the double
reflection method is performed on the sphere Si touching the two ends of the
data (xi, ti;xi+1, ti+1) and this sphere is preserved by any conformal mapping
C (which are a sequence of sphere inversions), i.e., the image C(Si) is the sphere
touching the transformed data (C(xi), C(ti); C(xi+1), C(ti+1)).

Since both exact RMF and approximate RMF computed with the double
reflection method are preserved by conformal mappings, and the conformal
mapping is angle preserving, we conclude that the approximation error of the
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double reflection method is invariant under conformal mappings.

The double reflection method is an ideal method from the viewpoint of discrete
differential geometry. Because the exact RMF of a smooth curve is preserved
by conformal mappings, we naturally expect that a good method acting on
a discretization of the curve for computing its approximate RMF is invariant
under the same group of transformations. The double reflection method in-
deed satisfies this property. We note that the projection method, the rotation
method and the Runge–Kutta method do not possess this property.

4.6 Order of approximation

First consider an analytic curve segment with the arc length parameterization
x(s), s ∈ [0, h], of length h. Suppose that the initial frame U(0) = U0 ≡
(r0, s0,y0) of an RMF U(s) of x(s) is given. We approximate the frame U(h)
at x1 = x(h) by the frame U1 computed with the the double reflection method.

Theorem 4.4 The one-step error U(h)−U1 in RMF computation introduced
by the double reflection method has the order of O(h5). Specifically,

‖r(h) − r1‖ = 1
720
Kh5 + O(h6). (14)

Here K = 2 κ1
2τ0+κ0

2τ0
3+κ1κ0τ1−κ2κ0τ0 is a bounded constant for a smooth

curve, where κi = (d/ds)iκ(s)|s=0, τi = (d/ds)iτ(s)|s=0 are the curvature,
torsion and their respective derivatives at s = 0.

The proof of Theorem 4.4 is given in Appendix I. The constant K in Eqn.(14)
has an interesting geometric interpretation. A spherical curve x(s) is charac-
terized by the differential equation [22]

τ

κ
− d

ds

{

κ′

κ2τ

}

= 0.

It is easy to verify that the numerator of this equation is

K(s) = 2 κ1(s)
2τ0(s) + κ0(s)

2τ0(s)
3 + κ1(s)κ0(s)τ1(s) − κ2(s)κ0(s)τ0(s).

Therefore, K(s) = 0 if and only if x(s) is a spherical curve. Hence, intuitively
speaking, K = K(0) measures how close x(s) is to a spherical curve at s = 0.

As an obvious corollary of Theorem 4.4, we have the next theorem that the
RMF computation by the double reflection method applied to a general reg-
ularly parameterized spine curve has the fourth order global approximation
error.
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Theorem 4.5 Given a regularly parametrized spine curve x(u), u ∈ [0,M ],
let xi = x(ui), i = 0, 1, . . . , n, be points sampled on x(u) with equally spaced
parameter values, i.e., ui = i ∗ h and h = M/n. Then the global error of the
approximate RMF of x(u) computed by the double reflection method applied
to the sequence {xi} has the order O(h4).

5 Comparison and Experiments

5.1 Computational cost

We need to count the numbers of operations in order to compare the efficiency
of different methods for RMF computation. First consider the operation cost
of the double reflection method for computing each new frame Ui+1 from Ui,
following the procedure in Table 1. We will count a subtraction as equivalent
to an addition. Step (1) uses 3 adds. Step (2) uses 2 adds, 3 mults. After
evaluating c1 with 1 div, step (3) can be completed using 5 adds, 7 mults and
1 div. Similarly, step (4) can be done using, 5 adds, 7 mults and 1 div. Step
(5) uses only 3 adds. Step (6) uses 2 adds, and 3 mults. Step (7) uses 5 adds, 6
mults and 1 div. Finally, step (8) uses 3 adds and 6 mults. Hence, in total, the
per frame computation of the double reflection method costs, 28 additions, 32
multiplications and 2 divisions.

As comparison, we next give the operation counts of the projection method
and the rotation method. In the projection method [21], the new reference
vector r1 can be computed from r0 by

r1 = r0 −
r0 · t1

(x1 − x0) · t1
(x1 − x0).

This evaluation takes 9 mults and 1 div. Since r1 thus derived is in general not a
unit vector, 6 mults, 1 div and one square root are needed to normalize r1. Then
another 6 mults are needed to compute the third frame vector s1 = t1 × r1.
Hence, in total, the projection method needs 15 additions, 21 multiplications,
2 divisions and 1 square root to compute a new frame. This is less than, but
comparable to, the cost of the double reflection method.

A procedure of the rotation method is given in [27]. Given the two consecutive
unit tangent vectors t0 and t1, the rotation axis is computed as (a, b, c) =
t0 × t1 and the cosine of rotation angle is cosα = t0 · t1. Then the rotation
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Method # of adds # of mults # of divs # of sqrt

Projection 15 21 2 1

Rotation 26 36 1 0

Double reflection 28 32 2 0

Table 2
The operations counts of the three methods.

matrix is given by

R =










cosα −c b

c cosα −a
−b a cosα










+
1 − cosα

a2 + b2 + c2










a2 ab ac

ab b2 bc

ac bc c2










.

Therefore, 21 mults and 1 div are needed to obtain R from t0 and t1; (note that
27 mults are claimed in [27]). In addition, 9 mults are needed for computing
the next reference vector r1 = Rr0, and 6 mults for computing the remaining
vector s1 = t1 × r1. Hence, in total, the rotation method needs 26 additions,
36 multiplications and 1 division.

The number of operations for the three methods are listed in Table 2. The
three methods have similar computational costs, as our tests show that a sqrt
or a division is is about six times more time consuming than a multiplication.
The actual timing comparison will be given in the next subsection.

It is worth mentioning that another procedure of the rotation method is given
in [6], which uses 19 mults and a square root to compute the rotation matrix
R after using 6 mults to get the rotation axis t0 × t1. Hence, that version of
the rotation method requires in total 40 multiplications and a square root to
compute a new frame, assuming that the ti are unit tangent vectors. In the
subsequent experimental comparisons involving the rotation method we will
refer to the faster implementation in [27].

5.2 Experimental results

We will use two examples to compare the double reflection method with the
following existing methods: the projection method, the rotation method and
the 4-th order Runge-Kutta method, in terms of efficiency and accuracy. All
test cases were run on a PC with Intel Xeon 2.66 GHz CPU and 2.00 GB
RAM.
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Fig. 6. Timings of the double reflec-
tion method, the projection method
and the rotation method.
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Fig. 7. Timings of Runge-Kutta
method and the double reflection
method.

Example 1: In the first example we use the four methods to compute the
RMF of the spine curve, which is a torus knot, given by

x(u) = [(0.6+0.3 cos(7u)) cos(2u), (0.6+0.3 cos(7u)) sin(2u), 0.3 sin(7u)]T , u ∈ [0, L]
(15)

We compute the RMF using different step sizes h = 0.01 ∗ 2−k, k = 0, 1, . . . ;
that is, for each fixed step size h, the sampled points are x(i ∗ h), i =
0, 1, . . . , L/h.

The timings of computing the sequence of frames by the four methods are
shown in Figures 6 and 7. We see that the projection method, the rotation
method and the double reflection method have similar time costs. The Runge-
Kutta method costs much more time than the double reflection method, since
it needs more function evaluations in each step than the other three methods.

To observe approximation errors, we need an exact RMF of the spine curve
or an approximate RMF of very high accuracy against which the computed
approximate RMF by the four methods can be compared. Since the exact
RMF of the torus knot given by Eqn.(15) is difficult to obtain, we use the
integration function provided in Maple to get an approximate RMF of x(u)
whose approximation error is known to be less than 10−16. This highly accurate
RMF is used in place of an exact RMF to measure the global approximation
error Eg defined in (1).

The global approximation errors ek of the four methods are shown in Figure 8
and also in Tables 3 and 4, where ek is the error of using 2k segments, k =
6, 7, . . . , 11. These data confirm that the projection method and the rotation
method have the second order of global approximation error O(h2), and the
Runge-Kutta method and the double reflection method have the fourth order
of global approximation error O(h4). We use the computed sequences of frames
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Double reflection Runge-Kutta

# of segments error ek, ratio ek/ek−1 error ek, ratio ek/ek−1

26 5.10E−3, N.A. 3.58E−2, N.A.

27 3.24E−4, 0.063577 2.32E−3, 0.064846

28 2.03E−5, 0.062776 1.46E−4, 0.062737

29 1.27E−6, 0.062571 9.10E−6, 0.062408

210 7.95E−8, 0.062578 5.68E−7, 0.062422

211 4.97E−9, 0.062575 3.55E−8, 0.062438

Table 3
Global approximation errors ek of the double reflection method and by using the
4-th order Runge-Kutta method for the torus knot in Example 1. The error ratios
ek/ek−1 show that the approximation orders of these two methods are both O(h4).

by the four methods to generate ribbon-like sweep surfaces with the torus knot
x(u) as the spine curve, and show the four surfaces in Figures 17 through 20
using color coding to indicate the magnitude of the approximation errors.
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Fig. 8. Global errors of the four meth-
ods for the torus knot in Example 1.
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Fig. 9. Global errors of the four meth-
ods for the PH curve in Example 2.

Example 2: In the second example we use the double reflection method to
approximate the RMF of a PH (Pythagorean-hodograph) curve, whose RMF
can be computed exactly by a closed-form formula [11]. Given two points
x0 = (1000, 0, 0)T and x1 = (1000, 2000, 4000)T with associated un-normalized
tangent vectors t̂0 = (1, 5,−1)T , t̂1 = (−3, 2, 5)T , we obtain a cubic PH curve
x(u) as the spine curve using G1 Hermite interpolation, following [19]. Let the
Frenet frame of x(u) at u = 0 be the initial frame U0. Compared with the
exact RMF of x(u) at the endpoint x1 = x(1), we obtain the errors of the
approximate RMF computed by the four methods. These errors are shown in
Figure 9. The errors of the double reflection method and the rotation method
are also given in Table 5 and their color coded surface representations in
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Projection method Rotation method

# of segments error ek, ratio ek/ek−1 error ek, ratio ek/ek−1

26 1.56E−1, N.A. 2.60E−1, N.A.

27 9.03E−2, 0.579295 1.91E−1, 0.736606

28 2.26E−2, 0.249757 4.76E−2, 0.248776

29 5.64E−3, 0.249939 1.19E−2, 0.249668

210 1.41E−3, 0.249983 2.97E−3, 0.249906

211 3.52E−4, 0.249995 7.42E−4, 0.249971

Table 4
Global approximation errors ek of the projection method and the rotation method
for the torus knot in Example 1. The error ratios ek/ek−1 show that the approxi-
mation orders of these two methods are both O(h2).

Double reflection Rotation method

# of segments error ek, ratio ek/ek−1 error ek, ratio ek/ek−1

26 9.29E−9, N.A. 1.78E−4, N.A.

27 5.94E−10, 0.063919 4.47E−5, 0.250721

28 3.75E−11, 0.063181 1.12E−5, 0.250321

29 2.36E−12, 0.062926 2.80E−6, 0.250151

210 1.48E−13, 0.062789 7.00E−7, 0.250073

211 9.25E−15, 0.062521 1.75E−7, 0.250036

Table 5
Global approximation errors ek of the double reflection method and the rotation
method for the PH curve. The error ratios ek/ek−1 confirm again the O(h4) approx-
imation order of the double reflection method and the O(h2) approximation order
of the rotation method.

Figure 10. These data confirm again the fourth order approximation error
O(h4) of the double reflection method.

6 Extensions

6.1 Spine curve defined by a sequence of points

In some applications a spine curve is specified by a sequence of points xi in 3D,
which we may assume to lie on some unknown regularly parameterized spine
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(a) Double Reflection
method

(b) Rotation method (c) Frame of Double Reflec-
tion
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Fig. 10. The color coded sweep surfaces showing the errors of the double reflection
method and the rotation method for the PH curve in Example 2, with 256 segments.

curve, and we need to compute a sequence of frames Ui which has minimal
rotation about the spine curve. In order to apply the double reflection method
in this case, we need to furnish each data point xi with a unit tangent vector
ti.

One possible way is to define ti to be unit tangent vector at xi to the circle
passing through the three consecutive points xi−1, xi and xi+1. Denote a =
xi − xi−1 and b = xi+1 − xi. It is straightforward to show that ti = w/‖w‖,
where w = ‖b‖a + ‖a‖b. The tangent vectors ti thus defined possess the
co-sphere property that ti and ti+1 at the points xi and xi+1 are tangential
to the sphere S determined by the four consecutive points xi−1, xi, xi+1 and
xi+2. This co-sphere property appears desirable because, by Theorem 4.3, the
high accuracy of the double reflection method comes from the very same idea
of computing the exact RMF of a spherical curve on a sphere determined by
the data (xi, ti;xi+1, ti+1).

However, assuming that the xi are sampled from an underlying regular curve
x(u) with step size h, it can be shown that the global approximation error of
this scheme has the order O(h2); this loss of accuracy is due that the above
estimated tangent vectors ti are only O(h2) approximation to the exact unit
tangent of x(u) at xi. So, an alternative is to first obtain better estimates of
the unit tangent vectors ti by using more sample points around xi.
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6.2 Using only tangent vectors

According to its defining equation (3), the RMF of a spine curve x(u) is
entirely determined by the unit tangent vector t(u). Thus it is natural to
consider computing the RMF of x(u) using only the sampled tangent vector
ti = ẋ(ui). From a practical point of view, this treatment is also desirable
when the points x(ui) are overly densely sampled, which may make the first
reflection vector v1 = xi+1 − xi too small and therefore computation of the
reflection R1 unstable.

In order to apply the double reflection method in this case, all we need to do is
provide a reflection vector for the first reflection R1. Our analysis shows that
the global approximation order O(h4) to the true RMF of x(u) is preserved if
the first reflection vector is chosen to be

v1 = 13(ti + ti+1) − (ti−1 + ti+2). (16)

Then the remaining steps of the double reflection method are the same. This
assertion can be proved in a similar way to that of proving Theorem 4.6. Note
that the computation of v1 in Eqn. (16) does not involve subtraction between
two close quantities, and therefore is numerically robust. Note, however, a
different treatment is needed to compute v0 and vn−1, such that an order
O(h4) approximations to x1 − x0 and xn − xn−1 are achieved. We skip the
details here.

6.3 Variational principles for RMF with boundary conditions

In general, the RMF of a closed smooth spine curve does not form a closed
moving frame. Therefore, when a closed moving frame with least rotation is
needed, it can be generated by adding a gradual rotation to the RMF along
the closed spine curve to make the resulting moving frame closed. Even for
an open spine curve, it is often required that its moving frame meet given
end conditions while having a natural distribution of rotation along the spine
curve. So an appropriate additional rotation to the RMF needs to be computed
in this case. We study in this section how this additional rotation can properly
be determined.

More specifically, consider a curve segment x(s), s ∈ [ 0, L ], in arc-length
parameterization. We would like to find a one-parameter family of unit vec-
tors g(s) orthogonal to the tangent vector t(s) and satisfying the boundary
conditions

g(0) = g0 and g(L) = g1 (17)
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The vector g(s) defines an orthonormal frame M = (t, g, t × g) along the
spine curve.

We compare the frame M with the RMF generated by a vector r(s) satisfying
r(0) = g(0). Let α(s) = ∠(f(s), g(s)) be the angle between the two frames,
where the sign is chosen such that it corresponds to a rotation around the
oriented line determined by the tangent vector t(s). In addition, assume that
α(s) is continuous and satisfies α(0) = 0. We will call M(s) the modified
frame, since it is obtained by adding a rotation of angle α(s) to the RMF. In
this sense the RMF serves as a reference frame with respect to which another
moving frame is specified.

The boundary conditions (17) imply that

α(0) = 0 and α(L) = ∠(f(L), g1) + 2kπ (18)

for a some fixed integer k. The angular velocity vector of the modified frame
M(s) is

ωmodified(s) = κ(s)b(s) + α′(s)t(s). (19)

The function s 7→ α′(s) specifies the angular speed of the rotation of M(s)
around the tangent of the curve x(u). We now consider two possible ways of
choosing α(s).

Minimum total angular speed One may choose α(s) that minimizes the
functional

∫ L

0
||ωmodified|| ds =

∫ L

0

√

κ(s)2 + α′(s)2 ds → Min (20)

and satisfies the boundary conditions (18). Let F (s, α, α′) =
√
κ2 + α′2. Then

we have at hand a functional of the angular function α(s). The moving frame
M(s) corresponds to a curve on the unit quaternion sphere, and minimizing
the functional in (20) amounts to minimizing the length of this curve subject
to that g(s) is perpendicular to t(s); this is the computational approach taken
in [14].

Here we will analyze this variational problem to give it a simple geometric
interpretation as well as an easy computational method. Solving Euler’s equa-
tion of the functional (20) using calculus of variations yields

0 = Fα − d

ds
Fα′ = − κ

(κ2 + α′2)3/2
(κα′′ − α′κ′) = − κ3

(κ2 + α′2)3/2

(

α′

κ

)′

, (21)

assuming κ 6= 0. It follows that

α′(s) = Cκ(s) (22)
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for some constant C, which can be determined from the boundary conditions
and the total curvature. Consequently, the angular speed of the additional ro-
tation around the tangent is proportional to the curvature of the curve. Hence,
minimizing (20) makes the additional rotation more concentrated on curve
segments of higher curvatures.

The above analysis is only valid for curved segments with κ(s) 6≡ 0. For
straight line segments, the variational problem (20) does not have a unique
solution. In fact, the integrand in this case simplifies to |α′|, and any monotonic
function α(s) which satisfies the boundary conditions is a solution. Because
of this non-uniqueness of solution, optimization methods as used in [14] for
minimizing (20) will experience numerical problems with a spine curve that
is close to a straight line. Based on our analysis, a more efficient method is
to compute the curvatures at sampled points of the spine curve, and then
distribute the additional rotation proportional to the curvatures along the
curve, with respect to the RMF.

Minimum total squared angular speed One may also choose α(s) that
minimizes

∫ L

0
||ωmodified||2ds =

∫ L

0
(κ(s)2 + α′(s)2)ds → Min (23)

and satisfies the boundary conditions (18). Now, with F = κ2 + α′2, Euler’s
equation gives α′′ = 0, or α(s) = as for some constant a; that is, the rotation
of M is linearly proportional to the arc length parameter s.

This choice of the additional rotation is not only easy to implement, but also
free of the numerical problem with the method based on minimizing (20); so
it is recommended over the first one based on minimizing the total angular
speed. Note that this means of applying the additional rotation as proportional
to arc-length has been suggested in the literature (e.g. [6,32]), but here we
have provided a theoretical justification from the viewpoint of the variational
principle through minimization of the total squared angular speed.

Efficient implementation of the above methods of computing a moving frame
with boundary conditions is based on angle adjustment to the RMF, either ac-
cording to curvature or arclength. When the RMF is computed approximately,
the resulting solution is only an approximate one. In this regard, the higher
accuracy of the double reflection method makes this solution more accurate
than using the projection method or the rotation method.

One may choose the integer k in (18) to minimize the rotation if the least
deviation to the RMF is desired, or choose k to add a moving frame with a
specified amount of total twist along the spine curve. Figure 11 shows compar-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11. Comparison in computing a closed moving frame. Minimization of total
angular speed is shown in row one. Minimization of total squared minimization is
shown in row two. In each row, from left to right, the four figures are for the case
of RMF computed by the double reflection method, the case of using the minimal
twist to close the frame, the case of an additional twist of 2π, and the case of an
additional twist of 4π.

ison of the two methods above for computing frames meeting certain boundary
conditions. The method based on total angular speed minimization (i.e., rota-
tion proportional to curvature) and the method based in total squared angular
speed minimization (i.e., rotation proportional to arclength) are shown in the
first row and the second row, respectively. In each row, the four figures are
for the case of using RMF computed by the double reflection method with no
twist adjustment, the case of using the minimal twist to close the frame, the
case of a twist of 2π, and the case of a twist of 4π. We see that the twist is
more concentrated in high curvature parts of the spine curve in the first row,
while it is distributed more uniformly along the curve in the second row.

A closed moving frame is useful in visualization of closed space curve, such as
knots. Figures 12 and 13 show two such examples, where the closed frame is
computed by adjusting an RMF by an additional rotation linearly proportional
to the arclength. The curve in Figure 12, a cinquefoil knot, is given by

x(t) = [cos(t)(2−cos(2t/(2a2+1))), sin(t)(2−cos(2t/(2a2+1))),− sin(2t/(2a2+1))]
(24)

The curve in Figures 13, a trefoil knot, is given by

x(t) = [41 cos(t) − 18 sin(t) − 83 cos(2t) − 83 sin(2t) − 11 cos(3t) + 27 sin(3t),

36 cos(t) + 27 sin(t) − 113 cos(2t) + 30 sin(2t) + 11 cos(3t) − 27 sin(3t),

45 sin(t) − 30 cos(2t) + 113 sin(2t) − 11 cos(3t) + 27 sin(3t)] (25)

Note that in these two examples the Frenet frame exhibits noticeable rotation
about the curves to be visualized.
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(a) (b) (c)

Fig. 12. (a) A cinquefoil knot, given by Eqn. (24), is shown without visualization cue;
(b) Visualization of the curve x(t) is enhanced by a closed sweep surface modeled
using an adjusted RMF; (c) another sweep surface modeled using the Frenet frame.

(a) (b) (c)

Fig. 13. (a) A trefoil knot, given by Eqn. (25), is shown without visualization cue;
(b) Visualization of the curve x(t) is enhanced by a closed sweep surface modeled
using an adjusted RMF; (c) another sweep surface modeled using the Frenet frame.

We next give two more examples of RMF based moving frame design with
boundary conditions in shape modeling. In Figure 14, the main body of a
dragon along a spine curve is modeled with a moving frame meeting user spec-
ified boundary conditions. The frame is computed using arclength twist ad-
justment of the approximate RMF computed by the double reflection method.

In Figure 15, the support structure of a glass table, as a closed sweep surface,
is modeled with a moving frame meeting six conditions to make the surface
have proper contact (i.e., along a line segment) with the table at three lo-
cations and with the ground at three locations. These conditions are met by
adjusting an RMF by a twist linearly proportional to arclength between every
two consecutive contact locations.

7 Concluding remarks

We have presented a new discrete approximation method for computing the
rotation minimizing frame of a space curve. The method uses two reflections
in a plane to compute the next frame from the current frame, and is therefore
called the double reflection method. This method is simple, fast, and more
accurate than the projection method and the rotation method, that are cur-
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(a) RMF based moving frame by bound-
ary condition.

0.0 0.2 0.4 0.6 0.8 1.0

0.105

0.209

0.314

0.419

0.524

0.628

0.733

0.838

0.942

1.047

Radian

 Angle difference

Dragon Length

(b) Angle difference between the RMF
and the frame in (a).

(c) A dragon modeled with the moving frame in (a).

Fig. 14. Modeling of an oriental dragon.

rently often used in practice. We have shown that the approximation error
of the double reflection method is O(h4), while the errors of the other two
methods are O(h2), where h is the step size used to sample points on a spine
curve of fixed length.

The double reflection method is also much superior to direct application of
the standard 4-th order Runge-Kutta method. Although the two methods have
the same order of approximation error, the double reflection method is simpler
and faster, and requires only C1 information of a spine curve, while the Runge-
Kutta method needs C2 information. We have also discussed the applications
of RMF in modeling moving frames meeting boundary conditions.

We conjecture that O(h4) is the maximum accuracy that can be achieved
in RMF computation using only the sampled positional and tangent data
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(a) RMF based moving frame by bound-
ary condition.

0.0 0.2 0.4 0.6 0.8 1.0
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Radian

Belt length

 Angle difference

(b) Angle difference between the RMF
and the frame in (a).

(c) A table modeled with the moving frame in (a).

Fig. 15. An RMF based moving frame is used to design the supporting structure of
a glass table as a sweep surfaces

(x0, t0;x1, t1) of a curve segment.
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8 Appendix I

Proof of Theorem 4.4. There are two parts in this proof. In the first part
we derive an expression of the order O(h5) term of the one-step error. In the
second part we show that coefficient of this error term is bounded for a regular
curve, thus yielding the claimed order of magnitude.

We will obtain the error expression using the canonical Taylor expansion of
the curve x(s) at x(0), which can be derived from the Frenet formulas [22]. In
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a neighborhood of x(0), x(s) is approximated by the series

x(s) =










s −1
6
κ2

0s
3 −1

8
κ0κ1s

4 + · · ·
1
2
κ0s

2 +1
6
κ1s

3 + 1
24

(κ2 − κ3
0 − τ 2

0κ0)s
4 + · · ·

+1
6
κ0τ0s

3 + 1
24

(κ0τ1 + 2κ1τ0)s
4 + · · ·










, (26)

where the Frenet frame at s = 0 is aligned with the axes of the Cartesian
coordinates, and κi = (d/ds)iκ(s)|s=0, τi = (d/ds)iτ(s)|s=0. With the help
of computer algebra tools, we generate Taylor series for all quantities needed
for computing the variables listed in the procedure of the double reflection
method (Table 1). Due to space limitation, only an outline of the derivation
will be given.

Consider a segment of x(s) of length h starting at the origin, i.e.,

(0, 0, 0)⊤ = x0 = x(0), x1 = x(h), (1, 0, 0)⊤ = t0 = ẋ(0), t1 = ẋ(h). (27)

Let r0 = (0, C, S), where C2 + S2 = 1, be the reference vector of U0 at x0.
We compute the new reference vector r1 using steps from (1) to (7) of the
algorithm Double Reflection (see Table 1):

v1 = (h+ O(h3), 1
2
κ0h

2 + O(h3), O(h3))⊤

c1 = h2 − 1
12
κ0

2h4 + O(h5)

rL
0 = (−Cκ0h− 1

3
(Cκ1 + κ0τ0S)h2 + O(h3), C − 1

2
κ0

2Ch2 + O(h3), S + O(h3))⊤

tL
0 = (−1 + 1

2
κ0

2h2 + O(h3),−κ0h− 1
3
κ1h

2 + O(h3),−1
3
κ0τ0h

2 + O(h3))⊤

v2 = (2 − κ0
2h2 + O(h3), 2κ0h+ 5

6
κ1h

2 + O(h3), 5
6
κ0τ0h

2 + O(h3))⊤

c2 = 4 − 1
36

(τ0
2κ0

2 + κ1
2)h4 + O(h5)

r1 = (−Cκ0h− 1
2
(Cκ1 + κ0τ0S)h2 + O(h3), C − 1

2
κ0

2Ch2 + O(h3), S + O(h3))⊤

On the other hand, using the angular velocity of the RMF (Eqn. (9)) we
generate the Taylor expansion of the reference vector r(h) of the exact RMF
U(h),

r(h) = r(s)

∣
∣
∣
∣
∣
∣
s=0

+ κ(s)b(s) × r(s)
︸ ︷︷ ︸

=r
′(0)

∣
∣
∣
∣
∣
∣
s=0

h +
d

ds
(κ(s)b(s) × r(s))

︸ ︷︷ ︸

=r
′′(0)

∣
∣
∣
∣
∣
∣
s=0

h2

2
+ . . .

Using the Frenet formulas and the fact that the derivatives of r(s) are given by
the previously generated terms of the Taylor expansion, r(h) can be expressed
solely by using derivatives of curvature and torsion at s = 0, and by the initial
value r(0) = (0, C, S)⊤. Finally, we compare the Taylor expansions of r(h) and
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r1 to obtain

r(h) − r1 = (O(h6),− 1
720

S K h5 + O(h6), 1
720

C K h5 + O(h6))⊤,

where

K = 2 κ1
2τ0 + κ0

2τ0
3 + κ1κ0τ1 − κ2κ0τ0 (28)

Hence,

‖r(h) − r1‖ =
1

720
Kh5 + O(h6)

Next, we need to show that the coefficient K in the O(h5) term above is finite
for a regular smooth curve. This is a concern because the torsion τ0 appearing
in K (Eqn. (28)) and τ0 can become unbounded for a regular curve; such an
example is given in Appendix II. Note that only the curvature κ0, torsion τ0
and their derivatives are present in K. Since

κ(s) = ‖ẍ(s)‖, τ(0) =
‖(ẋ(s) × ẍ(s)) · ...x(s)‖

‖ẍ(s)‖3

it is easy to see that, if a spine curve has non-vanishing curvature, then
κ0 = κ(0) is bounded from zero, and τ0 = τ(0) and its derivative are finite;
consequently, K will be finite in this case.

We will use a conformal mapping to turn an arbitrary curve segment x(s),
s ∈ [0, h], possibly with vanishing curvature, into another curve segment with
curvature bounded from zero. First take the osculating plane of x(s) at s = 0.
With a rigid motion we take this plane to be the x-y plane and have the
point x(0) positioned at the origin (0, 0, 0). Let Cs denote the inversion with
respect to the sphere S1 of radius 1 and centered at (0, 0, 1). Then the plane
x-y is mapped by Cs to the sphere S2 of radius 1/2 and centered at (0, 0, 1/2).
Clearly, Cs is conformal, and the point x(0) = (0, 0, 0) is fixed by Cs.

Let κ0 be the curvature of x(s) at s = 0. Let xc(s) denote the transformed
curve Cs(x(s)). With a bit abuse of notation, we use xc(t), t ∈ [0, hc], to denote
arclength parameterization of the segment xc(s). At t = 0, the curve xc(t) has
the normal curvature equal to 2, which is the reciprocal of the radius of S2, and
the geodesic curvature equal to κ0, which is the curvature of x(s) at s = 0. (The
curve xc(s) has the same normal curvature and geodesic curvature at xc(0)
as any spherical curve on S2 that has the second order contact with xc(s) at
xc(0). ) It follows that the curvature of xc(u) at xc(0) is κc = (κ2

0 + 4)1/2.

Clearly, κc is bounded away from zero. Hence, if we apply the double reflection
method to the transformed curve segment xc(t), t ∈ [0, hc], according to the
preceding analysis, the fifth order term of the approximation error takes the
form 1

720
Kch

5
c ; here Kc is finite, since κc is bounded away from zero. On the

other hand, because the approximation error produced by the double reflection
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Fig. 16. S-shaped sixth order Bézier curve

method is invariant under a conformal mapping (cf. Section 4.5), in the limit
we have

K

720
h5 =

Kc

720
h5

c

When h is sufficiently small, due to the regular nature of the mapping Cs in
the neighborhood of x(0), there exists a constant d > 0 such that hc < dh. It
follows that

K =
h5

c

h5
Kc < d5Kc

Hence, K is also finite. This completes the proof that the local one-step error
of the double reflection method is of the order of O(h5). �

9 Appendix II

It is well known that a curve is planar if and only if its torsion is zero every-
where. However, the torsion has certain peculiar behavior which makes it an
“unstable” characteristic of a planar curve. Below we use an example to show
that a nearly planar curve can have arbitrarily large torsion. This example also
serves two further purposes. First, the numerical integration method in [13]
will experience severe difficulty in computing the RMF for the spine curve in
this example. Second, although the torsion τ is unbounded in this example,
we will see that the constant K in the fifth order error term in Theorem 4.4
is still finite, thus showing that the second part of the proof of Theorem 4.4
is warranted (cf. Appendix I).

Consider the S-shaped sixth order Bézier curve x(t; h) in 3D defined by the

36



control points P0 = (1, 1, 0)T , P1 = (−1, 1, 0)T , P2 = (−1, 0, h)T , P3 =
(1, 0, h)T , P4 = (1,−1, 0)T and P5 = (−1,−1, 0)T . The curve has the paramet-
ric equation

x(t; h) =










8t5 − 20t4 + 20t2 − 10t+ 1

8t5 − 20t4 + 20t3 − 10t2 + 1

10t4h− 20t3h + 10t2h










, t ∈ [0, 1]

We consider the behavior of x(t; h) as h → 0. When h = 0, x(t; 0) becomes
planar and x(1/2; 0) = (0, 0, 0) is an inflection point.

Let us first check τ0, τ1, κ0, κ1, κ2 at the point x(1/2; h).

τ0 = −12

5h
, τ1 = 0, κ0 =

4

5
|h|, κ1 = 0, κ2 =

192(h4 − 3h2 − 3)

125|h|

Clearly, τ0 and κ2 are not bounded as h→ 0.

Now we check K at x(1/2; h). The four terms of the expression of K in
Eqn. (28) are

2κ2
1τ0 = 0, κ2

0τ
3
0 = −27648

3125h
, κ1κ0τ1 = 0, κ2κ0τ0 =

9216(h4 − 3h2 − 3)

3125h

Then

K = 2 κ1
2τ0 + κ0

2τ0
3 + κ1κ0τ1 − κ2κ0τ0 =

9216h(3 − h2)

3125
and lim

h→0
K = 0. Hence, K is finite for all finite values of h in this example.

In this example, numerical integration of (2) becomes difficult as the integrand
τ(t) becomes unbounded at t = 1/2 for arbitrarily small h. Furthermore, even
if this integration can be done, the Frenet frame of x(t) becomes increasingly
unstable at t = 1/2 as h → 0. All this makes it difficult to apply Eqn. (2) to
computing the RMF of x(t).
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(a) 26 segments. (b) 27 segments. (c) 28 segments.

(d) 29 segments. (e) 210 segments. (f) 211 segments.

Fig. 17. Color coded sweep surfaces showing the errors of double reflection method

(a) 26 segments. (b) 27 segments. (c) 28 segments.

(d) 29 segments. (e) 210 segments. (f) 211 segments.

Fig. 18. Color coded sweep surfaces showing the errors of 4-th order Runge-Kutta
method

(a) Error coding bar
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(b) 26 segments. (c) 27 segments. (d) 28 segments.

(e) 29 segments. (f) 210 segments. (g) 211 segments.

Fig. 19. Color coded sweep surfaces showing the errors of the projection method.

(a) 26 segments. (b) 27 segments. (c) 28 segments.

(d) 29 segments. (e) 210 segments. (f) 211 segments.

Fig. 20. Color coded sweep surfaces showing the errors of the rotation method.

(a) Error coding bar
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