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Abstract

The choice relation framework(CHOC’ LATE) pro-
vides a systematic skeleton for constructing test cases
from specifications. An early stage of the framework
is to identify a set of categories and choices from
the specification, which is not a trivial task when this
document is largely informal and complex. Despite
the difficulty, the identification task is very important
because the quality of the identified categories and
choices will affect the comprehensiveness of the test
cases and, hence, the chance of revealing software
faults. This paper alleviates the problem by introducing
a technique for identifying categories and choices from
the activity diagrams in the specification. This technique
also helps determine the relations between some pair of
choices in the choice relation table — an essential step of
CHOC’ LATE for the subsequent generation of test cases.
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1. Introduction

Program testing encompasses a range of tasks in that
sequence: (a) establishing test objectives, (b) generating
a test suite (the set of test cases used for testing),
(c) executing the program with every test case in the
generated test suite, and (d) examining the test results.
Among these tasks, test suite generation is very im-
portant [9]. This is because the comprehensiveness
of the test suite will affect the scope and, hence, the
effectiveness of testing.

In general, there are two approaches for test suite
generation: thewhite-box and black-box approaches.
The white-box approach generates a test suite according
to the information derived from the source code of the
program under test. White-box testing typically requires
the coverage of certain aspects of the program structures.
Control flow testing [13], data flow testing [5], and
domain testing [12] are some well-known examples. On
the other hand, the black-box approach generates a test
suite without the knowledge of the internal structure of
the program. In most cases, the generation process is
based on a specification1 that exists in a spectrum of
forms. At one extreme of the spectrum is the completely
informal specification primarily written in natural lang-
uage. At the other extreme is the completelyformal
specification written in a mathematical notation. In

1 Some researchers and practitioners also use the term “model” to
refer to this abstract description of the software under development.
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general, the format of a specification may lie somewhere
between these two extremes.

Because of the rigorous nature, formal specifications
are relatively easier for test suite generation. These
specifications, however, are not as popular as they should
be, mainly because more software developers are not
familiar with the mathematical concepts involved and
find the techniques difficult to understand and use. Thus,
some software developers turn to generating test suites
from informal specifications.

Among the various test suite generation methods that
can be applied to informal specifications, the category-
partition method (CPM) [10] has received much atten-
tion. Later, Chen et al. [4] have developed aCHOiCe
reLAT ion framEwork, abbreviated asCHOC’ LATE, to
improve on the effectiveness of CPM.

In CHOC’ LATE (as well as CPM), an early step is
to identify a set of categories and choices from the
specification. Acategoryis defined as “a major prop-
erty or characteristic of a parameter or an environ-
ment condition of the software that affects its execution
behavior”.2 An example is the category[GPA Score
(S)] in an undergraduate’s award classification system.
The possible values associated with each category are
then partitioned into distinct subsets known aschoices,
with the assumption that all values in the same choice
are similar either in their effect on the system’s behavior,
or in the type of output they produce [10]. Examples
of choices are|GPA Score (S): 0.0 ≤ S< 2.0|, |GPA
Score (S): 2.0 ≤ S < 2.5|, |GPA Score (S): 2.5 ≤
S < 3.0|, |GPA Score (S): 3.0 ≤ S < 3.5|, and |GPA
Score (S): 3.5 ≤ S≤ 4.0|. 3 These choices are defined
as such because they determine whether a student is
eligible to graduate, and if yes, what level of award
(for example, first-class honor) a student will obtain.
Note that a choice is considered as a set of its possible
values. For example,|GPA Score (S): 0.0≤ S< 2.0| =
{0.0, 0.1, 0.2, . . . , 1.8, 1.9}. Additionally, given a
category[X], all its associated choices together should
cover the entire input domain relevant to[X].

After identifying all the major categories and choices,
the software tester has to construct a choice relation
table, which captures the constraint between every pair
of choices. These constraints allow all valid combina-
tions of choices to be generated as “test frames” and
at the same time invalid combinations are suppressed as
far as possible. An example of these constraints is that
the choice|GPA Score (S): 3.5 ≤ S≤ 4.0| cannot be
combined with the choice|Number of Years of Study:

2 Parameters and environment conditions of the software are collec-
tively known asfactorsin this paper.

3 In this paper, categories are enclosed by square brackets[ ] and
choices are enclosed by vertical bars| |. Additionally, the notation|X :
x| denotes a choice|x| in the category[X].

≤ 1| of the category[Number of Years of Study] to form
part of any test frame. This is because only one year
of study or less is insufficient for a student to attain this
range of GPA score. Finally, test cases are generated
from valid test frames.

Obviously, the quality of the identified categories and
choices will eventually affect the comprehensiveness of
the test suite and, hence, the effectiveness of revealing
software faults. If, for example, a valid choice is
missing, then any fault associated with this choice may
not be detected. We observe, however, that there is
no systematic methodology for identifying categories
and choices for informal specifications. As a result,
this identification process is often performed in an ad
hoc manner and, hence, the quality of the resulting test
suite may be in question. This problem inspires us
to develop a systematic identification methodology for
informal specifications. The methodology will also help
determine the constraints between some pairs of choices
in the choice relation table, from which test frames are
generated.

The rest of this paper is organized as follows.
Section 2 briefly discusses some previous work on the
identification of categories and choices from specifi-
cations, and explains how such work relates to our
identification methodology. Section 3 first outlines the
major concept of activity diagrams, followed by some
important concepts and definitions such as different
types of choice relation and problematic category and
choice, and then our identification technique in detail.
Finally, Section 4 concludes the paper.

2. Previous work on category and choice
identification

Using commercial specifications primarily of infor-
mal nature, Chen et al. [3] have conducted some empir-
ical studies on the “ad hoc” identification of categories
and choices. The primary objective of the studies is to
investigate the common mistakes made by software
testers in such an identification approach. Results of the
studies have shown that missing categories and choices,
and various types of problematic category and choice are
likely to occur during an ad hoc identification process.
Readers may refer to [2, 3] for details. The results have
confirmed the great demand for a systematic identifi-
cation methodology for specifications which are largely
informal in nature. As an interim solution, Chen et al. [3]
have developed a checklist to help software testers avoid
and detect such mistakes.

In addition, Grochtmann and Grimm [6] have
attempted to use artificial intelligence techniques to gen-
erate categories and choices automatically, but without
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much success.4 Eventually, Grochtmann and Grimm
have concluded that identifying categories and choices
is a “creative” process that probably can never be done
entirely automatically. (We concur with their conclusion
about the difficulty in fully automating the identification
process.) Grochtmann and Grimm have then shifted their
attention to the identification process based on formal
specifications. Other researchers, such as Amla and
Ammann [1] and Hierons et al. [7], have also conducted
some work in that direction. Our work discussed in
this paper, however, takes a different direction because
we aim to develop an identification methodology for
informal specifications.

3. Our identification methodology

Unlike formal specifications which are written in
rigorous specification languages such as Z and Boolean
predicates [8, 11], informal specifications are often ex-
pressed in many different styles and formats, and
contain a large variety of components. Examples of
these specification components are narrative descrip-
tions, data flow diagrams, entity-relationship diagrams,
system flowcharts, decision tables, use cases, activity
diagrams, and statechart diagrams.

In view of the various possible combinations of these
components in an informal specification, we adopt the
following approach when developing our identification
methodology:

(1) To determine the major and common components
that exist in most informal specifications.

(2) To develop an identification technique for each
major and common specification component.

This approach will make our identification methodology
applicable to a large variety of informal specifications.

Limited by the space of this paper, here we focus only
on the identification of categories and choices based on
activity diagrams, which are a common component in a
UML (Unified Modeling Language) specification.

3.1. Overview of activity diagrams

In general, the activity diagram, denoted byD , sup-
plements the use case (almost an essential specification
component), by providing a graphical representation of
the flow of interaction within a specific scenario. In
its basic form, aD is a simple and intuitive illustration
of what happens in a control flow (or workflow), what
activities can be done in parallel, and whether there are

4 In [6], categories and choices are known as “classifications” and
“classes”, respectively.

alternative paths through the control flow. As such,
D ’s can be used to model everything from a high-
level business workflow that involves many different use
cases, to the details of an individual use case, all the way
down to the specific details of an individual method.

Often, a complete control flow description in aD
will have a basic flow, and one or more alternative
flows. This control flow has a structure that can be
defined textually using statements such as IF-THEN-
ELSE. For a simple control flow with a simple structure
these textual definitions may be fairly sufficient, but in
the situation of more complex structures, aD helps us
clarify and make more apparent what the control flow is.

A D starts with a solid circle, representing theinitial
activity. An arrow shows the control flow of activities,
which are represented by rounded rectangles labeled
for the activities performed. An asterisk on an arrow
indicates that the control flow is iterated. The end of
a control flow is indicated by a “bull’s eye”, known as a
final activity. A single path of execution through aD is
called athread.

A diamond represents adecision point. Conditions
for each arrow out of a decision point (known as an
alternative thread) are enclosed in brackets, and they
are calledguard conditions. The diamond icon can also
be used to show whether the alternative threads merge
again. A solid thick bar is called asynchronization bar.
Multiple arrows out of a synchronization bar indicate
activities that can be performed in parallel. Multiple
arrows into a synchronization bar indicate activities that
must all be completed before the next process can begin.
Refer to Figure 1 for a sample activity diagramDaward.

Intuitively, the decision points and guard conditions
in a D indicate where and how the software system
behaves differently. This characteristic makes aD a
very useful source of deriving information to identify
categories and choices, which are then processed by
CHOC’ LATE for test case generation.

3.2. Background concepts and definitions

First, we present a few important concepts and
definitions, introduced in [3], and a new concept
“complete thread”, which are essential for understanding
the identification technique in this paper.

Definition 1 (Complete and Incomplete Test Frames)
A test frame B is a set of choices. B iscomplete if,
whenever a single element is selected from every choice
in B, a test case is formed. Otherwise, B isincomplete.

�
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Figure 1. An activity diagram Daward

Example 1 (Complete and Incomplete Test Frames)
Consider a programP that reads an input fileF
containing two integersm andn, and outputs the value
of (1/

√
m−n). Here, [Status ofF ] and [m− n] are

two possible categories identified with respect to an
environment condition and a parameter, respectively,
that affect the execution behavior ofP. The category
[Status ofF ] has three associated choices:|Status of
F : Does Not Exist|, |Status ofF : Exists but Empty|,
and |Status ofF : Exists and Non-Empty|. On the
other hand, the category[m− n] has three associated
choices: |m− n :< 0|, |m− n := 0|, and |m− n :> 0|.
These three choices correspond to an undefined result
of (1/

√
m−n) involving taking the square root of a

negative number, an undefined result involving division
by zero, and a well-defined result, respectively. With

these two categories and their associated choices, there
are altogether five complete test frames as follows:

• B1 = {|Status ofF : Does Not Exist|},

• B2 = {|Status ofF : Exists but Empty|},

• B3 = {|Status ofF : Exists and Non-Empty|, |m−n :
< 0|},

• B4 = {|Status ofF : Exists and Non-Empty|, |m−n :
= 0|}, and

• B5 = {|Status ofF : Exists and Non-Empty|, |m−n :
> 0|}.

ConsiderB5. A possible test case generated from it is
(Status ofF = Exists and Non-Empty,m−n = 5). On
the other hand,{|Status ofF : Exists and Non-Empty|}

4



is an incomplete test frame because we need additional
information about the value of(m− n) in order to
generate a test case forP. �

Definition 2 (Set of Complete Test Frames Related to
a Choice) Let TF denote the set of all complete test
frames. Given any choice|X : x|, we define theset of
complete test frames related to |X : x| as TF(|X : x|) =
{B ∈ TF : |X : x| ∈ B}. A choice|X : x| is valid if and
only if TF(|X : x|) is nonempty. �

Example 2 (Set of Complete Test Frames Related
to a Choice) Refer to programP in Example 1.
Here, TF(|Status of F : Does Not Exist|) = {B1},
whereasTF(|Status ofF : Exists and Non-Empty|) =
{B3,B4,B5}. Furthermore, both|Status ofF : Does Not
Exist| and|Status ofF : Exists and Non-Empty| are valid
choices, becauseTF(|Status ofF : Does Not Exist|) and
TF(|Status ofF : Exists and Non-Empty|) are nonempty.

�

Definition 3 (Relation between Two Choices)Given
any valid choice|X : x|, its relation with another valid
choice|Y : y|, denoted by|X : x| 7→ |Y : y|, is defined in
terms of one of the threerelational operators as follows:

(1) |X : x| is fully embedded in |Y : y| (denoted by|X :
x|< |Y : y|) if and only if TF(|X : x|)⊆ TF(|Y : y|).

(2) |X : x| is partially embedded in |Y : y| (denoted by
|X : x|<P |Y : y|) if and only if TF(|X : x|) 6⊆ TF(|Y :
y|) and TF(|X : x|)∩TF(|Y : y|) 6= /0.

(3) |X : x| is not embedded in |Y : y| (denoted by|X :
x| 6< |Y : y|) if and only if TF(|X : x|)∩TF(|Y : y|) =
/0. �

Because the three types of choice relations in Def-
inition 3 are exhaustive and mutually exclusive,|X :
x| 7→ |Y : y| can be uniquely determined. Additionally,
immediately from the definition, the relational operator
for |X : x| 7→ |X : x| is “<” and the relational operator for
|X : x1| 7→ |X : x2| is “ 6<” if |X : x1| 6= |X : x2|.

Example 3 (Relation between Two Choices)Refer to
Example 1. The following lists three pairs of choices
and their corresponding choice relations:

(1) |m− n := 0| < |Status of F : Exists and Non-
Empty|: This is because, for every complete test
frameB containing|m−n := 0| (that is,B4), B also
contains|Status ofF : Exists and Non-Empty|.

(2) |Status ofF : Exists and Non-Empty| <P |m−n :<
0|: This is because,

• For some complete test frameB containing
|Status ofF : Exists and Non-Empty| (that is,
B3), B also contains|m−n :< 0|, and

• For some complete test frameB′ containing
|Status ofF : Exists and Non-Empty| (that is,
B4 andB5), B′ does not contain|m−n :< 0|.

(3) |Status ofF : Exists but Empty| 6< |m−n := 0|: This
is because,

• For every complete test frameB containing
|Status ofF : Exists but Empty| (that is,B2), B
does not contain|m−n := 0|, and

• For every complete test frameB′ containing
|m−n := 0| (that is,B4), B′ does not contain
|Status ofF : Exists but Empty|. �

In CHOC’ LATE [4], after identifying categories and
their associated choices from the specification, the next
step is to construct achoice relation tableT , which
captures the relation between every pair of choices.
Note that a choice relation|X : x| 7→ |Y : y| essentially
corresponds to a constraint between the choices|X : x|
and|Y : y|. These choice relations then form the basis for
the subsequent generation of complete test frames using
the algorithms inCHOC’ LATE. Readers may refer to [4]
for more details.

In their studies [3], Chen et al. have observed some
common mistakes made by software testers when cate-
gories and choices are identified from informal specifi-
cations in an “ad hoc” manner. Two examples of these
mistakes are given and expressed in Definitions 4 and 5
below.

Definition 4 (Missing Choice) Given a category[X],
and all the associated valid choices|X : x1|, |X : x2|,
. . . , |X : xn| in [X], if there exist some other valid choice
|X : x| yet to be identified and some value v∈ |X : x|
such that v6∈ |X : xi |, for every1≤ i ≤ n, then|X : x| is
a missing choice. In this case, we also say that[X] is a
category with a missing choice. �

Example 4 (Missing Choice)Refer to Example 1.
Suppose the category[Status ofF ] is identified with
only two associated choices, namely|Status of F :
Does Not Exist| and |Status ofF : Exists but Empty|,
as if |Status ofF : Exists and Non-Empty| has not
been identified. In this case,|Status ofF : Exists and
Non-Empty| is a missing choice. Accordingly,[Status
of F ] is a category with a missing choice. �

Definition 5 (Overlapping Choices) Given a category
[X], two distinct valid choices|X : x1| and |X : x2| are
said to beoverlapping if |X : x1| ∩ |X : x2| 6= /0. In this
case,[X] is a category with overlapping choices. �
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Example 5 (Overlapping Choices)Refer to Example
1. Suppose the category[m− n] is now identified with
three associated choices:|m−n :< 0|, |m−n := 0|, and
|m−n :≥ 0|. In this case,|m−n := 0| and|m−n :≥ 0|
are overlapping choices because the element(m−n= 0)
exists in both choices. Furthermore,[m−n] is a category
with overlapping choices. �

Definition 6 (Complete Thread) In a D , a “single”
path of execution is called athread, and it is said to
becomplete if and only if it starts with the initial activity
and ends with a final activity. �

Example 6 (Complete Thread) Refer to Daward in
Figure 1. The leftmost path indicated by a dark line
represents a thread. Because this thread starts with the
initial activity and ends with the final activity, it is also a
complete thread. �

3.3. Category and choice identification in
activity diagrams

Having introduced the above concepts and defini-
tions, we are now ready to present an algorithm for
identifying categories and choices in activity diagrams.
The algorithm also provides some information for the
subsequent determination of choice relations.

An Algorithm for Identifying Categories and Choices
in Activity Diagrams:

Given an activity diagramD which contains one or more
guard conditions denoted bygci ’s (where i ≥ 1), with
eachgci contains one or more subconditions, denoted
by sc(i, j)’s (where j ≥ 1), which are separated from the
others by the logical operators “AND” or “ OR”:

(1) Let:

• ⊙ denote any arithmetic operator (“+”, “−”,
“×”, and “÷”),

• ∼ denote any arithmetic relational operator
(“=”, “ 6=”, “ <”, “ >”, “≤”, and “≥”) 5,

• V denote(v1 ⊙ v2 ⊙ ·· · ⊙ vm); vi is any
variable inV where 1≤ i ≤ m, and

• F(sc(i, j)) denote the factor(s) associated with
sc(i, j).

Repeat this step (1) for everysc(i, j) in everygci in
D :

5 Do not confuse the arithmetic relational operators mentionedhere
with the (choice) relational operators (“<”, <P , and “6<”) introduced
in Definition 3.

If sc(i, j) contains only one single arithmetic rela-
tional operator, then:

(a) If sc(i, j) is not in the form “V ∼ c” (wherec is
a constant), then re-express the subcondition
in this format.

(b) Define[V ] as a category if it does not exist.6

(c) Define |V :∼ c| as a choice in[V ] if this
choice does not exist.

else:

(d) Define the category[F(sc(i, j))] if it does not
exist.

(e) Define the entiresc(i, j) as a choice in
[F(sc(i, j))] if this choice does not exist.

(2) Repeat steps (2)(a) and (2)(b) below until there
do not exist any overlapping choices|X : xi | and
|X : x j | (note that|X : xi | 6= |X : x j | because of
steps (1)(c) and (1)(e) above):

(a) If |X : xi | ( |X : x j |, then:

(i) Delete|X : x j |.
(ii) Define the choice(|X : x j | \ |X : xi |) if it

does not exist.

(b) If (|X : xi | 6⊂ |X : x j |) and(|X : x j | 6⊂ |X : xi |),
then:

(i) Delete|X : xi | and|X : x j |.
(ii) Define the following choices if they do

not exist:
• |X : xi | \ |X : x j |
• |X : x j | \ |X : xi |
• |X : xi | ∩ |X : x j |

(3) Let E([X]) denote the set of all possible elements
associated with the category[X], and |X : x1|,
|X : x2|, . . . , |X : xn| (wheren≥ 1) denote all choices
in [X] identified after step (2). For every category
[X] with missing choices, define a new choice|X :
x| such thatE([X]) = |X : x| ∪ |X : x1| ∪ |X :
x2| ∪ · · · ∪ |X : xn|.

(4) Initialize a choice relation tableT by assigning a
“null” value to every|X : x| 7→ |Y : y| in T .

(5) For every|X : xi | 7→ |X : xi | in T , assign the (choice)
relational operator “<” to it.

(6) For every|X : xi | 7→ |X : x j | in T such that|X : xi | 6=
|X : x j |, assign the (choice) relational operator “6<
to it.

6 Note that the same category may be associated with different
sc(i, j)’s in the same or differentgci ’s.
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(7) Letsc(|X : x|) denote the subcondition correspond-
ing to the choice|X : x|. For every pair of|X : x| 7→
|Y : y| in T such that:

• [X] 6= [Y],

• both sc(|X : x|) andsc(|Y : y|) appear inD ,
and

• bothsc(|X : x|) andsc(|Y : y|) are not associ-
ated with any parallel threads inD ,

then, use the following rules to determine the
relevant choice relation for|X : x| 7→ |Y : y|:

(a) Assign the (choice) relational operator “<” to
|X : x| 7→ |Y : y| if, for every complete threadt
associated withsc(|X : x|), t is also associated
with sc(|Y : y|).

(b) Assign the (choice) relational operator “<P ” to
|X : x| 7→ |Y : y| if:

(i) there exists some complete threadt asso-
ciated withsc(|X : x|) such that,t is also
associated withsc(|Y : y|); and

(ii) there exists some complete threadt ′ asso-
ciated withsc(|X : x|) such that,t ′ is not
associated withsc(|Y : y|).

(c) Assign the (choice) relational operator “6<” to
|X : x| 7→ |Y : y| if:

(i) for every complete threadt associated
with sc(|X : x|), t is not associated with
sc(|Y : y|); and

(ii) for every complete threadt ′ associated
with sc(|Y : y|), t ′ is not associated with
sc(|X : x|).

There are two important characteristics in the above
algorithm:

• It helps identify a set of categories and choices
based on the guard conditions (and their subcon-
ditions) appear inD . Intuitively, a guard condition
gc corresponds to a particular execution behavior
of the software system and, hence, some categories
and choices should be identified with respect togc.

• It will not only identify a set of categories and
choices fromD , but will also determine the choice
relations for some pairs of|X : xi | 7→ |Y : y j | in
T . Obviously, for the remaining pairs of|X : xi | 7→
|Y : y j | in T , the software tester has to define their
choice relations based on the tester’s own expertise
and judgment.

Certain steps in the above identification algorithm
warrant additional explanations and discussions:

• Consider step (1)(a). Suppose fromD we found the
subcondition “(u+v−2) > (x−y+5)”, whereu, v,
x, andy are variables. Here, we need to re-express
this subcondition as “(u+ v− x+ y) > 7”, so that
the category[u+v−x+y] and its associated choice
|u+v−x+y :> 7| can be identified. This approach
reduces the chance where two subconditions with
different syntactic structures of the same semantic
meaning (for example, “(u + v− 2) > (x− y +
5)” and “(u+ y− 1) > (x− v+ 6)”) result in the
definition of different categories and choices.

In some situations wheresc(i, j) contains only one
single arithmetic relational operator with two or
more variables and this subcondition cannot be
expressed in the form “V ∼ c”, such as “(u,v >
5)” (this form is obviously nonstandard), thensc(i, j)
should first be decomposed into two or more sub-
conditions in standard forms, such as “(u > 5)” and
“(v > 5)”, before each of these decomposed sub-
conditions is processed by steps (1)(b) and (1)(c)
for category and choice identification.

• Consider steps (1)(d) and (1)(e) and refer to Fig-
ure 1. An example of a subcondition with no arith-
metic relational operator is “Local On-Campus”.
Here, in this example, “Local On-Campus” is also
a guard condition by itself. Now, look at the guard
condition “3.5≤ GPA Score (S) ≤ 4.0 in Figure 1.
This guard condition is also a subcondition, which
has two arithmetic relational operators. Consider
another example “u < v < x ≤ y”. This complex
hypothetical subcondition has four variables and
three arithmetic relational operators.

Now, let us consider the guard conditions (or
subconditions) “Local On-Campus” and “Overseas
Off-Campus” in Figure 1. They are associated
with the same decision point and, hence, the same
factor (that is, “Location of Study”). According
to steps (1)(d) and (1)(e) of the algorithm, we
should define[Location of Study] as a category
and |Location of Study: Local On-Campus| and
|Location of Study: Overseas Off-Campus| as its
associated choices, if they do not exist. One may
argue that, in this example, we should instead define
the entire subconditions as categories with “Yes”
as their associated choices. That is, we should
define the category[Local On-Campus] with an
associated choice|Local On-Campus: Yes|, and
the category[Overseas Off-Campus] with an asso-
ciated choice|Overseas Off-Campus: Yes|. In this
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approach, however, we have twodifferent cate-
gories and is therefore counter-intuitive.

• Consider step (7). For any choice|X : x| in T ,
it may be directly defined from asc(i, j) in a gci
in step (1)(c) or (1)(e), or may be generated in
step (2)(a)(ii), (2)(b)(ii), or (3). Thus, some|X : x|’s
in T may not have their correspondingsc(|X : x|)’s
in D .

Also, in step (7), the rules for determining the
choice relation for|X : x| 7→ |Y : y| is based on the
rationale that, ifsc(|X : x|) andsc(|Y : y|) appear
in the same complete threadt in D , then we must
combine|X : x| and|Y : y| together to form part of
some complete test frames, from which test cases
can be generated to traverset for the purpose of
testing.

Let us useDaward in Figure 1 to illustrate how to
apply our identification algorithm:

(1) Consider, for example, the guard conditions (or
subconditions) “0.0 ≤ GPA Score (S) < 2.0” and
“2.0 ≤ GPA Score (S) ≤ 4.0” associated with
the “top” decision point (the one that is near the
initial activity). Each of these subconditions has
two arithmetic relational operators. The factor
associated with these two subconditions is “GPA
Score (S)”. Accordingly, we define the category
[GPA Score (S)]. Moreover, this category should be
defined with two associated choices|GPA Score
(S): 0.0 ≤ S < 2.0| and |GPA Score (S): 2.0 ≤
S≤ 4.0| (see steps (1)(d) and (1)(e) of the algo-
rithm). Additional categories and choices should be
defined for other guard conditions in a similar way.
Table 1 shows the three categories and their associ-
ated choices defined after this step.

(2) In Table 1, [GPA Score (S)] is a category with
overlapping choices, such as|GPA Score (S): 2.0≤
S < 2.5| and |GPA Score (S): 2.0 ≤ S ≤ 4.0|.
Because|GPA Score (S): 2.0 ≤ S< 2.5| ( |GPA
Score (S): 2.0 ≤ S≤ 4.0|, we delete|GPA Score
(S): 2.0≤ S≤ 4.0|. Note that the definition of the
choice|GPA Score (S): 2.5≤S≤ 4.0| is not needed
because it already exists. We repeat this step in
a similar way until overlapping choices no longer
exist. Table 2 shows the resultant categories and
choices upon the completion of this step.

(3) Missing choices are not found in all the three
categories[GPA Score (S)], [Number of Years of
Study], and[Location of Study]. Hence, no action
is taken in this step.

(4) There are altogether 10 choices in Table 2. For
every table element inTaward (each corresponds to
a choice relation for a pair of choices), we assign a
null value to it.

(5) Consider, for example,|GPA Score (S): 0.0≤ S<
2.0| 7→ |GPA Score (S): 0.0≤ S< 2.0| in Taward.
We assign the (choice) relational operator “<” to
it. Similarly, we assign the same (choice) relational
operator to every other pair of identical choices in
Taward.

(6) Now, consider, for example,|Number of Years of
Study:≤ 4| 7→ |Number of Years of Study:> 4 and
< 6|, which corresponds to a pair of distinct choices
in the same category. We assign the (choice)
relational operator “6<” to it. The rationale is that,
no more than one choice can be selected from each
category to form part of any complete test frame.
Similarly, we assign the same (choice) relational
operator to every other pair of distinct choices of
the same category inTaward.

(7) Consider the choices|GPA Score (S): 0.0 ≤ S<
2.0| and |Number of Years of Study:≥ 6| in
Table 2. Since:

(a) these two choices belong to different cate-
gories,

(b) both subconditions “0.0 ≤ GPA Score (S) <
2.0” and “Number of Years of Study≥ 6”
appear inDaward and are not associated with
any parallel thread, and

(c) only one (but not all) complete thread in
Daward associated with the subcondition
“0.0 ≤ GPA Score (S) < 2.0” is also associ-
ated with the subcondition “Number of Years
of Study≥ 6”,

we assign the (choice) relational operator “<P ” to
|GPA Score (S): 0.0 ≤ S < 2.0| 7→ |Number of
Years of Study:≥ 6| in Taward. Some other choice
relations inTaward can be determined similarly.

In summary, by using the algorithm, we are able to
identify a total of three categories and 10 valid choices
for Daward. Additionally, with respect to these cate-
gories and choices, there are no missing and overlapping
choices. Furthermore, during the identification process,
useful information has been derived to help determine
the choice relations of some pairs of choices inTaward.
This does not only improve the efficiency of completing
T , but also reduce the chance of incorrect manual defi-
nition of choice relations, resulting in the generation of
incomplete test frames byCHOC’ LATE. If this happens,
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Table 1. Categories and choices defined after step (1) of the i dentification algorithm
Categories Associated Choices

[GPA Score (S)] |GPA Score (S): 0.0≤ S< 2.0|, |GPA Score (S): 2.0≤ S< 2.5|, |GPA Score (S): 2.0≤ S≤ 4.0|,
|GPA Score (S): 2.5≤ S< 3.0|, |GPA Score (S): 2.5≤ S≤ 4.0|, |GPA Score (S): 3.0≤ S< 3.5|,
|GPA Score (S): 3.0≤ S≤ 4.0|, |GPA Score (S): 3.5≤ S≤ 4.0|

[Number of Years of Study] |Number of Years of Study:≤ 4|, |Number of Years of Study:> 4|,
|Number of Years of Study:< 6|, |Number of Years of Study:≥ 6|

[Location of Study] |Location of Study: Local On-Campus|, |Location of Study: Overseas Off-Campus|

Table 2. Categories and choices refined after step (2) of the i dentification algorithm
Categories Associated Choices

[GPA Score (S)] |GPA Score (S): 0.0≤ S< 2.0|, |GPA Score (S): 2.0≤ S< 2.5|, |GPA Score (S): 2.5≤ S< 3.0|,
|GPA Score (S): 3.0≤ S< 3.5|, |GPA Score (S): 3.5≤ S≤ 4.0|

[Number of Years of Study] |Number of Years of Study:≤ 4|, |Number of Years of Study:> 4 and< 6|, |Number of Years of Study:≥ 6|
[Location of Study] |Location of Study: Local On-Campus|, |Location of Study: Overseas Off-Campus|

the scope and comprehensiveness of testing will be
adversely affected.

4. Conclusion

In this paper, we have introduced some fundamental
concepts, including complete test frames, valid choices,
three different types of choice relation, missing choices,
overlapping choices, and complete threads. Thereafter,
we have presented our identification technique, through
which a set of categories and choices can be system-
atically identified. An important characteristic of the
technique is that it also helps determine the choice
relations of some pairs of choices inT . It should be
noted that the set of categories and choices identified
by applying the technique should be considered as a
“preliminary” set; it should be further refined based
on the tester’s expertise and experience on the problem
domain of the software to be tested.

As mentioned earlier, the aim of our identification
methodology is to identify the major and common
components that exist in most informal specifications,
through which a comprehensive set of categories and
choices can be systematically identified. Hence, our
identification technique, which is based onD ’s, should
be supplemented by other identification techniques
based on other specification components such as state-
chart diagrams. Once the development of our entire iden-
tification methodology is completed, we will perform
case studies or experiments to measure its effectiveness
by using some commercial informal specifications.
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