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Abstract. The testing of programs in wireless sensor networks (WSN) is an

important means to assure quality but is a challenging process. As pervasive

computing has been identified as a notable trend in computing, investigations

on effective software testing techniques for WSN are essential. In particular,

energy is a crucial and scarce resource in WSN nodes. Programs running correctly

but failing to meet the energy constraints may still be problematic. As such,

testing techniques for power-aware applications are useful; otherwise, the quickly

depleted device batteries will need frequent replacements, hence challenging the

effectiveness of automation. Since current testing techniques do not consider the

issue of energy constraints, their automation in the WSN domain warrants further

investigation.

This paper proposes a novel power-aware technique built on top of the notion

of metamorphic testing to alleviate both the test oracle issue and the power-

awareness issue. It tests the functions of programs in WSN nodes that are in

close proximity, and uses the data consolidation criteria of data aggregation in

programs as the basis for verifying test results. The power-aware transmissions of

intermediate and final test data as well as the computation required for verification
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of test results are directly supported by the WSN programs. Our proposed

technique has been strategically designed to blend in with the special features

of the WSN environment.

Keywords Wireless sensor network, WSN application, power awareness, test oracle,

metamorphic testing, software testing, test automation.

1 Introduction

A wireless sensor network (WSN) is an ad hoc computer network formed by many

sensor devices interconnected by wireless channels. Each sensor device, known as

a sensor node or simply a node, is built with sensors to capture data (such as

temperature and light intensity) from its physical environment. Because of physical

and environmental limitations, such nodes should satisfy various constraints regarding

battery power, computation capacity, unforeseeable communication restrictions, and

others. A popular class of sensor nodes are those that, once deployed, will be operational

until the depletion of their batteries. In other words, the lifetime of the sensor nodes

depend critically on power management.

In certain WSN, many nodes are deployed in proximity to perform the same

function, such as sensing a change of temperature for the detection of any passing hot

object. A few nodes, equipped with relatively plentiful resources, are selected as base

stations that bridge other nodes and target client stations. These nodes are normally

known as data aggregators. They consolidate the data from sensory nodes and send

the consolidated results to other nodes. For example, they eliminate duplicated copies

of data or compute statistics from the data received according to defined evaluation

criteria. In this paper, we refer to such criteria as data consolidation criteria. In this way,

the data consolidation feature of a WSN application would save transmission energy by

propagating the computed results instead of simply relaying received data [10].

Power efficiency is critical to many WSN applications. A power-aware application

should “enable users to work for longer periods of time before having to reconnect

to recharge the system battery. . . . an anti-virus scanner would run in a full-featured

fashion, providing file scanning on all files opened and also running periodic system-

wide scans. When on battery power, the scanner could defer the system-wide scans

until a later time and continue processing safely, analyzing just the open files.” 5 For

example, according to http://www.tinyOS.net, the de facto site for important news

release for tinyOS, researchers advocate to design WSN artifacts to be power-aware.

On the other hand, the nodes in a typical WSN must coordinate among themselves

and the transmission of data across nodes in the network is a typical feature in a WSN

application — but data communication is the most energy-demanding aspect among

communication, sensing and computation. 6

5 http://solveit.jotxpert.net/WikiHome/Articles/277366.
6 M. Srivastava. Wireless sensor and actuator networks: challenges in long-lived and high-

integrity operation. ASI Lecture, City University of Hong Kong, December 4, 2006. Available

at http://www.cs.cityu.edu.hk/ asi06/program.shtml.
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The development of automated testing techniques for WSN applications with the

above properties is further complicated by the following:

(a) The outputs from an individual node are often unstable, unreliable, and dependent

on hardware quality and unforeseeable physical environmental conditions. One way

to overcome these limitations is to test software components on a node simulator,

such as TOSSIM 7, which emulates simplified situations of WSN applications.

In practice, however, such an approach requires elaborated studies of possible

application-specific environments. Testing on a real platform is another alternative.

Unfortunately, the results of an application in the unforeseeable WSN environment

are determined not only by what test cases are selected, but also where, when and

how they are executed.

(b) As the power-aware aspect is a key feature of WSN applications, the testing of

both functional correctness and power-awareness is necessary for quality assurance.

In particular, applications in sensor nodes are often designed for a particular

range of workload such as sleeping for 99% of its time and working actively

for the remaining 1%. Using excessive resources in sensor nodes to conduct

testing activities may change the workload pattern, which directly alters the

energy consumption and, hence, the power-awareness test results. The testing

of applications in the WSN environment is, therefore, a research and practical

challenge.

As such, we identify at least two testing research directions for assuring WSN

applications: (1) the formulation of effective testing techniques for power-aware

applications, and (2) the development of energy-efficient testing techniques for WSN.

This paper is our first step towards these goals.

As we have mentioned earlier, data communication is unavoidable in WSN and

consumes most of the energy. It inspires us to use the existing data communication

of the application to transmit test results to data aggregators (which have relatively

plentiful resources) to conduct the checking of test results. We explore this observation

to develop our testing proposal.

This paper proposes a novel test automation strategy to alleviate the test oracle issue

associated with power management concerns in a WSN environment. The backbone of

our test verification technique is metamorphic testing [7]. Our strategy consists of three

elements: (a) The test inputs are sensed data of isotropic physical phenomena of sensor

nodes that are in proximity. (b) We then use the data consolidation criteria supported

by the data aggregators of WSN applications as a basis for verifying results according

to the metamorphic approach [8]. (c) We enhance current techniques of metamorphic

testing, such as [8, 9, 17], to address non-functional concerns. For any given test case,

apart from verifying the functional output from the sensor node, we also check the

energy consumption that has been used to compute the functional output. By comparing

and contrasting the energy consumptions, we verify whether an abnormal amount of

energy has been consumed.

The main contributions of the paper are two-fold: (i) To our best knowledge, it is the

first research to alleviate the test oracle problem for the testing of software applications

7 http://www.cs.berkeley.edu/ pal/research/tossim.html.
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running on top of wireless sensor networks. (ii) It is also the first attempt to address the

testing of power-aware concerns for these applications.

The rest of the paper is organized as follows: It first reviews related work in the

next section, followed by metamorphic testing in Section 3. In Section 4, we shall

develop a software testing model that helps testers alleviate the test oracle problem

in the presence of power management concerns. In Section 5, we discuss issues of

other potential options, and portray directions for future work. We conclude the paper

in Section 6.

2 Related Work

To support high-quality automated software testing, a reliable and automatic test

oracle should be developed. Binder [6] extensively reviews many popular types of

test oracle and casts them in the context of object-oriented testing. A simple and

intuitive mechanism for automatic test oracles is program assertion, as supported by

JUnit [2]. This approach may also be applied to the testing of programs in sensor nodes.

However, sensory computing is intrinsically imprecise. The use of program assertions

in imprecise WSN computation warrants further research.

Some practitioners recommend adopting the techniques in Graphical User Interface

(GUI) testing to embedded systems testing [11]. Berstel et al. [5] use a formal

specification approach to verify GUI specifications. They work at the specification

level; whereas we propose a technique that works at the implementation level. Xie and

Memon [19] empirically study the effect of a number of selected test oracle approaches

on GUI applications. They find in their experiments that, for effective identification

of failures, test oracles should be strong, or else the failures for some test cases may

not be identifiable by the test oracles. Our approach proposes to use data aggregation

criteria of the application to serve as the mechanism to define test oracles. Their work

complements ours.

Chen et al. [9] evaluate the failure-detection capabilities of different metamorphic

relations for the same applications. They find that different forms of metamorphic

relations have diverse strengths in detecting failures even for the same set of source

test cases. We also utilize the knowledge of domain experts specified in the data

consolidation criteria for eliminating duplicated data entries by the data aggregator of

the application.

Tse et al. [16] report on an approach, which is close to metamorphic testing, to

tackle the test oracle issue for embedded software in bonding machines. They do not

consider the power-awareness issue. Kapfhammer et al. [12] propose to unload not-in-

use test components to ease the memory constraints of testing activities. Our approach,

on the other hand, directly uses application code to detect failures.

Some researches improve the infrastructure to support testing. For example, testers

may use emulators of wireless sensor networks [13, 18] to selectively track whether

their applications have executed as intended. These emulators simulate the hardware

environments to facilitate the development and checking software applications.

The emulator approach is quite laborious since extensive prior profiling is required.

An alternative is to use verification patterns [15] that implement test scenarios
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collectively as test templates so that different initializations of test scripts can share the

same test infrastructure. There are approaches that propose some kind of conformance

testing framework to test embedded software formally [14].

The effectiveness and tradeoffs of these approaches are, however, not examined.

Although WSN applications are gaining popularity, their testing problems have not yet

been adequately studied.

3 Metamorphic Approach

Metamorphic testing [7, 8] was proposed as a property-based approach to alleviate the

test oracle problem. It has been applied to unit testing as well as integration testing.

These studies illustrate the notion of metamorphic testing via functional testing. Since

our proposal is closely related to the notion, we review it in this section.

3.1 Concept

A test oracle is a mechanism to determine whether a test case has passed or failed. It is

difficult to establish (automated) test oracles for some programs. Examples are software

for optimal routing, shortest paths, and partial differential equations. This is known as

the test oracle problem. Although human may serve as manual test oracles in some

cases, it is costly and error-prone.

In such circumstances, metamorphic testing aims at selecting follow-up test cases

based on source test cases, and check whether their results satisfy necessary conditions

relating the expected solutions of the source and follow-up test cases. These necessary

conditions are known as metamorphic relations [7, 8].

3.2 Metamorphic Relation

Informally, a metamorphic relation consists of two components. The first relies on a

relation, known as a source relation, which defines the relationship between source test

cases, their outputs, and follow-up test cases. This effectively provides a specification

for developers or test drivers to select follow-up test cases. The second component

defines the relationship among the target functional outputs of the source test cases and

follow-up test cases, and the test cases themselves. Such a metamorphic relation can be

used to verify test results to alleviate the test oracle problem.

A metamorphic relation is vital to the application of metamorphic testing. We adapt

the definition of metamorphic relation from [8] as follows:

Let f be a target function and let P be its implementation. Intuitively,

a metamorphic relation is a necessary condition over a series of inputs

x1, x2, . . . , xn and their corresponding results f (x1), f (x2), . . . , f (xn) for

multiple evaluations of f .

Definition 1 (Metamorphic Relation). [8] Let x1, x2, . . . , xk, where k ≥ 1, be a series

of inputs to a function f and let 〈 f (x1), f (x2), . . . , f (xk)〉 be the corresponding
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series of results. Suppose 〈 f (xi1), f (xi2), . . . , f (xim)〉 is a subseries, possibly an

empty subseries, of 〈 f (x1), f (x2), . . . , f (xk)〉. Let 〈xk+1, xk+2, . . . , xn〉, where n ≥
k + 1, be another series of inputs to f and let 〈 f (xk+1), f (xk+2), . . . , f (xn)〉 be

the corresponding series of results. Suppose, further, that there exist relations

r(x1, x2, . . . , xk, f (xi1), f (xi2), . . . , f (xim), xk+1, xk+2, . . . , xn) and r′(x1, x2, . . . , xn,

f (x1), f (x2), . . . , f (xn)) such that r′ must be true whenever r is satisfied. We say that

MR = { (x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn))|
r(x1, x2, . . . , xk, f (xi1), f (xi2), . . . , f (xim), xk+1, xk+2, . . . , xn)
→ r′(x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn))}

is a metamorphic relation. When there is no ambiguity, we simply write the metamorphic

relation as

MR: If r(x1, x2, . . . , xk, f (xi1), f (xi2), . . . , f (xim), xk+1, xk+2, . . . , xn),
then r′(x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn)).

Furthermore, x1, x2, . . . , xk are known as source test cases and xk+1, xk+2, . . . , xn are

known as follow-up test cases.

Consider an implementation of a hash function f , which computes the hashed

values of input vectors a1, a2, . . . , am. A necessary condition for its correctness is that

the hashed values of the input elements of an input vector should not change even

if we rearrange their positions in the input vector. In other words, given a correct

implementation, the hash total of the outputs from a source input vector should be the

same as that of the outputs from a permuted input vector.

Based on the above concept, a tester may first find a reliable permutation program

π to rearrange input vectors. The tester then sets up a source relation 〈b1, b2, . . . , bm〉=
π(〈a1, a2, . . . , am〉) to select a follow-up test case 〈b1, b2, . . . , bm〉 from any source test

case 〈a1, a2, . . . , am〉. Thus, the tester can define a metamorphic relation for the hash

function as follows:

MRhash: If 〈b1, b2, . . . , bm〉 = π(〈a1, a2, . . . , am〉),

then ∑k
i=1 f (〈b1, b2, . . . , bm〉)[i] = ∑k

i=1 f (〈a1, a2, . . . , am〉)[i],
where [i] refers to the i-th index of the array.

3.3 Metamorphic Testing

We also adapt the definition of metamorphic testing from [8] as follows:

This [metamorphic] relation must be satisfied when we replace f by P;

otherwise P will not be a correct implementation of f .

Definition 2 (Metamorphic Testing). [8] Let P be an implementation of a target

function f . The metamorphic testing of metamorphic relation

MR: If r(x1, x2, . . . , xk, f (xi1), f (xi2), . . . , f (xim), xk+1, xk+2, . . . , xn),
then r′(x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn)).
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involves the following steps: (1) Given a series of source test cases 〈x1, x2, . . . , xk〉 and

their respective results 〈P(x1), P(x2), . . . , P(xk)〉, select a series of follow-up test cases

〈xk+1, xk+2, . . . , xn〉 according to the relation r(x1, x2, . . . , xk, P(xi1), P(xi2), . . . , P(xim),
xk+1, xk+2, . . . , xn) over the implementation P. (2) Check the relation r′(x1, x2, . . . , xn,

P(x1), P(x2), . . . , P(xn)) over P. If r′ is false, then the metamorphic testing of MR

reveals a failure.

Let us use the above hash function example for an illustration. Suppose the

input vector 〈1, 2, 3〉 is hashed to 〈−1234, 98, 36〉, and the input vector 〈3, 2, 1〉,
constructed according to the implementation of the above source relation, is hashed

to 〈36, 98, 1234〉 by the implementation under test. A test driver will then compute the

sum of −1234, 98, and 36, which is −1100. It will also compute the sum of 36, 98, and

1234, which is 1368. Since the two resultant values differ, the metamorphic relation is

violated. The two test cases collaboratively reveal a failure.

4 Our Approach

In this section, we first clarify its relationship with metamorphic testing. Next, we

discuss the software environment in which the notion of metamorphic testing can be

adapted to reveal functional and non-functional problems of an application. Section 4.3

gives an example application scenario, and describes the types of fault. Finally, we shall

illustrate the use of our approach to identify these faults in Section 4.4.

4.1 Relationship with Metamorphic Testing

Consider a program P under test that supposedly implements a target function f .

Metamorphic testing, as reviewed in the last section, relies on the formulation of a

necessary condition of f . It ignores the software environment of P. On the other hand,

we observe that the deployment of P in different environments has substantial impacts

on its non-functional properties. Putting P on a low-voltage platform, for example,

may cause the power consumption to be different from that on a standard PC platform.

We suggest that the software environment should also be taken into consideration for

necessary conditions related to non-functional properties.

In addition, the generic notion of metamorphic testing needs to be enhanced to

address at least the following two areas in the testing of WSN applications: (a) How to

implement a metamorphic relation in wireless sensor networks? (b) Where to evaluate

the test results, since most WSN nodes have very limited storage, memory, bandwidth,

and so on?

In the rest of this section and Section 5, we shall investigate and elaborate on our

proposal to address these concerns and beyond.

4.2 Software Environment

In this section, we present an overview of our test model of WSN software applications.

A WSN is modeled as a set of nodes. We assume that one software component is
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deployed in each node. 8 Hence, one may refer to a software component by simply

referring to a node. In the sequel, we shall use the terms “node” and “software

component” interchangeably unless otherwise stated.

Each software component has its own function. We have studied a variety of

third-party TinyOS [4] applications as well as the tutorial applications of TinyOS

to come up with the following observation. We note that each software component

will accept an input, complete the required processing, and output a result before

accepting another input. Furthermore, in nesC applications, for instance, there are sub-

components within a software component such that the output of one sub-component

is piped to another sequentially. We maintain the concept of sequential programs in

our model because typical sensor nodes have little resources, and concurrency models

found in conventional operating systems are still poorly developed in, say, TinyOS

and nesC [3]. Thus, a temperature sensor node may behave as follows: It obtains the

current and voltage readings from its temperature sensor and computes the value of the

temperature. It then identifies its surrounding nodes and sends the computed value to a

destination node such as a data aggregation node or a base station.

We assume the following network property based on the characteristic that nodes in

a wireless sensor network are deployed in large scale for a particular application, such

as temperature monitoring in a nontrivial area zone.

Assumption: Every node has at least one adjacent node whose software

component performs the same function as the node itself.

Since energy is a critical resource for WSN nodes, each node is equipped with a

residual energy-level scan function. We model it as a utility function that returns the

instant energy level of the node. Hence, a test driver may inquire about the energy

level of a node before and after the execution of a software component in a software

environment and determine the energy φ consumed by the execution of a test case. From

this, software testers can track the energy spent on the execution of one test case in one

particular node.

4.3 Example Software Application Scenario

We describe an example temperature monitoring application that aims to identify

incidents of wildfire and forward alerts to the clients concerned. Figure 1 depicts a

blueprint of the application.

Description of the software application. A cluster of wireless sensor nodes is deployed

in a fire control zone. Some of them, such as nodes 1 and 5, are deployed with the same

software component P that computes the ambient temperature. These nodes determine

a raw temperature reading as follows: The resistance of the conductor in a sensor

normally varies with temperature, causing changes in current and voltage according

to Ohm’s Law plus or minus detailed practical deviations.

8 It is not difficult to extend our model to allow more than one software component to be

deployed in a node.
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P, Q : sensor nodes. 

∑
P

: a data aggregation node
Client: client to use the aggregated data

: ad hoc communication link to relay messages          
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Client
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∑
P
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5

6

7

8

9

P

Fig. 1. Example scenario of software application of wireless sensor network, which monitors

whether there is any wildfire.

For the ease of discussion, let us assume that the change in resistance is directly

proportional to the change in temperature under the operational conditions of the sensor

nodes. Thus, by comparing the instant current and voltage readings from the sensors

with those of reference temperatures, program logic can be implemented to estimate

the present temperature from the current and voltage readings.

Suppose a wildfire breaks out near sensor nodes 1 and 5, as shown in Figure 1. The

ambient temperature rises and, hence, triggers these nodes to gauge the environment.

As described above, the software component P will interpret the current temperature

based on the readings.

Each of the two nodes will send the computed temperature values to their respective

adjacent nodes, which will relay the values to the data aggregation device, node 7, for

further data summarization. In Figure 1, the computed temperature value from node 1

is forwarded to node 7 via nodes 2, 3, and 4, while that from node 5 is routed via nodes

6 and 7. (We note that nodes 4 and 7 are aliases of each other.)

Data aggregation is essential for wireless sensor networks [10]. It merges duplicated

data from distinct sources to save energy in data transmission. This is mostly

application-oriented. In other words, data consolidation criteria should have been

implemented in WSN applications to cater for resource constraints. In our example,

the data from nodes 1 and 5 are consolidated at node 7, so that clients at nodes 8 and 9

will receive a consolidated result.

Program. Embedded system developers frequently implement their software to meet

resource-stringent constraints. They use application-specific heuristics to develop the

program logic.

In the example application, the temperature sensors attached to nodes 1 and 5 have

the following specific property: In certain temperature ranges, the current or voltage

reading has a linear relationship with the temperature. See, for instance, the linear

portions of the two sample plots in Figure 2. On the other hand, the temperature range
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Current (mA)

Temperature 

Voltage (volts)

Temperature

53
48

49

25

0.03 0.05 0.04 1.20.11  0.115

13

27

Fig. 2. Example plots of variations in temperature against variations in current (left) and voltage.

(Not to scale.)

applicable to the linear portion of the current-temperature plot may not overlap with the

temperature range applicable to that of the voltage-temperature plot [1]. Furthermore,

the relationship among temperature, current, and voltage may be non-linear and much

more complex outside these temperature ranges.

Thus, when a program finds that it cannot determine the temperature value using

a simple calculation based on the instant current reading, it will try to compute the

temperature based on the instant voltage reading. When both approaches are not

applicable, it will use a more sophisticated and computationally expensive formula.

This three-way policy serves to save energy. There is also some environment-specific

calibration in the program to initialize the temperature variable.

Consider the following annotated self-explanatory example code fragment of

software component P to compute the temperature. 9

P (clb_I, clb_V: integer) { // environmental specific calibrations

// for current and voltage.

V, I, T: integer; // voltage, current, and temperature

T = 300; // environment-specific initialization

...

V = sensor_channel1( );

I = sensor_channel2( );

...

if (I >= 300 and I <= 500)

s0: T = 53 - (( I - 300 ) * (53 - 48)) / (500 - 300) + clb_I;

else if (I >= 1100 and I <= 1150)

// [Hard] Fault (a): The correct version should be:

// T = 27 - (( I - 1100 ) * (27 - 13)) / (1150 - 1100) + clb_I;

s1: T = 27 - (( I - 1150 ) * (53 - 48)) / (1150 - 1100) + clb_I;

9 The data types of the variables are integers instead of floating point numbers, because floating-

point calculation is expensive and seldom used in embedded system computations. For the ease

of presentation, a current of “I mA” is written as “10000× I” in the sample code. The treatment

of voltage V is similar. We also show numbers in the format of, say, “53 − 48” instead of “5”,

to enable readers to cross-reference with the example code fragment.
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// [Soft] Fault (b): The "else" keyword is missing.

// The correct version should be:

// else if (V >= 400 and V < 12000) ...

if (V >= 400 and V < 12000)

s2: T = 49 - (( V - 400 ) * (49 - 25)) / (12000 - 400) + clb_V;

else ...

// the general and sophisticated approach to compute T.

return T;

}

In the code fragment above, clb_I and clb_V are the input parameters of the program

P, denoting calibrations of voltage and current. Since the qualities of the hardware of

different nodes may vary, these parameters are used to offset the differences.

Faults. Two faults occur in the above program. Fault (a) affects the correctness of the

program. For instance, if clb_I is 0 and I is 1100, the faulty statement s1 will compute

T to be 13 instead of the expected value of 27. Fault (b) will cause statement s2 to

re-compute T (after being computed once by statement s0 or s1) if the voltage reading

fulfills the guard condition. Suppose that each of statements s0, s1, and s2 consumes

the same amount of energy ω, and that the energy for queries and condition checking

is negligible. Then, we have different energy consumptions of the sensor node although

the functional correctness of the program is not affected. We should add that, in practice,

the code is much more complex than the statements s0, s1, and s2 in the example.

To help readers follow our illustration, we note that many physical events have

life cycles, in which an event initializes, occurs, evolves, and then fades out. Different

sensors may simultaneously observe the same event at the same stage in their life cycles,

probably with slight differences in reading, which will be used as input parameters to

the WSN applications such as the example program above. For similar input parameters,

if two executions of the same program consume excessively different amounts of

energy, it may indicate an anomaly in the program.

4.4 An Illustration of Our Testing Approach

To adapt metamorphic testing to software applications on wireless sensor networks,

testers should determine a source relation r and the encompassing metamorphic

relation. In the sequel, we first illustrate them using the example application scenario.

Next, we will describe how to use them to detect faults (a) and (b).

Source relation. The use of isotropic physical conditions as metamorphic relations has

been proposed by Tse et al. [17]. For the testing of WSN applications, however, we need

to determine how to obtain such physical conditions. Consider again our application

scenario, where a wildfire sends heat to sensors nearby. As sensor nodes are typically

deployed in a massive scale, readings sensed by adjacent nodes or nodes in proximity,

such as nodes 1 and 5 in Figure 3, should be close enough to be considered equivalent.

As we shall explain in the next paragraph, a sense of equivalence is determined by the

application itself and we propose to use this important feature of WSN applications as

the basis for metamorphic relations.
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Table 1. Example test cases, their test outputs, and MT results that indicate failures.

Input components of 

test case 
Test 

case 

At 

node 

Temperature 

of 

environment Sensed I Sensed V

Computed 

result of 

P(0, 0) 

Expected 

result of 

P(0, 0) 

Computed 

by  

Metamorphic testing result that indicates 

failure 

t1 1 27 0.110 mA – 13 27 s1 

t2 5 27 – 1.15 V 27 27 s2 

“MRA: If r(T1, T2), then ≈P(T1, T2)” is 

violated because 13 ≠ 27. 

t3 1 49 0.047 mA 0.04 V 49 49 s0, s2 

t4 5 49 0.060 mA 0.05 V 49 49 s2 

“MRB: If r(T3, T4) ∧ ≈P(T3, T4), then φ3 = φ4” 

is violated because 2ω ≠ ω. 

P(I0, V0)

Client

Fire

Client

1

2

3

5

6

7

8

9

P(I0, V0)

heat

1, T1

1, T1

1, T1

MR
A
: If r(T1, T2),

then
P
(T1, T2).

r(T1, T2)

MR
B
: If r(T1, T2 )

P
(T1, T2),

then 1 = 2.

2, T2

2, T2

P

4

Fig. 3. Example metamorphic testing in wireless sensor network.

As shown in the column “Temperature of environment” in Table 1, for example, the

temperatures at nodes 1 and 5 are equivalent during the first two scenarios (T1 and T2

as depicted in Figure 3), and again equivalent during the last two scenarios. Testers

can control their test cases by controlling the location of the fire and the locations

of the sensor nodes. In this way, nodes can be set up to monitor the same physical

phenomenon. This source relation is represented by r(T1, T2) above the dotted line

linking nodes 1 and 5 in Figure 3.

Metamorphic relations. Two metamorphic relations are proposed:

Data aggregation is essential to software applications for wireless sensor

networks [10]. As we have explained in Section 4.2, a major property of data

aggregators is to eliminate duplicated data. A data aggregator may have a data

consolidation criterion ≈P( ) to determine whether two data sets resemble each other.

In our example, since any two sensory inputs fulfilling the isotropic physical condition

r should trigger the program under test to give “equivalent” estimated temperatures,

the data consolidation criterion should decide whether two estimated temperatures are

close enough to be treated as duplicated data. For the ease of illustration, we shall use

simple identity as the data consolidation criterion for the equivalence of temperatures.

The resulting metamorphic relation is as follows, and if a pair of test cases and their

execution results do not satisfy MRA, it indicates a functional failure.

MRA: If r(T1, T2), then ≈P (T1, T2).
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Let us now consider non-functional testing. In the absence of a test oracle, we cannot

isolate functionally passed test cases from failed ones. We resolve to make use of test

cases that do not indicate functional failures in terms of metamorphic relations such as

MRA. Since equivalent temperature values are determined from the application-specific

data consolidation criterion ≈P( ) based on an isotropic physical condition r, if they

need non-equivalent amounts of power for computation, it should indicate a failure. We

express this idea as a metamorphic relation.

MRB: If r(T1, T2) and ≈P (T1, T2), then φ1 = φ2.

Testing. In defining the above metamorphic relations, we recommended to make use of

the data consolidation criteria of data aggregation supplied by the application, together

with the isotropic physical conditions of sensor nodes in close proximity. A sketch of

the scheme is depicted in Figure 3.

We propose to place the task of test result evaluations in the data aggregator

component of the application, because the data consolidation criteria constitute part

of the logic of the data aggregator. This also relieves sensor nodes from having to

evaluate the test results, which would deplete the batteries faster than the original

plan of the application designers. Moreover, by utilizing the implementation provided

by the application, any failure detected via our approach will indeed indicate a fault

in the application. In the sequel, we shall illustrate the usefulness of our proposal in

identifying such failures.

To identify a failure due to fault (a), let us consider test cases t1 and t2 in Table 1. 10

Suppose that the input current and voltage calibrations are both zero as indicated in the

column captioned “Computed result of P(0 ,0)” in the table. Test case t1 causes P to

output 13 via the statement s1 (as indicated in the column captioned “Computed by”)

while test case t2 cause P to output 27 via the statement s2. Since 13 and 27 are not

equivalent, it violates the metamorphic relation MRA and, hence, reveals a failure. The

column captioned “Expected result of P(0, 0)” shows the expected result of the test

case for readers’ reference.

To identify a failure due to fault (b), let us consider the test cases t3 and t4 in Table 1.

Test case t3 executes both statements s0 and s2, each of which suffices to give the

correct result; however, the amount of energy consumed by the test case is 2ω. Test

case t4 executes statement s2 only and, hence, the energy consumed is ω. As a result,

they consume different amounts of energy. According to MRB, this indicates a failure

related to the energy consumption of the temperature monitoring software application.

5 Discussions

In our model, we place the implementation of a metamorphic relation in a data

aggregation node. There may be other alternatives. In general, one may deploy a piece

of software to a resource-stringent existing node (or cluster), to an existing node (or

10 Source test cases can be generated randomly or via test case selection methods. Discussions

on test case generation are beyond the scope of this paper.
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cluster) with ample resources, or to a new node (or cluster). Our approach lies with the

first option.

The second option further routes the data to a device with an ample amount of

resources, such as the server or a client workstation. However, the data communication

will consume a lot of energy. Sending all the test verdicts from a massive number of

devices to a specific monitoring device may exhaust the batteries of the devices easily.

It is, therefore, a less attractive approach.

One may suggest using simulations such as TOSSIM [13] for TinyOS applications,

so that simulated batteries can be replenished easily for simulated data communications

whenever necessary. However, simulators need profile settings in order to emulate

various initial testing conditions. The effort to set up testing profiles to cover different

test cases and the respective simulation results would be nontrivial.

The third option requires setting up a new device (or cluster) that may communicate

with the existing wireless sensor network. Since existing devices would discover and

communicate with the new device (or cluster), this may affect, say, the scheduling and

routing of the existing network and, hence, the original configuration to be verified.

Our proposal also suffers from a similar limitation, but intuitively to a lesser extent.

The impact of these issues warrants further investigation.

Our current proposal does not support streaming data, and has not explored

the potential of using other generic characteristics of WSN applications to define

metamorphic relations. We are identifying representative applications for case studies

and further investigation.

6 Concluding Remarks

We share the view of other researchers that there is a mega-trend in computing that many

computational units will be shifted to pervasive devices. Software applications running

on top of wireless sensor networks are emerging. It is a fast changing field where a

mature software development methodology is yet to be defined. This is particularly the

case for the testing of such applications, which must be carefully conducted before

deployment in real life. Our work is the first research attempt to adapt a testing

technique to the wireless sensor network environment.

Unlike their counterparts in conventional computing, wireless sensor networks

applications are subject to additional non-functional constraints (such as energy

constraint) that may have critical impacts on the behaviors of the software. For example,

a functionally correct execution can still be anomalous if it consumes an abnormal

amount of energy. In this paper, we have studied the correctness issue in the presence of

power-awareness concerns. We have investigated techniques to apply test cases and

verify test results related to power-awareness in a WSN environment. In short, our

testing technique has been strategically designed to blend in with the special features of

the WSN environment.

A sensory node reports readings by gauging the environment. It is, therefore,

intuitive to apply test cases in sensory nodes. However, these nodes are typically

resource-stringent, such as being equipped with limited amounts of memory and battery

power. Executing all the test activities in sensory nodes is impractical. This paper
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proposes to execute automated test result evaluations in data aggregation nodes instead.

The power-aware transmissions of intermediate and final test data are supported directly

by WSN programs. Since the data aggregation feature of WSN programs should be

power-aware, it further makes our technique attractive.

Our technique takes advantages of such built-in functionality of data aggregation.

We believe in the design rationale held by software engineers when they implement

the data aggregation functionality onto WSN nodes in their applications. As such, we

propose to use the data consolidation criteria of data aggregators to verify the test results

of isotropic physical phenomena of WSN applications in nodes in close proximity to

such data aggregation nodes. Since either the original application code or the built-

in equality check of the programming language is used to implement metamorphic

relations, any failure revealed should be due to a fault in the WSN application under

test.

We use a temperature monitoring application scenario to illustrate how to formulate

metamorphic relations based on the data consolidation criteria, and to tackle both

functional faults and power-related faults. We have taken an initial step to extend the

notion of metamorphic testing to deal with non-functional quality aspects. We have also

discussed the limitations and alternative approaches in the paper. Future work includes

the study of test case selection techniques, further optimization of oracle checks, and

the debugging of software applications. We shall report such findings and conduct more

empirical evaluations in the future.
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