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Abstract

Adaptive Random Testing (ART) is an effective

improvement of Random Testing (RT) in the sense that

fewer test cases are needed to detect the first failure. It

is based on the observation that failure-causing inputs are

normally clustered in one or more contiguous regions in

the input domain. Hence, it has been proposed that test

case generation should refer to the locations of successful

test cases (those that do not reveal failures) to ensure

that all test cases are far apart and evenly spread in the

input domain. Distance-based ART and Restricted Random

Testing are the first two previous attempts. However,

test cases generated by these attempts are far apart but

not necessarily evenly spread, since more test cases are

generated near the boundary of the input domain. This

paper analyzes the cause of this phenomenon and proposes

an enhanced implementation based on the concept of
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virtual images of the successful test cases. The results

of simulations show that the test cases generated by our

enhanced implementation are not only far apart but also

evenly spread in the input domain. Furthermore, the fault

detection capability of ART for high-dimensional input

domains is also enhanced.

1 Introduction

1.1 Random Testing

In a typical commercial software development organi-

zation, testing often accounts for over 50% of the total

development cost. Since exhaustive testing is infeasible in

most situations, research has been focused on the selection

of test cases that have higher chances of revealing program

failures [13]. Among the test case selection strategies,

random testing (RT) is regarded as a simple but useful

method [14, 15]. It avoids complex analyses of program

specifications or structures and simply selects test cases

from the whole input domain randomly. Hence, the test

case generation process is cost effective and can be fully

automated. RT has been successfully applied in many

real-life applications [8, 9, 11, 16–18, 21–23]. For example,

it is used as an effective test case generator to test the

robustness of Windows NT applications [11], Java JIT

compiler [23], database systems [22], and several versions

of UNIX system [16, 17]. Furthermore, industry has noticed

its importance and begins to incorporate it in software

testing tools [1].
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1.2 Successful Test Cases

If a test case does not reveal any failure, it is regarded as a

successful test case. Most test cases are successful test cases

if the program is written by a competent programmer [10].

In conventional testing, successful test cases are usually

considered to be useless [20] and will be discarded or

retained only for regression testing later. However, in our

view, successful test cases are informative and should be

exploited further. Fault-based testing [19] is an example of

the utilization of successful test cases to prove the absence

of specific kinds of error.

1.3 Adaptive Random Testing

Recently, Chen et al. proposed a method named Adaptive

Random Testing (ART) to improve on the fault detection

capability of RT by exploiting successful test cases [6].

ART is based on the observation [7] that failure-causing

inputs are clustered together in one or more regions.

In other words, failure-causing inputs are “denser” in

some areas than others. In general, common failure-

causing patterns can be classified into the block, strip,

and point patterns. Examples of these failure patterns

for a program with a 2-dimensional input domain are

given in the schematic diagrams in Figure 1, where the

outer square represents the input domain and the shaded

areas represent failure-causing inputs. Figure 2(a–c) show

fragments of pseudo-code producing each of these types of

failure pattern. Intuitively, subsequent test cases that are

close to successful test cases are less likely to hit the failure-

causing region than those that are far apart from successful

test cases. Hence, ART exploits the spatial distribution

of successful test cases to ensure that test cases be evenly

spread and far apart from one another.

Simulations and empirical studies of real-life pro-

grams [6] have shown that ART have significantly enhanced

RT in the sense that fewer test cases are needed to detect

the first failure. Chen et al. [7] also proposed to use F-

measure, the number of test cases to detect the first failure,

as the metric for fault detection capability. They reason

that F-measure is a more informative metric because testing

usually stops after the first failure has been detected.

Several ART algorithms have been proposed [2–4] based

on the same rationale. Distance-based ART (DART) and

Restricted Random Testing (RRT) are the first two attempts.

However, these two algorithms have a general preference

in generating test cases close to the edge of the input

domain. In other words, the test cases generated by these

implementations are not evenly spread. Consequently, the

fault detection capability depends on the location of the

failure-causing region.

Figure 1. Examples of the three types of

failure pattern

INTEGER X, Y

INPUT X, Y

IF (X > 7 AND X < 9)

AND (Y > 8 AND Y < 12)

THEN

Z = X + Y

/ / s h o u l d be Z = X ∗ Y

ELSE

Z = X / Y

OUTPUT Z

(a) Block pattern

INTEGER X, Y

INPUT X, Y

IF (X + Y < 10)

/ / s h o u l d be IF ( X + Y < 12)

THEN

Z = X ∗ Y

ELSE

Z = X / Y

OUTPUT Z

(b) Strip pattern

INTEGER X, Y

INPUT X, Y

IF (X mod 4 = 0)

AND (Y mod 4 = 0)

THEN

Z = X + Y

/ / s h o u l d be Z = X ∗ Y

ELSE

Z = X / Y

OUTPUT Z

(c) Point pattern

Figure 2. Code fragments producing exam-

ples of the three types of failure pattern
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Set S to be empty and l to be 0;

do {
Randomly generate k test cases

to form the candidate set C;

for each candidate Ci in C {
for each successful test case S j in S {

dist(Ci,S j) =
√

∑
n
p=1(cip

− s jp
)2

}
Mini = min{dist(Ci,S j)|1 ≤ j ≤ l}
/*Mini is the minimum Cartesian distance

between test case candidate Ci and all

successful test cases in S*/

}
Take Cq as the test case such that

Minq = max{Mini|1 ≤ i ≤ k}
Add Cq to S

l = l + 1;

} while (Cq does not reveal a failure

and resource limit has not been reached)

Figure 3. The original DART algorithm

In this paper, we analyze the cause of this phenomenon

and propose an enhancement to the DART and RRT

algorithms. Section 2 analyzes the root of this phenomenon.

Section 3 proposes the enhanced algorithms and Section 4

reports on simulation results. The conclusion is given in

Section 5.

2 Boundary Effects in some ART

Implementations

The rationale behind ART is to achieve an even spread of

test cases by exploiting the spatial distribution of successful

test cases. Based on this rationale, several implementations

of ART have been developed. However, most of them

cannot achieve a truly even distribution of test cases. An

analysis of these implementations will be presented in this

section.

Distance-based ART (DART) [6] is the first implemen-

tation of ART. This method maintains a set of candidate

test cases C = {C1, C2, . . . , Ck} and a set of successful

test cases S = {S1, S2, . . . , Sl}. The candidate set consists

of a fixed number of test case candidates, from which new

test cases will be selected. The successful set records the

locations of all successful test cases, which are used to

guide the selection of the next test case. For each test

case candidate Ci, DART computes its distance di from the

successful set (defined as the minimum distance between Ci

and the successful test cases), and then selects the candidate

Ci having the maximum di to be the next test case. The

algorithm is shown in Figure 3.

Set S to be empty, l to be 0;

do {
do {

Randomly generate a test cases candidate c;

for each successful test case S j in S {

dist(c,S j) =
√

∑
n
p=1(cp − s jp

)2

if dist (c, S j) > exclusion zone radius of S j

c is outside the exclusion zone

else

c is inside the exclusion zone

}
} while (c is not outside all the exclusion zone)

c is the next test case

Add c to S

l = l + 1;

} while(c does not reveal a failure

and the resource limit has not been reached)

Figure 4. The original RRT algorithm

It should be noted that candidates located close to the

boundary of the input domain have a higher chance to be

selected as test cases than those close to the center, because

no successful test cases can be outside the boundary. In this

paper, we refer to the phenomenon that the test cases are

more likely to be clustered near domain boundaries as the

boundary effect.

Restricted Random Testing (RRT) [2] is another

implementation of ART. It only maintains the successful set

S = {S1, S2, . . . , Sl} without any candidate set. Instead,

RRT specifies exclusion zones around every successful test

case. It randomly generates test case one by one until

a candidate outside all exclusion zones is found. The

algorithm is shown in Figure 4.

Both DART and RRT select test cases based on the

locations of successful test cases, and use distances as a

gauge to measure whether the next test case is sufficiently

far apart from all successful test cases. Hence, the boundary

effect also exists in RRT. The candidates near the boundary

have a higher chance to be outside all exclusion zones.

Two series of simulations were conducted to demon-

strate such effect. In the first simulation, we investigated

the spatial distributions of the test cases generated by DART

and RRT without considering the failure-causing inputs. In

each trial of test case generation, the locations of the first n

test cases, where n = 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50,

100, 500, or 1000, were recorded. A million independent

trials for DART and RRT were conducted. The spatial

distributions were studied for the first n test cases of each

trial for the respective values of n.

To clearly demonstrate the spatial distribution, the

positions of the test cases were projected onto one

dimension. We analyzed the distribution in one dimension
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Location of

failure-causing input
DART RRT

Edge 53 50

Center 67 65

Anywhere 66 62

Table 1. Average F-Measure of differently

located failure-causing inputs for DART and

RRT under block failure pattern on a 2-

dimensional input domain (θ = 0.01 on an

average of 5000 trials)

without loss of generality because ART algorithms treat

every dimension independently. The simulation was

conducted in a 2-dimensional input domain in the shape

of a unit square. The test case distributions in one

dimension are illustrated as histograms with equal bins of

size 0.01, consisting of 0 to 0.01, 0.01 to 0.02, and so

on. The number of test cases that reside within each bin

is computed. For a fair comparison of the distributions in

different test case generation stages, the numbers of test

cases in the histograms were normalized to 1/n of the actual

numbers. Figure 5 illustrates the histograms for DART.

The histograms of RRT are not listed, as they are similar

to DART. It can be seen that test cases always prefer to be

close to the boundary of the input domain, but the preferred

region becomes narrower with the increase of test cases.

The second simulation investigates the fault detection

capability if the locations of failure-causing inputs were

purposely controlled to be close to the boundary or center.

The locations of failure-causing inputs are classified as

the center area or edge area as follows: The center area

(“Center”) is defined as the central 80% of the whole

input domain and the other area is defined as the edge

area (“Edge”). In the simulations, a square failure-

causing region with failure rate 0.01 was randomly assigned

anywhere in the input domain (“Anywhere”) or confined

to specified areas (namely, “Center” or “Edge”). For

both DART and RRT, the simulation was conducted in

a 2-dimensional input domain. Table 1 lists the average

F-measure of 5000 trials for controlled failure-causing

regions. The results indicate that both DART and RRT have

higher fault detection capabilities when the failure-causing

inputs are close to the boundary.

3 Enhancement of ART Implementations

3.1 Virtual Images of Successful Test Cases

This paper proposes an approach to tackling the

boundary effect of ART implementations. As analyzed in

�� � ������� �� ��������� � �� �� ������� � �� ��� ������ � ��
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Figure 6. Virtual image construction process

in 2-dimensional square input domain

the last section, the reason for the boundary effect is that

no successful test cases can be outside the input domain.

Our approach introduces a new concept of virtual images

of successful test cases. Intuitively, the virtual image can

be constructed by shifting the input domain. Consider, for

example, a 2-dimensional square input domain, as shown

in Figures 6(a) to 6(h). The squares with solid lines

represent the original input domain with an input range of

m, and the solid dots represent a successful test case (x,y).
For example, Figure 6(a) shows that the input domain is

virtually shifted left horizontally by a distance of m. The

squares with dashed lines represent the virtual images of

the input domain, and the hollow dot represents the virtual

images of the successful test case. By a horizontal left shift,

a virtual image (x − m,y) is introduced outside the input

domain. The 2-dimensional input domain can be shifted

along one dimension or both dimensions. Figures 6(a) to

6(d) show shifts along one dimension whereas Figures 6(e)

to 6(h) show shifts along both dimensions. There are a total

of 9 virtual images of the successful test case (x,y). They

are (x − m,y),(x + m,y),(x,y + m),(x,y − m),(x − m,y +
m),(x +m,y+m),(x−m,y−m),(x +m,y−m), and (x,y).
It should be noted that the original test case can also be

regarded as an image of itself.

For an n-dimensional input domain, let s =
(s1, s2, . . . , sn) be a successful test case and

(m1, m2, . . . , mn) be the ranges of the input domain.

Let v = (v1, v2, . . . , vn) be a virtual image of s that can

be computed from its original coordinates and the offset

o = (o1, o2, . . . , on) as follows:

vi = si +oi

where oi = −mi,0,mi for i = 1,2, . . . ,n. Obviously, in an

n-dimensional input domain, there are 3n virtual images of

a successful test case.
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Figure 5. Histogram of DART test cases in one dimension. The x-axis represents the locations of test

cases. The y-axis represents the number of test cases per bin of size 0.01.

3.2 Effective Image in Distance Computations

Our enhancement of ART implementations is based

on the concept of virtual images of successful test cases.

Whenever the locations of the successful test cases are

considered, not only the locations of the originals but also

locations of the virtual images are taken into account. In

previous implementations, the distance computations only

covered actual successful test cases. For example, in

an n-dimensional input domain, the distance between a

successful test case s = (s1, s2, . . . , sn) and a candidate

c = (c1, c2, . . . , cn) is calculated as follows:

dist(s,c) =

√

n

∑
i=1

(si − ci)2

The enhanced implementations use the effective image

of the successful test case rather than the successful test

case itself in distance computations. The effective image

e = (e1, e2, . . . , en) of a successful test case s with respect

to candidate c is defined as the virtual image of s that has the

minimum distance from c. The same successful test case

has different effective images for different candidates. It

should be noted that the identification of effective images

does not require the computation of the distance between

every virtual image and the candidate. On the contrary, if

a virtual image has the minimum offset to the candidate

c in each dimension, then this image will automatically

have the minimum distance from c. As mentioned before,

ei(i = 1, 2, . . . , n) can only have a value of si,si + mi or

si −mi. With respect to candidate c, the minimum offset in

the ith dimension is






si − ci if |si − ci| ≤ mi/2

si +mi − ci if |si − ci| > mi/2 and si < ci

si −mi − ci if |si − ci| > mi/2 and si > ci

Therefore, we know that the effective image e =
(e1, e2, . . . , en) has the following property:

ei =







si if |si − ci| ≤ mi/2

si +mi if |si − ci| > mi/2 and si < ci

si −mi if |si − ci| > mi/2 and si > ci

Consequently, the distance computation in the enhanced

implementations is changed to

dist(s,c) =

√

n

∑
i=1

(si − ei)2

As an example of illustration, consider a 2-dimensional

square input domain (Figure 7). The notions are the same as

Figure 6 except that the solid triangles represent candidates.

For candidate (1), the effective image is (x + m,y), which

is the virtual image closest to it. For candidate (2), the

effective image is (x,y−m).

3.3 Enhancement of DART

DART makes use of distance as a gauge to measure

whether test cases are far apart from one another and
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Figure 7. Virtual images of a successful test

case in 2-dimensional square input domain

selects the candidate with maximum distance between itself

and the successful set as the next test case. However,

since no successful test case can be outside the input

domain, candidates closer to the boundary are more likely

to have a maximum distance from the successful set than

candidates closer to the center of the input domain. Our

enhanced DART algorithm introduces virtual images of the

successful test case and uses effective images in distance

computations. Other parts are the same as the previous

DART algorithm.

Figures 8(a) and 8(b) compare the original and the

enhanced versions of DART in a 2-dimensional input

domain. Each of Figures 8(a) and 8(b) puts the original

input domain and its 8 images together. The rectangles

with solid lines represent the input domain, the solid dots

represent the successful test case, and the solid triangles

represent the candidates. The rectangles with dashed

lines represent the images of the input domain while the

hollow circles represent the virtual images of successful

test cases. For each candidate in the original DART in

Figure 8(a), only the distance from the original successful

test case is calculated and, hence, Candidate (2) is selected

as the next test case. For each candidate in the enhanced

implementation in Figure 8(b), the effective image is

identified first. Each dotted line represents the distance

between the candidate and its effective image. Suppose

candidate (3) has the maximum distance to the effective

image of the successful test case comparing with candidates

(1) and (2). Then, candidate (3) will be selected as the

next test case. As shown in this example, the preference of

selecting test cases close to the boundary no longer exists.

*+,*+,
-./ -0/

Figure 8. Comparing test case selections

between the original and the enhanced

versions of DART

3.4 Enhancement of RRT

Although RRT is based on a different intuition, namely

that both RRT and DART utilize Euclidean distances to

measure how far apart test cases are. Hence, similarly to

DART, candidates close to the boundary of the input domain

have a higher chance to be outside all exclusion regions than

those close to the center.

Similar to the improved DART, RRT can be enhanced

to use effective images instead of the original successful

test cases in judging whether a candidate is outside the

exclusion region. As in DART, among the images of a

successful test case, an effective image is defined as the one

closest to the candidate. It is obvious that if a candidate is

outside the exclusion region of the effective image, it will be

outside the exclusion regions of all other images. Hence, it

is only necessary to check whether the candidate is outside

the exclusion region of the effective image.

Figures 9(a) and 9(b-d) compare the original and

enhanced versions of RRT in a 2-dimensional input domain.

The notations are the same as those of Figure 8, except

that circles with dashed lines are used to denote exclusion

regions. In the original RRT shown in Figure 9(a), since

candidate (1) is outside the exclusion region, it is selected

as the next test case. For each candidate in the enhanced

implementation shown in Figure 9(b-d), the effective image

is identified first. The images shown as dashed circles are

the effective images. If a candidate is outside a dashed

circle, it is selected as the next test case. Obviously,

candidate (3) will be selected as the next test case. As

illustrated in this example, the boundary effect will be

reduced, if not totally avoided, by our enhanced version.
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486 496

Figure 9. Comparing test case selections

between (a) the original and (b–d) the

enhanced versions of RRT

4 Simulation Results for the Enhanced

DART and RRT Implementations

The main objective of these simulations is to answer the

following two questions:

• Are the test cases generated by the enhanced

algorithms more evenly spread throughout the input

domain?

• Are the fault detection capabilities of enhanced

algorithms better than those of the original algorithms?

To answer the first question, we repeated the distribution

analyses in Section 2 for the enhanced DART and RRT.

Figure 10 shows the histograms for the enhanced DART.

The histograms for the enhanced RRT are again omitted

because there is no significant difference from those of

the enhanced DART. It is obvious from the figure that the

test cases generated by our enhanced algorithms are more

evenly spread throughout the input domain in all the test

suites under study.

Secondly, we repeated the controlled failure-causing

region simulation for the enhanced DART and RRT

algorithms. Table 2 lists the average F-measure of 5000

trials. It clearly demonstrates that the fault-detection

capabilities for both enhanced versions do not depend on

the location of the failure regions.

Location of

failure-causing input
DART RRT

Edge 63 63

Center 62 63

Anywhere 63 63

Table 2. Average F-Measure of differently

located failure-causing inputs for DART and

RRT under block failure pattern on a 2-

dimensional input domain (θ = 0.01 on an

average of 5000 trials)

To compare the fault detection capabilities between the

enhanced algorithms and the original ones, simulations

were conducted with failure rates 0.01, 0.005, 0.002, and

0.001 for block failure patterns in 2-, 3-, and 4-dimensional

input domains. For each combination of failure rate

and input domain, 5000 test runs were executed and the

average F-measure for each combination was recorded. The

fault detection capability of the enhanced DART and RRT

outperformed the original versions for every combination

of failure rate and input domain. There are two known

observations about the original DART and RRT [5]: (a)

With the increase of dimensions of the input domain, the

fault detection capability decreases dramatically (that is, the

F-measure increases). (b) The fault detection capabilities

at lower failure rates are better than that at higher failure

rates. For the enhanced DART and RRT, the fault detection

capability also decreases with the increase of dimensions

of the input domain, but the rate is much moderated.

Furthermore, the fault detection capability appears to be

independent of the failure rates. Obviously, the rectification

of the boundary effect has significantly improved on the

fault detection capability for DART and RRT.

5 Conclusion

Random Testing (RT) is a fundamental testing technique.

It simply selects test cases from the whole input domain

and, hence, does not incur extensive computational

overheads as black-box- or white-box-based test case

selection strategies. As reported by practitioners [9,

12, 16–18, 21, 23], RT can effectively detect failures in

many real-life applications. Chen et al. observed that

failure-causing inputs are often clustered in one or more

contiguous regions in the input domain and, therefore,

proposed Adaptive Random Testing (ART) to improve

on the fault detection capability of RT. Their methods

make use of the locations of successful test cases (which

do not reveal failures) to enforce an even spread of the

subsequent test cases. However, their Distance-based ART
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Figure 10. Histograms of the enhanced DART test cases in one dimension. The x-axis represents the

location of test cases. The y-axis represents the number of test cases per bin of size 0.01.

2 dimension 3 dimension 4 dimension

Failure

Rate θ

Expected F-measure

of RT(FRT )

Mean

Fmsr

(FART )

FART /
FRT

Mean

Fmsr

(FART )

FART /
FRT

Mean

Fmsr

(FART )

FART /
FRT

0.01 100 67 67% 85 85% 108 108%

0.005 200 132 66% 159 80% 196 98%

0.002 500 323 65% 382 77% 475 95%

0.001 1000 648 65% 754 75% 914 91%

Table 3. Average F-Measure of Original ART for block failure pattern (on the average of 5000 trials)

2 dimension 3 dimension 4 dimension

Failure

Rate θ

Expected F-measure

of RT(FRT )

Mean

Fmsr

(FART )

FART /
FRT

Mean

Fmsr

(FART )

FART /
FRT

Mean

Fmsr

(FART )

FART /
FRT

0.01 100 63 63% 69 69% 75 75%

0.005 200 126 63% 137 69% 150 75%

0.002 500 312 62% 346 69% 371 74%

0.001 1000 632 63% 680 68% 739 74%

Table 4. Average F-Measure of Enhanced ART for block failure pattern (on the average of 5000 trials)
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2 dimension 3 dimension 4 dimension

Failure

Rate θ

Expected F-measure

of RT(FRT )

Mean

Fmsr

(FART )

FART /
FRT

Mean

Fmsr

(FART )

FART /
FRT

Mean

Fmsr

(FART )

FART /
FRT

0.01 100 66 66% 81 81% 95 95%

0.005 200 130 65% 160 80% 185 93%

0.002 500 328 66% 386 77% 453 91%

0.001 1000 644 64% 765 77% 868 87%

Table 5. Average F-Measure of original RRT for block failure pattern (on the average of 5000 trials)

2 dimension 3 dimension 4 dimension

Rate θ of RT(FRT )

Failure

Rate θ

Expected F-measure

of RT(FRT )

Mean

Fmsr

(FART )

FART /
FRT

Mean

Fmsr

(FART )

FART /
FRT

Mean

Fmsr

(FART )

FART /
FRT

0.01 100 63 63% 71 71% 79 79%

0.005 200 126 63% 140 70% 154 77%

0.002 500 319 64% 353 71% 388 78%

0.001 1000 629 63% 706 71% 765 77%

Table 6. Average F-Measure of Enhanced RRT for block failure pattern (on the average of 5000 trials)

(DART) and Restricted Random Testing (RRT) methods

have preferences in selecting test cases near the boundary

of the input domain (known as the boundary effect). This

effect adversely affects the performance of ART, and the

impact grows with the increase of dimensions of the input

domain.

In this paper, we have analyzed the cause of the boundary

effect and proposed an approach to tackling it in DART and

RRT. Our approach is based on an innovative concept of

virtual images of successful test cases. Simulation results

have clearly indicated that the test cases generated by our

enhanced algorithms are more evenly spread throughout the

input domain. As a result, the fault detection capability

has also been significantly improved. This improvement is

particularly significant for high dimensional input domains.

We plan to apply the concept of virtual images to other

ART implementations in future research.
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