
Mining time-delayed associations from discrete

event datasets

K. K. Loo Ben Kao

Department of Computer Science,
The University of Hong Kong, Hong Kong.

{kkloo, kao}@cs.hku.hk

Abstract. We study the problem of finding time-delayed associations
among types of events from an event dataset. We present a baseline algo-
rithm for the problem. We analyse the algorithm and identify two meth-
ods for improving efficiency. First, we propose pruning strategies that can
effectively reduce the search space for frequent time-delayed associations.
Second, we propose the breadth-first* (BF*) candidate-generation order.
We show that BF*, when coupled with the least-recently-used cache re-
placement strategy, provides a significant saving in I/O cost. Experiment
result show that combining the two methods results in a very efficient
algorithm for solving the time-delayed association problem.

1 Introduction

Developments in sensor network technology have attracted vast amounts of re-
search interest in recent years [1–3, 5–8]. One of the research topics related to
sensor networks is to find correlations among the behaviour of different sensors.
Such correlations are useful because they provide insight into the system moni-
tored and can help to make decisions on what action to be taken when certain
sensor value patterns are observed.

Consider a network monitoring system designed for collecting traffic data of
a network of switches and links as shown in Figure 1(a). In the figure, nodes
represent switches, whereas edges are links connecting switches. Under normal
conditions, the time needed to pass through a link is represented by the number

A

B

C

D

E

F

3

5
4

4

42

(a) Network topology

•
A

•
A

•
A

•
A

•
B

•
B

•
B

•
C

•
C
- time

0
|

3
|

4
|

5
|

7
|

9
|

10
|

13
|

15
|

(b) Alerts issued by a network monitoring system

Fig. 1. An example showing a network monitoring system

Administrator
 HKU CS Tech Report TR-2007-01

on the corresponding edge. When the traffic at Switch X exceeds certain capac-
ity, a congestion alert is raised. Figure 1(b) shows an example of alert signals.

By analysing an alert sequence, one may discover interesting correlations
among different types of alerts. For example, one may find that a Switch-A alert
is likely followed by a Switch-B alert within a certain time period. One may also
find that if such an A-B pattern occurs, a Switch-C alert is likely to occur soon
after. Such association information would be useful, for example, in congestion
prediction, which could be applied to intelligent traffic redirection strategies.

In this paper, we model correlations of events in the form of time-delayed

associations. In our model, an event e is a pair (Ee, te) where Ee is its type
and te is the time at which e occurs. For example, with our network switch
application, (A, 5) represents the event that a Switch-A alert (type) occurs at
time 5. We are interested in associations among events whose occurrences are
time-constrained. A time-delayed association thus takes the form I

[u,v]
−−−−→J , where

I, J are event types and u, v are two time values such that 0 < u ≤ v. The
association captures the observation that when an event i of type I occurs at
some time ti, it is likely that an event j of type J occurs at time tj such that
ti + u ≤ tj ≤ ti + v. If such an event j exists, event i is said to match the
association and we call event j a consequence of i w.r.t. the association.

Associations can be “chained” to form longer associations that involve more
than two event types. Chained associations are important because they can help
detecting risk of unfavourable conditions early so that precautionary actions can
be taken. Here, we can treat an association I

[u,v]
−−−−→J as a complex event type I. An

association between a complex event type I and an ordinary event type K has
the form I

[u,v]
−−−−→K. Intuitively, such an association refers to the observation that

if an event of type I occurs and is followed by one or more event of type J within
a certain constrained time period, then at least one of the type-J consequences
is likely followed by a type-K event within a constrained time period.

In [4], Mannila et al proposed the concept of episode, which is an ordered
list of events. They proposed the use of minimal occurrences to find episode
rules in order to capture temporal relationships between different event types. A
minimal occurrence of an episode is a time interval [ts, te) such that the episode
(an event sequence) occurs in the interval but not in any proper sub-interval of
[ts, te). Let α and β be two episodes. An episode rule has the form α[w1] ⇒ β[w2],
which specifies the following relationship: “if α has a minimal occurrence in the
interval [ts, te) such that te − ts ≤ w1, then there is a minimal occurrence of β in
[ts, t

′
e) such that t′e − ts ≤ w2”. Let us consider Figure 1(b) as an example. Let

α = {A → B} be an episode. From the figure, we see that a minimal occurrence
of α is [5, 8). Similarly, let β = {A → B → C} be another episode, which has a
minimal occurrence of [5, 14). Let w1 = 5 and w2 = 10, the minimal occurrence
of α in [5, 8) matches the episode rule α[5] ⇒ β[10] because there is a minimal
occurrence of β within 10 time units since time 5. The goal is to discover episodes
and episode rules that occur frequently in the data sequence.

In a sense, our problem is similar to episode discovery in that we are looking
for frequently occurring event sequences. However, we remark that the use of

minimal occurrence to define the occurrence of an episode might in some cases
fail to reflect the strength of an association. As an example, consider Figure 1(b)
again. It is possible that the three type-B events that occur at time t = 7, 8
and 10 are “triggered” respectively by the three preceding A’s that occur at
t = 3, 4 and 5. Hence, the association, namely, A → B has occurred three times.
However, only one period ([5, 8)) is qualified as a minimal occurrence of the
episode A → B. In other words, out of all 4 occurrences of A in the figure,
there is only 1 occurrence of the episode A → B, even though 3 of the A’s have
triggered B.

A major difference between our definition of time-delayed association and the
episode’s minimal occurrence approach is that, under our approach, every event
that matches an association counts towards the association’s support. This fairly
reflects the strength of correlations among event types. Also, our definition allows
the specification of a timing constraint [u, v] between successive event types in
an association. This helps removing those associations that are not interesting.
For example, if it takes at least 2 time units for a packet to pass through a
switch, then any type-B alert that occurs 1 time unit after a type-A alert should
not count towards the association A → B (See Figure 1). We can thus use the
timing constraint to filter false matches. The minimal occurrence approach used
in episode does not offer such flexibility.

A straightforward approach to finding all frequent associations is to generate
and verify them incrementally. First, we construct all possible length-2 associa-
tions X → Y , where X and Y are any event types in the data sequence. We then
scan the data sequence to count the associations’ supports, that is, the number
of event occurrences that match the associations. Those associations with high
supports are considered frequent. Next, for each frequent association X → Y ,
we consider every possible length-3 extension, i.e., we append every event type
Z to X → Y forming (X → Y) → Z. The support of those length-3 associations
are counted and those that are frequent will be used to generate length-4 asso-
ciations, and so on. The process stops when we can no longer obtain any new
frequent sequences. In Section 3 we will show how the above conceptual proce-
dure is implemented in practice. In particular, we show how the computational
problem is reduced to a large number of table joins. We call this algorithm the
baseline algorithm.

The baseline algorithm is not particularly efficient. We address two methods
to improve the algorithm’s efficiency. First, the baseline algorithm extends a
frequent association I → Y by considering all possible extensions (I → Y) → Z.
Many of such extended associations could be infrequent and the effort spent on
counting their supports is wasted. A better strategy is to estimate upper bounds
of the associations’ supports and prune away those that cannot meet the support
requirement. Second, as we will explain later, the baseline algorithm generates
(I → Y) → Z by considering two sub-associations, namely, I → Y and Y → Z.
In the process, two tables that are associated with the two sub-associations are
retrieved and joined. Since the number of such associations and their associated
tables is huge, the tables will have to be disk-resident. A caching strategy that

can avoid disk accesses as much as possible would thus have a big impact on the
algorithm’s performance. In this paper we study an interesting coupling effect
of a caching strategy and an association-generation order.

The rest of the paper is structured as follows. We give a formal definition of
our problem in Section 2. In Section 3, we discuss some properties of time-delayed
associations and propose a baseline algorithm for the problem. In Section 4, we
discuss the pruning strategies and the caching strategies. We present experiment
results in Section 5 and conclude the paper in Section 6.

2 Problem definition

In this section we define the problem of finding time-delayed associations from
event datasets. We define an event e as a 2-tuple (Ee, te) where Ee is the event
type and te is the time e occurs. Let D denote an event dataset and E denote
the set of all event types that appear in D. We define a time-delayed association
as a relation between two event types I, J ∈ E of the form I

[u,v]
−−−−→J . We call I

the triggering event type and J the consequence event type of the association.
Intuitively, I

[u,v]
−−−−→J captures the observation that if an event i such that Ei = I

occurs at time ti, then it is “likely” that there exists an event j so that Ej = J

and ti+u ≤ tj ≤ ti+v, where v ≥ u > 0. The likelihood is given by the confidence

of the association, whereas the statistical significance of an association is given
by its support. We will define support and confidence shortly.

For an association r = I
[u,v]

−−−−→J , an event i is called a match of r (or i matches

r) if Ei = I and there exists another event j such that Ej = J and ti +u ≤ tj ≤
ti + v. In other words, event i matches r if it leads to a positive example of the
association. The event j here is called a consequence of r. Note that a match can
correspond to more than one consequence, and vice versa. We use the notations
Mr to denote the set of all matches of r, qr,i to denote the set of all consequences
that correspond to a match i of r and mr,j to denote the set of all matches of
r that correspond to a consequence j. Also, we define Qr =

⋃
qr,i ∀i ∈ Mr.

That is, Qr is the set of all events that are consequences of r. The support of
an association r is defined as the ratio of the number of matching events to the

total number of events (i.e., |Mr |
|D|). The confidence of r is defined as the fraction

|Mr|
|DI |

, where DI is the set of all type-I events in D. We use the notations supp(r)

and conf (r) to represent the support and confidence of r, respectively. Finally,
the length of an association r, denoted by len(r), is the number of event types
contained in r.

We can extend the definition to relate more than two event types. Consider an
association r = I

[u,v]
−−−−→J as a complex event type I, an association between I and

an ordinary event type K is of the form r′ = I
[u,v]

−−−−→K. Here, I is the triggering
event type and K is the consequence event type. Intuitively, the association says
that if an event of type I is followed by one or more event of type J within
certain time constraints u and v, then at least one of the J ’s is likely to be
followed by a type K event. A match for the association r′ is a match i for r

such that, for some j where j ∈ qr,i, there exists an event k such that Ek = K

Symbol Meaning
D The event dataset
E The set of all event types
DI The set of all type-I events

e, Ee, te An event, the event type and time of the event e
I, J, ... (font face) (Ordinary) event types
I, J, ... (font face) Complex event types

r A time-delayed association
u, v Time constraints of a time-delayed association

Mr , Qr The set of all matches and consequences of the association r
qr,x All consequences corresponding to the match x w.r.t. r
mr,x All matches corresponding to the consequence x w.r.t. r

supp(r), conf(r), len(r) The support, confidence and length of r
ρs, ρc The support and confidence thresholds

Table 1. Symbols and notations

and tj + u ≤ tk ≤ tj + v. We say that event k is a consequence of event i

w.r.t. the association r′. The support of r′ is defined as the fraction of events

in D that match r′ (i.e., |Mr′ |
|D|). The confidence of r′ is defined as the ratio of

the number of events that match r′ to the number of events that match r (i.e.,
|Mr′ |
|Mr |

). Given two user-specified thresholds ρs and ρc and a timing constraint

[u, v], the problem of mining time-delayed associations is to find all associations
r such that supp(r) ≥ ρs and conf (r) ≥ ρc.

In our model, we use the same timing constraint [u, v] for all associations.
Therefore, we will use a plain arrow “→” instead of “

[u,v]
−−−−→” in the rest of the

paper when the timing constraint is clear from the context or is unimportant.
We summarize in Table 1 the symbols and notations used in the paper.

3 Baseline algorithm for finding frequent time-delayed

associations

We start this section with two properties based on which the baseline algorithm
is designed.

Property 1: If |DI |, i.e., the number of occurrences of type I events, is smaller
than ρs × |D|, then any association of the form r = I → J must not be
frequent.

Proof: By definition, the set of matches of r must be a subset of DI . Hence,
|Mr| ≤ |DI | < ρs × |D|. �

Property 2: For any associations x and y = x → K, we have supp(x) ≥
supp(y).

Proof: By definition, Mx ⊇ My. Hence, supp(x) ≥ supp(y). �

From Property 2, we know that if association y is frequent, so is x. In other
words, if an association x is not frequent, we do not need to consider any associ-
ations that are right extensions of x. The baseline algorithm (Figure 2) generates
associations based on this observation.

algorithm BASELINE
1) L := ∅; C := ∅ n = 2;
2) F := {all frequent event types}
3) foreach I ∈ F , J ∈ E do
4) C := C ∪ {I → J}
5) end-for
6) while C 6= ∅ do
7) Cn := C; C := ∅
8) foreach r ∈ Cn do
9) if r = I → J is frequent do
10) L := L ∪ {r}
11) C := C ∪ {(I → J) → K} ∀ K ∈ E
12) end-if
13) end-for
14) n := n + 1
15) end-while
16) return L

Fig. 2. Algorithm BASELINE

A
[3,5]

−−−−→B

m q

3 7
4 7
4 9
5 9
5 10

(a)

B
[3,5]

−−−−→C

m q

9 13
10 13
10 15

(b)

(A
[3,5]

−−−−→B)
[3,5]

−−−−→C
m q
4 13
5 13
5 15

(c)

Fig. 3. M -Q mappings for various
time-delayed associations

First, the algorithm collects into the set F all frequent event types (Line 2).
The algorithm then maintains two sets: C is a set of candidate associations which
are potentially frequent, and L is a set that contains all frequent associations
discovered so far. The set C is initialized to contain all possible length-2 associ-
ations (Lines 3-5). The support of a candidate association r is determined. (We
will discuss how to compute the support shortly.) If r is verified to be frequent,
we extend r to r → K for each event type K ∈ E and add them to C. The
algorithm terminates when all candidates are evaluated and no new candidates
can be generated.

Now, we discuss how to compute an association’s support. Consider an as-
sociation r = (I → J) → K. By definition, an event i is a match of r if i is a
match of I → J and for some consequence j of i, there exists an event k such
that Ek = K and tj + u ≤ tk ≤ tj + v. In other words, the event j is both a
consequence of r1 = I → J and a match of r2 = J → K. The set of all such
events is given by Qr1 ∩ Mr2 . Let us call this set the connecting set between r1

and r2. We have the following properties.

Property 3: For any event j ∈ Qr1 ∩ Mr2 , every i ∈ mr1,j is a match of r and
every k ∈ qr2,j is a consequence of event i w.r.t. r for every i ∈ mr1,j .

Proof: By definition, every i ∈ mr1,j is a match of r because there exists k such
that tj + u ≤ tk ≤ tj + v. Indeed, every k ∈ qr2,j fulfils this requirement.
Hence, every k ∈ qr2,j is a consequence of i w.r.t. r for every i ∈ mr1,j . �

Property 4: For any event j 6∈ Qr1 ∩ Mr2 , 6 ∃i ∈ mr1,j, k ∈ qr2,j such that i is
a match and k is a consequence of i w.r.t. r.

Proof: (i) Any event j not in Qr1 cannot be a consequence of any i ∈ Mr1 for
the association r1. So mr1,j = ∅. (ii) For any event j ∈ Qr1 but not in Mr2 ,
qr2,j = ∅. �

Given an association r and a match i of r, we can determine all consequences
j of i w.r.t. r. If we put all these match-consequence i-j pairs in a relation, we
obtain an M -Q mapping of the association r. Let us consider the network switch

example again (Figure 1). If r = A
[3,5]

−−−−→B, then the matching type-A event at
t = 4 leads to two consequence type-B events at t = 7 and 9. Hence the tuples
〈4, 7〉 and 〈4, 9〉 are in the M -Q mapping of the association. Figures 3(a) and 3(b)
show the M -Q mappings of the associations A

[3,5]
−−−−→B and B

[3,5]
−−−−→C, respectively.

By Property 3, given the M -Q mappings for r1 and r2, denoted respectively
by T1 and T2, we can derive the M -Q mapping of r by (1) performing an equi-
join on T1 and T2 so that T1.q = T2.m, where the join result is projected on
T1.m and T2.q. removing the duplicate tuples in the mapping. Figure 3(c) shows
the resultant M -Q mapping of (A

[3,5]
−−−−→B)

[3,5]
−−−−→C. The mapping is computed by

joining the M -Q mappings shown in Figures 3(a) and 3(b).
Given the M -Q mapping of an association r, the support supp(r) can be com-

puted by counting the number of distinct elements in the m column. The confi-
dence of r can then be easily determined by the supports of its sub-associations.
In this paper we focus on computing the supports of associations and extracting
those that are frequent.

4 Improving the baseline algorithm

The baseline algorithm described in the previous section offers a method to
find frequent time-delayed associations. In this section, we propose methods to
improve the efficiency of the algorithm by investigating two areas, namely the
search space for frequent associations and the handling of intermediate results.

4.1 Pruning strategy

Frequent itemset mining from market-basket data is a well-studied data mining
problem. Most algorithms for the problem are based on the apriori property
(i.e., if an itemset is frequent, all its subsets must also be frequent), which serves
as a pruning strategy that trims the search space for frequent itemsets and
avoids unnecessary computation. In our problem, however, the only base for
trimming the search space for frequent time-delayed associations is described
in Properties 1 and 2 (Section 3), which is why the baseline algorithm takes
all possible extensions of a frequent association as candidates. Nevertheless, if
we can develop methods that quickly determine whether a candidate can be
frequent without need to join the M -Q mapping, such methods can be regarded
as alternative pruning strategies and substantially improve the efficiency of the
baseline algorithm.

Multiplicity of consequences With respect to a time-delayed association, an
event can be a consequence of one or more matches. We define, for the association
r, the multiplicity of a consequence q as the number of matches such that q is a
consequence. Getting the multiplicity for each distinct consequence is easy. By
sorting the M -Q mapping of an association r by the consequence column, rows
for a particular consequence are arranged consecutively. Then, the multiplicity
of q can be obtained by counting the number of consecutive rows representing q.

m q q Multi
1 3 3 1
4 7 7 3
5 7
6 7
8 10 10 2
9 10

(a) M -Q mapping and mul-
tiplicity of consequences for
I → J

seg ST Vector
1 〈1〉
2 〈3, 5〉

(b) SectTop vec-
tors for I → J

m q seg num matches
7 9 1 0
11 13 2 1

3 1

(c) M -Q mapping and number of
matches per segment for J → K

Fig. 4. Multiplicity of consequences and SectTop

Figure 4(a) shows an example. Suppose the table on the left is the M -Q mapping
for an association I → J , the table on the right lists the multiplicity for each
distinct consequence.

Given a frequent association r, the multiplicity of consequences of r can help
us determine whether a candidate obtained by extending r can be frequent.
Next, we propose two methods, namely, GlobalK and SectTop, for identifying
candidates that cannot be frequent without actually finding the M -Q mappings
of the candidates.

GlobalK The idea of GlobalK is as follows. Recall that, for an association
r = I → J , the multiplicity of a consequence q is the number of matches such that
q is a consequence. Thus, the sum of the multiplicity values of n consequences
gives an upper bound on the number of corresponding matches w.r.t. r (the
sum is an upper bound because a match can correspond to more than 1 of
the n consequences). Now, suppose r is frequent. When evaluating whether a
candidate (I → J) → K, which is an extension of r, is frequent, we find its M -Q
mapping by firstly getting the connecting set (as discussed in Section 3). If n of
the consequences of r end up in the connecting set, the sum of their multiplicity
values gives an upper bound on the number of matches in the M -Q mapping of
(I → J) → K. If the upper bound is smaller than the support threshold, then
(I → J) → K cannot be frequent, and vice versa.

Here, for a time-delayed association r, if k is the minimum number of conse-
quences such that sum of their multiplicity values is not smaller than the support
threshold, then we call k the GlobalK threshold for r. For example, in Figure 4(a),
if the support threshold is 4 matches, then the GlobalK threshold for I → J is 2.
Intuitively, for a candidate (I → J) → K to be frequent, the number of matches
for J → K must not be smaller than the GlobalK threshold of I → J .

To compute the GlobalK threshold for an association, one can first inversely
sort the multiplicities of all consequences for r. Then, each of the multiplicity
values is added to a sum, which is initialized to 0, in order until the sum is equal
to or bigger than ρs × |D| after adding the k-th multiplicity. The k is then the
GlobalK threshold for r.

SectTop GlobalK offers a simple method for filtering out candidates that cannot
be frequent. However, the GlobalK threshold is calculated based on the highest

multiplicity values for an association r, which may be too generous as a pruning
strategy because the consequences with top multiplicity values may not always
enter the connecting set.

We address this issue in our second pruning strategy, SectTop. For a frequent
association I → J , SectTop “localizes” consequences with high multiplicities
to a portion of the whole length of time covered by the dataset D so that,
when evaluating whether a candidate (I → J) → K can be frequent, the high
multiplicities count only if the corresponding consequences can appear in the
connecting set.

To check whether a candidate (I → J) → K can be frequent, SectTop
assumes that the whole period of time covered by the dataset is divided into n

non-overlapping segments. Then, for I → J , a SectTop vector is determined for
each of the segments as follows. First, the multiplicity values of the consequences
for r appearing in the segment are sorted inversely. Then, we keep the k highest
multiplicity values such that k is minimum and sum of the k values exceeds
ρs × |D|. If the sum of all the k values does not exceed ρs × |D|, all of the
multiplicity values are kept. The multiplicity values are then transformed to a
vector of k values such that the x-th element is the sum of the top-x multiplicity
values in the segment. For example, in Figure 4(a), suppose the whole length of
time covered by D is divided into segments of 5 time units so that events with
time t ≤ 5 belongs to the first segment, those with 5 < t ≤ 10 belongs to the
second segment, and so on. In the first segment, only 1 consequence exists for
I → J and so the SectTop vector contains only 1 value (1 in this case). For the
second segment, since there are 2 consequences, the multiplicity values (namely,
3 and 2) are inversely sorted and the SectTop vector is obtained by keeping the
cumulative sum of the values. Hence, the vector 〈3, 5〉 is obtained.

The SectTop vectors for a frequent association r = I → J can be interpreted
as follows. When checking whether a candidate r′ = (I → J) → K can be
frequent, for each segment, if up to x consequences for r are to appear in the
connecting set, then the maximum number of matches for r′ induced from the
x consequences is given by x-th element of the vector. Sum of the maximum
number of match for each segment gives an overall (upper bound) guess on the
number of matches in the M -Q mapping of r′.

With the SectTop vectors for r found, we evaluate as follows whether a
candidate r′ can be frequent. With respect to the n segments when we calculate
the SectTop vectors for r, we count the number of distinct matches for J → K

appearing in each segment. If there are x matches for J → K in the i-th segment,
then, in the segment, at most x consequences of r may appear in the connecting
set. Hence, the maximum number of matches induced from the x consequences is
given by the x-th element of the corresponding SectTop vector. The sum of the
maximum number of matches for each segment thus gives an overall maximum
number of matches of r′. If the overall maximum is smaller than ρs × |D|, r′

cannot be frequent.

For example, the table on the left in Figure 4(c) is the M -Q mapping of
J → K, while that on the right lists the number of matches of J → K appearing

A → A

(A → A) → A

((A → A) → A) → A

((A → A) → A) → B

:
B → A

B → B

(B → B) → A

(B → B) → B

((B → B) → B) → A

((B → B) → B) → B

:
B → C

(B → C) → A

((B → C) → A) → A

((B → C) → A) → B

:
(D → C) → B

((D → C) → B) → A

((D → C) → B) → B

:

(a) Depth-first can-
didate generation

A → A

A → B

A → C

:
(A → A) → A

(A → A) → B

(A → A) → C

:
((A → A) → A) → A

((A → A) → A) → B

:
((B → B) → B) → A

((B → B) → B) → B

:
((B → C) → A) → A

((B → C) → A) → B

:
((D → C) → B) → A

((D → C) → B) → B

:

(b) Breadth-first candi-
date generation

A → A

A → B

:
(A → A) → A

(A → A) → B

:
((A → A) → A) → A

((A → A) → A) → B

((A → A) → A) → C

((A → A) → A) → D

((B → C) → A) → A

((B → C) → A) → B

((B → C) → A) → C

((B → C) → A) → D

((B → B) → B) → A

((B → B) → B) → B

((B → B) → B) → C

((B → B) → B) → D

((D → C) → B) → A

((D → C) → B) → B

:

(c) Breadth-first*
candidate generation

Fig. 5. Candidate generation schemes

in each segment. When evaluating whether r′ = (I → J) → K can be frequent,
we check the number of matches of J → K in each segment against the SectTop
vectors of I → J . It turns out that the maximum number of matches for r′ is (0
+ 3 + 0) = 3. If the support threshold is 4 matches, then we know immediately
that r′ cannot be frequent.

4.2 Cache management

The baseline algorithm generates a lot of associations during execution. Some
of them are needed for candidate evaluation repeatedly later on. It is, of course,
ideal if all these associations can be fitted in the main memory so that they
can be instantly retrieved whenever needed. However, this is usually not the
case because the volume of data being processed is often very large. Maintaining
a cache is thus a compromise so that, while keeping some of the intermediate
results in memory and reduce I/O accesses, memory can be made available for
other operations.

When the cache overflows, part of the cached data is replaced by data fetched
from disk. Two commonly used strategies for choosing data for replacement
are “Least recently used” (LRU), i.e., data that have not been accessed for
the longest time are replaced, and “Least frequently used” (LFU), i.e., least
frequently accessed data in the cache are replaced.

The effectiveness of cache, i.e., the likeliness that the data accessed is in
the cache, is often mentioned as the hit-rate. To achieve high cache hit-rate, an
important factor is that, if a piece of information is repeatedly accessed, the
accesses should be temporally close so that when the information is accessed
again, it is less likely that the information have been swapped out of the cache.

Figure 5 shows three different orders that candidates are generated and eval-
uated. Figure 5(a) demonstrates a depth-first candidate generation, i.e., after an

association r = I → J is evaluated as frequent, the algorithm immediately gen-
erates candidates by extending r and evaluates them. Figure 5(b), on the other
hand, shows a breadth-first candidate generation that all candidates of the same
length are evaluated before longer candidates. These are common schemes for
level-wise algorithms evaluating candidates for inclusion in results.

We argue that ordinary depth-first and breadth-first candidate generation
schemes do not pay attention to their impact on cache management. For example,
in Figure 5(a), A → B is referenced when the candidates ((A → A) → A) → B

and ((B → C) → A) → B are evaluated (see the highlighted parts in the figure).
In between the accesses, a number of other candidates are evaluated. Recall that,
when a candidate (I → J) → K is evaluated, we compute its M -Q mapping from
those of I → J and J → K. Hence, the more candidates evaluated between two
accesses to A → B, the more other associations are brought into the memory and
so cache overflows are more likely. So, when A → B is accessed the second time,
it is likely that A → B no longer resides in cache, and an I/O access is needed to
bring it back to memory from disk. Similar problem exists in the breadth-first
candidate generation shown in Figure 5(b).

It is noteworthy that, in the baseline algorithm, length-2 associations are
frequently accessed when evaluating candidate associations. In particular, for an
association r ∈ Li whose consequence event type is X , each of length-2 associa-
tions with triggering event type X , i.e., those associations of the form X → Y

for some event type Y , is referenced when evaluating candidates generated from
r. By processing as a batch all associations in Li with the same consequence
event type X (Figure 5(c)), we can have length-2 associations with triggering
event type X accessed closely temporally, which favours cache hit-rate.

The special order for candidate evaluation can be easily fitted into the breadth-
first candidate generation scheme. At the end of each iteration, we can sort the
associations in Li by their consequence event type. Then the sorted associations
are fetched sequentially for candidate generation. We call this the breadth-first*

candidate generation scheme.

5 Experiment results

We conducted experiments using stock price data. Due to space limitation, we
leave the discussion on how the raw data is transformed into an event dataset
in Appendix A.1. The transformed dataset consists 99 different event types and
around 45000 events.

5.1 Pruning strategy

In the first set of experiments, we want to study the effectiveness of the pruning
strategy “GlobalK” and “SectTop”. The effectiveness is best reflected by the
number of candidate associations being evaluated. Figure 6 shows the number of
candidate associations evaluated when ρs is set at different values. We comment
that a candidate is regarded as “evaluated” only if the M -Q mapping of the

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 0.3 0.4 0.5 0.6

N
um

be
r

of
 c

an
di

da
te

s
ev

al
ua

te
d

Support threshold

NoOpt
GlobK
ST32

 0

 100000

 200000

 300000

 400000

 0.4 0.5 0.6

(a) [u, v] = [δ, 1]

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0.7 0.75 0.8 0.85 0.9

N
um

be
r

of
 c

an
di

da
te

s
ev

al
ua

te
d

Support threshold

NoOpt
GlobK
ST32

 0

 1e+06

 2e+06

 0.8 0.85 0.9

(b) [u, v] = [δ, 2]

Fig. 6. No. of candidates evaluated at different ρs

candidate is enumerated. The lines labelled “NoOpt”, “GlobalK” and “ST32”
represent respectively the case that no pruning strategy (i.e., the original baseline
algorithm) is used, that “GlobalK” is chosen and that “SectTop” is chosen with
the time covered by D divided into 32 segments.

Figure 6(a) shows the results when u and v are set to δ (i.e., a value just
bigger than 0) and 1 respectively. As shown in the figure, both GlobalK and
SectTop save a major fraction of candidate evaluations performed. At high sup-
port (0.6%), savings of 55% and 82% are observed respectively with GlobalK and
SectTop over the baseline algorithm while, at low support (0.3%), the savings are
32% and 63%. Similar trend is observed when we changed v to 2 (Figure 6(b)).
Although the savings are not as dramatic as in the case when v = 1, at low
support (0.7%), GlobalK and SectTop achieve savings of 26% and 41%, while at
high support (0.9%), the savings are around 39% and 44% respectively.

As shown by the figures, SectTop always outperform GlobalK in terms of
number of candidates being evaluated. A reason is that, for each candidate as-
sociation, SectTop calculates for each segment an upper-bound on the number
of matches that are associated to the consequences in the segment. Summation
of the upper-bounds for each segment thus gives an upper-bound on the overall
number of matches for the association. A reasonably fine segmentation of the
time covered by D ensures that, when evaluating the candidate (I → J) → K,
the multiplicity of a consequence q for I → J is counted into the upper bound
only if there exists a match for J → K that occurs near q. Hence, we can obtain
a relatively tight upper-bound on the number of matches and avoid unneces-
sary candidate evaluations. For GlobalK, however, the GlobalK threshold for a
frequent association is calculated from the highest multiplicity values without
considering where these values actually exist in the whole period of time covered
by D. So, the pruning ability of GlobalK is not as good as that of SectTop.

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 256 64 16 4

N
um

be
r

of
 tu

pl
es

 r
ea

d
fr

om
 d

is
k

Cache size (’000 tuples)

LRU-BF
LRU-DF

LRU-BF*

(a) LRU, ρs = 0.3%, “NoOpt”

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 256 64 16 4

N
um

be
r

of
 tu

pl
es

 r
ea

d
fr

om
 d

is
k

Cache size (’000 tuples)

LRU-BF
LRU-DF

LRU-BF*

(b) LRU, ρs = 0.3%, “ST32”

Fig. 7. I/O requirement for LRU ([u, v] = [δ, 1], ρs = 0.3%)

5.2 Candidate generation, cache replacement strategy and I/O
access

In the second set of experiments, we want to study the effect of candidate gen-
eration orders on different cache replacement strategies. We plot the number of
M -Q mapping tuples read from disk, reflecting total I/O requirement, against
the size of the cache and the results in Figures 7 and 8.

We start the analysis with the LRU strategy and ρs set to a relative low
value at 0.3%. Figure 7(a) shows the I/O performance when no pruning strategy
is applied. From the figure, we find that the I/O performance of breadth-first
and that depth-first strategies are very much close to each other. Interestingly,
increasing the cache size from 4000 to 256000 tuples does not result in much
improvement in performance. On the other hand, for breadth-first* strategy,
the I/O costs begins to drop at 16000 tuples and then drops dramatically. The
improvement levels down when the cache size is increased to 24000 tuples.

The sharp improvement here is no coincidence. Recall that in breadth-first*

candidate generation, at the end of an iteration, we sort the frequent associations
found in the iteration by their consequence event type. Candidates are formed
and evaluated by extending each of the sorted associations sequentially. In other
words, after candidates in the form (I → X) → Y are evaluated, for some
complex/simple event type I and simple event types X and Y , next evaluated
are those in the form (I′ → X) → Z (if there exists such I

′). Hence, the whole set
of length-2 associations with triggering event type X are accessed multiple times.
If the cache is big enough to hold the M -Q mappings of the whole set of length-2
associations, it is very likely that the M -Q mappings are still in the cache next
time when they are referenced. For the dataset in the experiment, we find that
for a particular triggering event type, the maximum sum of the sizes of all M -Q
mappings is around 22000 tuples (as shown in Figure 10 in Appendix A.3). A
cache with 24000-tuple capacity can thus hold the M -Q mappings of any set of
length-2 associations with the same triggering event type. Hence, the algorithm
can take full advantage of the cache and save I/O access when the associations
are accessed again. For cases with smaller cache size, however, the cache is not

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 256 64 16 4

N
um

be
r

of
 tu

pl
es

 r
ea

d
fr

om
 d

is
k

Cache size (’000 tuples)

LFU-BF
LFU-DF

LFU-BF*

(a) LFU, ρs = 0.3%, “NoOpt”

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 256 64 16 4

N
um

be
r

of
 tu

pl
es

 r
ea

d
fr

om
 d

is
k

Cache size (’000 tuples)

LFU-BF
LFU-DF

LFU-BF*

(b) LFU, ρs = 0.3%, “ST32”

Fig. 8. I/O requirement for LFU ([u, v] = [δ, 1], ρs = 0.3%)

big enough and so the M -Q mapping of each length-2 associations are repeatedly
read from disk each time when it is needed.

Figure 7(b) shows the case when “ST32” is applied. The highest I/O required
is about 60% of the case that no pruning strategy is applied because a lot of
candidate evaluations are avoided by the pruning strategy. Like the case when
no pruning strategy is applied, breadth-first and depth-first perform similarly
in I/O requirement. Besides, a big drop in I/O access is observed with the line
representing breadth-first* although, in this case, the big drop begins at the
cache size of 10000 tuples, instead of 16000 tuples in the previous case. This
is because SectTop avoids evaluating candidates that cannot be frequent. So,
when evaluating candidates generated by extending a frequent association, say
I → X , it is not necessary to access every association X → Y . A smaller cache is
thus enough to hold the M -Q mappings of all length-2 association for candidate
evaluation.

Figure 8 shows the case when LFU is adopted instead of LRU. From the
figure, all three candidate generation methods are very similar in terms of I/O
requirement. Both depth-first and breadth-first generation performed slightly
better when LFU was adopted instead of LRU. However, the “big drop” with
breadth-first* is not observed and so the performance of breadth-first* is much
worse than the case with LRU. It is because the LFU strategy gives preference
to data that are frequently accessed than those that are recently accessed when
deciding on what to keep in the cache. This does not match the idea of breadth-
first* candidate generation, which works best when recently accessed data are
kept in the cache. In addition, associations entered the cache early may reside
in the cache for a long time because, when they are first used for evaluating
candidates, a certain number of accesses have been accumulated. Associations
newly added to the cache must be accessed even more frequently to stay in the
cache. Besides, the LFU strategy works better when accesses to the associations
are very skewed. In the stock data we used, however, the distribution of frequent
associations are relatively even in the sense that different event types appear as
the consequence event type (i.e., on the right-hand-side) of some association. So,

length-2 associations with different triggering event type (i.e., on the left-hand-
side) are accessed, which does not favour LFU.

The same set of experiments has also been run with ρs set to 0.6%, a relatively
high value. The graphs are similar in shape to those for the ρs = 0.3% case. Due
to space limitation, we include the graphs in Appendix A.2.

6 Conclusion

We propose time-delayed association as a way to show time-delayed dependen-
cies between types of events. Such kind of associations is particularly useful in
monitoring systems since, based on mined associations, one can make predic-
tions on events that are likely to occur in a designated time-frame. Precautious
actions can be taken if unfavourable conditions are predicted.

We illustrate how time-delayed associations can be found from event datasets
by starting with a simple but brute-force algorithm. We identify two areas for
improvement in the simple algorithm. First, the fact that apriori property does
not hold in time-delayed associations means that the simple algorithm has to
evaluate a very large number of candidate associations. A good candidate prun-
ing strategy is thus needed to prune the search space for frequent associations.
We proposed two pruning strategies, namely, GlobalK and SectTop, and exper-
iments show that they can reduce the number of candidates being evaluated.

Besides the candidate pruning issue, in a sensor environment, the volume of
data being processed is likely to be high. Hence, swapping some of the intermedi-
ate results to disk is necessary in order to make room for other operations. When
the intermediate results are brought back to memory, time-consuming I/O ac-
cesses are needed. A smart caching here can thus reduce the I/O requirement of
the algorithm. We find that the order that candidate associations are formed and
evaluated would affect the performance of the cache. Experiment results show
that the breadth-first* candidate generation scheme, coupled with a reasonably-
sized cache and the LRU cache replacement strategy, can significantly reduce
the I/O requirement of the algorithm.

References

1. Xiaonan Ji, James Bailey, and Guozhu Dong. Mining minimal distinguishing sub-
sequence patterns with gap constraints. In ICDM, pages 194–201, 2005.

2. Daesu Lee and Wonsuk Lee. Finding maximal frequent itemsets over online data
streams adaptively. In ICDM, pages 266–273, 2005.

3. Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. Seman-
tics and evaluation techniques for window aggregates in data streams. In SIGMOD

Conference, pages 311–322, 2005.
4. Heikki Mannila and Hannu Toivonen. Discovering generalized episodes using mini-

mal occurrences. In KDD, pages 146–151, 1996.
5. Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos. Streaming pattern dis-

covery in multiple time-series. In VLDB, pages 697–708, 2005.

6. Yasushi Sakurai, Spiros Papadimitriou, and Christos Faloutsos. Braid: Stream min-
ing through group lag correlations. In SIGMOD Conference, pages 599–610, 2005.

7. Mohammed Javeed Zaki. Spade: An efficient algorithm for mining frequent se-
quences. Machine Learning, 42(1/2):31–60, 2001.

8. Rui Zhang, Nick Koudas, Beng Chin Ooi, and Divesh Srivastava. Multiple aggre-
gations over data streams. In SIGMOD Conference, pages 299–310, 2005.

APPENDIX

A Supplementary experiment results

A.1 Data collection

We conduct experiments using stock price data of the 33 constituent stocks of
Hang Seng Index, the most indicative stock market index in Hong Kong. The
stock price data are transformed to event data as follows. For each trading day,
we compare the opening price of a stock against its closing price. For the stock
X , an event “XA” is recorded for the trading day if the opening price of X is
higher then its closing price, “XB” is recorded if both prices are equal and “XC”
is recorded otherwise. Hence, there are 99 different event types. In practice, an
event number is sequentially assigned to each of the event types while another
sequence number is assigned to each of the transaction days in chronological
order. Each event recorded are thus of the form (E, t) where E is the event
number and t is the transaction day sequence number. The stock price dataset
contains data from 01 Jan 2000 to 20 Apr 2006, which consists 1533 trading
days. The resultant dataset contains around 45000 events. We comment that
the size of the dataset is smaller than 33 × 1533 = 50589 because some of the
HSI constituent stocks first became floated after year 2000.

A.2 I/O requirements for the high ρs case

Figure 9 shows the I/O performance when ρs is set to 0.6%, a relatively low
value. Figure 9(a) and 9(b) show respectively the performance with LRU when no
pruning strategy is used and when “SectTop-32” is applied, whereas Figure 9(c)
and 9(d) are respectively the cases with LFU when no pruning strategy is used
and when “SectTop-32” is applied. The shapes of the graphs are very much
similar to their 0.3% counterparts and our arguments stated in the paper also
apply to these cases.

A.3 Sizes of M-Q mappings for length-2 associations

In Figure 10, we list the total size of M -Q mappings for length-2 associations
that have common triggering event type. The total size is given by the total
number of tuples in the M -Q mappings. X-axis of the graph is the sequence
number of the event type. We comment that the maximum height of the bars
reads 21926 tuples.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 256 64 16 4

N
um

be
r

of
 tu

pl
es

 r
ea

d
fr

om
 d

is
k

Cache size (’000 tuples)

LRU-BF
LRU-DF

LRU-BF*

(a) LRU, ρs = 0.6%, “NoOpt”

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 256 64 16 4

N
um

be
r

of
 tu

pl
es

 r
ea

d
fr

om
 d

is
k

Cache size (’000 tuples)

LRU-BF
LRU-DF

LRU-BF*

(b) LRU, ρs = 0.6%, “ST32”

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 256 64 16 4

N
um

be
r

of
 tu

pl
es

 r
ea

d
fr

om
 d

is
k

Cache size (’000 tuples)

LFU-BF
LFU-DF

LFU-BF*

(c) LFU, ρs = 0.6%, “NoOpt”

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 256 64 16 4
N

um
be

r
of

 tu
pl

es
 r

ea
d

fr
om

 d
is

k

Cache size (’000 tuples)

LFU-BF
LFU-DF

LFU-BF*

(d) LFU, ρs = 0.6%, “ST32”

Fig. 9. I/O requirement for different settings ([u, v] = [δ, 1]), ρs = 0.6%

 0

 5000

 10000

 15000

 20000

 25000

 0 10 20 30 40 50 60 70 80 90

T
ot

al
 s

iz
e

of
 M

-Q
 m

ap
pi

ng
s

Event type serial number

Fig. 10. Total size of M -Q mappings for length-2 associations grouped by the triggering
event type

