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Computing the Minimum Directional Distance
between Two Convex Polyhedra

Yi-King Choi, Xueqing Li, Fengguang Rong, Wenping Wang and Stephen Cameron

Abstract— Given two convex polyhedra P and Q and a
direction s, the minimum directional distance (MDD) is defined
to be the shortest translational distance along the directions that
is required to make P and Q just in contact. In this paper we
propose a novel method, called MDD-DUAL , for computing the
MDD between two convex polyhedra. The MDD is equivalent
to the shortest distance between the origin and the Minkowski
difference M of the polyhedra in the direction s. Our idea is
to reduce the MDD problem to seeking a vertex on the dual
polyhedron of M with the maximum signed distance from a
special plane by means of a duality transformation. We show
that this is equivalent to locating a face onM with which a ray
shooting from the origin in the direction s first intersects. The
MDD can then easily be derived from the signed distance.

Our algorithm constructs only a subset of the faces onM
along the search path. By further breaking down the search
into three phases, each on a different type of faces onM , MDD-
DUAL reports the MDD between two convex polyhedra efficiently.

Index Terms— minimum directional distance, directional sepa-
rating distance, directional penetration depth, convex polyhedra,
duality transformation, signed distance.

I. I NTRODUCTION

It is often important to determine the distance between
two geometric objects in order to understand their spatial
relationship. When the two objects are separate, we focus in
their separating distance, i.e. the minimum translation distance
to bring them just in touch; and in the case of two intersecting
objects, it is then the penetration depth, i.e. the minimum
translation distance to separate them, that is of our interests.
The distances between objects are useful in many applications
in robotics and computer graphics, or other areas that require
physical simulations, where responses are often deduced based
on the distance information. Distance computation is also
commonly studied in relation to collision detection of objects
(see a survey in [1], [2]). Using a commonly used measure
by Cameron and Cully [3], a positive distance corresponds to
separation, while a negative distance means intersection [3].
In this paper, we will concentrate on distance computation for
convex polyhedra.

Numerous work has been conducted in the fields of compu-
tational geometry, computer graphics and robotics for comput-
ing the shortest distance between convex polyhedra. The Lin-
Canny (LC) [4] and V-Clip [5] are feature-based algorithms
that find a sequence of pairs of candidate witness points which
eventually converge to the closest features between the two
polyhedra. The LC algorithm has an almost-constant complex-
ity in exploiting temporal coherence and reporting the witness
points upon consecutive invocation of the method. Another

commonly used algorithm of Gibert, Johnson and Keerthi
(GJK) [6], works on the simplices of the Minkowski difference
of two polyhdera and uses convex optimization techniques to
compute the closest points. Modified approaches [7], [8] and
improved implementations [9] based on GJK were developed.
It is also shown in [8] that an enhanced version of GJK has
O(1) time cost under the assumption of strong geometric
coherence. Specific to computing the penetration depth of two
convex polyhedra, Agarwal et al. [10] presented a randomized
algorithm whose expected running time isO(m
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m1+ε +n1+ε), for any constantε > 0, wherem andn are the
number of faces of the two polyhedra. Apart from this theo-
retical result, Kim et al. [11] devised an incremental algorithm
with an implementation for estimating the penetration depth.

The separating distance and penetration depth between two
convex polyhedra tell how far the two polyhedra can translate
towards or away from each other, respectively, so that they
just touch each other externally. The translation must always
be along the direction between the two features that realize
the shortest distance on each of the polyhedra. However, in
some applications the directions of object translations are not
unrestricted and are often confined in just several specific
directions. Computing the shortest distance in this case may
not give the desired results, since its corresponding distance
may not align with the allowable directions. In these situations,
the directional separating distance or directional penetration
depth would give a more appropriate indication to solve the
problems.

We follow similar notation as in [3] and define the function
MDD+(A,B, s) for two objectsA and B in the direction
s ∈ R

2 as

MDD+(A,B, s) =

min{‖ts‖ | Int(A) ∩ Int(Bts) = ∅ ∧ ∂A ∩ ∂B 6= ∅, t ∈ R}

where Int(A) and ∂A denote the interior and boundary of
A, respectively, andBts = {b + ts | b ∈ B} is the result
of B translated byts. MDD+ is zero whenA andB are in
external contact; otherwise, it is positive for both intersecting
and separate objects. To distinguish the two cases, we further
define

MDD(A,B, s) =

{

−MDD+(A,B, s) if A intersectsB,

+MDD+(A,B, s) otherwise.
(1)

to be the minimum directional distance (MDD) of two objects
A andB in the directions. The MDD is positive and gives the
directional separating distance if two objects are separate; it
is negative and gives the directional penetration depth if they
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intersect. It can be shown that the MDD of two convex polyhe-
dra is equivalent to the shortest directional distance between
the origin and their Minkowski difference polyhedron [12].
Therefore, the MDD can be found by intersecting a ray from
the origin with the Minkowski difference polyhedron, whose
geometric complexity is known to be ofO(n2). Hence, a
brute-force algorithm in finding the MDD will run inO(n2)
time. Dobkin et al. [12] presented anO(log2 n) algorithm for
computing the directional penetration depth of two convex
polyhedra using the hierarchical representation of polyhedra
by Dobkin and Kirkpatrick [13], [14], wheren is the total
number of vertices of the two polyhedra.

A. Major contributions

In this paper, we present an algorithm MDD-DUAL to com-
pute the minimum directional distance between two convex
polyhedra, both in cases where the polyhedra are separate or
intersect. When the polyhedra are separate (or intersect), the
directional separating distance (or penetration depth, respec-
tively) is determined. By means of a duality transformation,
we define a convex function (namely, the signed distance of
a vertex on the Minkowski differenceM of the polyedra to
a plane) in the dual space which is shown to be equivalent
to finding a face containing the intersection of a ray from
the origin withM . The convex nature of the latter process
is not intuitively seen, but is confirmed easily by its dual
counterpart. Moreover, the geometric complexity ofM is
known to beO(n2), of which most of the faces are of EE-
type (see section II-C). By breaking down the search on the
Minkowski difference into 3 different phases, we can skip
most of the EE-type faces and obtain the optimal result in
an efficient way.

B. Paper Organization

In Section II, we first introduce some definitions and nota-
tion that will be used in our discussion. We will then explain
our algorithm in detail in Section IV, where the correctnessof
MDD-DUAL will be proved. The algorithm MDD-DUAL to
solve the collision detection problem of two convex polyhedra
will be demonstrated in Section V. Some implementation
details will be given in Section VI. The performance of MDD-
DUAL are presented in section VII.

II. PRELIMINARIES

A. Definitions and notations

Let P be a convex polyhedron inE3. Let VP , FP , andEP
denote the set of vertices, faces, and edges ofP , respectively.

Definition 1: Given two polyhedraP andQ as two point
sets,P and Q are said to beoverlapping if P ∩ Q 6= 0;
otherwise, they areseparate.

Definition 2: A supporting vertexsP (n) of P in the direc-
tion n 6= 0 is a vertex inVP satisfyingn·sP (n) = max{n·v |
v ∈ VP }, wherex · y is the dot-product of the vectorsx and
y.

For a supporting vertexsP (n), we also haven · sP (n) =
max{n ·p | p ∈ P}. We may also define thesupporting edge

(or face)of P in n as the edge (or face) that contains two (or
more than two) supporting vertices inn.

Definition 3: Let n̂(f) denote the unit normal vector of a
facef . The supporting vertex ofP for f , sP (f), is defined as
the supporting vertex ofP in the normal direction off , i.e.,
sP (f) = sP

(

n̂(f)
)

.

B. Gaussian image of a polyhedron

The Gaussian imageG(P ) of a convex polyhedronP is
a planar graph embedded on the unit sphereS2 (Figure 1):
A face f ∈ FP corresponds to a pointG(f) = n̂(f) ∈
S2; an edgee ∈ EP common to two facesf0, f1 ∈ FP

corresponds to a great arcG(e) connecting two verticesG(f0)
and G(f1) on S2; a vertexv ∈ VP common to the faces
f0, . . . , fm corresponds to a convex spherical polygonG(v)
whose vertices areG(f0), . . . , G(fm).

P
G(P )

G(v0)

v0

f0

G(f0)

f1 G(f1)
f2 G(f2)e0

G(e0)

e1

G(e1)

e2

G(e2)

Fig. 1. A polyhedronP and its Gaussian imageG(P ) on S2.

For a feature (i.e. vertex, edge or face)φ of a polyhedron
P , the Gaussian image ofφ is the set of normal directions of
planes that may come into contact withP atφ. In other words,
φ is the supporting feature ofP in the directions represented
by its Gaussian image.

C. Minkowski Sum of Two Polyhedra

Given two polyhedraP andQ, let−Q = {−q | q ∈ Q}. We
consider the Minkowski sumM of P and−Q (or equivalently,
the Minkowski differenceP andQ) defined by

M ≡ P ⊕−Q = {p− q | p ∈ P, q ∈ Q}.

The origin0 is in M if and only if there are somep ∈ P and
q ∈ Q such thatp = q, i.e. P andQ share a common point
(so they overlap).

As P andQ are both convex,M is also a convex poly-
hedron [15]. The Gaussian image ofM (denoted byG(M))
can be obtained by superimposing the Gaussian imagesG(P )
andG(−Q). For any facefp ∈ FP , the pointG(fp) must
fall within the regionG

(

s−Q(fp)
)

, i.e. the Gaussian image of
the supporting vertex of−Q for fp, on S2. The same is true
regarding any facefq ∈ F−Q by interchanging the roles ofP
and−Q, which are symmetric inM = P ⊕−Q. Hence, each
point inG(P ) andG(−Q) corresponds to a face inM (Fig. 2).
Furthermore, each arc-arc intersection onS2 corresponds to
a pair of edges (one fromP and one from−Q) sharing a
common normal direction and amounts to a face inM .

Hence, the faces inFM can be classified into the following
three subsets (Figure 3):
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G(P ) G(−Q) G(M)

Fig. 2. The planar representation of the Gaussian imageG(M) by
superimposingG(P ) andG(−Q). There are three types of vertices inG(M):
(i) (white point) a point ofG(P ) falling within a region ofG(−Q), i.e., a
face inFfv; (ii) (black point) a point ofG(−Q) falling within a region of
G(P ), i.e., a face inFvf ; and (iii) (shaded square) the intersection point of
two arcs, each fromG(P ) andG(−Q), i.e., a face inFee.

P

−Q

M ≡ P ⊕−Q

Fvf

Fee

Ffv

Fig. 3. The Minkowski sumM of P and−Q. Faces onM can be classified
as of typeFfv, Fvf , or Fee.

Ffv: Each faceF (fp,vq) is a point set{x + vq | x ∈
fp}, wherefp ∈ FP and vq ∈ V−Q. Also, vq =
s−Q(fp).

Fvf : Each faceF (vp, fq) is a point set{vp+x | x ∈ fq},
wherefq ∈ F−Q andvp ∈ VP . Also, vp = sP (fq).

Fee: Each faceF (ep, eq) is a parallelogram with ver-
tices v0 = vp0

+ vq0
,v1 = vp1

+ vq0
,v2 =

vp1
+ vq1

,v3 = vp0
+ vq1

wherevp0
,vp1

∈ VP ,
vq0

,vq1
∈ V−Q, and ep = (vp0

,vp1
) ∈ EP ,

eq = (vq0
,vq1

) ∈ E−Q. Moreover, the Gaussian
images ofep andeq intersect onS2.

D. Duality Transformation

In the projective 3-space, the concept of duality be-
tween points and planes is given by the symmetry be-
tween point-coordinates and plane-coordinates in the equation
∑3

i=0 uixi = 0 [16], [17] (*). A more general formulation
is to consider the self-dual duality with respect to a given
non-singular quadric surfaceB : XTBX = 0 whereX =
(x, y, z, 1)T is the homogeneous coordinates of a point, and
B is a 4 × 4 real symmetric matrix. The dual of a pointY0

is a planeY : Y T
0 BX = 0 (the polar of Y0) and the dual of

a planeV : V T
0 X = 0 is a pointU0 = B−1V0 (the pole of

V [18]). It is easy to verify that ifY is the dual ofY0, then
Y0 is the dual ofY. Also, if Y0 is a point onB, its dual is
the tangent plane toB at Y0. The duality expressed in (*) is
a special case where the quadricsB is an imaginary sphere.

In this work, we consider the duality transformation with
respect to the unit sphere inE3. We now describe the dual
relationship between a point and a plane inE

3 in terms of

affine coordinatesx = (x, y, z)T . Suppose a planeΠ, not
passing through the origin, be given byAT x = k in theprimal
spaceE, whereA ∈ R

3 and k is a nonzero real number. A
duality transformationmapsΠ to a pointw = A/k in the
dual spaceE3∗. A point u 6= 0 in E

3 is transformed to a plane
U : uT x = 1 in E

3∗ (Fig. 4). If we extendE3 to include the
plane at infinity (i.e., the extended Euclidean space), a plane
passing through the origin inE3 is mapped to a point at infinity
in E

3∗; whereas the origin inE3 is transformed to the plane at
infinity in E

3∗. Note thatE3 is the dual space ofE3∗. In the
sequel, we will useψ∗ to denote the dual counterpart of an
entity ψ in E

3. We may also consider a duality tranformation
centred at an arbitrary pointc ∈ E

3. This can be done by first
translatingE

3 to centre atc before applying duality, and we
call c the centre of duality.

a

b

c

d

e

f

a∗ b∗

c∗

d∗

e∗

f∗

Fig. 4. A 2D illustration of duality transformation between the primal space
(left) and the dual space (right).

Suppose that the centre of duality is contained in the
interior of a convex polyhedronM , then every faces ofM
are properly transformed to a vertex not at infinity. The dual
M∗ is therefore a convex polyhedron; the vertices and faces of
M∗ areF∗

M andV∗
M , respectively. The dual of an edge defined

by two adjacent verticesv0, v1 in M is an edge common to
two adjacent facesv∗

0, v∗
1 in M∗.

Property 1: Any point x ∈ Int(M) is transformed by a
duality to a planex∗ not intersectingM∗, where Int(M)
stands for the interior of a polyhedronM ; while any point
x /∈M is transformed to a planex∗ that intersectsM∗.

III. T HE KEY IDEA

In this section, we explain the fundamental concept of our
algorithm, which relates the MDD problem of two polyhedra
in the primal space to a search for a vertex on a Minkowski
difference polyhdedron in the dual space.

A. Condition for the separation of two polyhedra

Let M ≡ P ⊕ −Q be the Minkowski difference of two
convex polyhedraP andQ. We have,

P andQ overlap↔ the origino ∈M
↔ the planeo∗ does not intersectM∗

where the centre of duality can be any fixed pointc 6= 0 in
M (Figure 5). By checking the signed distance (which will
be discussed in the next section) of the vertices ofM∗ to the
planeo∗, we can deduce whethero∗ intersectsM∗ or not.
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o

o

c

c

M

M

M∗

M∗

o∗

o∗

E
3

E
3∗

Fig. 5. A 2D illustration demonstrating the geometric relationship ofM and
o in the primal spaceE3 and the dual spaceE3∗.

B. The Objective Function—Signed Distance Function

Given a planeΠ : AT x = k whereL ∈ R
3, x = (x, y, z)T ,

k ∈ R, we assume that the plane equation is normalized such
that ‖A‖ = 1 is the unit normal ofΠ pointing away from the
origin so thatk > 0 is the shortest distance from the origin0
to the plane. Thesigned distanceof a point x0 to the plane
Π is then given by

dΠ(x0) = AT x0 − k.

If x0 lies on Π, dΠ(x0) = 0; if x0 lies on the same side of
Π as0, dΠ(x0) < 0; and if x0 lies on the opposite side ofΠ
to 0, dΠ(x0) > 0.

Let dmax = max{do∗(m) | m ∈ M∗} be the maximum
signed distance of all points inM∗ to the planeo∗. SinceM∗

is convex, the point that attains the maximum signed distance
dmax to the planeo∗ must lie on the boundary ofM∗, i.e.
either on a vertex, a face or an edge. In any case, there is a
vertexf∗max ∈M

∗ such that

do∗(f∗max) = dmax.

Hence, to computedmax, we may consider only the vertices
of M∗ and find their signed distances to the planeo∗.

The sign ofdmax indicates whether the two polyhedraP and
Q overlap. If dmax < 0, all vertices onM∗ are on the same
side ofo∗ as the origin;M∗ ando∗ do not intersect and hence
P andQ overlap. On the other hand, ifdmax > 0, at least
one vertex is at the opposite side ofo∗ to the origin; in this
case,o∗ intersectsM∗ and thereforeP andQ are separate. If
dmax = 0, o∗ touchesM∗ at some boundary point, ando lies
on the boundary ofM . By the construction ofM as described
in section II-C,o = p − q for some boundary pointsp and
q of P andQ, respectively. It implies thatp = q andP and
Q share a common boundary point, i.e.,P andQ touch each
other.

Let f be a face ofM in E
3. We may then define thesigned

distanceof f denoted byd(f), to be the signed distance of
f∗ to the planeo∗ in E

3∗, i.e.

d(f) = do∗(f∗).

Supposef is contained in a planeHf : NT x = k, where
‖N‖ = 1 and k > 0. The plane equation off is then

NT x = k − NT c after a translation of−c, wherec is the
centre of duality. Hence,f∗ = N/(k −NT c) ∈ VM∗ in the
dual space. The origino is translated to−c and therefore the
plane equation ofo∗ is −cT x = 1. The signed distanced(f)
can then be expressed explicitly as:

d(f) = do∗(f∗) =
−cT

‖c‖
·

N

k −NT c
−

1

‖c‖

= −
k

‖c‖(k −NT c)
. (2)

The signed distance ofc and o to the planeHfmax
(the

containing plane offmax) are given bydHfmax
(c) = −(k −

NT c)/‖N‖ and dHfmax
(o) = −k/‖N‖, respectively. If

d(fmax) < 0, by Eq. (2), k − NT c > 0 and therefore
dHfmax

(c) anddHfmax
(o) are of the same sign; which means

that c ando are on the same side of the facef ando ∈ M .
On the other hand, ifd(fmax) > 0, c ando are on opposite
sides off and we haveo 6∈M .

The functiond(f) is defined in the dual spaceE3∗ as the
signed distance from the pointf∗ to the planeo∗. We will now
derive the geometric meaning ofd(f) in the primal spaceE3.
The quantityd(f) = do∗(f∗) uniquely determines a planel∗

in E
3∗ parallel too∗ such thatdo∗(x) = do∗(f∗) for all points

x ∈ l∗ (Figure 6). The planel∗ therefore passes throughf∗

and is parallel to the planeo∗. Sincel∗ has the same normal

c

o

M

E
3

f1

f0

f2

l0
l2

l1

M∗

E
3∗

o
∗

l
∗

0
l
∗

1l
∗

2

f∗

0

f∗

1

f∗

2

Fig. 6. The vertexf∗

0 in E
3∗ attaining maximum signed distance too∗ is

the dual of a facef0 in E
3 intersecting the directed lineco.

direction aso∗, it can be shown easily that its dual pointl

must lie on the lineco. Moreover, sincel∗ passes throughf∗,
l must lie on the planeHf , the containing plane off . This
implies thatl is the intersection of the planeHf and the line
co.

Lemma 1:The rayco intersectsM in the facefmax, whose
signed distance is the maximum among all faces inFM , i.e.
d(fmax) = dmax.

Proof: Let the lineco be given byl(t) = −tc, t ∈ R.
Then, the signed distance for a facef whose containing plane
passes throughl(t) is given by

d(f) =
1

‖c‖
(
1− t

t
).

It means that the facefmax, with the maximum signed distance
among all faces inFM , has the closest intersection with the
ray co. SinceM is convex andc is in the interior ofM , this
must be the case where the directed lineco intersects the face
fmax.
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Let dmin = min{do∗(m) | m ∈ M∗} be the minimum
signed distance of all points inM∗ to the planeo∗. Also,
let fmin be the face having the minimum signed distance
among all faces inFM , i.e. d(fmin) = dmin. We then have
the following corollary:

Corollary 2: The ray shooting fromc in the directionoc

intersectsM in the facefmin, whose signed distance is the
minimum among all faces inFM .

It is now clear that by searching for a face inM with
maximum signed distance, we are essentially determining
whethero is inM by firing a ray from an interior pointc of M
to o, obtaining a face ofM that intersects the ray and deciding
whether the intersection point lies within the line segment
co. It is hard to perceive that this entire process defines a
convex function over all faces inM ; but it becomes apparent
when the same process is described by its dual equivalent
d(f) which is clearly a convex function defined over all dual
verticesf∗ of M∗; sinceM∗ is convex, a vertexf∗ attaining
a local maximum signed distance must also attain the global
maximum signed distance among all vertices inM∗. It is also
important to notice further thatd(f) can be computed without
even explicitly applying duality transformation onM , as can
be seen from Eq. (2).

We may then define our objective function as the signed
distanced(f) for all facesf in M . Our objective is to find
dmax, the maximum signed distance, so as to compute the
MDD between two convex polyhedraP andQ. Starting from
any face ofFM , we go to the next face with the largest
d(f) among all immediate neighbours of the current face.
By this local search, we will visit faces with increasingd(f)
and eventually stop at a face with a locally maximum signed
distance. Due to the convexity of the objective function, this
local search scheme will lead to theoptimal face, fmax, that
attains the maximum signed distancedmax among all faces in
M . It is possible to have more than onefmax that attaindmax,
which happens when the lineco intersectsM at an edge or a
vertex.

C. Minimum directional distance (MDD)

Let α be the distance between the pointo and the intersec-
tion of the directed lineco andfmax. If the two polyhedraP
andQ are separate,α is their separating distancealong the
direction oc, which is the distance thatQ needs to translate
in the directionoc so that it is in external contact withP
(Figure 7(a)). IfP andQ overlap,α is then theirpenetration
distancealongco, which is the distance thatQ must move in
co until it touchesP externally. However, it is possible that
a shorter distance can be taken by movingQ in the opposite
directionoc to separateP andQ, i.e. the distance denoted by
ᾱ in Figure 7(b). By Corollary 2,̄α is the distance between
the origin and the intersection of the ray fromc to the face
fmin. According to the definition of MDD in (1), we have

MDD(P,Q,oc)

=

{

α if P andQ are non-intersecting,

min{α, ᾱ} otherwise.

We will now establish the relationship betweenα and
dmax = d(fmax). Let o = −c so thatc is the centre of duality
(Figure 8). Theno∗ is the plane given by−cT x = 0. The face
fmax ≡ uT x = 1 corresponds to the vertexf∗max = u onM∗

in E
3∗. We have

dmax = −
cT u + 1

‖c‖

Let α′ be the shortest distance from the pointo to the face
fmax andθ be the angle between the lineco and the normal
vector offmax. Then

α′ = −
cT u + 1

‖u‖
=
dmax‖c‖

‖u‖
, and

cos θ = −
cT u

‖c‖‖u‖
=
dmax‖c‖+ 1

‖c‖‖u‖
.

Hence,

α =
α′

cos θ
=

dmax‖c‖
2

dmax‖c‖+ 1
.

Similarly, it can be shown that

ᾱ =
dmin‖c‖

2

dmin‖c‖+ 1
.

P

P

Q

Q

M

M

fmax

fmax

o

o

c

c

fmin

α

α

α

α

ᾱ

ᾱ

(a)

(b)

Fig. 7. The minimum direction distance ofP andQ in directionoc. (a) P
andQ are separate, andQ needs to move alongoc by a distance ofα to be
in contact withP ; (b) P andQ intersect, andQ needs to move either inco
by α or in oc by ᾱ to be in external contact withP .

IV. T HE ALGORITHM

Given two convex polyhedraP andQ, and a directions ∈
R

3, the steps in MDD-DUAL for computing the minimum
directional distance ofP andQ in s are as follows:

Step 1: Determine the center of dualityc in the interior
of M = P ⊕ −Q such thatc = αs for some
nonzero constantα ∈ R. If c is not defined,
report theMDD(P,Q, s), else go to Step 2.
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o = −c

c = (0, 0, 0)T

fmax ≡ u
T
x = 1 M

M∗

α

α′

θ

f∗

max = u

o
∗
≡ −c

T
x = 1

dmax

Fig. 8. The minimum directional distanceα in the primal space and the
maximum signed distancedmax in the dual space.

Step 2: Obtain dmax, the maximum signed distance,
by searching for the optimal facefmax among
all faces inFfv, Fvf and Fee individually. If
dmax < 0, obtain alsodmin, the minimum signed
distance by searching for the facefmin among
all faces inFfv, Fvf andFee individually.

Step 3: ComputeMDD(P,Q, s) from dmax as described
in section III-C.

Steps 1 and 2 will be described in details in the subsequent
sections.

A. Determining the center of dualityc

In this step, our goal is to determine a pointc in the interior
of M = P ⊕ −Q that will be used as the centre of duality.
As explained in sections II-D and III-C, it is necessary that
c = ks for some nonzero real constantα in order to obtain
the MDD in the directions; the conditionk 6= 0 is to ensure
that c is not the origin.

We first obtain two sets of pointṡP and Q̇ by applying an
orthographic projection alongs of all vertices ofP andQ to
a planeH normal tos. This projection can be done inO(n)
time (Figure 9(a)) wheren is the total number of vertices ofP
andQ. The next step is to construct the convex hull,CH(Ṗ )

C

D

P
Q

s

CH(Q̇)

CH(Ṗ )

Ṁ

0

ṙ0
ṙ1

ṙi

ṙi+1

H

(a) (b)

Fig. 9. (a) Orthographic projection ofP andQ alongs to a planeH normal
to s; and (b) the Minkowski differenceṀ of CH(Ṗ ) andCH(Q̇) with the
triangle4ṙ0ṙiṙi+1 containing the origin0.

andCH(Q̇), of the pointsṖ and Q̇, respectively, which can
also be done inO(n) time since the boundary vertices of
CH(Ṗ ) andCH(Q̇) are the silhouette vertices ofP andQ as
viewed alongs. We then build the Minkowski differencėM =
CH(Ṗ )⊕−CH(Q̇) which takesO(n) time. Letṙj = ṗj−q̇j ,
be the vertices ofṀ in anticlockwise order (Figure 9(b)). We

may then quickly determine inO(n) time whether0 is in Ṁ
by examining the triangles4ṙ0ṙj ṙj+1, j = 1, . . . , l−2 where
l is the number of vertices oḟM . We have0 ∈ Ṁ if and only
if 0 ∈ 4ṙ0ṙiṙi+1, for somei. There are now three cases to
consider; case 1 and 2 will report the MDD betweenP andQ,
while case 3 will determine a pointc as the centre of duality
and the algorithm MDD-DUAL will proceed with step 2.

Case 1:0 /∈ Ṁ . Here,P andQ do not have external contact
no matter how farQ is moved alongs and hence the MDD
of P andQ is undefined.

Case 2:0 is on the boundary ofṀ . In this case,P andQ
either have no contact or have only external contact no matter
how far Q is moved alongs; also, the ray shooting fromo
in s touchesM at the boundary. Our aim would be to find a
face onM that the ray touches. Assume that0 lies on an edge
ṙiṙi+1 of Ṁ , with ṙi = ṗi−q̇i andṙi+1 = ṗi+1−q̇i+1. Then,
CH(Ṗ ) andCH(Q̇) must contact at the features(ṗi, ṗi+1)
and (q̇i, q̇i+1), which may be either an edge or a vertex. Let
φP andφQ be the features onP andQ whose projection to
H is a subset of(ṗi, ṗi+1) and (q̇i, q̇i+1), respectively. The
featuresφP and φQ must contain the verticespi,pi+1 and
qi,qi+1, respectively, and they must be whereP andQ have
contacts whenQ moves alongs. Now, depending on the nature
(i.e. vertex, edge or face) ofφP andφQ, we construct either
anFfv, Fvf or anFee faceF on M . The distance fromo to
F alongs is the MDD ofP andQ.

Case 3:0 is in the interior of some triangle4ṙ0ṙiṙi+1.
Then we have two sets of verticesSP = {ṗ0, ṗi, ṗi+1} and
SQ = {q̇0, q̇i, q̇i+1} forming the triangle. We want to make
sure that at least one of the two sets contain distinct vertices. If
this is not the case, we chooseṙk = ṗk− q̇k so thatṗk 6∈ SP

and q̇k 6∈ SQ. The origin 0 must be in either4ṙ0ṙiṙk or
4ṙiṙi+1ṙk, if k > i+1; or in either4ṙ0ṙkṙi+1 or4ṙiṙi+1ṙk,
if k < i. It can be shown that in any case, we could obtain a
triangle4ṙk0

ṙk1
ṙk2

such that at least one of the corresponding
two setsSP andSQ must contain distinct vertices.

Let wj , j = 0, 1, 2 be the barycentric coordinates of0 with
respect toṙk0

, ṙk1
, ṙk2

. Hence,wi > 0 and
∑

wi = 1. Then,
we have

0 =
∑

wj ṙkj
=

∑

wjṗkj
−

∑

wjq̇kj
= ṗ− q̇,

where ṗ =
∑

wjṗkj
and q̇ =

∑

wjq̇kj
. Since the ortho-

graphic projection ofP andQ to the planeH is an affine
transformation that preserves the ratio of area and therefore
barycentric coordinates,̇p and q̇ are the projected images
of some p and q, respectively, wherep =

∑

wjpkj
and

q =
∑

wjqkj
, pkj

∈ VP and qkj
∈ VQ are the vertices

projected toṗkj
and q̇kj

on H, respectively. Sincewj > 0
and

∑

wj = 1, we havep ∈ P andq ∈ Q. Also asṗ = q̇, we
obtainc = p − q = αs, for some constantα. The following
procedures ensure thatc is not the origin andc is in the interior
of M , which make use of the fact that at least one ofSP

or SQ contains distinct vertices. Without loss of generality,
suppose thatSP = {ṗkj

} contains distinct vertices. We form
a tetrahedronT with verticespk0

,pk1
,pk2

andpt, wherept

is any vertex inP not coplanar to the three verticespkj
. It is

then easy to choose a new pointp in the interior ofT (and
hence the interior ofP ) that has the same projectionṗ onH,
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and thatp 6= q. Finally, c = p − q = αs, for some constant
α 6= 0 andc is in the interior ofM .

B. Computing the maximum signed distancedmax

A brute-force search for the facefmax that attains the max-
imum signed distancedmax is to first construct the Minkowski
differenceM ≡ P⊕−Q and find the face withdmax. However,
the time complexity of constructingM is known to beO(mn)
in the worst case, wherem andn are the number of vertices
of P andQ, respectively. Moreover, it is inefficient to traverse
the faces onM by advancing to an immediate neighbour at
each step. We therefore breaks down the search forfmax in
three successive phases, each within the subsetsFfv, Fvf and
Fee of M . This allows a quicker leap over the faces onM
and therefore the search reachesfmax more rapidly. Also, the
number of faces onM that needs to be constructed onM
can be greatly reduced. The procedure for each search phases
will be described in the following subsections. The search for
dmin is the same except that at every step, we look for a
face with smaller signed distance; therefore, we do not repeat
the corresponding procedures here. We will also leave some
implementation details to section VI, so that the core partsof
the procedures can be distinctly followed.

The following pseudocode gives an overview of howdmax

is obtained:

MAX SIGNEDDISTANCE(P ,Q)
dfv ← SEARCH-FV
dvf ← SEARCH-VF
dmax ← SEARCH-EE(dfv, dvf )
returndmax

1) SEARCH-FV: This procedure is to search for a face with
the maximum signed distance among all faces inFfv. Let f0
denote the initial face with normal vectorn̂(f0) in the search.
The initial facef0 may be chosen fromFP at random or to
give a better performance, we may use a heuristic selection in
a preprocessing step so that the faceF (f0, s−Q(f0)) ∈ Ffv is
close tofmax onM . The selection forf0 will be discussed in
detailed in section VI-A.

Starting fromf0, the search in SEARCH-FV considers the
neighbouring faces of the current face and advances to one
which has the local maximum signed distance. The neigh-
bouring (or adjacent) faces are those faces incident to the
vertices of the current face inP . Two faces adjacent inP
may not constitute adjacent faces inM . In this way, a gain
could be obtained in advancing faces in the search based on
their adjacency inP .

The procedure is described in the following pseudocode.
The function SIGNEDDISTANCE-FV(f ) constructs a face
F

(

f, s−Q(f)
)

∈ Ffv and computes its signed distance using 2.
The determination of the supporting vertex of−Q for a face
f is accelerated using the hierarchical representation of a
polyhedron presented in [13].

SEARCH-FV
dfv = SIGNEDDISTANCE-FV(f0)
For each iterationi

For each of then facesf j
i , j = 0, . . . , n− 1,

that are adjacent tofi in P

dj
i ← SIGNEDDISTANCE-FV(f j

i ).
If dfv < dk

i , wheredk
i = max{dj

i}
dfv ← di, fi+1 ← fk

i .
Otherwise,

Returndfv.

We now prove the correctness of SEARCH-FV.
Theorem 3:The signed distancedfv computed by SEARCH-

FV, is the maximum signed distance among all faces inFfv,
i.e. dfv = max{d(f) | f ∈ Ffv}.

Proof: Consider the set of facesFfv and its correspond-
ing dualF∗

fv. If for every two facesf0, f1 ∈ FP that share
an edge, we connectF ∗(f0, s−Q(f0)) and F ∗(f1, s−Q(f1))
by an edge, then by the construction ofM and the properties
of duality, we know that the point setF∗

fv and the augmented
edges form a polyhedronW ∗. SinceF∗

fv ⊂ VM∗ andM∗ is
convex,W ∗ must be convex too. Now, SEARCH-FV searches
locally for a vertex inW ∗ that attains the largest signed
distance to the planeo∗. The search path also follows the
adjacency of the faces inP and therefore is along the edges
of W ∗. As W ∗ is convex, the search will eventually stop at a
dual vertexf∗ of a facef ∈ Ffv attaining the local maximum
signed distance, which is also the global maximum signed
distance among all dual vertices inF∗

fv (corresponding to the
face setFfv).

2) SEARCH-VF: This procedure computes the maximum
signed distance among all faces inFvf . Upon completion of
SEARCH-FV, we obtain a facef = F

(

fp, s−Q(fp)
)

∈ Ffv

such thatdfv = d(f). The facef is supposed to be closest
to the optimal facefmax among all facesFfv, and it should
give a good starting point for subsequent search. Hence, the
initial face for SEARCH-VF can be chosen as a facef0 that
is incident ats−Q(fp) in −Q. The search then proceeds in a
similar way as SEARCH-FV by interchanging the role ofP
and−Q; the pseudocode is hence omitted for brevity. We also
have the following theorem for the correctness of SEARCH-
VF.

Theorem 4:The signed distancedvf computed by
SEARCH-VF, is the maximum signed distance among all
faces inFvf , i.e. dvf = max{d(f) | f ∈ Fvf}.

Proof: Similar to the proof of Theorem 3, by considering
the symmetry ofP and−Q in the two procedures SEARCH-
FV and SEARCH-VF.

3) SEARCH-EE: The previous two procedures SEARCH-
FV and SEARCH-VF determine the maximum signed distance
dfv and dvf among all faces in the setFfv andFvf , respec-
tively. The next step is to search for the remaining faces in
Fee, starting from the facef ∈ Ffv ∪ Fvf that attains the
signed distancemax{dfv, dvf}.

Let ep and eq be edges inEP and E−Q, respectively. As
mentioned in section II-C, if the Gaussian images ofep and
eq intersect onS2, a faceF (ep, eq) ∈ Fee will be formed. We
shall describe in details how to determine whether two arcs
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intersect in section VI-B.

SEARCH-EE
dee ← max{dfv, dvf}.
fm ← the face inFfv ∪ Fvf that attainsdee.
FS0 ← all possible faceF (ep, eq), where
ep is an edge incident to a vertex offp

andeq is an edge incident tos−Q(fp),
if fm = F

(

fp, s−Q(fp)
)

, or
ep is an edge incident tosP (fq)
andeq is an edge incident to a vertex offq,
if fm = F

(

sP (fq), fq

)

.
For each iterationi = 0, 1, 2, . . .

Let f̂i = F (êp, êq) ∈ FSi be the face such that
d(f̂i) = max{d(f) | f ∈ FSi}

If dee < d(f̂i)

dee ← d(f̂i)
FSi+1 ← all possible faceF (ep, eq), where
ep is an edge incident to an end vertex ofêp,
eq is an edge incident to an end vertex ofêq

Otherwise,
Returndee.

Lemma 5: If the optimal face,fmax, is in Ffv ∪ Fvf , then
SEARCH-EE returnsd(fmax) = dmax.

Proof: Since fmax ∈ Ffv ∪ Fvf , fmax must have the
maximum signed distance among all faces inFfv∪Fvf . Hence,
either dfv or dvf returned by SEARCH-FV or SEARCH-VF
equalsdmax, i.e. dmax = max{dfv, dvf}. Also, no face inFee

will have a larger signed distance thandmax. Therefore, by
the flow of SEARCH-EE, the maximum signed distancedmax

is returned.
Lemma 6: If the optimal face,fmax, is in Fee, then the

initial face setFS0 in SEARCH-EE must contain at least one
facefe ∈ Fee such thatd(fe) > max{dfv, dvf}.

Proof: Without loss of generality, let us assume that
fm = F

(

fp, s−Q(fp)
)

is the starting face in SEARCH-EE
attaining the signed distancemax{dfv, dvf}, wherefp ∈ FP ,
s−Q(fp) ∈ V−Q. The neighbouring faces offm on M are
those faces that are incident to the vertices offm. Consider
the Gaussian imagesG(M), G(P ) andG(−Q). Let Ri

M be
the neighbouring regions ofG(fm) in G(M), Rj

P be the
neighbouring regions ofG(fp) in G(P ) andRQ be the region
G

(

s−Q(fp)
)

in G(−Q). Hence, the neighbouring faces offm

correspond to those points defining the regionsRi
M (Fig. 10).

Note thatG(fm) and G(fp) are the same point on the
Gaussian sphereS2. SinceG(fp) lies inside the regionRQ,
Ri

M must be the intersection ofRj
P andRQ. Therefore, the

points of Ri
M must be either (A) the points ofRj

P or the
points ofRQ, or (B) the intersections of an arc ofRj

P with an
arc of RQ (Fig. 10). The latter set of points (B) correspond
to the face setFS0 in SEARCH-EE. If FS0 is empty, the
neighbouring faces offm can only be faces corresponding to
points in set (A), i.e. the faces inFfv ∪ Fvf . Then fm has
the maximum signed distance among all its neighbours, since
d(fm) = max{dfv, dvf}. On the other hand, ifFS0 is non-

R
j

P

RQ

Ri
M

G(fm)

Fig. 10. The Gaussian map ofM showing the neighbouring faces of
fm = F

�
fp, s−Q(fp)�. Solid lines and dotted lines are the arcs ofG(P )

andG(−Q), respectively. The boundaries of neighbouring regions ofG(fp)

in G(P ) (Rj
P

) are in thick solid lines; the boundaries ofG
�
s−Q(fp)� in

G(−Q) (RQ) are in thick dotted lines; The neighbouring regions ofG(fm)
in G(M) (Ri

M ) are in grey. The neighbouring faces offm correspond to the
black (FV- or VF-types) and white (EE-type) points.

empty, and all facesfe ∈ FS0 are such thatd(fe) < d(fm).
Again, fm has the maximum signed distance among all its
neighbours. In both cases, it implies thatfm is the optimal face
attaining the global maximum signed distance, i.e.d(fm) =
dmax. However, this contradicts thatdmax is attained by a face
in Fee. Hence, there must be at least a facefe ∈ FS0 such
that d(fe) > max{dfv, dvf}.

Lemma 7:The face setFSi+1 in SEARCH-EE contains all
EE-type faces that are adjacent to the facef̂i = F (êp, êq)
whereêp ∈ EP and êq ∈ E−Q.

Proof: The neighbouring faces of̂fi onM are those faces
incident to the vertices of̂fi. Consider the Gaussian images
G(M), G(P ) andG(−Q). The pointG(f̂i) is the intersection
of the two arcsG(êp) andG(êq) (Fig. 11). LetRi

M be the

R
j

P

Rk
Q

Ri
MG(f̂i)

G(êp)

G(êq)

Fig. 11. The Gaussian map ofM showing the neighbouring faces of̂fi =
F (êp, êq). Solid lines and dotted lines are the arcs ofG(P ) and G(−Q),
respectively. The boundaries of the neighbouring regions of G(êp) in G(P )

(Rj
P

) are in thick solid lines; the boundaries of the neighbouring regions of
G(êq) in G(−Q) (Rk

Q) are in thick dotted lines; The neighbouring regions of

G(f̂i) in G(M) (Ri
M ) are in grey. The neighbouring faces off̂i correspond

to the black (FV- or VF-types) and white (EE-type) points.

neighbouring regions ofG(f̂i), R
j
P be the two neighbouring

regions ofG(êp) andRk
Q be the two neighbouring regions of

G(êq). The regionsRi
M must be the intersection ofRj

P and
Rk

Q; hence, the points definingRi
M must be the intersections

of the arcs ofRj
P andRk

Q, and also some points fromRj
P ,

Rk
Q. The faces inFSi+1 in SEARCH-EE corresponds to the
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intersections of the arcs ofRj
P and Rk

Q, which are all the
EE-type neighbours of̂fi.

Theorem 8:The signed distancedee computed by SEARCH-
EE is the maximum signed distance among all faces inFM ,
i.e. dee = dmax = max{d(f) | f ∈ FM}.

Proof: The optimal facefmax attaining the maximum
signed distancedmax must be in eitherFfv ∪ Fvf or Fee. If
fmax ∈ Ffv∪Fvf , by Lemma 5, SEARCH-EE computesdmax.

Supposefmax ∈ Fee. Lemma 6 guarantees thatd(f̂0) =
max{d(f) | f ∈ FS0 > max{dfv, dvf}. Hence, the iteration
in SEARCH-EE will proceed. For each iterationi > 0, dee is
the signed distance of the current face, andFSi is the set of all
EE-type faces neighbouring to the current face (by Lemma 7).
The iteration stops when the signed distance of the current face
is the maximum among all its neighbouring EE-type faces.
Sincedee is increasing for each iteration,dee > max{dfv, dvf}
which means that the signed distance of the current face is
also the maximum among all its neighbouring FV- and VF-
type faces. Hence, SEARCH-EE stops at a face inFee with a
local maximum signed distancedee among all its neighbouring
faces inM , and therefore,dee = dmax.

V. COLLISION DETECTION OFTWO CONVEX POLYHEDRA

To solve the collision detection problem of two convex
polyhedraP andQ, we only need to tell whetherP andQ
separate or not. The choice for the centre of dualityc is much
relaxed and it only requires thatc ∈ M = P ⊕ −Q and that
c is not the origin. In this case, we store two distinct interior
points,p0,p1 ∈ P and q0,q1 ∈ Q. The vector differences,
pi − qj , of these four interior points give rise to four distinct
interior points inM , from which it is always possible to obtain
an interior point ofM which is not the origin.

By the condition for the separation of two convex polyhedra
in section III-A, we need only to determine whether the plane
o∗ intersectsM∗ in the dual space, or equivalently, whether
there is a facef with signed distanced(f) > 0. Hence, an
early escape from the search in the procedures SEARCH-FV,
SEARCH-VF and SEARCH-EE can be enabled by stopping the
search offmax whenever the signed distance of the current
face is positive, in which case the two convex polyhedraP
andQ are separate. The remaining situations ared(fmax) =
0, which corresponds toP and Q touching each other; or
d(fmax) < 0, which means thatP andQ intersect.

VI. I MPLEMENTATION ISSUES

In this section, we shall highlight several important issues
in implementing MDD-DUAL .

A. To obtain the initial face inSEARCH-FV

In section IV-B.1, an initial facef0 ∈ FP is to be selected
as the starting point for the search offmax in SEARCH-FV.
The facef0 should be such thatF

(

f0, s−Q(f0)
)

∈ Ffv is as
close tofmax as possible. Now,fmax is the face onM where
the rayco intersects and thereforefmax must be front-facing
with respect tos = o − c such thatn̂(f0) · s > 0. We may
then take the facef0 ∈ FP such thatn̂(f0) · s is the greatest

among all faces inFP . It is worth noting that whenM is flat
and elongated,F

(

f0, s−Q(f0)
)

may not be as close tofmax

as shown in (Figure 12). Nevertheless, this heuristic scheme
in selectingf0 can still efficiently eliminate most back-facing
facesf in M with respect tos wheren̂(f) · s < 0.

P
Mc

s = o − c

fmax

f0
F �f0, s−Q(f0)�

Fig. 12. If the shape ofM is elongated, the face formed by the initial face
f0 chosen may not be close tofmax.

B. To decide whether two arcs onS2 intersect

In procedure SEARCH-EE, one operation is to decide
whether two edgesep ∈ EP and eq ∈ E−Q form a face
F (ep, eq) ∈ Fee. This is done by checking whether the two
arcsG(ep) andG(eq) intersect on the Gaussian sphereS2.
Let a,b be the end points ofG(ep), c,d be the end points of
G(eq) ando be the centre ofS2 (Figure 13). The arcsG(ep)
and G(eq) intersect if and only if (1)c,d are on different
sides of the planeoba; (2) a,b are on different sides of the
planeocd; and (3)a,b, c,d are on the same hemisphere.

o o oo

a a

a

a

b
b

b

b

c c

c

c
d

d
d

d

(i) (ii) (iii) (iv)

Fig. 13. Determining whether two arcs intersect onS2. Arcs intersect in (i).
No intersection between arcs where (ii) only condition (1);(iii) only condition
(2) and (iv) only condition (3) is violated.

Consider thesigned volume, |cba| = det[ c b a ], of a
parallelepiped spanned by three vectorsa,b, c. The quantities
|cba| and|dba| are of different signs ifc andd are at opposite
sides of the planeoba. Now, the above three conditions can be
formulated as (1)|cba| × |dba| < 0; (2) |adc| × |bdc| < 0;
and (3)|acb| × |dcb| > 0. The last inequality holds whena
andd lie on the same side of the planeocb which means that
all four points will be on the same hemisphere defined byocb.
Note that only the quantities|cba|, |dba|, |adc| and|bdc| are
to be computed, since|acb| = |cba| and |dcb| = |bdc|.

C. Span of Faces with the Same Normal Direction

Throughout our discussion of the algorithm MDD-DUAL ,
we made an assumption that all faces onM have distinct
normal directions. However, this is not always true for convex
polyhedra with arbitrary mesh structures. Therefore, whenever
it is required to perform any operations on the current face in
the searching procedures (e.g. locating the adjacent faces, etc.),
we will have to augment the current face to include also its
neighbouring span of faces with the same normal direction.
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D. Avoiding Repetitive Visits to a Face

It is important to avoid unnecessary computations for a face
which is visited previously in the searching procedures and
is known to be non-optimal. We use a hash table to record
the visited faces in each procedure so that these faces can be
skipped efficiently in MDD-DUAL .

E. Frame Coherence

When the two polyhedraP and Q assume continuous
motion from frame to frame, MDD-DUAL may also exploit
the temporal or frame coherence. At each time frame, we
computefmax which is either inFfv,Fvf or Fee. In any case,
we can determine quickly a facef = F

(

f0, s−Q(f0)
)

∈ Ffv

that is as close tofmax as possible. Since the position and
orientation ofP andQ will have little changes for consecutive
frames, the new optimal face should also be close tofmax and
the use off0 as the initial face for SEARCH-FV will lead us
to the new optimal face more rapidly.

VII. PERFORMANCE

We have implemented MDD-DUAL in C++ and the ex-
periments described in this section are carried out on a PC
equipped with a Pentium III 3 GHz CPU and 1GB memory.
A set of 6 convex polyhedra are used (the name and the
number of vertices of the polyhedra are given in the brackets):
a truncated elliptic cone (P1 – 20), a truncated elliptic cylinder
(P2 – 50), two ellipsoids (P3 – 200,P4 – 500), the convex hull
of a random point set in a cube (P5 – 100), and the volume
of revolution of a convex profile curve (P6 – 200). The sizes
of the polyhedra are all within a sphere of radius 5. The cone
and the cylinder are in the aspecta : b : h = 1 : 2 : 4, where
a, b are the sizes of the base ellipse andh is the height. The
size of the ellipsoids are ina : b : c = 2 : 2 : 5, wherea, b
andc are the length of the three major axes.

A total of 10 pairwise MDD calculations are carried
out: (P1, P2), (P1, P3), (P4, P5), (P4, P6), and (Pi, Pi), i =
1, . . . , 6. For each pair of objectsPi andPj , Pj assumes 40
random orientations and for each orientation, we movePj so
that the shortest distancePi andPj ranges from−1.5 to 1.5
in 21 samples, in which 10 samples correspond to wherePi

and Pj intersect, 1 sample corresponds to touching, and 10
samples correspond to separation. Also, for each fixed shortest
distance betweenPi and Pj with a random orientation, we
compute their MDD along 40 random directions using MDD-
DUAL . It means that, for each pair of convex polyhedra, we
perform a total of21 × 40 × 40 different MDD computation
and the average CPU time taken for each MDD computation
is taken. For each reported MDDα along a specified direction
s, the reported MDD is verified by movingPj alongs by −α
(which should makePi andPj in external contact), and use the
GJK algorithm to compute the shortest distance ofPi andPj .
We note that the average shortest distance is1.9× 10−6 with
a standard deviation of10−5; the maximum of the absolute
shortest distance is found to be10−4.

The performance of MDD-DUAL is shown in Fig. 14. It
takes more time for determining the penetration depth for
two intersecting polyhedra, as the algorithm needs to repeat

itself to find dmin, and choose the minimum penetration
depth among the valuesα, ᾱ as described in Section III-
C. Nevertheless, for our test cases, MDD-DUAL takes less
than 350 microseconds to compute the MDD of two convex
polyhedra.

Performance of MDD-Dual
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Fig. 14. The average CPU time for a MDD computation for 10 pairs of
convex polyhedra.

Not all faces on the Minkowski sumM = P⊕−Q are being
constructed and visited. A typical search path onM is shown
in Fig. 15. From the above experiments, it is found that on
average13.7% of the faces onM is visited. In particular, only
2.5% of the EE-type faces is visited on average, which means
that most of the EE-type faces (whose worst case complexity is
O(n2)) can be skipped in the computations of MDD-DUAL .

VIII. C ONCLUSION

We have presented a novel method, called MDD-DUAL , for
computing the minimum directional distance (MDD) between
two convex polyhedra along a given direction. The MDD
of two convex polyhedra can be computed by finding the
shortest directional distance from the origin to the Minkowski
differenceM of the polyhedra. This is done by finding a face
which contains the intersection of a ray from the origin with
M . We consider the problem in the dual space where a face
on M corresponds to a vertex on the dual polyhedronM∗,
and formulate the MDD computation in forms of searching
a vertex which attains the maximum signed distance from a
plane. The search problem in the dual space is easily shown
to be convex, and a search scheme is devised accordingly
that can locate the optimal face onM efficiently. The search
scheme is divided into 3 stages, each working only on a subset
of the faces onM . This division allows the elimination of
most EE-type faces whose worst case complexity isO(n2).
Our experimental results show that MDD-DUAL exhibits both
efficient and robust performance.
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