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Abstract

We present an exact algebraic algorithm for real-time ocmmtis collision detection (CCD) for moving
ellipsoids under affine deformations. An efficient collistest is first developed for two static ellipsoids, which
takes less than 1 microsecond. Using this practical resdltthe properties of our algebraic condition, we
produce a real-time solution to the CCD problem that conptite exact collision time intervals.
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1 Introduction

Real-time collision detection is crucial to the development of physics engimed3Dfccomputer games [3, 4].
Spheres [7], axis-aligned bounding boxes [6, 16], oriented bogrimires [5], and discrete oriented polytopes [10]
have been successfully used in constructing bounding volume hierarghdespeeding up collision detection
among moving 3D objects of complex but rigid shapes.

With the proliferation of powerful vertex shaders to commodity graphicds;arecent releases of 3D games
demonstrate dramatic shape deformations of 3D characters. Conver@ohaiques are rather inefficient in
reconstructing bounding volume hierarchies under dynamic shapertions: under affine transformation of

Figure 1: Real-time continuous collision detection in a boxing game.
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the underlying geometry, there is no guarantee that conventional bguwalimes deform to different bounding
volumes of the same type. In this paper, we propose the ellipsoid as an adeedibg volume for this purpose.

In recent work, [12, 13, 14] address the important issue of contguoollision detection (CCD) in various com-
puting environments which include hundreds of thousands of polygookstacles and complex moving objects
such as those composed of articulated links. They have developedrefitgerithms of interactive speed for
continuous collision detection together with effective tools for culling rednhdeometry at various stages of the
computation. [12] use the oriented bounding box (OBB) as the basic bapadiume, whereas [13, 14] employ
the line swept sphere (LSS). These methods take geometric approachémmredundant geometry. In particu-
lar, [13, 14] apply a GPU-based method to detect collisions between the galames of LSS primitives and the
environment.

We take a new algebraic approach which produces a real-time exact sdiutibe CCD problem for moving
ellipsoids under affine transformations. Based on the algebraic condftj@8]dfor the separation of two ellip-
soids, [2] originally proposed an exact algorithm for continuous collidigtection between two moving ellipsoids.
However, that algorithm had a serious drawback in computational efficiela single CCD took seconds. In this
paper, we present a practical solution to the problem, while supportitgimeaperformance in non-trivial 3D
applications such as the boxing game shown in Fig. 1.

Our algorithm is based on an efficient test for the separation of two statisatlig which requires a total of 149
multiplications, while the OBB test requires a total of 120 multiplications in the wasé.c Though it is more
expensive than the OBB test, our approach has the following distinchtayes over conventional methods:

e Shape fidelity: Ellipsoids provide a better fit to natural objects such as human and animakbod

o Affine invariance: Our algorithm works for moving ellipsoids that may change their shapes wafiilee
motions. This represents an important advantage over traditional methoekslimgiwith deformable mov-
ing objects.

e Exact algorithm for CCD: The proposed algebraic approach computesettaxt contact timeand the
exact time interval of the collision

e CCD for independent motions: The basic approach works for independent as well as dependennsotio
of ellipsoids.

2 Related Work

In this section, we briefly review some related work on continuous collisidgactien (CCD) and geometric
computations for ellipsoids. To detect collisions between two moving objects wthpgecified motions, one may
perform a sequence of interference tests between two static objectgladamngspective motion paths at discrete
time intervals. However, errors may occur due to inadequate temporal sgmfieliminate the temporal aliasing
problem in collision detection, [12, 13, 14] address the important issuentintious collision detection.

Ellipsoids have been used as bounding volumes for robotic arms andxqooiydedra in collision detection [9,

15, 19]. [1] used a set of overlapping ellipsoids to make a compact dndtroepresentation, with multiple levels
of detail, of 3D objects originally given as polygonal meshes. [8] shathatisweeps of ellipsoids fit tightly to

human arms and legs. It is apparent that ellipsoids have a great deateoftipl as bounding volumes for 3D
freeform shapes.



[2] presented an exact algorithm that reduces the CCD problem for twmgnellipsoids to an analysis of the zero-
set of a bivariate polynomial equation. Unfortunately, this equation hasyahwgh degree in the time parameter

of the motion. Thus the algorithm is impractical, because it takes seconds ¢tbasetegle CCD. In this paper, we
present a real-time solution to the problem. The improvement is based on aing&ay of reusing common

algebraic expressions and utilizing the special structure of our algetmadtition.

3 Collision Detection for Static Ellipsoids

We now present an efficient algorithm for detecting a collision between tat@ ®llipsoids. This algorithm is
based on the separation condition for two ellipsoids proved in [18].

An ellipsoid o7 is represented by a quadratic equatlohAX = 0 in E3, whereX = (x,y,zw)" are the homoge-
neous coordinates of a point in 3D space. For two ellipsaitsXTAX = 0 and% : XTBX = 0 in E3, the quartic
polynomial f{A) = detAA — B) is called thecharacteristic polynomiaand fA) = O is called thecharacteristic
equationof <7 and%. The polynomial fA) has degree 4, its highest-degree term has a negative coefficient, and it
always has two positive real roots [18]. Ellipsoidsand.# are separate if and only ifA) = 0 has two distinct
negative roots. Moreovery and% touch each other externally if and only {ff) = O has a negative double root.
There are two imaginary roots if and only if the ellipsoids collide, with some patietrinto each other’s interior.

Remark 1:Note that the theorem in [18] assumes that the characteristic equationdreigithe form fA) =
detAA +B) = 0, and therefore the result there is stated in terms of positive roots. @ugeb here make the
presentation consistent with the classic literature in linear algebra.

Remark 2:The leading coefficient of(fA ) is negative [18]. This means thatAf) = 0 has two distinct negative
roots if and only if {Ag) > 0 for someAy < 0. The latter condition on a sign test will be more convenient to use
when we consider two moving ellipsoids.

To achieve an efficient implementation, it is crucial to set up the charactertpi@tion using a minimal number
of arithmetic operations. We present an efficient algorithm for this compatatio

Characteristic Polynomial. A standard ellipsoid can be represented using a diagonal matrix:

/22 0 0 0
0 ¥ 0 0
0O 0 1 0 | @)
o 0 o0 -1

When the ellipsoid is under an affine transformaftibg the matrix form of that ellipsoid in general configuration

is given as(M,1)TAM, . Now assume that two general ellipsoids have matrix representgfiany) ™ AM,*

and (Mgl)TBMgl, whereA and B are diagonal matrices representing ellipsoids in standard positions. Then,
f(A) =detA (MyHTAML T — (Mg 1) TBMg ) is their characteristic polynomial.

There are two steps in our algorithm. In the first step, a quartic polynomiaisrconstructed, and in the second
step, the signs of the roots of the polynomial are decided and thus theegdaatifiguration of the two ellipsoids
is determined. Given two ellipsoids in general position, we may transform ienA and MX(MB‘l)TBMglMA,
whereA is a diagonal matrix as in Equation (1) aMi(Mgl)TBMglMA is a general 4« 4 matrix. In this case,
the characteristic polynomial is given in the following simple forr} = detAA—MJ (Mg1)TBMz1Ma). By
expanding this determinant, a quartic polynomialiis constructed. Appendix A presents an efficient algorithm
for computing the five coefficients of this polynomial. Using the quartic polynbetgaation and its Sturm
sequence, we can determine whether the two ellipsoids collide.
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Computational Complexity. To count the number of negative real roots, we compute the Sturm ssxjoéthe
characteristic polynomial and check the sign flips of this sequence aamerminus infinity. We first consider
rigid-body Euclidean motions only. In this case, we can compare the pwfare of our algorithm with other
collision detection methods. After that, we consider general affine motions.

In the matrix setup foM} (Mg?)TBMgM,, we utilize the facts thaia andMg represent rigid-body motions,
and thatB is originally given as a diagonal matrix. When the motMg is realized as a rotatioRg followed by a
translationvg, its inverse motiongl is equivalent to a rotatioRj, followed by a translation-RLVs. Using this
fact, we can count the operations as follows:

1. ComputingVg * requires 9 multiplications.

2. MglMA requires 36 multiplications.

3. MI(Mg 1T is a simple transpose Mg M,, and thus needs no multiplication.

4. SinceB is a diagonal matrixBMglMA requires 12 multiplications.

5. Finally,M] (Mg*)TBMgMa can be constructed using an additional 30 multiplications.

In total, we need 87 multiplications. From the matrix thus constructed, the ¢aastic polynomial can now

be computed with 40 multiplications using the algorithm presented in Appendix &.d€hivative of a quartic
polynomial can be computed using 3 multiplications. To dividendndegree polynomial by afn — 1)th degree
polynomial, we need & — 1) multiplications and 2 divisions. Thus we can compute the Sturm sequence using
3+ 2(4+ 3+ 2) = 21 multiplications and divisions. To get the number of negative real ro@ésieed to examine

the signs of the highest and constant terms of the polynomials in the Sturrereeqdor which no additional
multiplications are needed. In summary, we need a total of 149 multiplications\asids for collision detection
between two static ellipsoids. For two static ellipsoids sampled from affine motiemsieed a total of 179
multiplications for detecting their collision.

We implemented the collision detection algorithm in C++ on a Pentium IV computer witBHzPU and a
2GB main memory. In measuring the computation time, we removed the renderindenaaliincluded only
the modules for setting up the motion matrix and detecting collisions between two glfipsim the case of
motion matrices with elements of rational degree 4, the mathteandMg were constructed using about 100
multiplications. Including this, the whole procedure took less than 1 microgecon

4 Continuous Collision Detection

We present a real-time algorithm for continuous collision detection (CCD)d®twwvo moving ellipsoidse (t) :
XTA(t)X =0 and4(t) : XTB(t)X = 0 under affine deformations.

CCD for moving ellipsoids. The characteristic equation of (t) and #(t), t € [0,1], is f(A;t) = det AA(t) —
B(t)) = 0. To improve the numerical stability, we reparameterize- ”;ul which maps(—e, 0) to (0, 1), and
convert {A;t) to a bivariate polynomial of Bernsteiné&ier form:

F(u,t) =det(u—1)A(t) —uB(t)) =0, (u,t) € (0,1) % [0,1].
Since {A;t) has none or two negative roots, the zero-seft @i, t) has the special structure that any line to

intersectsitin 0 or 2 points in the domdidy 1) x [0, 1. (See Fig. 2a for the case of two separate moving ellipsoids.)
Furthermore, at any tintg € [0, 1], <7 (tp) and#(to) are separate if and only ifX; to) = 0 has two distinct negative



)/2

VT

(d) (e) (f)

Figure 2: Some scenarios of CCD computation.

roots. Equivalently’ (to) and%(to) are separate if and only if(u,tg) = 0 has two distinct real roots < (0, 1),
or F(u,tg) > 0, for someu € (0,1). Otherwise,o/ (tg) and.%(to) are either touching externally or overlapping,
and Hu,tp) <0, forallO<u< 1.

Finding all collision intervals. Collision intervals are bounded by 0, 1, or the contact finvehereF (u,f) = 0 has
a double root at some€ (0, 1), satisfyingF (4,) = Fy(0,f) = 0. It is time-consuming to compute all solutions of
F(u,t) = Ry(u,t) = 0 using a straightforward recursive subdivisiorgfi, t) over the whole domaifD, 1) x [0, 1].

For better efficiency, we make a good initial guess on collision intervals plyiag a sequence of fast separation
tests (to static ellipsoids sampled at discrete time intervald0<t; < --- <tm=1). Then we use subdivision
either to eliminate intervals which do not contain any solutior-of F, = 0 or to identify those that contain
a unique solution. For the latter intervals, the solution is computed using a seaalh scheme, calldkzier
shooting with quadratic convergence.

The sequence of time samples can be divided into three types of segmang thiee cases to consider:
(1) Separation of static ellipsoidg (t) and(t) over a maximal sequence of consecutive santptes ti 1, - - ,t;.
(2) Collision of static ellipsoids¥ (t) andZ(t) over a maximal sequence of consecutive santples, ti 1, - - - ,t;.
(3) Transition from separation & t;) to collision ¢ =t;, 1), or vice versa.

Before treating these cases, we will first explain hB&zier shootingvorks. ConsideF (u,t) over the domain
(0,1) x [t1,t2]. Suppose that the two ellipsoids are separate &ézier shooting front; tot,, denoted aBSt; —

t2], has two steps: 1) find Such that=,(0,t;) = 0 andF (Q,t;) > 0, by solving a cubic equation; 2) theréBer
clipping [11] is used front; to t, to either conclude that there is no real rootrqfl,t) in [t1,t7] (see Fig. 2a) or

to compute the smallest robof F(0,t) = 0 in [t;,t,] (see Fig. 2b). In the former case the result of shooting is



amissand the two ellipsoids are separatétint,]; in the latter case, shooting scorebitandf is returned, i.e.,
f= Bqtl — tz].

Supposing thaBSt; — t;] is a hit, we may uséerative Bezier shootindy continuing to perfornBSt — t,], and

S0 on, to either try to get a miss or converge to a solutidn efF, = 0. Itis proved in Appendix B that the iterative
Bézier shooting has quadratic local convergence. In implementation, if a ogassowithin a fixed number of
iterations ofBéziershooting (we use 4 or 5), we are done and have separatifn tif); if there is evidence of
convergence after these iterations, we will find the solution (see Figogi®rwise, the case is undetermined and
we use subdivision to get smaller intervals for further processing. IEliEsoids are separate &t the Bézier
shootingBSt; < to] fromt, tot; can similarly be defined.

Case (1) Consider the intervdt;, t;], where the ellipsoids are separatg andt;. We first performBSt; — t;] and
thenBSt; + t;] iteratively. If either is a miss within 4 iterations, we have separation throughoyt; otherwise,

if either does not exhibit convergence (after 4 iterations say), the altsrgubdivided. If both iterative shootings
converge, denoti = BSt; — t;] andt, = BSt; «— t;] (see Fig. 2c). It =t, we have a tangential contacttat
otherwise, the intervdty + 8,t, — ], for some smalb < 0, is subdivided aftx +t;) /2 to give two subintervals
(see Fig. 2c and 2d), which are in either case (2) or case (3) below.

Case (2) Consider the interval;,t;], where the ellipsoids collide &tandtj. Having putF (u,t) into bivariate
Bézier form over(0,1) x [t;,t;], we check whether all its control coefficients are negative, which imptitision
over the whole intervaltj,t;] (see Fig. 2e). If the coefficients are not all negative, we keep sialintj the do-
main in thet-direction and check the signs of control points. The subdivision will tesiaimfter eliminating all
subintervals if there is collision over the whole inter{ilt;]. But if there is separation withifi;, t;], recursive
subdivision will reduce the problem to instances of the transition case és2,(8)) below.

Case (3) Without loss of generality, assume that the ellipsoids are separitarat collide at;. 1 (see Fig. 2f).
We intend to ensure that there is a unique solutioR ef i, = O (i.e. there is no small loop) if,ti1]. Clearly,
there is no loop int;, ti1] if the unit normal vector&IF (u,t)/||0F (u,t) | in [0,1] X [t;,ti+1] do not cover the whole
Gaussian circle. This can be determined efficiently, though consetdyabyechecking whether all the 2D control
points of JF (u,t) are on the same side of a line passing through the origin. If the test is sfudceg use iterative
Bézier shootindSt; — ti1] to find the unique solution iftj,t;1]. If the test fails, we use mid-point subdivision
until there is at most one solution Bf= F, = 0 in each subdomain (see Fig. 2f).

Finding the first contact time only. Many real-time applications of collision detection require only the first
contact time to be computed. Suppose that the two ellipsoids are separateDat\We first sample along the
t-direction atty,tp, ... until we encounter a collision casetat ty. 1. Then we perfornBS0 « ti]. If the result is

a miss (i.e. separation {0,t]), thenty is a good initial value and we use iterativéBer shootind3Stx — tx 1]

to compute the first contact time. BJ0 < ti] is a hit, we step back to use= 0 as an initial value and perform
iterative shootind3§0 — ti1] to compute the first contact time.

CCD for independent motions. The characteristic equation for two independently moving ellipseids) and
B(t),ste[0,1], is given by
F(u,s,t) =det(u—1)A(s) —uB(t)) = 0.

If o7 (s0) andA(tp) are separate, théh(u, So,tp) = 0 has two distinct roots € (0, 1); and equivalently- (u, sp, to) >
0, for someau € (0,1). Otherwiseo/ (Sp) andZ#(tp) are either touching externally or overlapping, &, So,to) <
0 forallue (0,1). In particular,o/ (sp) and %(tp) are touching each other externally if and onl¥ifu, sp,to) =
Fu(u,s0,tp) = O for someu € (0,1).

The zero-set oF (u,s,t) = 0 is an algebraic surface irst-space. Moreover, the common zero-seF¢fl, s,t)
Fu(u,s,t) = 0 is an algebraic space curvetstspace. LetZ denote the curve contained in the culfel) x



[0,1] x [0,1]. The projection ofZ on to thes-axis covers a union of-intervals, each of which corresponds to
2/ (S) touching#A(t) externally at someé. Thus thes-intervals ‘uncovered’ in this projection correspond to two
cases: either (i)/(s) is separate from(t), for all t, or (ii) <7 (s) collides with.Z(t) in interior points, for alk.
The end-points of an ‘uncovered-interval are projections of extreme points of the cuf¥ein the s-direction,
which can be classified by the following simultaneous polynomial equations:

F(u,s,t) =R (u,st) =R(ust)=0.
Thet-intervals ‘uncovered’ in the projection to thaxis can also be constructed by solving

F(u,s,t) =Fy(u,st) = Fs(u,s,t) =0.

5 Experimental Results

To demonstrate the effectiveness of our approach, we have implemebtedng game involving two virtual
human characters actively interacting with each other as shown in Figch.dBaracter is modeled with 24 ellip-
soids, representing different body parts such as heads, limbs, etendtions of the two boxers are automatically
generated by motion capture data, together with a simple control mechanisnen#dltations are carried out in
double precision on a Pentium IV 3GHz CPU. In every time frame, the colliséection algorithm is applied to
576 pairs of ellipsoids, formed by picking one ellipsoid from each of theattiars. For each pair of ellipsoids, we
first test whether their bounding spheres collide in linear translationseiétis a collision, we compute a plane
that separates the two ellipsoids [17] at the beginning of the time frame, andetstewhether the two moving
ellipsoids are continuously separated by the plane during the whole fraioéd.pe

We generated 1,000 frames of the boxing animation. As a result, 576,0800paioving ellipsoids were tested.
96.3% of the pairs were filtered out by the sphere test; and 59.0% of théeniegpairs were eliminated using the
separating planes. To the remaining 8,837 pairs (1.53%), we applied théhatgrom Section 4 that computes
the first contact point in continuous collision detection. Of the 8,837 paisstdsied, 48.9% were separate and
51.1% were in collision during the time of the frame. In this situation the motions &tvedy simple and
half of the tests report separations. Thus, for efficiency reasomulineetly apply the Bzier shooting3§0 — 1]
without taking samples until we encounter a collision. Including all the aboveeglures and the generation of
interpolating motion/a(t) andMg(t) for 48 ellipsoids, collision detection for each frame took 3.4 milliseconds,
in which 576 pairs of moving ellipsoids were handled. (See the accompavigiag and demo.)

A continuous rigid motion interpolates the positions and orientations of an ellijpstigleen the two ends of
each time frame. The center positions are linearly interpolated and the oriaatat® interpolated by a linear
guaternion curve, producing a rotation matrix of rational degree 2. Add#8 motion matrices were generated in
450 microseconds. The formulation of the bivariate functd@n,t) takes considerable computation; fortunately,
we need to compute only 9 (= 5361.53%) such functions on average, which adds very little to the overall
computation time.

In Fig. 3, two ellipsoids are under dependent motions of degree 4 withvadialarge affine deformations. In this
example, our system took 3.7 milliseconds to compute all four separation ilstesiag the algorithm explained
in Section 4. Detection of the first contact time only took 0.9 millisecond.

Fig. 4 shows the intersection of the swept volumes of two ellipsoids undepémdent motions and the zero-
set surface of (u,s,t) = 0. In the rightmost two subfigures, the red and blue dots represent tileenexpoints
of ‘uncovered intervals’ in the- andt-directions, respectively. The four extreme points and the corregpgpnd



Figure 4. Two moving ellipsoids under independent affine deformations.

intersection intervals were computed in 30 milliseconds. But when we pextassmilar example with dependent
motions, a collision interval was computed in 0.5 millisecond.

6 Conclusions

We have presented an exact algorithm for real-time continuous collisioctidet&etween two moving ellipsoids
under affine motions. Itis based on an efficient separation test fortéio sllipsoids. A significant speed-up was
realized by developing an efficient method call&kier shootingwhich approximates each regular solution of
F = F, = 0 with quadratic convergence. The special structure of our algeladiton for separation also allows
an efficient test for loop-free domains by checking whethEr covers the whole Gaussian circle. We believe
that there are many other interesting properties of our algebraic conditlioh should lead to more efficient
geometric algorithms for dealing with ellipsoids and affine deformations. Indutork, we plan to investigate
further applications of the computational tools reported in this paper.
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Appendix A

We present an efficient algorithm for computing the five coefficients oftiagacteristic polynomialA ) of degree
4. Let M,I(Mgl)TBMB‘lMA = [bij]axa. Then the characteristic polynomial is given in the following simple form:

f(A) = defAA— ML (Mg1)TBMzMa)

A/a%—bq —b1 —b13 —big

_ —bp1  A/B?—Dbyo —b23 —bos

N —bsy —bg; A/ —Dbgz  —bga
—bay —bao —bas —A —bys

By expanding this determinant, the five coefficients can be constructetl@sd:

1. The 4th-degree term: o3

2. The 3rd-degree tern@%ﬁ beg 4 Las by,

a2c2 T ab? T a?h2c?

3. The 2nd-degree term:

b33bas — b34baz  b1104s—Db1abar  boobag — bosbsr
a2b? b2c? a2c?
bo3bzy — bpobzz | bi3bar —biabzz | biobpg —bigboo
+ V) + > + 2
a b C

4. The 1st-degree term:

—b2ob33044 + D22034043 + b33bsoboa n 044032023 — b32024b43 — D420023034
a2 a2

—by11033044 + D11034D43 + 33014041 Dagby3031 — b31014043 — Da1b13034
+ 02 + 02

47“b11b22b44*‘b11b24b424‘b22b14b414% 44012021 — b21014042 — ba1by1 2024
c2 c2

11022033 — 011023032 — br2b1 3031 — b33b12b21 + 21013032 + b31b12b23

5. The constant term:

011022033044 — 011022034043 — 11033024042 — b1 1b44b23b37
—b2ob33b14b41 — D22044013031 — 330440120071
+b12032024043 + 0110023034042 + b2ob 3034b41

+022b3101 443 + b3301 2024041 + 3302101 442 + Dgghr 2b23031
+044b21b13032 + 12021034043 + D13031024b42 + b1 442023032
—b21b14b43032 — D21013034042 — 31012024043
—b31b14b42023 — 042012023034 — b41b13032024

The following function efficiently computes the five coefficients of the ctigrstic polynomial using 40 multi-
plications.

Generate-Characteristic-Polynomial
/* Variable definition
ea,eb,ec is a diagonal member of matrix A
ab = ea * eb, ac = ea * ec, bc = eb * ec,
abc = ea * eb * ec
bij is a member of the matrix MX(Mgl)TBMglMA
*/
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begin

b2233 = b22 * b33;
bl2s b12 * bl2; bl3s
b23s b23 * b23; b24s

b13 * b13; bilds
b24 * b24; b34s

bld * bid;
b34 * b34;

termA = bll * bc + b22 * ac + b33 * ab;
b2233 * ea + bll * (b33 * eb + b22 * ec);
b23s * ea + bl3s * eb + bl2s * ec;

termB
termC

A = —abc;
B termA — b44 * abc;
C termA * b44 — termB + termC
—b34s * ab — bld4s * bc — b24s * ac;
tmpl = (termB - termC) * b44;

tmp2 = b1l * (b2233 + eb * b34s + ec * b24s — b23s);
tmp3 = b22 * (ea * b34s + ec * blds — Db13s);

tmp4 = b33 * (ea * b24s + eb * blds — Dbl2s);

tmp5s = b34 * (ea * b23 * b24 + eb * bl3 * bl4)

+ b12 * ( ec * bld * b24 — bl3 * b23);
tmp5 += tmpb; // multiply by 2

D = —tmpl + tmp2 + tmp3 + tmp4 — tmp5;
E = constant; // constant value det[-B]
end;

Appendix B

Figure 5: Quadratic convergence oéBer shooting.

We will show that iterative Bzier shooting has quadratic convergence when used to compute adfamitact
time, i.e., a regular solutiofu*,t*) of F(u,t) = F,(u,t) = 0. Wlog, suppose thdu*;t*) is located at the origin
(0,0), with F(u,t) = 0 andF,(u,t) = 0 as shown in Fig. 5. Then, by the regularity assumption and Implicit
Function Theorem, the solution Bf(u,t) = 0 can be represented locally (@ 0) by Taylor expansion = au? +
o(u?), and the solution oF,(u,t) = 0 by u = kt+ o(t). Now consider Bzier shooting fronty. The solution of
Fu(u,tp) = 0 ist = ktp+ 0(tp). So the first root of (G,t) =0 is

t; = al®+0((%) = a[kip+0(to)]> + o(t3) = aktZ +o(t3).

It follows thatty /t2 = ak?+ 0(1). Hence, Bzier shooting has quadratic convergence. Barift*) is a singular
solution representing tangential contact of the two ellipsoids, then the igemae of iterative Bzier shooting is
in general linear.
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