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Computing the Minimum Directional Distance
between Two Convex Polyhedra

Yi-King Choi, Xueqing Li, Fengguang Rong, Wenping Wang and BéspCameron

Abstract— Given two convex polyhedra P and @ and a
direction s, the minimum directional distance (MDD) is defined
to be the shortest translational distance along the directios that
is required to make P and @ just in contact. In this paper we
propose a novel method, called MDD-DAL , for computing the
MDD between two convex polyhedra. The MDD is equivalent
to the shortest distance between the origin and the Minkowski
difference M of the polyhedra in the direction s. Our idea is
to reduce the MDD problem to seeking a vertex on the dual
polyhedron of M with the maximum signed distance from a
special plane by means of a duality transformation. We show
that this is equivalent to locating a face onM with which a ray
shooting from the origin in the direction s first intersects. The
MDD can then easily be derived from the signed distance.

Our algorithm constructs only a subset of the faces onM
along the search path. By further breaking down the search
into three phases, each on a different type of faces o/, MDD-
DUAL reports the MDD between two convex polyhedra efficiently.

Index Terms— minimum directional distance, directional sepa-
rating distance, directional penetration depth, convex polyheda,
duality transformation, signed distance.

I. INTRODUCTION

commonly used algorithm of Gibert, Johnson and Keerthi
(GJK) [6], works on the simplices of the Minkowski differexnc
of two polyhdera and uses convex optimization techniques to
compute the closest points. Modified approaches [7], [8] and
improved implementations [9] based on GJK were developed.
It is also shown in [8] that an enhanced version of GJK has
O(1) time cost under the assumption of strong geometric
coherence. Specific to computing the penetration depth of tw
convex polyhedra, Agarwal et al. [10] presented a randothize
algorithm whose expected running time(i’.{m%*E +niteq
mlte+nlte) for any constant > 0, wherem andn are the
number of faces of the two polyhedra. Apart from this theo-
retical result, Kim et al. [11] devised an incremental aitjon
with an implementation for estimating the penetration Hept
The separating distance and penetration depth between two
convex polyhedra tell how far the two polyhedra can traeslat
towards or away from each other, respectively, so that they
just touch each other externally. The translation must ydwa
be along the direction between the two features that realize
the shortest distance on each of the polyhedra. However, in
some applications the directions of object translatiorsrent
unrestricted and are often confined in just several specific

It is often important to determine the distance betweadtirections. Computing the shortest distance in this casg ma
two geometric objects in order to understand their spatiabt give the desired results, since its corresponding rista
relationship. When the two objects are separate, we focushiray not align with the allowable directions. In these sitag,

their separating distance, i.e. the minimum translatictedice

the directional separating distance or directional petietn

to bring them just in touch; and in the case of two intersectirdepth would give a more appropriate indication to solve the
objects, it is then the penetration depth, i.e. the minimuproblems.

translation distance to separate them, that is of our istere We follow similar notation as in [3] and define the function
The distances between objects are useful in many applitidDD " (A4, B,s) for two objects A and B in the direction

in robotics and computer graphics, or other areas that requs € R? as

physical simulations, where responses are often deducsdiba

. . . . . . +
on the distance information. Distance computation is alddDD™ (4, B,s)

commonly studied in relation to collision detection of atige

(see a survey in [1], [2]). Using a commonly used measure. o 1.
by Cameron and Cully [3], a positive distance corresponds

separation, while a negative distance means intersec8pn

In this paper, we will concentrate on distance computatan f

convex polyhedra.

Numerous work has been conducted in the fields of com
tational geometry, computer graphics and robotics for agmp
ing the shortest distance between convex polyhedra. The LirMDD(A B,s) = {—MDD+(A7378)
Canny (LC) [4] and V-Clip [5] are feature-based algorithms T
that find a sequence of pairs of candidate witness pointshwhic

min{|[ts|| | Int(A) N Int(B') = 0 ADAN OB # 0.t € R}

(A) and A denote the interior and boundary of
éﬂ respectively, andB’® = {b +¢s | b € B} is the result

f B translated byts. MDD™ is zero when4 and B are in
external contact; otherwise, it is positive for both inemting
and separate objects. To distinguish the two cases, weefurth

PYefine

if A intersectsB,
+MDD™ (A, B,s) otherwise.

1)

eventually converge to the closest features between the ttede the minimum directional distance (MDD) of two objects
polyhedra. The LC algorithm has an almost-constant complet and B in the directions. The MDD is positive and gives the

ity in exploiting temporal coherence and reporting the e

directional separating distance if two objects are sepaiat

points upon consecutive invocation of the method. Anothér negative and gives the directional penetration depthdyt
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intersect. It can be shown that the MDD of two convex polyhder face)of P in n as the edge (or face) that contains two (or
dra is equivalent to the shortest directional distance betw more than two) supporting vertices in

the origin and their Minkowski difference polyhedron [12]. Definition 3: Let ia(f) denote the unit normal vector of a
Therefore, the MDD can be found by intersecting a ray frofiace f. The supporting vertex aP for f, sp(f), is defined as
the origin with the Minkowski difference polyhedron, whosehe supporting vertex of in the normal direction off, i.e.,
geometric complexity is known to be aP(n?). Hence, a sp(f) =sp(n(f)).

brute-force algorithm in finding the MDD will run i©(n?)

time. Dobkin et al. [12] presented a’n(log2 n) algorithm for B. Gaussian image of a polyhedron

computing the directional penetration depth of two convex
polyhedra using the hierarchical representation of palyhe
by Dobkin and Kirkpatrick [13], [14], where: is the total
number of vertices of the two polyhedra.

The Gaussian imagé&/(P) of a convex polyhedrorP is
a planar graph embedded on the unit sph&fe(Figure 1):
A face f € Fp corresponds to a poin&(f) = n(f) €
S2%; an edgee € £p common to two facesfy, fi € Fp
corresponds to a great aff{e) connecting two vertice&'( fy)

A. Major contributions and G(f1) on 8% a vertexv € Vp common to the faces
In this paper, we present an algorithm MDDUBL to com-  fo, - - -, fm COITesponds to a convex spherical polygGtw)

pute the minimum directional distance between two convd¥ose vertices ar&/(fo), ..., G(fn)-

polyhedra, both in cases where the polyhedra are separate or

intersect. When the polyhedra are separate (or interséet), t G(P)

directional separating distance (or penetration deptpee- P v :

tively) is determined. By means of a duality transformation ﬁfO—L\ Gle)

we define a convex function (hamely, the signed distance of e o G(vo)

a vertex on the Minkowski differencé/ of the polyedra to €0 nogf

a plane) in the dual space which is shown to be equivalent / (&

to finding a face containing the intersection of a ray from Gles)

the origin with M. The convex nature of the latter process €2

is not intuitively seen, but is confirmed easily by its dual

counterpart. Moreover, the geometric complexity &f iS Fig. 1. A polyhedronP and its Gaussian imag@(P) on S2.

known to beO(n?), of which most of the faces are of EE-

type (see section II-C). By breaking down the search on theFor a feature (i.e. vertex, edge or faege)pf a polyhedron

Minkowski difference into 3 different phases, we can skif’, the Gaussian image of is the set of normal directions of

most of the EE-type faces and obtain the optimal result planes that may come into contact withat ¢. In other words,

an efficient way. ¢ is the supporting feature d? in the directions represented
by its Gaussian image.

B. Paper Organization inkowski f Ivhed
In Section IlI, we first introduce some definitions and notac-:' Minkowski Sum of Two Polyhedra

tion that will be used in our discussion. We will then explain Given two polyhedra” and@, let—Q = {—q | ¢ € Q}. We
our algorithm in detail in Section IV, where the correctnegs consider the Minkowski sum/ of > and—(@ (or equivalently,
MDD-DuAL will be proved. The algorithm MDD-DAL to the Minkowski differenceP” and @) defined by

sqlve the collision detegtion prqblem of two convex polyttaaeql M=Po-Q={p—q|peP,qeqQ).

will be demonstrated in Section V. Some implementation

details will be given in Section VI. The performance of MDD-The originQ is in M if and only if there are somp < P and
DUAL are presented in section VII. q € @ such thatp = q, i.e. P andQ share a common point
(so they overlap).

As P and @) are both convex)M is also a convex poly-
o ) hedron [15]. The Gaussian image df (denoted byG(M))
A. Definitions and notations can be obtained by superimposing the Gaussian im&géy

Let P be a convex polyhedron iB®. Let Vp, Fp, andép and G(—@Q). For any facef, € Fp, the pointG(f,) must
denote the set of vertices, faces, and edgeB,aespectively. fall within the regionG (s_q(f,)), i.e. the Gaussian image of

Definition 1: Given two polyhedraP and @ as two point the supporting vertex of-Q for f,, on S2. The same is true
sets, P and @ are said to beoverlappingif P N Q # 0; regarding any facg, € F_q by interchanging the roles d?
otherwise, they arseparate and—@, which are symmetric il = P ® —(Q. Hence, each

Definition 2: A supporting vertexp(n) of P in the direc- pointinG(P) andG(—Q) corresponds to a face i (Fig. 2).
tion n # 0 is a vertex inVp satisfyingn-sp(n) = max{n-v | Furthermore, each arc-arc intersection &h corresponds to
v € Vp}, wherex -y is the dot-product of the vectossand a pair of edges (one fron® and one from—@Q) sharing a
y. common normal direction and amounts to a facélin

For a supporting vertexp(n), we also haven - sp(n) = Hence, the faces iff,; can be classified into the following
max{n-p | p € P}. We may also define thgeupporting edge three subsets (Figure 3):

Il. PRELIMINARIES



affine coordinatesx = (z,y,2)?. Suppose a planél, not
passing through the origin, be given By x = k in theprimal
spaceE, where A ¢ R? andk is a nonzero real number. A
duality transformationmapsII to a pointw = A/k in the
dual spacelE3*. A pointu # 0 in E? is transformed to a plane
U :ux =1 in E>* (Fig. 4). If we extendE? to include the
_ _ o plane at infinity (i.e., the extended Euclidean space), aela
oy a0 e ot s e, PaSSIng through the origin i s mapped to a point atinfiiy
(i) (white point) a point ofG(P) falling within a region ofG(—Q), i.e., a N E?*; whereas the origin if£? is transformed to the plane at
face in F,; (ii) (black point) a point ofG(—Q) falling within a region of infinity in E3*. Note thatE? is the dual space dE3*. In the
EN(OP ﬁ;é'igi‘cha?ﬁ),ﬂf‘gf(ji‘) Z%?jgl()—(zgh)??.eec.j, zq]&‘:crg)i:;:”tersec“o” point Otseq.uel, we \;vill use)* to denote the dual counterpart of an
entity ¢ in E°. We may also consider a duality tranformation
p Fr centred at an arbitrary poirt< E3. This can be done by first
o Fut translatingE? to centre atc before applying duality, and we
call ¢ the centre of duality

S
U

b*

—Q f
< M=Peo-Q c £ /
Fig. 3. The Minkowski sum\/ of P and—@. Faces onV/ can be classified b /

as of typeF;,, Fyt, OF Fee.

/

e

. . . Fig. 4. A 2D illustration of duality transformation betwedretprimal space
Fi: Each facel'(f,,v,) is a point set{x + v, | x € (left) and the dual space (right).

fp}, where f, € Fp andv, € V_g. Also, v, =

s—Q(fp)- Suppose that the centre of duality is contained in the
interior of a convex polyhedroi/, then every faces of\f

are properly transformed to a vertex not at infinity. The dual

M* is therefore a convex polyhedron; the vertices and faces of
Fee: Each faceF(e,,e,) is a parallelogram with ver- A7+ areF;, andV;,, respectively. The dual of an edge defined

Fyi: Each faceF (v, f,) isapointsefv,+x | x € f,},
wheref, € F_g andv, € Vp. Also, v, = sp(fq).

tices vo = vp, + Vg, VI = Vp, + Vg, V2 = by two adjacent vertices,, v, in M is an edge common to
Vpy + Vg V3 = vy, + Vg, Wherevy,,, vy, € Vp,  two adjacent facesy, vi in M*.

Vao: Var € V-, and e, = (v, vp,) € Ep, Property 1: Any point x € Int(M) is transformed by a
eq = (Vgo,Vq) € E-@. Moreover, the Gaussianduality to a planex* not intersectingd/*, where Int(M)
images ofe,, ande, intersect onS>. stands for the interior of a polyhedral; while any point

x ¢ M is transformed to a plane* that intersects\/*.
D. Duality Transformation

In the projective 3-space, the concept of duality be- IIl. THE KEY IDEA

tween points and planes is given by the symmetry be-|n this section, we explain the fundamental concept of our
tween point-coordinates and plane-coordinates in thetemua aigorithm, which relates the MDD problem of two polyhedra
>izowiz; = 0 [16], [17] (*). A more general formulation in the primal space to a search for a vertex on a Minkowski
is to consider the self-dual duality with respect to a givegifference polyhdedron in the dual space.
non-singular quadric surfacB : XT"BX = 0 where X =
(z,y,2,1)T is the homogeneous coordinates of a point, and . .
B is a4 x 4 real symmetric matrix. The dual of a poibt, A. Condition for the separation of two polyhedra
is a plane) : Y{ BX = 0 (the polar of Yy) and the dual of Let M = P & —Q be the Minkowski difference of two
a planeV : VX = 0 is a pointUy = B~!V; (the pole of convex polyhedra? and Q. We have,
V [18]). It is easy to verify that ify is the dual ofY;, then
Yy is the dual of). Also, if Y is a point onJ5, its dual is
the tangent plane t8 at Y. The duality expressed in (*) is
a special case where the quadrigss an imaginary sphere. where the centre of duality can be any fixed paing 0 in

In this work, we consider the duality transformation with\/ (Figure 5). By checking the signed distance (which will
respect to the unit sphere 3. We now describe the dualbe discussed in the next section) of the verticed/0f to the
relationship between a point and a planeHf in terms of planeo*, we can deduce whethe intersectsM* or not.

P and @ overlap< the origino € M
— the planeo* does not intersect/ *



N”x = k — N7Tc after a translation of-c, wherec is the
centre of duality. Hencef* = N/(k — NT¢) € Vj« in the
dual space. The origio is translated to-c and therefore the
plane equation 06* is —c”x = 1. The signed distancé( f)
can then be expressed explicitly as:

]E3 ES* T
—C N 1
A(f) =do-(f*) = ——- -
M o el k—=NTc ||
k
— — T NT 2
lef|(k — N*c)
The signed distance of and o to the plane,,  (the
containing plane off,...) are given byds;, (c) = —(k —
Fig. 5. A 2D illustration demonstrating the geometric relasbip of M and  N”'c)/||N|| and dy;, (o) = —k/|[NJ|, respectively. If
o in the primal spac&? and the dual spac&>*. d(fmax) < 0, by EqQ. (2),k — NTc > 0 and therefore

dy, . (c)anddy, (o) are of the same sign; which means

. . . . . thatc ando are on the same side of the fageando € M.
B. The Objective Function—Signed Distance Function On the other hand, ifl( fmax) > 0, ¢ ando are on opposite

Given a plandl : ATx = k whereL € R?, x = (z,y,2)", sides off and we haveo ¢ M.
k € R, we assume that the plane equation is normalized suchrhe functiond(f) is defined in the dual spadé®* as the
that || A]| = 1 is the unit normal ofll pointing away from the signed distance from the poiifit to the planeo*. We will now
origin so thatk > 0 is the shortest distance from the origin derive the geometric meaning dff) in the primal spac@?.
to the plane. Thesigned distancef a pointx, to the plane The quantityd(f) = do-(f*) uniquely determines a plarié
I is then given by in E3* parallel too* such thatl,- (x) = do-(f*) for all points

AT x € I* (Figure 6). The plané* therefore passes througt
dn(x0) = A%x0 — k. and is parallel to the plane*. Sincel* has the same normal

If xo lies onIl, dpi(xp) = 0; if xo lies on the same side of
IT as0, dir(x¢) < 0; and if x lies on the opposite side &f
to 0, dH(Xo) > 0.

Let dpmax = max{do~(m) | m € M*} be the maximum
signed distance of all points il/* to the planeo*. SinceM*
is convex, the point that attains the maximum signed digtanc
dmax 10 the planeo* must lie on the boundary of/*, i.e.
either on a vertex, a face or an edge. In any case, there is a
vertex f* € M* such that

max
do- (f;;ax) = dmax-
) ] Fig. 6. The vertexfy in E3* attaining maximum signed distance ¢ is
Hence, to computd,,.,, we may consider only the verticesthe dual of a facefo in E? intersecting the directed lineo.

of M* and find their signed distances to the plarie

The sign ofd ... indicates whether the two polyhedFaand direction aso*, it can be shown easily that its dual poiht
Q overlap. Ifd. < 0, all vertices onM* are on the same must lie on the lineco. Moreover, sincd* passes througli*,
side ofo* as the origin;A/* ando* do not intersect and hencel must lie on the plané{,, the containing plane of. This
P and @ overlap. On the other hand, ifn.x > 0, at least implies thatl is the intersection of the plarfg; and the line
one vertex is at the opposite side @f to the origin; in this co.
case,o” intersectsM* and therefore”® and( are separate. If Lemma 1:The rayco intersectsM in the facef,.x, whose
dmax = 0, 0* touchesM* at some boundary point, ardlies signed distance is the maximum among all facesFin, i.e.
on the boundary of\/. By the construction ofi/ as described d(fyax) = dmax-
in section 1I-C,0 = p — q for some boundary pointp and Proof: Let the lineco be given byl(t) = —tc,t € R.
q of P and @, respectively. It implies thap = q and P and Then, the signed distance for a fagavhose containing plane
@ share a common boundary point, i.€.,and @ touch each passes through(t) is given by

E3

other.
Let f be a face ofM/ in E3. We may then define theigned d(f) = L(ﬁ).
distanceof f denoted byd(f), to be the signed distance of llefl > ¢
f* to the planeo* in E?*, i.e. It means that the facg,.., with the maximum signed distance
A(f) = do- (%) among all faces inF,,, has the closest intersection with the

ray co. Since M is convex anc: is in the interior ofM, this
Supposef is contained in a plang{; : N'x = k, where must be the case where the directed keintersects the face
IN|| = 1 and k& > 0. The plane equation of is then f.x. [ ]



Let dpin = min{de-(m) | m € M*} be the minimum  We will now establish the relationship between and
signed distance of all points id/* to the planeo*. Also, dmax = d(fmax)- LEt0 = —c S0 thatc is the centre of duality
let f.i, be the face having the minimum signed distano@igure 8). Thero* is the plane given by-c”x = 0. The face
among all faces inFy;, i.e. d(fumin) = dmin. We then have fu.. = u’x = 1 corresponds to the vertei .. = uon M*
the following corollary: in E3*. We have

Corollary 2: The ray shooting frome in the directionoc Tu+1
intersectsM in the face f,;,, whose signed distance is the Amax = ——————
minimum among all faces itFy,.

It is now clear that by Searching for a face M with Let a' be the Shortest distance from the pOﬂ’ﬂtO the face
maximum signed distance, we are essentially determinifigax and¢ be the angle between the lin® and the normal
whethero is in M by firing a ray from an interior point of A/ Vector of fi,ax. Then

to o, obtaining a face o/ that intersects the ray and deciding ) cTu+1  daxlc
whether the intersection point lies within the line segment o = = Il = T and
co. It is hard to perceive that this entire process defines a T

convex function over all faces in/; but it becomes apparent cosf = <% _ dinax €] + 1
when the same process is described by its dual equivalent [leflflull [lefl{full
d(f) which is clearly a convex function defined over all duaHence,

vertices f* of M*; since M* is convex, a vertex* attaining 0o @ _ dmax|c|?

a local maximum signed distance must also attain the global cost  dmaxl|lc] +1°
maximum signe_d distance among all vertices\it. It is z_ilso Similarly, it can be shown that

important to notice further that(f) can be computed without

even explicitly applying duality transformation o, as can dumin [ ]|

be seen from Eq. (2). “ dminllc]] +1°

We may then define our objective function as the signed
distanced(f) for all facesf in M. Our objective is to find
dmax, the maximum signed distance, so as to compute the
MDD between two convex polyhedrd and Q. Starting from
any face of F,;, we go to the next face with the largest
d(f) among all immediate neighbours of the current face.
By this local search, we will visit faces with increasidgf) a °
and eventually stop at a face with a locally maximum signed
distance. Due to the convexity of the objective functioris th
local search scheme will lead to tloptimal face f,.«, that
attains the maximum signed distanég., among all faces in
M. It is possible to have more than orfig., that attaind,, .,
which happens when the lin® intersectsM at an edge or a
vertex.

€Y

C. Minimum directional distance (MDD)

Let a be the distance between the poinaind the intersec-
tion of the directed lineco and f,.«. If the two polyhedraP
and @) are separatay is their separating distancalong the
direction oc, which is the distance thad needs to translate
m_the directionoc so that it is in _eXtemal antaCt Wlt,lp Fig. 7. The minimum direction distance #f and @ in directionoc. (a) P
(Figure 7(a)). IfP and @ overlap,« is then theirpenetration andq are separate, an@ needs to move alongc by a distance of: to be
distancealong co, which is the distance tha@ must move in in contact withP; (b) P andQ intersect, and) needs to move either iao
co until it touchesP externally. However, it is possible thatPy @ O in oc by a to be in external contact witi.

a shorter distance can be taken by movipdgn the opposite
directionoc to separate® and @), i.e. the distance denoted by
@ in Figure 7(b). By Corollary 24 is the distance between
the origin and the intersection of the ray froemto the face ~ Given two convex polyhedr& and @, and a directiors €
fumin. According to the definition of MDD in (1), we have R?, the steps in MDD-AL for computing the minimum
directional distance oP and@ in s are as follows:
MDD(P, @, oc) Step 1: Determine the center of dualityin the interior
of M = P & —(Q such thatc = as for some
nonzero constantv € R. If ¢ is not defined,
report theMDD(P, Q,s), else go to Step 2.

IV. THE ALGORITHM

) if P and(@ are non-intersecting,
| min{e,a} otherwise.



may then quickly determine i@ (n) time whether0 is in M

by examining the triangle&ror;r; 11, j =1,...,1—2 where

I is the number of vertices af/. We have0 € M if and only

if 0 € Aror;1;41, for somei. There are now three cases to
consider; case 1 and 2 will report the MDD betwdemand @,
while case 3 will determine a poirt as the centre of duality
and the algorithm MDD-DAL will proceed with step 2.

Case 10 ¢ M. Here,P andQ do not have external contact
no matter how farQ is moved alongs and hence the MDD
Fig. 8. The minimum directional distance in the primal space and the Of 7 and @ is undefined. .
maximum signed distanagy.x in the dual space. Case 2:0 is on the boundary of/. In this case,P and @

either have no contact or have only external contact no matte
how far ) is moved alongs; also, the ray shooting from

Step 2: Obtain dmax, the maximum signed distance, in s touchesM at the boundary. Our aim would be to find a

by searching for the optimal facf..x among  face ona that the ray touches. Assume titalies on an edge
all faces inFs,, Fyr and F.. individually. If FiF;41 Of M, witht; = p;—q; andr; 1 = pit1—Qi+1. Then,
dmax < 0, obtain alsalyn, the minimumsigned ¢ 7(P) and CH(Q) must contact at the featurép;, pi1)
distance by searching for the faggi, among  and(¢;, g,,1), which may be either an edge or a vertex. Let

fmax =ulx =1

all faces inF,, For and Fe individually. ¢p and ¢ be the features o and Q whose projection to
Step 3: ComputeMDD(P, Q, S) from Amax @S described H is a subset O(I.)ia pi+1) and (q“ qi+1), respective|y_ The
in section IlI-C. features¢pr and ¢ must contain the verticep;, p;+1 and
Steps 1 and 2 will be described in details in the subsequept q;, 1, respectively, and they must be whePeand Q have
sections. contacts wheid) moves along. Now, depending on the nature
(i.e. vertex, edge or face) afp and ¢, we construct either
A. Determining the center of duality an F¢,, Fyr or anF.. face F' on M. The distance frono to

F alongs is the MDD of P and Q.
Case 3:0 is in the interior of some triangle\ror;1; 1.
hen we have two sets of verticés = {po, p;, Pi+1} and
o = {40, 4;, q;+1} forming the triangle. We want to make
sure that at least one of the two sets contain distinct \eestilf
this is not the case, we choogg = py — q; SO thatpy &€ Sp
and q; ¢ Sq. The origin 0 must be in eitherAror;r; or
Ai‘if’i+1f‘k, if k >i+1;o0rin eitherAfoi‘kf‘i+1 or Ai’ii‘iJ’,li'k,
if k& <. It can be shown that in any case, we could obtain a
triangleAry, Iy, 'y, Such that at least one of the corresponding
two setsSp and Sg must contain distinct vertices.

Letw;,j = 0,1,2 be the barycentric coordinates @fwith
respect tory,, 'k, , I'x,- Hence,w; > 0 and > w; = 1. Then,

we have
@@p " 0= wjiy, =D wibk, — Y wids, =P~ 4,

In this step, our goal is to determine a poinin the interior
of M = P& —(Q that will be used as the centre of dualityT
As explained in sections II-D and llI-C, it is necessary th
c = ks for some nonzero real constamtin order to obtain
the MDD in the directiors; the conditionk # 0 is to ensure
that c is not the origin.

We first obtain two sets of point® andQ by applying an
orthographic projection along of all vertices of P and @ to
a planeH normal tos. This projection can be done if(n)
time (Figure 9(a)) where is the total number of vertices @?
and Q. The next step is to construct the convex hallH ( P)

wherep = > w;py, andq = > w;qs,. Since the ortho-
graphic projection ofP and @ to the plane is an affine
transformation that preserves the ratio of area and therefo
barycentric coordinatesp and ¢ are the projected images
of somep and q, respectively, wherep = > w;px, and
@ (b) q= Y widy;, Pr;, € Vp andqy, € 1_2@ are _the vertices
projected topy, and g, on H, respectively. Sincev; > 0
Fig. 9. (a) Orthographic projection d? and@Q alongs to a planeH normal and>_w; = 1, we havep € P’ andq € Q. Also asp = ¢, we

to s; and (b) the Minkowski differencé/ of CH(P) and CH(Q) with the obtainc = p — q = as, for some constant. The following
triangle Aigi;1;1 containing the origirD. procedures ensure thats not the origin and is in the interior

of M, which make use of the fact that at least oneSgf
and CH(Q), of the points? and Q, respectively, which can or Sq contains distinct vertices. Without loss of generality,
also be done inO(n) time since the boundary vertices ofsuppose thabp = {ps,} contains distinct vertices. We form
CH(P) andCH(Q) are the silhouette vertices &f andQ as a tetrahedror? with verticespy,, px,, Px, andp;, wherep;
viewed alongs. We then build the Minkowski differenck/ = is any vertex inP not coplanar to the three verticeg . It is
CH(P)®—CH(Q) which takesO(n) time. Leti; = p;—q;, then easy to choose a new poimtin the interior of 7 (and
be the vertices of\/ in anticlockwise order (Figure 9(b)). We hence the interior of) that has the same projectignon A,




and thatp # q. Finally, c = p — q = as, for some constant SEARCH-FV

a # 0 andc is in the interior of M. dry, = SIGNEDDISTANCE-FV(fy)

For each iteration
For each of the: facesf/, j =0,...,n — 1,
that are adjacent tg; in P

B. Computing the maximum signed distamigg,, d] — SIGNEDDISTANCE-FV(f/).
If dgy < d¥, whered? = max{d]}
A brute-force search for the fagg,., that attains the max- dsy “ diy fig1 — fF
imum signed distancé,,. is to first construct the Minkowski Otherwise,
differenceM = P&—Q and find the face witl,,,,. However, Returnds, .

the time complexity of constructingy/ is known to beD(mn)

in the worst case, where, andn are the number of vertices ) . .
of P and@, respectively. Moreover, it is inefficient to travers%:\)— hizifénrféli?fusr:]gZfdnggtgig?fgc?ggg;ed:ﬁ/ f?ég;__'."
the faces onM by advancing to an immediate neighbour a|te ,d — max{d(f) | f 2 T} 9 #)
each step. We therefore breaks down the searcly,far in = fvs-

three successive phases, each within the sulfgetsF, ¢ and in dF:Jrglo ]f__* C(Ianfsc; (rdeervgle ?Vit)offa?;ffv fang 2__3 Cfr:;fssphoi;g_
Feo Of M. This allows a quicker leap over the faces dh 9 fv- y 051 P

and therefore the search reachfes, more rapidly. Also, the E\n :r?ge?j, ;vethzonngecf;e(@(;z;t?éi ('Ei)o)n?;‘fdag q (tﬁle’s_r?)(ﬁ lrii)es
number of faces on\/ that needs to be constructed af g€, y prop

can be greatly reduced. The procedure for each search pha?f duality, we know that the point sefi;, and the augmented

Ses . o i o
will be described in the following subsections. The seanrh feoeges form a polyhedro’™. Since 7%, C V- and M* is

: convex,W* must be convex too. Now,E3\RCH-FV searches
dmin IS the same except that at every step, we look for a ; . . :

i : . ] locally for a vertex inWW* that attains the largest signed
face with smaller signed distance; therefore, we do notaepe

; . distance to the plane*. The search path also follows the
the corresponding procedures here. We will also leave SOME. ency of the faces i and therefore is alond the edaes
implementation details to section VI, so that the core pafts ! y 9 g

e of W*. As W* is convex, the search will eventually stop at a
the procedures can be distinctly followed. . - .
) i _ dual vertexf* of a facef € Fy, attaining the local maximum
The following pseudocode gives an overview of hdw..  signed distance, which is also the global maximum signed

We now prove the correctness oE&RCH-FV.

is obtained: distance among all dual vertices #, (corresponding to the
face setFy,). n
MAX SIGNEDDISTANCE(P, Q) 2) SEARCH-VF: This procedure computes the maximum
dy  SEARCH-FV signed distance among all faces . Upon completion of
dyt < SEARCH-VF SEARCH-FV, we obtain a facef = F(f,,s_o(fy)) € Fiv
dinax — SEARCH-EE(dsy, dvr) such thatds, = d(f). The facef is supposed to be closest
return dmax to the optimal facef.,.. among all facesF;,, and it should

ive a good starting point for subsequent search. Hence, the
nitial face for ARCH-VF can be chosen as a fag¢g that
. ; N : is incident ats_q(f,) In —Q. The search then proceeds in a
denote the initial face with normal vectér f;) in the search. similar way as &ARCH-FV by interchanging the role oP

The initial face fo may be chosen fronf at rgngom or t9 and—@); the pseudocode is hence omitted for brevity. We also
give a better performance, we may use a heuristic selecmonhl

; ) ave the following theorem for the correctness @A8cCH-
a preprocessing step so that the fdtgo,s_o(fo)) € Frv is g
close tof,,.x On M. The selection forfy will be discussed in Theorem 4:The signed distancedy; computed by

detailed in section VI-A. SEARCH-VF, is the maximum signed distance among all
Starting from fo, the search in BARCH-FV considers the faces inF., i.e. dys = max{d(f) | f € Fus}-.
neighbouring faces of the current face and advances to one prgof: Similar to the proof of Theorem 3, by considering

which has the local maximum Signed distance. The nEigﬂh‘e symmetry ofP and _Q in the two procedures EARCH-
bouring (or adjacent) faces are those faces incident to th¢ gnd SArRcCH-VE. u

vertices of the current face i?. Two faces adjacent irP 3) SEARCH-EE: The previous two procedureSESRCH-

may not constitute adjacent faces M. In this way, a gain Fv and SEARCH-VF determine the maximum signed distance

could be obtained in advancing faces in the search basedatgvn and d,s among all faces in the sef, and F.¢, respec-

their adjacency inP. tively. The next step is to search for the remaining faces in
The procedure is described in the following pseudocod@.., starting from the facef € Fg, U Fy¢ that attains the

The function $GNEDDISTANCE-FV(f) constructs a face signed distancenax{ds,, dt}.

F(f, s,Q(f)) € Fx and computes its signed distance using 2. Let e, and e, be edges infp and £_g, respectively. As

The determination of the supporting vertex-ef) for a face mentioned in section II-C, if the Gaussian imagesepfand

[ is accelerated using the hierarchical representation ofegintersect onS?, a faceF (e,, e,) € Fee Will be formed. We

polyhedron presented in [13]. shall describe in details how to determine whether two arcs

1) SEARCH-FV: This procedure is to search for a face wit
the maximum signed distance among all facestin. Let f



intersect in section VI-B.

SEARCH-EE

dee «— max{ds,, dy}.
fm < the face inFg, U Fys that attainsdee.
FS, < all possible facel'(e,, e,), where
ep is an edge incident to a vertex ¢f
ande, is an edge incident te_q(f,).
it fn = F(fpr5-q(fy)), OF
ep IS an edge incident tep( f,)
ande, is an edge incident to a vertex ¢f,
if fm = F(Sp(fq),fq)-
For each iteration = 0,1,2, ...
Let fi = F(é,,¢,) € FS; be the face such that

d(f;) = max{d(f) | f € FS:)

Fig. 10. The Gaussian map d¥/ showing the neighbouring faces of
fm = F(fp,s—o(fp)). Solid lines and dotted lines are the arcs@(P)
andG(—Q), respectively. The boundaries of neighbouring region&/6f,)

in G(P) (R%) are in thick solid lines; the boundaries 6f(s_q(fp)) in
G(—Q) (Rg) are in thick dotted lines; The neighbouring regionsff.. )

in G(M) (RZM) are in grey. The neighbouring faces ff, correspond to the

If doe < d(.fi) black (FV- or VF-types) and white (EE-type) points.

dee — d(fz)
FSiy1 < all possible faceF'(e,, e4), Where
ep iS an edge incident to an end vertexé&f
eq is an edge incident to an end vertex&f
Otherwise,
Returnd,.

empty, and all faceg, € FSy are such thatl(f.) < d(fm)-
Again, f,, has the maximum signed distance among all its
neighbours. In both cases, it implies tifaf is the optimal face
attaining the global maximum signed distance, déf,,,) =
dmax- However, this contradicts thdt, ., is attained by a face
in Fe.. Hence, there must be at least a fgtec S, such
thatd(f.) > max{dg, dvt}. |
Lemma 7:The face sefFS;,; in SEARCH-EE contains all
EE-type faces that are adjacent to the fage= F(é,,éq)

Lemma 5:If the optimal face,fax, IS in Fr, U Fyr, then
SEARCH-EE returnsd( fmax) = dmax-

Proof: Since fiax € Frv U Fury fmax Must have the
maximum signed distance among all facesipuUF.¢. Hence, A -
either d;, or dy; returned by SARCH-FV or Search-VF Wheree, € £p andé, € & q. .
equUAlSdinax, I.€. dinax = max{ds, dyt }. AlS0, N0 face iNFue Proof: The neighbouring faces gt on M are those faces

will have a larger signed distance thap,... Therefore, by incident to the vertices of;. Con.sider Athe Gauesian im_ages
the flow of SEARCH-EE, the maximum signed distandg,,, (M), G(P) andG(—-Q). The pointG(f;) is the intersection
is returned. m Of the two arcsG(é,) and G(é,) (Fig. 11). Let R}, be the

Lemma 6:If the optimal face, fiax, IS In Fee, then the
initial face setFS, in SEARCH-EE must contain at least one
face f. € Fee such thatd(f.) > max{ds,, dys}.

Proof: Without loss of generality, let us assume that
fm = F(fp.5-0(fy)) is the starting face in SARCH-EE
attaining the signed distaneeax{ds, dvt}, wheref, € Fp,
s—q(fp) € V_g. The neighbouring faces of,, on M are
those faces that are incident to the verticesfgf Consider
the Gaussian imageS(M), G(P) and G(—Q). Let R}, be
the neighbouring regions ofi(f,,) in G(M), R} be the
neighbouring regions af(f,) in G(P) andR¢ be the region
G(s—q(fp)) in G(—Q). Hence, the neighbouring faces ff,
correspond to those points defining the regidtis (Fig. 10).

G(éq)

Fig. 11. The Gaussian map éf showing the neighbouring faces gff =
F(ép,éq). Solid lines and dotted lines are the arcs@fP) and G(—Q),

. respectively. The boundaries of the neighbouring regidn&'@,) in G(P)
Note thatG(f,) and G(f,) are the same point on the(R}) are in thick solid lines; the boundaries of the neighbayiegions of

Gaussian spheré?. SinceG(f,) lies inside the regioRg, G(e,) in G(-Q) (R%,) are in thick dotted lines; The neighbouring regions of
R}, must be the intersection d&}, and Rq,. Therefore, the G(f;) in G(M) (Rj,) are in grey. The neighbouring faces ff correspond
points of R§v1 must be either (A) the points 0RJF> or the to the black (FV- or VF-types) and white (EE-type) points.

points of Rg, or (B) the intersections of an arc fEPI; with an ) ) ) . ; ) )
arc of R (Fig. 10). The latter set of points (B) correspond€ighbouring regions of(f;), R, be the two neighbouring

to the face setFS, in SEARCH-EE. If FS, is empty, the regions ofG(é,) andR("?2 be the two neighbouring regions of
neighbouring faces of,, can only be faces corresponding td=(é;). The regionsRj, must be the intersection dt;, and
points in set (A), i.e. the faces iffy, U Fyi. Then f,, has Rg; hence, the points defining}, must be the intersections
the maximum signed distance among all its neighbours, sinekthe arcs ofR}, and Rf,, and also some points frorft},,
d(fm) = max{ds,dy¢}. On the other hand, iFS, is non- R’g‘g. The faces inFS;,; in SEARCH-EE corresponds to the



intersections of the arcs oR{D and R%, which are all the among all faces i p. It is worth noting that when/ is flat

EE-type neighbours ofi. m and eIongatedF(fo,s,Q(fo)) may not be as close t@,.x
Theorem 8:The signed distanag,, computed by SARCH- @S shown in (Figure 12). Nevertheless, this heuristic sehem

EE is the maximum signed distance among all face&jn, in selectingf, can still efficiently eliminate most back-facing

i.€. doe = diax = max{d(f) | f € Fu}. facesf in M with respect tos wheren(f) -s < 0.
Proof: The optimal facef,.x attaining the maximum

signed distancel,,,., must be in eithetFy, U Fyr or Fo. If s=o—c

Sfmax € Fre UFyg, by Lemma 5, SARCH-EE computesl,, ..

Supposefmax € Fee- Lemma 6 guarantees thaf fo) = @0
max{d(f) | f € FSo > max{ds,dys}. Hence, the iteration
in SEARCH-EE will proceed. For each iteration> 0, de. iS
the signed distance of the current face, &}; is the set of all T ‘
EE-type faces neighbouring to the current face (by Lemma 7).
The iteration stops when the signed distance of the cureest f Fig. 12. If the shape ofM is elongated, the face formed by the initial face
is the maximum among all its neighbouring EE-type face? cNosen may not be close fax.
Sinced,, is increasing for each iteratiotly, > max{ds,, dy¢}
which means that the signed distance of the current face is
also the maximum among all its neighbouring FV- and VFE:

. s ‘."Q(f();sf@(f()))
M

To decide whether two arcs @&? intersect

type faces. Hence,E3\RCH-EE stops at a face iff.. with a In procedure BARCH-EE, one operation is to decide
local maximum signed distanek, among all its neighbouring whether two edges, € £p ande, € £_g form a face
faces inM, and thereforedee = dmax. B F(ep,eq) € Fee. This is done by checking whether the two

arcs G(e,) and G(e,) intersect on the Gaussian sphefé.

V. COLLISION DETECTION OFTWO CONVEX POLYHEDRA €t a, b be the end points of/(e, ), ¢, d be the end points of
. , G(e,) ando be the centre of? (Figure 13). The arc&i(e,)
To solve the collision detection problem of two convex g G(e,) intersect if and only if (1)c,d are on different

polyhedraP” and @, we only need to tell whetheP and Q sides of the planeba; (2) a,b are on different sides of the

separate or not. The chqice for the centre of duality much planeocd; and (3)a, b, c,d are on the same hemisphere.
relaxed and it only requires thate M = P ¢ —Q and that

c is not the origin. In this case, we store two distinct interio
points, pp,p1 € P andqgp,q: € Q. The vector differences,
pi — q;, of these four interior points give rise to four distinct
interior points inM, from which it is always possible to obtain
an interior point ofM which is not the origin.

By the condition for the separation of two convex polyhedra
In s_ectlon NI-A, We need only to determine _vvhether the plan@lg. 13. Determining whether two arcs intersect®h Arcs intersect in (i).
o* intersectsM* in the dual space, or equivalently, whethego intersection between arcs where (ii) only condition (i), only condition
there is a facef with signed distancel(f) > 0. Hence, an (2) and (iv) only condition (3) is violated.
early escape from the search in the proceduresrEH-FV,
SEARCH-VF and $ARCH-EE can be enabled by stopping the Consider thesigned volumejcba| = det[ ¢ b a ], ofa
search of fuax Whenever the signed distance of the curref@rallelepiped spanned by three vectarb, c. The quantities
face is positive, in which case the two convex polyhedira [cbal and|dbal are of different signs i¢ andd are at opposite

0} (i) (iif) kivj

and Q are separate. The remaining situations @g...) = Sides of the planeba. Now, the above three conditions can be
0, which corresponds td and @ touching each other; or formulated as (1)cbal x |dba| < 0; (2) [adc| x [bdc| < 0;
d(fmax) < 0, which means thaP andQ intersect. and (3)|acb| X |dCb| > 0. The last |nequal|ty holds whea

andd lie on the same side of the planeb which means that

all four points will be on the same hemisphere definedbly.

Note that only the quantitiggbal, |dbal, |adc| and|bdc| are
In this section, we shall highlight several important issugp pe computed, sincecb| = |cba| and |dcb| = [bdc|.

in implementing MDD-DJAL .

V1. IMPLEMENTATION ISSUES

C. Span of Faces with the Same Normal Direction

A. To obtain the initial face iIrBEARCH-FV Throughout our discussion of the algorithm MDDuBL ,

In section IV-B.1, an initial facefy € Fp is to be selected we made an assumption that all faces bh have distinct
as the starting point for the search fif.. in SEARCH-FV. normal directions. However, this is not always true for eonv
The facef, should be such thaF(fo,sz(fo)) € Fi, is as polyhedra with arbitrary mesh structures. Therefore, wlien
close tof,.x as possible. Nowf,,.. is the face onM/ where it is required to perform any operations on the current face i
the rayco intersects and thereforg,.. must be front-facing the searching procedures (e.g. locating the adjacent, fate}l
with respect tos = o — ¢ such thata(fp) - s > 0. We may we will have to augment the current face to include also its
then take the facg, € Fp such thata(fy) - s is the greatest neighbouring span of faces with the same normal direction.
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D. Avoiding Repetitive Visits to a Face itself to find d.,;,, and choose the minimum penetration

It is important to avoid unnecessary computations for a fa8éPth among the values, @ as described in Section Il-
which is visited previously in the searching procedures art Nevertheless, for our test cases, MDIUAL takes less
is known to be non-optimal. We use a hash table to recdfe@n 350 microseconds to compute the MDD of two convex
the visited faces in each procedure so that these faces carP@¥hedra.
skipped efficiently in MDD-DJAL .

Performance of MDD-Dual

E. Frame Coherence 04

When the two polyhedraP and Q assume continuous | o3¢ s
motion from frame to frame, MDD-DAL may also exploit g o
the temporal or frame coherence. At each time frame, W g oz % . % X ‘
computef,.x Which is either inFy,, For or Fo.. In any case, | 3 o2 ot X a A
we can determine quickly a face= F(fo,s_q(fo)) € Frv | go15| x " .
that is as close tQfmax as possible. Since the position and £ o1 [ X=—* = oo
orientation of P and@ will have little changes for consecutive|  oos - mTouching
frames, the new optimal face should also be closg,to. and 0 o

0 200 400 600 800 1000 1200

the use off, as the initial face for 8ARCH-FV will lead us
to the new optimal face more rapidly.

Total number of vertices of two convex polyhedra

Fig. 14. The average CPU time for a MDD computation for 10 pafrs o
convex polyhedra.

VIl. PERFORMANCE

We have implemented MDD-0aL in C++ and the ex-
periments described in this section are carried out on a PQNot all faces on the Minkowski sufi/ = P&—( are being
equipped with a Pentium 1l 3 GHz CPU and 1GB memoryonstructed and visited. A typical search pathMnis shown
A set of 6 convex polyhedra are used (the name and timeFig. 15. From the above experiments, it is found that on
number of vertices of the polyhedra are given in the bragketaveragel3.7% of the faces onl/ is visited. In particular, only
a truncated elliptic coneff, — 20), a truncated elliptic cylinder 2.5% of the EE-type faces is visited on average, which means
(P, — 50), two ellipsoids P53 — 200, P, — 500), the convex hull that most of the EE-type faces (whose worst case complexity i
of a random point set in a cubé{ — 100), and the volume O(n?)) can be skipped in the computations of MDDuBL .
of revolution of a convex profile curvel} — 200). The sizes
of the polyhedra are all within a sphere of radius 5. The cone VIIl. CONCLUSION

and the cylinder are in the aspect b: h =1:2:4, where  \e have presented a novel method, called MDDAD, for
a,b are the sizes of the base ellipse ands the height. The computing the minimum directional distance (MDD) between
size of the ellipsoids are in : b : ¢ =2:2:5, wherea,b two convex polyhedra along a given direction. The MDD
andc are the length of the three major axes. of two convex polyhedra can be computed by finding the
A total of 10 pairwise MDD calculations are carriedsportest directional distance from the origin to the Mink&iv
out: (P1, P,), (P1, Ps), (Py, Ps5), (P4, Ps), and (P;, Fy),i = (ifferenceM of the polyhedra. This is done by finding a face
1,...,6. For each pair of object®; and P;, P; assumes 40 which contains the intersection of a ray from the origin with
random orientations and for each orientation, we mBye&so s \ve consider the problem in the dual space where a face
that the shortest distandg and P; ranges from—1.5t0 1.5 gn As corresponds to a vertex on the dual polyhedidr,
in 21 samples, in which 10 samples correspond to wHere ang formulate the MDD computation in forms of searching
and P; intersect, 1 sample corresponds to touching, and }0vertex which attains the maximum signed distance from a
samples correspond to separation. Also, for each fixedestorlyane. The search problem in the dual space is easily shown
distance betweerP; and P; with a random orientation, we to pe convex, and a search scheme is devised accordingly
compute their MDD along 40 random directions using MDDat can locate the optimal face dd efficiently. The search
DUAL . It means that, for each pair of convex polyhedra, Wecheme is divided into 3 stages, each working only on a subset
perform a total of21 x 40 x 40 different MDD computation of the faces onM. This division allows the elimination of
and the average CPU time taken for each MDD computatighyst EE-type faces whose worst case complexityis?).
is taken. For each reported MDialong a specified direction oyr experimental results show that MDDuBL exhibits both

(which should make’; and P; in external contact), and use the
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