
Real-Time Continuous Collision Detection
for Moving Ellipsoids under Affine Deformation

§ Yi-King Choi † Jung-Woo Chang § Wenping Wang † Myung-Soo Kim
‡ Gershon Elber

§ Dept. of Computer Science, The University of Hong Kong, Hong Kong
† School of Computer Science and Eng., Seoul National University, South Korea

‡ Dept. of Computer Science, Technion, Israel

Abstract

We present an exact algebraic algorithm for real-time continuous collision detection (CCD) for moving
ellipsoids under affine deformations. An efficient collision test is first developed for two static ellipsoids, which
takes less than 1 microsecond. Using this practical result and the properties of our algebraic condition, we
produce a real-time solution to the CCD problem that computes the exact collision time intervals.
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1 Introduction

Real-time collision detection is crucial to the development of physics engines for 3D computer games [3, 4].
Spheres [7], axis-aligned bounding boxes [6, 16], oriented bounding boxes [5], and discrete oriented polytopes [10]
have been successfully used in constructing bounding volume hierarchies and speeding up collision detection
among moving 3D objects of complex but rigid shapes.

With the proliferation of powerful vertex shaders to commodity graphics cards, recent releases of 3D games
demonstrate dramatic shape deformations of 3D characters. Conventionaltechniques are rather inefficient in
reconstructing bounding volume hierarchies under dynamic shape deformations: under affine transformation of

Figure 1: Real-time continuous collision detection in a boxing game.
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the underlying geometry, there is no guarantee that conventional bounding volumes deform to different bounding
volumes of the same type. In this paper, we propose the ellipsoid as an ideal bounding volume for this purpose.

In recent work, [12, 13, 14] address the important issue of continuous collision detection (CCD) in various com-
puting environments which include hundreds of thousands of polygons asobstacles and complex moving objects
such as those composed of articulated links. They have developed efficient algorithms of interactive speed for
continuous collision detection together with effective tools for culling redundant geometry at various stages of the
computation. [12] use the oriented bounding box (OBB) as the basic bounding volume, whereas [13, 14] employ
the line swept sphere (LSS). These methods take geometric approaches inculling redundant geometry. In particu-
lar, [13, 14] apply a GPU-based method to detect collisions between the swept volumes of LSS primitives and the
environment.

We take a new algebraic approach which produces a real-time exact solution to the CCD problem for moving
ellipsoids under affine transformations. Based on the algebraic condition of [18] for the separation of two ellip-
soids, [2] originally proposed an exact algorithm for continuous collisiondetection between two moving ellipsoids.
However, that algorithm had a serious drawback in computational efficiency – a single CCD took seconds. In this
paper, we present a practical solution to the problem, while supporting real-time performance in non-trivial 3D
applications such as the boxing game shown in Fig. 1.

Our algorithm is based on an efficient test for the separation of two static ellipsoids, which requires a total of 149
multiplications, while the OBB test requires a total of 120 multiplications in the worst case. Though it is more
expensive than the OBB test, our approach has the following distinct advantages over conventional methods:

• Shape fidelity: Ellipsoids provide a better fit to natural objects such as human and animal bodies.

• Affine invariance: Our algorithm works for moving ellipsoids that may change their shapes under affine
motions. This represents an important advantage over traditional methods in dealing with deformable mov-
ing objects.

• Exact algorithm for CCD: The proposed algebraic approach computes theexact contact timeand the
exact time interval of the collision.

• CCD for independent motions: The basic approach works for independent as well as dependent motions
of ellipsoids.

2 Related Work

In this section, we briefly review some related work on continuous collision detection (CCD) and geometric
computations for ellipsoids. To detect collisions between two moving objects with pre-specified motions, one may
perform a sequence of interference tests between two static objects alongtheir respective motion paths at discrete
time intervals. However, errors may occur due to inadequate temporal sampling. To eliminate the temporal aliasing
problem in collision detection, [12, 13, 14] address the important issue of continuous collision detection.

Ellipsoids have been used as bounding volumes for robotic arms and convex polyhedra in collision detection [9,
15, 19]. [1] used a set of overlapping ellipsoids to make a compact and robust representation, with multiple levels
of detail, of 3D objects originally given as polygonal meshes. [8] showedthat sweeps of ellipsoids fit tightly to
human arms and legs. It is apparent that ellipsoids have a great deal of potential as bounding volumes for 3D
freeform shapes.
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[2] presented an exact algorithm that reduces the CCD problem for two moving ellipsoids to an analysis of the zero-
set of a bivariate polynomial equation. Unfortunately, this equation has a very high degree in the time parametert
of the motion. Thus the algorithm is impractical, because it takes seconds to detect a single CCD. In this paper, we
present a real-time solution to the problem. The improvement is based on an ingenious way of reusing common
algebraic expressions and utilizing the special structure of our algebraiccondition.

3 Collision Detection for Static Ellipsoids

We now present an efficient algorithm for detecting a collision between two static ellipsoids. This algorithm is
based on the separation condition for two ellipsoids proved in [18].

An ellipsoidA is represented by a quadratic equationXTAX = 0 in E
3, whereX = (x,y,z,w)T are the homoge-

neous coordinates of a point in 3D space. For two ellipsoidsA : XTAX = 0 andB : XTBX = 0 in E
3, the quartic

polynomial f(λ ) = det(λA−B) is called thecharacteristic polynomialand f(λ ) = 0 is called thecharacteristic
equationof A andB. The polynomial f(λ ) has degree 4, its highest-degree term has a negative coefficient, and it
always has two positive real roots [18]. EllipsoidsA andB are separate if and only if f(λ ) = 0 has two distinct
negative roots. Moreover,A andB touch each other externally if and only if f(λ ) = 0 has a negative double root.
There are two imaginary roots if and only if the ellipsoids collide, with some penetration into each other’s interior.

Remark 1:Note that the theorem in [18] assumes that the characteristic equation be given in the form f(λ ) =
det(λA + B) = 0, and therefore the result there is stated in terms of positive roots. Our changes here make the
presentation consistent with the classic literature in linear algebra.

Remark 2:The leading coefficient of f(λ ) is negative [18]. This means that f(λ ) = 0 has two distinct negative
roots if and only if f(λ0) > 0 for someλ0 < 0. The latter condition on a sign test will be more convenient to use
when we consider two moving ellipsoids.

To achieve an efficient implementation, it is crucial to set up the characteristicequation using a minimal number
of arithmetic operations. We present an efficient algorithm for this computation.

Characteristic Polynomial. A standard ellipsoid can be represented using a diagonal matrix:

A =









1/a2 0 0 0
0 1/b2 0 0
0 0 1/c2 0
0 0 0 −1









. (1)

When the ellipsoid is under an affine transformationMA, the matrix form of that ellipsoid in general configuration
is given as(M−1

A )TAM−1
A . Now assume that two general ellipsoids have matrix representations(M−1

A )TAM−1
A

and (M−1
B )TBM−1

B , whereA and B are diagonal matrices representing ellipsoids in standard positions. Then,
f(λ ) = det(λ (M−1

A )TAM−1
A − (M−1

B )TBM−1
B ) is their characteristic polynomial.

There are two steps in our algorithm. In the first step, a quartic polynomial inλ is constructed, and in the second
step, the signs of the roots of the polynomial are decided and thus the relative configuration of the two ellipsoids
is determined. Given two ellipsoids in general position, we may transform theminto A andMT

A (M−1
B )TBM−1

B MA,
whereA is a diagonal matrix as in Equation (1) andMT

A (M−1
B )TBM−1

B MA is a general 4×4 matrix. In this case,
the characteristic polynomial is given in the following simple form: f(λ ) = det(λA−MT

A (M−1
B )TBM−1

B MA). By
expanding this determinant, a quartic polynomial inλ is constructed. Appendix A presents an efficient algorithm
for computing the five coefficients of this polynomial. Using the quartic polynomial equation and its Sturm
sequence, we can determine whether the two ellipsoids collide.
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Computational Complexity. To count the number of negative real roots, we compute the Sturm sequence of the
characteristic polynomial and check the sign flips of this sequence at zeroand minus infinity. We first consider
rigid-body Euclidean motions only. In this case, we can compare the performance of our algorithm with other
collision detection methods. After that, we consider general affine motions.

In the matrix setup forMT
A (M−1

B )TBM−1
B MA, we utilize the facts thatMA andMB represent rigid-body motions,

and thatB is originally given as a diagonal matrix. When the motionMB is realized as a rotationRB followed by a
translationVB, its inverse motionM−1

B is equivalent to a rotationRT
B followed by a translation−RT

BVB. Using this
fact, we can count the operations as follows:

1. ComputingM−1
B requires 9 multiplications.

2. M−1
B MA requires 36 multiplications.

3. MT
A (M−1

B )T is a simple transpose ofM−1
B MA, and thus needs no multiplication.

4. SinceB is a diagonal matrix,BM−1
B MA requires 12 multiplications.

5. Finally,MT
A (M−1

B )TBM−1
B MA can be constructed using an additional 30 multiplications.

In total, we need 87 multiplications. From the matrix thus constructed, the characteristic polynomial can now
be computed with 40 multiplications using the algorithm presented in Appendix A. The derivative of a quartic
polynomial can be computed using 3 multiplications. To divide annth degree polynomial by an(n−1)th degree
polynomial, we need 2(n−1) multiplications and 2 divisions. Thus we can compute the Sturm sequence using
3+2(4+3+2) = 21 multiplications and divisions. To get the number of negative real roots, we need to examine
the signs of the highest and constant terms of the polynomials in the Sturm sequence, for which no additional
multiplications are needed. In summary, we need a total of 149 multiplications and divisions for collision detection
between two static ellipsoids. For two static ellipsoids sampled from affine motions,we need a total of 179
multiplications for detecting their collision.

We implemented the collision detection algorithm in C++ on a Pentium IV computer with a 3GHz CPU and a
2GB main memory. In measuring the computation time, we removed the rendering module and included only
the modules for setting up the motion matrix and detecting collisions between two ellipsoids. In the case of
motion matrices with elements of rational degree 4, the matricesMA andMB were constructed using about 100
multiplications. Including this, the whole procedure took less than 1 microsecond.

4 Continuous Collision Detection

We present a real-time algorithm for continuous collision detection (CCD) between two moving ellipsoids:A (t) :
XTA(t)X = 0 andB(t) : XTB(t)X = 0 under affine deformations.

CCD for moving ellipsoids. The characteristic equation ofA (t) andB(t), t ∈ [0,1], is f(λ ; t) = det(λA(t)−
B(t)) = 0. To improve the numerical stability, we reparameterizeλ = u−1

u , which maps(−∞, 0) to (0, 1), and
convert f(λ ; t) to a bivariate polynomial of Bernstein-Bézier form:

F(u, t) = det((u−1)A(t)−uB(t)) = 0, (u, t) ∈ (0,1)× [0,1].

Since f(λ ; t) has none or two negative roots, the zero-set ofF(u, t) has the special structure that any linet = t0
intersects it in 0 or 2 points in the domain(0,1)× [0,1]. (See Fig. 2a for the case of two separate moving ellipsoids.)
Furthermore, at any timet0∈ [0,1], A (t0) andB(t0) are separate if and only if f(λ ; t0) = 0 has two distinct negative
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Figure 2: Some scenarios of CCD computation.

roots. Equivalently,A (t0) andB(t0) are separate if and only ifF(u, t0) = 0 has two distinct real rootsu∈ (0,1),
or F(u, t0) > 0, for someu ∈ (0,1). Otherwise,A (t0) andB(t0) are either touching externally or overlapping,
and F(u, t0)≤ 0, for all 0< u < 1.

Finding all collision intervals. Collision intervals are bounded by 0, 1, or the contact timet̂, whereF(u, t̂) = 0 has
a double root at some ˆu∈ (0,1), satisfyingF(û, t̂) = Fu(û, t̂) = 0. It is time-consuming to compute all solutions of
F(u, t) = Fu(u, t) = 0 using a straightforward recursive subdivision ofF(u, t) over the whole domain(0,1)× [0,1].

For better efficiency, we make a good initial guess on collision intervals by applying a sequence of fast separation
tests (to static ellipsoids sampled at discrete time intervals 0= t1 < t2 < · · · < tm = 1). Then we use subdivision
either to eliminate intervals which do not contain any solution ofF = Fu = 0 or to identify those that contain
a unique solution. For the latter intervals, the solution is computed using a novelsearch scheme, calledBézier
shooting, with quadratic convergence.

The sequence of time samples can be divided into three types of segment, giving three cases to consider:

(1) Separation of static ellipsoidsA (t) andB(t) over a maximal sequence of consecutive samplest = ti , ti+1, · · · , t j .

(2) Collision of static ellipsoidsA (t) andB(t) over a maximal sequence of consecutive samplest = ti , ti+1, · · · , t j .

(3) Transition from separation (t = ti) to collision (t = ti+1), or vice versa.

Before treating these cases, we will first explain howBézier shootingworks. ConsiderF(u, t) over the domain
(0,1)× [t1, t2]. Suppose that the two ellipsoids are separate att1. Bézier shooting fromt1 to t2, denoted asBS[t1→
t2], has two steps: 1) find ˆu such thatFu(û, t1) = 0 andF(û, t1) > 0, by solving a cubic equation; 2) then Bézier
clipping [11] is used fromt1 to t2 to either conclude that there is no real root ofF(û, t) in [t1, t2] (see Fig. 2a) or
to compute the smallest roott̂ of F(û, t) = 0 in [t1, t2] (see Fig. 2b). In the former case the result of shooting is
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a missand the two ellipsoids are separate in[t1, t2]; in the latter case, shooting scores ahit andt̂ is returned, i.e.,
t̂ = BS[t1→ t2].

Supposing thatBS[t1→ t2] is a hit, we may useiterative B́ezier shootingby continuing to performBS[t̂→ t2], and
so on, to either try to get a miss or converge to a solution ofF = Fu = 0. It is proved in Appendix B that the iterative
Bézier shooting has quadratic local convergence. In implementation, if a miss occurs within a fixed number of
iterations ofBéziershooting (we use 4 or 5), we are done and have separation in[t1, t2]; if there is evidence of
convergence after these iterations, we will find the solution (see Fig. 2b);otherwise, the case is undetermined and
we use subdivision to get smaller intervals for further processing. If theellipsoids are separate att2, theBézier
shootingBS[t1← t2] from t2 to t1 can similarly be defined.

Case (1): Consider the interval[ti , t j ], where the ellipsoids are separate atti andt j . We first performBS[ti→ t j ] and
thenBS[ti ← t j ] iteratively. If either is a miss within 4 iterations, we have separation throughout[ti , t j ]; otherwise,
if either does not exhibit convergence (after 4 iterations say), the interval is subdivided. If both iterative shootings
converge, denotetk = BS[ti → t j ] andtℓ = BS[ti ← t j ] (see Fig. 2c). Iftk = tℓ we have a tangential contact attk;
otherwise, the interval[tk + δ , tℓ− δ ], for some smallδ < 0, is subdivided at(tk + tℓ)/2 to give two subintervals
(see Fig. 2c and 2d), which are in either case (2) or case (3) below.

Case (2): Consider the interval[ti , t j ], where the ellipsoids collide atti andt j . Having putF(u, t) into bivariate
Bézier form over(0,1)× [ti, t j ], we check whether all its control coefficients are negative, which implies collision
over the whole interval[ti , t j ] (see Fig. 2e). If the coefficients are not all negative, we keep subdividing the do-
main in thet-direction and check the signs of control points. The subdivision will terminate after eliminating all
subintervals if there is collision over the whole interval[ti , t j ]. But if there is separation within[ti , t j ], recursive
subdivision will reduce the problem to instances of the transition case (i.e., case (3)) below.

Case (3): Without loss of generality, assume that the ellipsoids are separate atti and collide atti+1 (see Fig. 2f).
We intend to ensure that there is a unique solution ofF = Fu = 0 (i.e. there is no small loop) in[ti , ti+1]. Clearly,
there is no loop in[ti , ti+1] if the unit normal vectors∇F(u, t)/‖∇F(u, t)‖ in [0,1]× [ti, ti+1] do not cover the whole
Gaussian circle. This can be determined efficiently, though conservatively, by checking whether all the 2D control
points of∇F(u, t) are on the same side of a line passing through the origin. If the test is successful, we use iterative
Bézier shootingBS[ti → ti+1] to find the unique solution in[ti , ti+1]. If the test fails, we use mid-point subdivision
until there is at most one solution ofF = Fu = 0 in each subdomain (see Fig. 2f).

Finding the first contact time only. Many real-time applications of collision detection require only the first
contact time to be computed. Suppose that the two ellipsoids are separate att = 0. We first sample along the
t-direction att1, t2, . . . until we encounter a collision case att = tk+1. Then we performBS[0← tk]. If the result is
a miss (i.e. separation in[0, tk]), thentk is a good initial value and we use iterative Bézier shootingBS[tk→ tk+1]
to compute the first contact time. IfBS[0← tk] is a hit, we step back to uset = 0 as an initial value and perform
iterative shootingBS[0→ tk+1] to compute the first contact time.

CCD for independent motions. The characteristic equation for two independently moving ellipsoidsA (s) and
B(t), s, t ∈ [0,1], is given by

F(u,s, t) = det((u−1)A(s)−uB(t)) = 0.

If A (s0) andB(t0) are separate, thenF(u,s0, t0)= 0 has two distinct rootsu∈ (0,1); and equivalently,F(u,s0, t0)>
0, for someu∈ (0,1). Otherwise,A (s0) andB(t0) are either touching externally or overlapping, andF(u,s0, t0)≤
0 for all u∈ (0,1). In particular,A (s0) andB(t0) are touching each other externally if and only ifF(u,s0, t0) =
Fu(u,s0, t0) = 0 for someu∈ (0,1).

The zero-set ofF(u,s, t) = 0 is an algebraic surface inust-space. Moreover, the common zero-set ofF(u,s, t) =
Fu(u,s, t) = 0 is an algebraic space curve inust-space. LetZ denote the curve contained in the cube(0,1)×
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[0,1]× [0,1]. The projection ofZ on to thes-axis covers a union ofs-intervals, each of which corresponds to
A (s) touchingB(t) externally at somet. Thus thes-intervals ‘uncovered’ in this projection correspond to two
cases: either (i)A (s) is separate fromB(t), for all t, or (ii) A (s) collides withB(t) in interior points, for allt.
The end-points of an ‘uncovered’s-interval are projections of extreme points of the curveZ in the s-direction,
which can be classified by the following simultaneous polynomial equations:

F(u,s, t) = Fu(u,s, t) = Ft(u,s, t) = 0.

Thet-intervals ‘uncovered’ in the projection to thet-axis can also be constructed by solving

F(u,s, t) = Fu(u,s, t) = Fs(u,s, t) = 0.

5 Experimental Results

To demonstrate the effectiveness of our approach, we have implemented aboxing game involving two virtual
human characters actively interacting with each other as shown in Fig. 1. Each character is modeled with 24 ellip-
soids, representing different body parts such as heads, limbs, etc. The motions of the two boxers are automatically
generated by motion capture data, together with a simple control mechanism. All computations are carried out in
double precision on a Pentium IV 3GHz CPU. In every time frame, the collision detection algorithm is applied to
576 pairs of ellipsoids, formed by picking one ellipsoid from each of the characters. For each pair of ellipsoids, we
first test whether their bounding spheres collide in linear translations. If there is a collision, we compute a plane
that separates the two ellipsoids [17] at the beginning of the time frame, and then test whether the two moving
ellipsoids are continuously separated by the plane during the whole frame period.

We generated 1,000 frames of the boxing animation. As a result, 576,000 pairs of moving ellipsoids were tested.
96.3% of the pairs were filtered out by the sphere test; and 59.0% of the remaining pairs were eliminated using the
separating planes. To the remaining 8,837 pairs (1.53%), we applied the algorithm from Section 4 that computes
the first contact point in continuous collision detection. Of the 8,837 pairs thus tested, 48.9% were separate and
51.1% were in collision during the time of the frame. In this situation the motions are relatively simple and
half of the tests report separations. Thus, for efficiency reason, wedirectly apply the B́ezier shootingBS[0→ 1]
without taking samples until we encounter a collision. Including all the above procedures and the generation of
interpolating motionsMA(t) andMB(t) for 48 ellipsoids, collision detection for each frame took 3.4 milliseconds,
in which 576 pairs of moving ellipsoids were handled. (See the accompanyingvideo and demo.)

A continuous rigid motion interpolates the positions and orientations of an ellipsoidbetween the two ends of
each time frame. The center positions are linearly interpolated and the orientations are interpolated by a linear
quaternion curve, producing a rotation matrix of rational degree 2. A totalof 48 motion matrices were generated in
450 microseconds. The formulation of the bivariate functionF(u, t) takes considerable computation; fortunately,
we need to compute only 9 (= 576× 1.53%) such functions on average, which adds very little to the overall
computation time.

In Fig. 3, two ellipsoids are under dependent motions of degree 4 with relatively large affine deformations. In this
example, our system took 3.7 milliseconds to compute all four separation intervals using the algorithm explained
in Section 4. Detection of the first contact time only took 0.9 millisecond.

Fig. 4 shows the intersection of the swept volumes of two ellipsoids under independent motions and the zero-
set surface ofF(u,s, t) = 0. In the rightmost two subfigures, the red and blue dots represent the extreme points
of ‘uncovered intervals’ in thes- andt-directions, respectively. The four extreme points and the corresponding
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Figure 3: Two moving ellipsoids under dependent affine deformations, which produce four intersection intervals.

Figure 4: Two moving ellipsoids under independent affine deformations.

intersection intervals were computed in 30 milliseconds. But when we processed a similar example with dependent
motions, a collision interval was computed in 0.5 millisecond.

6 Conclusions

We have presented an exact algorithm for real-time continuous collision detection between two moving ellipsoids
under affine motions. It is based on an efficient separation test for two static ellipsoids. A significant speed-up was
realized by developing an efficient method calledBézier shooting, which approximates each regular solution of
F = Fu = 0 with quadratic convergence. The special structure of our algebraic condition for separation also allows
an efficient test for loop-free domains by checking whether∇F covers the whole Gaussian circle. We believe
that there are many other interesting properties of our algebraic condition,which should lead to more efficient
geometric algorithms for dealing with ellipsoids and affine deformations. In future work, we plan to investigate
further applications of the computational tools reported in this paper.
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Appendix A

We present an efficient algorithm for computing the five coefficients of thecharacteristic polynomial f(λ ) of degree
4. LetMT

A (M−1
B )TBM−1

B MA = [bi j ]4×4. Then the characteristic polynomial is given in the following simple form:

f(λ ) = det(λA−MT
A (M−1

B )TBM−1
B MA)

=

∣

∣

∣

∣

∣

∣

∣

∣

λ/a2−b11 −b12 −b13 −b14

−b21 λ/b2−b22 −b23 −b24

−b31 −b32 λ/c2−b33 −b34

−b41 −b42 −b43 −λ −b44

∣

∣

∣

∣

∣

∣

∣

∣

.

By expanding this determinant, the five coefficients can be constructed as follows:

1. The 4th-degree term:− 1
a2b2c2

2. The 3rd-degree term:b11
b2c2 + b22

a2c2 + b33
a2b2 −

b44
a2b2c2

3. The 2nd-degree term:

b33b44−b34b43

a2b2 +
b11b44−b14b41

b2c2 +
b22b44−b24b42

a2c2

+
b23b32−b22b33

a2 +
b13b31−b11b33

b2 +
b12b21−b11b22

c2

4. The 1st-degree term:

−b22b33b44+b22b34b43+b33b42b24

a2 +
b44b32b23−b32b24b43−b42b23b34

a2

+
−b11b33b44+b11b34b43+b33b14b41

b2 +
b44b13b31−b31b14b43−b41b13b34

b2

+
−b11b22b44+b11b24b42+b22b14b41

c2 +
b44b12b21−b21b14b42−b41b12b24

c2

+b11b22b33−b11b23b32−b22b13b31−b33b12b21+b21b13b32+b31b12b23

5. The constant term:

b11b22b33b44−b11b22b34b43−b11b33b24b42−b11b44b23b32

−b22b33b14b41−b22b44b13b31−b33b44b12b21

+b11b32b24b43+b11b23b34b42+b22b13b34b41

+b22b31b14b43+b33b12b24b41+b33b21b14b42+b44b12b23b31

+b44b21b13b32+b12b21b34b43+b13b31b24b42+b14b41b23b32

−b21b14b43b32−b21b13b34b42−b31b12b24b43

−b31b14b42b23−b41b12b23b34−b41b13b32b24

The following function efficiently computes the five coefficients of the characteristic polynomial using 40 multi-
plications.

Generate-Characteristic-Polynomial

/* Variable definition

ea,eb,ec is a diagonal member of matrix A

ab = ea * eb, ac = ea * ec, bc = eb * ec,

abc = ea * eb * ec

bij is a member of the matrix MT
A (M−1

B )TBM−1
B MA

*/
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begin
b2233 = b22 * b33;

b12s = b12 * b12; b13s = b13 * b13; b14s = b14 * b14;

b23s = b23 * b23; b24s = b24 * b24; b34s = b34 * b34;

termA = b11 * bc + b22 * ac + b33 * ab;

termB = b2233 * ea + b11 * (b33 * eb + b22 * ec);

termC = b23s * ea + b13s * eb + b12s * ec;

A = −abc;
B = termA − b44 * abc;

C = termA * b44 − termB + termC

−b34s * ab − b14s * bc − b24s * ac;

tmp1 = (termB - termC) * b44;

tmp2 = b11 * (b2233 + eb * b34s + ec * b24s − b23s);

tmp3 = b22 * (ea * b34s + ec * b14s − b13s);

tmp4 = b33 * (ea * b24s + eb * b14s − b12s);

tmp5 = b34 * (ea * b23 * b24 + eb * b13 * b14)

+ b12 * ( ec * b14 * b24 − b13 * b23);

tmp5 += tmp5; // multiply by 2

D = −tmp1 + tmp2 + tmp3 + tmp4 − tmp5;

E = constant; // constant value det[-B]

end;

Appendix B

t

u

Fu = 0

u = kt

F = 0

û
t0

t1

Figure 5: Quadratic convergence of Bézier shooting.

We will show that iterative B́ezier shooting has quadratic convergence when used to compute a traversal contact
time, i.e., a regular solution(u∗, t∗) of F(u, t) = Fu(u, t) = 0. Wlog, suppose that(u∗, t∗) is located at the origin
(0,0), with F(u, t) = 0 andFu(u, t) = 0 as shown in Fig. 5. Then, by the regularity assumption and Implicit
Function Theorem, the solution ofF(u, t) = 0 can be represented locally at(0,0) by Taylor expansiont = αu2 +
o(u2), and the solution ofFu(u, t) = 0 by u = kt + o(t). Now consider B́ezier shooting fromt0. The solution of
Fu(u, t0) = 0 is û = kt0 +o(t0). So the first root ofF(û, t) = 0 is

t1 = α û2 +o(û2) = α [kt0 +o(t0)]
2 +o(t2

0) = αk2t2
0 +o(t2

0).

It follows thatt1/t2
0 = αk2 +o(1). Hence, B́ezier shooting has quadratic convergence. But if(u∗, t∗) is a singular

solution representing tangential contact of the two ellipsoids, then the convergence of iterative B́ezier shooting is
in general linear.
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