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Abstract

The choice relation frameworkCHOC' LATE) pro-

vides a systematic skeleton for constructing test cases

from specifications. An early stage of the framework
is to identify a set of categories and choices from
the specification, which is not a trivial task when this
document is largely informal and complex. Despite
the difficulty, the identification task is very important
because the quality of the identified categories and

choices will affect the comprehensiveness of the test
cases and, hence, the chance of revealing software

faults. This paper alleviates the problem by introducing
a technique for identifying categories and choices from
the activity diagrams in the specification. This technique

also helps determine the relations between some pair of

choices in the choice relation table — an essential step of
CHOC LATE for the subsequent generation of test cases.
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1. Introduction

Program testing encompasses a range of tasks in that
sequence: (a) establishing test objectives, (b) gengratin
a test suite(the set of test cases used for testing),
(c) executing the program with every test case in the
generated test suite, and (d) examining the test results.
Among these tasks, test suite generation is very im-
portant [9]. This is because the comprehensiveness
of the test suite will affect the scope and, hence, the
effectiveness of testing.

In general, there are two approaches for test suite
generation: thewhite-box and black-box approaches.
The white-box approach generates a test suite according
to the information derived from the source code of the
program under test. White-box testing typically requires
the coverage of certain aspects of the program structures.
Control flow testing [13], data flow testing [5], and
domain testing [12] are some well-known examples. On
the other hand, the black-box approach generates a test
suite without the knowledge of the internal structure of
the program. In most cases, the generation process is
based on a specificatidnthat exists in a spectrum of
forms. At one extreme of the spectrum is the completely
informal specification primarily written in natural lang-
uage. At the other extreme is the completédymal

specification written in a mathematical notation. In

1 Some researchers and practitioners also use the term “madel” t
refer to this abstract description of the software undeeigpment.
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general, the format of a specification may lie somewhere
between these two extremes.

Because of the rigorous nature, formal specifications
are relatively easier for test suite generation. These

< 1| of the categoryNumber of Years of Studyto form

part of any test frame. This is because only one year
of study or less is insufficient for a student to attain this
range of GPA score. Finally, test cases are generated

specifications, however, are not as popular as they should from valid test frames.

be, mainly because more software developers are not

familiar with the mathematical concepts involved and
find the techniques difficult to understand and use. Thus,

some software developers turn to generating test suites software faults.

from informal specifications.

Among the various test suite generation methods that
can be applied to informal specifications, the category-
partition method (CPM) [10] has received much atten-
tion. Later, Chen et al. [4] have developedCaOiCe
reLAT ion framEwork, abbreviated agHOC' LATE, to
improve on the effectiveness of CPM.

In cHOC' LATE (as well as CPM), an early step is
to identify a set of categories and choices from the
specification. Acategoryis defined as “a major prop-
erty or characteristic of a parameter or an environ-
ment condition of the software that affects its execution
behavior’2 An example is the categorfGPA Score
(9] in an undergraduate’s award classification system.

Obviously, the quality of the identified categories and
choices will eventually affect the comprehensiveness of
the test suite and, hence, the effectiveness of revealing
If, for example, a valid choice is
missing, then any fault associated with this choice may
not be detected. We observe, however, that there is
no systematic methodology for identifying categories
and choices for informal specifications. As a result,
this identification process is often performed in an ad
hoc manner and, hence, the quality of the resulting test
suite may be in question. This problem inspires us
to develop a systematic identification methodology for
informal specifications. The methodology will also help
determine the constraints between some pairs of choices
in the choice relation table, from which test frames are
generated.

The rest of this paper is organized as follows.
Section 2 briefly discusses some previous work on the

The possible values associated with each category are identification of categories and choices from specifi-

then partitioned into distinct subsets knownch®ices
with the assumption that all values in the same choice
are similar either in their effect on the system’s behavior,
or in the type of output they produce [10]. Examples
of choices ar§GPA Score §: 0.0 < S< 2.0|, |GPA
Score §): 2.0 < S< 25|, |GPA Score §: 25<

S< 3.0, |GPA Score §: 3.0< S< 35|, and |GPA
Score §): 3.5 < S<4.0/.° These choices are defined

as such because they determine whether a student i32

eligible to graduate, and if yes, what level of award
(for example, first-class honor) a student will obtain.

Note that a choice is considered as a set of its possible

values. For exampléGPA Score §): 0.0 < S< 2.0| =
{0.0, 0.1, 0.2, ..., 1.8, 1.9}. Additionally, given a
category[X], all its associated choices together should
cover the entire input domain relevant[}j.

After identifying all the major categories and choices,
the software tester has to construct a choice relation

cations, and explains how such work relates to our
identification methodology. Section 3 first outlines the
major concept of activity diagrams, followed by some
important concepts and definitions such as different
types of choice relation and problematic category and
choice, and then our identification technique in detail.
Finally, Section 4 concludes the paper.

Previous work on category and choice
identification

Using commercial specifications primarily of infor-
mal nature, Chen et al. [3] have conducted some empir-
ical studies on the “ad hoc” identification of categories
and choices. The primary objective of the studies is to
investigate the common mistakes made by software
testers in such an identification approach. Results of the

of choices. These constraints allow all valid combina-
tions of choices to be generated as “test frames” and

and various types of problematic category and choice are
likely to occur during an ad hoc identification process.

at the same time invalid combinations are suppressed as Réaders may refer to [2, 3] for details. The results have
far as possible. An example of these constraints is that confirmed the great demand for a systematic identifi-

the choice|GPA Score §): 3.5 < S< 4.0 cannot be
combined with the choiceNumber of Years of Study:

2 parameters and environment conditions of the software aeeol
tively known asfactorsin this paper.

31n this paper, categories are enclosed by square brafketsi
choices are enclosed by vertical bfrsAdditionally, the notationX :
x| denotes a choick| in the categoryX].

cation methodology for specifications which are largely
informal in nature. As an interim solution, Chen et al. [3]
have developed a checklist to help software testers avoid
and detect such mistakes.

In addition, Grochtmann and Grimm [6] have
attempted to use artificial intelligence techniques to gen-
erate categories and choices automatically, but without



much succesé. Eventually, Grochtmann and Grimm  alternative paths through the control flow. As such,
have concluded that identifying categories and choices ©’s can be used to model everything from a high-
is a “creative” process that probably can never be done level business workflow that involves many different use
entirely automatically. (We concur with their conclusion cases, to the details of an individual use case, all the way
about the difficulty in fully automating the identification =~ down to the specific details of an individual method.
process.) Grochtmann and Grimm have then shifted their  Often, a complete control flow description inza
attention to the identification process based on formal will have a basic flow, and one or more alternative
specifications. Other researchers, such as Amla and flows. This control flow has a structure that can be
Ammann [1] and Hierons et al. [7], have also conducted defined textually using statements such as IF-THEN-
some work in that direction. Our work discussed in  ELSE. For a simple control flow with a simple structure
this paper, however, takes a different direction because these textual definitions may be fairly sufficient, but in
we aim to develop an identification methodology for the situation of more complex structurespahelps us

informal specifications. clarify and make more apparent what the control flow is.
A D starts with a solid circle, representing tinéial
3. Our identification methodology activity. An arrow shows the control flow of activities,

which are represented by rounded rectangles labeled
Unlike formal specifications which are written in ~ for the activities performed. An asterisk on an arrow

rigorous specification languages such as Z and Boolean indicates that the control flow is iterated. The end of
predicates [8, 11], informal specifications are often ex- @ control flow is indicated by a “bull’'s eye”, known as a
pressed in many different styles and formats, and final activity. A single path of execution throughza is
contain a large variety of components. Examples of called athread
these specification components are narrative descrip- A diamond represents @ecision point Conditions
tions, data flow diagrams, entity-relationship diagrams, for each arrow out of a decision point (known as an
system flowcharts, decision tables, use cases, activity alternative threafl are enclosed in brackets, and they
diagrams, and statechart diagrams. are calledguard conditions The diamond icon can also

In view of the various possible combinations of these be used to show whether the alternative threads merge
components in an informal specification, we adopt the again. A solid thick bar is called synchronization bar
following approach when developing our identification Multiple arrows out of a synchronization bar indicate
methodology: activities that can be performed in parallel. Multiple

) ] arrows into a synchronization bar indicate activities that

(1) To determine the major and common components st all be completed before the next process can begin.

that exist in most informal specifications. Refer to Figure 1 for a sample activity diagramg, . q-
(2) To develop an identification technique for each Intuitively, the decision points and guard conditions
major and common specification component. in a » indicate where and how the software system

) . . e behaves differently. This characteristic make® aa
This approach will make our identification methodology very useful source of deriving information to identify

applicable to a large variety of informal specifications. categories and choices, which are then processed by
Limited by the space of this paper, here we focus only CHOC LATE for test case generation

on the identification of categories and choices based on
activity diagrams, which are a common component in a
UML (Unified Modeling Language) specification. 3.2. Background concepts and definitions

3.1. Overview of activity diagrams First, we present a few important concepts and

definitions, introduced in [3], and a new concept

In general, the activity diagram, denoted Dy sup-  «compjete thread”, which are essential for understanding
plements the use case (almost an essential specificationy,« igentification technique in this paper.

component), by providing a graphical representation of

the flow of interaction within a specific scenario. In

its basic form, ap is a simple and intuitive illustration Definition 1 (Complete and Incomplete Test Frames)

of what happens in a control flow (or workflow), what A test frame B is a set of choices. B isomplete if

activities can be done in parallel, and whether there are \;nanever a single element is selected from every choice
41n [6], categories and choices are known as “classificatians! in B, a test case is formed. Otherwise, Brisomplete.

“classes”, respectively. |
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Figure 1. An activity diagram  D4yard
Example 1 (Complete and Incomplete Test Frames) these two categories and their associated choices, there
Consider a progranP that reads an input file~ are altogether five complete test frames as follows:
containing two integersn andn, and outputs the value )
of (1/y/m—n). Here, [Status ofF] and [m—n| are e By = {|Status of~: Does Not Exisf},

two possible categories identified with respect to an o B, = {|Status ofF: Exists but Emptj},
environment condition and a parameter, respectively,

that affect the execution behavior Bf The category e B3 = {|Status of: Exists and Non-Empty|m—n:
[Status ofF] has three associated choiceStatus of <0[},

F: Does Not Exist |Status ofF: Exists but Empty e B, = {|Status of : Exists and Non-Empty|m—n:
and |Status ofFF: Exists and Non-Empty On the =0[}, and

other hand, the categoryn — n] has three associated _

choices:|m—n:< 0|, [n—n:= 0|, andjm—n:> 0|. e Bs; = {|Status of: Exists and Non-Empty|m—n:

These three choices correspond to an undefined result > 0[}.
of (1/+/m—n) involving taking the square root of a

negative number, an undefined result involving division
by zero, and a well-defined result, respectively. With

ConsiderBs. A possible test case generated from it is
(Status ofF = Exists and Non-Emptym—n=>5). On
the other hand{|Status ofF: Exists and Non-Empty



is an incomplete test frame because we need additional
information about the value ofm—n) in order to
generate a test case fer [

Definition 2 (Set of Complete Test Frames Related to
a Choice) Let TF denote the set of all complete test
frames. Given any choick : x|, we define theset of
complete test frames related to |X : x| as TH|X : x|) =
{BeTF: |X: x| €B}. Achoice|X: x| is valid if and
only if TF(|X : x|) is nonempty. [

Example 2 (Set of Complete Test Frames Related
to a Choice) Refer to programP in Example 1.
Here, TF(|Status of F: Does Not Exist) = {B1},
whereasTF(|Status ofF: Exists and Non-Empty =
{B3,Ba,Bs}. Furthermore, bothStatus ofF: Does Not
Exist and|Status of~: Exists and Non-Emptyare valid
choices, becausEF(|Status ofF: Does Not Exisf) and
TF(|Status ofF: Exists and Non-Empty are nonempty.
|

Definition 3 (Relation between Two Choices)Given
any valid choicgX : x|, its relation with another valid
choicelY : y|, denoted byX : x| — |Y : y|, is defined in
terms of one of the threelational operators as follows:

(1) |X: x| is fully embedded in |Y : y| (denoted byX :
x| C|Y:y])ifandonly if TH|X: x|) CTF(]Y : y|).

(2) |X: x| is partially embedded in |Y : y| (denoted by
IX: x|z |Y:y])ifandonly if TR|X: x|) € TF(]Y :
y)) and TR|X: X|)NTF(|Y : y|) # 0.

(3) |X: x| is not embedded in |Y : y| (denoted byX :
X[ Z|Y:y])ifandonly if TR|X: x|)NTF(JY:y|) =
0. |

Because the three types of choice relations in Def-
inition 3 are exhaustive and mutually exclusiy :
x| — |Y : y| can be uniquely determined. Additionally,
immediately from the definition, the relational operator
for |X: x| — |X: x| is “C" and the relational operator for
IX x| — X Xo|is “Z2"if |X @ xq| # |X 1 X2l

Example 3 (Relation between Two ChoicesRefer to
Example 1. The following lists three pairs of choices
and their corresponding choice relations:

(1) Im—n:= 0| C |Status ofF: Exists and Non-
Emptyl: This is because, for every complete test
frameB containinglm—n:= 0| (that is,B4), B also
containg|Status ofF: Exists and Non-Empty

(2) |Status ofF: Exists and Non-Emptye Im—n:<
0|: This is because,

e For some complete test frant® containing
|Status ofF: Exists and Non-Empty(that is,
Bg), B also containgm—n: < 0], and

e For some complete test fran® containing
|Status ofF: Exists and Non-Empty(that is,
B4 andBs), B’ does not contaitm—n: < 0.

(3) |Status of: Exists but EmptyZ |[m—n:=0]: This
is because,

e For every complete test fram@ containing
|Status of~: Exists but Empty(that is,B;), B
does not contaiilm—n:= 0|, and

e For every complete test fran® containing
|m—n:= 0] (that is,By4), B' does not contain
|Status ofF: Exists but Empty [ |

In CHOC LATE [4], after identifying categories and
their associated choices from the specification, the next
step is to construct ahoice relation tabler, which
captures the relation between every pair of choices.
Note that a choice relatiofX : x| — |Y : y| essentially
corresponds to a constraint between the chojkesx|
and|Y : y|. These choice relations then form the basis for
the subsequent generation of complete test frames using
the algorithms incHOC' LATE. Readers may refer to [4]
for more details.

In their studies [3], Chen et al. have observed some
common mistakes made by software testers when cate-
gories and choices are identified from informal specifi-
cations in an “ad hoc” manner. Two examples of these
mistakes are given and expressed in Definitions 4 and 5
below.

Definition 4 (Missing Choice) Given a category[X],
and all the associated valid choicéX : x|, |X : X2|,
..., [X 2 %ol in [X], if there exist some other valid choice
|X : x| yet to be identified and some values\X : X|
such that & |X : x|, for everyl <i <n, then|X: x| is
a missing choice. In this case, we also say thg{] is a
category with a missing choice. |

Example 4 (Missing Choice)Refer to Example 1.
Suppose the categofBtatus ofF] is identified with
only two associated choices, name|8tatus of F:
Does Not Exist and |Status ofF: Exists but Empty
as if |Status of F: Exists and Non-Emptyhas not
been identified. In this cas¢Status ofF: Exists and
Non-Empty is a missing choice. AccordinglysStatus
of F] is a category with a missing choice. |

Definition 5 (Overlapping Choices) Given a category
[X], two distinct valid choice$X : x;| and |X : xo| are
said to beoverlapping if | X : x1] N |X: x2| # 0. In this
case,[X] is a category with overlapping choices. |



Example 5 (Overlapping Choices)Refer to Example
1. Suppose the categofsn— n| is now identified with
three associated choicgma—n: < 0|, |/m—n:= 0|, and
[m—n:> 0. In this casejm—n:=0| andjm—n:> 0
are overlapping choices because the elerfrertn = 0)
exists in both choices. Furthermofm— n| is a category
with overlapping choices. |

Definition 6 (Complete Thread) In a », a “single”
path of execution is called thread, and it is said to
becompleteif and only if it starts with the initial activity
and ends with a final activity. |

Example 6 (Complete Thread) Refer to Dgya.q in
Figure 1. The leftmost path indicated by a dark line

represents a thread. Because this thread starts with the

initial activity and ends with the final activity, it is also a
complete thread. |

3.3. Category and choice identification in
activity diagrams

Having introduced the above concepts and defini-
tions, we are now ready to present an algorithm for
identifying categories and choices in activity diagrams.
The algorithm also provides some information for the
subsequent determination of choice relations.

An Algorithm for Identifying Categories and Choices
in Activity Diagrams:

Given an activity diagran® which contains one or more
guard conditions denoted lyg's (wherei > 1), with
eachgg contains one or more subconditions, denoted
by s, j)’s (wherej > 1), which are separated from the
others by the logical operatoraND” or “OR”:

(1) Let:

e © denote any arithmetic operator", “ —",
13 XH’ and “+”)’

e ~ denote any arithmetic relational operator
" :11, 13 #H, " <17, 13 >H, “* S”, and “Z”) 5’
e v denote(vi ® Vo ® -+ ® Vm); Vi iS any
variable in where 1<i <m, and
e F(sqi,j)) denote the factor(s) associated with
SGi,j)-
Repeat this step (1) for evesg; j) in everygg in
D:

5 Do not confuse the arithmetic relational operators mentidvezel
with the (choice) relational operatorsi(”, ® , and ‘") introduced
in Definition 3.

If sg; ;) contains only one single arithmetic rela-
tional operator, then:

(@) Ifsgj j)isnotinthe form*% ~ c”(wherecis
a constant), then re-express the subcondition
in this format.

(b) Define[v ] as a category if it does not exist.

(c) Define|v :~ c| as a choice iNv ] if this
choice does not exist.

else:

(d) Define the categoryF (sg; j))] if it does not
exist.

(e) Define the entiresg;j) as a choice in
[F(sg;,j)] if this choice does not exist.

(2) Repeat steps (2)(a) and (2)(b) below until there
do not exist any overlapping choicéX : x| and
IX 1 Xj| (note that|X : x| # |X : x;| because of
steps (1)(c) and (1)(e) above):

(@) If|X: x| C|X: x|, then:
(i) Delete|X: x;].
(i) Define the choicé|X : x;| \ |X: x|) ifit
does not exist.
(0) If (IX ] & X2 xj]) and (X xj[ & X2 %),
then:
(i) Delete|X: x| and|X: xj|.
(i) Define the following choices if they do
not exist:
o X x|\ X x|
o XX\ [X:X]
o [X:ix| N |X:x

(3) Let E([X]) denote the set of all possible elements
associated with the categofX], and X : xi|,
|X: Xz|,...,|X: Xn| (Wheren > 1) denote all choices
in [X] identified after step (2). For every category
[X] with missing choices, define a new choieé:

X| such thatE([X]) = X : x| U |[X:xq| U |X:
Xo| U +++ U X Xp].

(4) Initialize a choice relation table by assigning a
“null” value to every|X : x| —|Y 1 y|in 7.

(5) ForevenyX: x|— |X:x|in 7, assign the (choice)
relational operator(“” to it.

(6) ForeveryX: x| — |X:Xj|inT suchthatX: x| #
|X : xj|, assign the (choice) relational operatgt “
to it.

6 Note that the same category may be associated with different
sG;,j)'s in the same or differergg’s.



(7) Lets(|X: x|) denote the subcondition correspond-
ing to the choicéX : x|. For every pair ofX : x| —
[Y :y|in 7 such that:

o [X]#Y],
e bothsd|X : x|) andsq]Y : y|) appear inD,
and

e boths|X: x|) andsd|Y : y|) are not associ-
ated with any parallel threads im,

then, use the following rules to determine the
relevant choice relation fgX : x| — |Y : y|:

%L

(a) Assign the (choice) relational operatar™to
|X: x| +—|Y :y|if, for every complete thread
associated witsd(|X : x|), t is also associated
with sq(]Y : y]).

(b) Assign the (choice) relational operatar " to
XX [Y:ylif:

(i) there exists some complete thrdaasso-
ciated withsq(|X : x|) such thatt is also
associated witlsq(|Y : y|); and

(i) there exists some complete threadsso-
ciated withsq(|X : x|) such thatt’ is not
associated witsq(|Y : y]).

(c) Assign the (choice) relational operatgt™to
XX [Yylif:

(i) for every complete thread associated
with s¢(|X : x|), t is not associated with
sq]Y :y]); and

(i) for every complete thread associated
with sq(|Y : y|), t’ is not associated with

sq{|X: X|).

There are two important characteristics in the above
algorithm:

e It helps identify a set of categories and choices
based on the guard conditions (and their subcon-
ditions) appear irp. Intuitively, a guard condition
gc corresponds to a particular execution behavior
of the software system and, hence, some categories
and choices should be identified with respeajto

e It will not only identify a set of categories and
choices fromp, but will also determine the choice
relations for some pairs oiX : x| — [Y : yj| in
7 . Obviously, for the remaining pairs 6K : x| —

IY :yj| in 7, the software tester has to define their
choice relations based on the tester’s own expertise
and judgment.

Certain steps in the above identification algorithm

warrant additional explanations and discussions:

e Consider step (1)(a). Suppose framwe found the
subcondition {u+v—2) > (x—y+5)”, whereu, v,
X, andy are variables. Here, we need to re-express
this subcondition as(ti+v—x+y) > 77, so that
the categoryu+v—x+Yy] and its associated choice
|[u+v—x+y:> 7| can be identified. This approach
reduces the chance where two subconditions with
different syntactic structures of the same semantic
meaning (for example, (i+v—-2) > (x—y+
5)” and “(u+y—1) > (x—Vv+6)") result in the
definition of different categories and choices.

In some situations whersg; j) contains only one
single arithmetic relational operator with two or
more variables and this subcondition cannot be
expressed in the form? ~ c¢”, such as {u,v >

5)” (this form is obviously nonstandard), theg; j
should first be decomposed into two or more sub-
conditions in standard forms, such as ¥ 5)” and

“(v > 5)", before each of these decomposed sub-
conditions is processed by steps (1)(b) and (1)(c)
for category and choice identification.

e Consider steps (1)(d) and (1)(e) and refer to Fig-
ure 1. An example of a subcondition with no arith-
metic relational operator is “Local On-Campus”.
Here, in this example, “Local On-Campus” is also
a guard condition by itself. Now, look at the guard
condition “35 < GPA Score § < 4.0 in Figure 1.
This guard condition is also a subcondition, which
has two arithmetic relational operators. Consider
another exampled'< v < x <y". This complex
hypothetical subcondition has four variables and
three arithmetic relational operators.

Now, let us consider the guard conditions (or
subconditions) “Local On-Campus” and “Overseas
Off-Campus” in Figure 1. They are associated
with the same decision point and, hence, the same
factor (that is, “Location of Study”). According
to steps (1)(d) and (1)(e) of the algorithm, we
should define[Location of Study as a category
and |Location of Study: Local On-Campusind
|[Location of Study: Overseas Off-Campuas its
associated choices, if they do not exist. One may
argue that, in this example, we should instead define
the entire subconditions as categories with “Yes”
as their associated choices. That is, we should
define the categorjLocal On-Campuswith an
associated choicélLocal On-Campus: Yés and
the categoryOverseas Off-Camplisvith an asso-
ciated choicgOverseas Off-Campus: Yesdn this



approach, however, we have twibfferent cate-
gories and is therefore counter-intuitive.

e Consider step (7). For any choi¢¥ : x| in T,
it may be directly defined from ag; ;) in a gg
in step (1)(c) or (1)(e), or may be generated in
step (2)(a)(ii), (2)(b)(ii), or (3). Thus, sonX : x|'s
in 7 may not have their correspondisg|X : x|)’s
ino.

Also, in step (7), the rules for determining the
choice relation fofX : x| — |Y : y| is based on the
rationale that, ifsq(|X : x|) andsd|Y : y|) appear

in the same complete threadn o, then we must
combine|X : x| and|Y : y| together to form part of
some complete test frames, from which test cases
can be generated to traversdor the purpose of
testing.

Let us useD 4 arg iN Figure 1 to illustrate how to

apply our identification algorithm:

(1) Consider, for example, the guard conditions (or
subconditions) “0 < GPA Score § < 2.0" and
“2.0 < GPA Score § < 4.0" associated with
the “top” decision point (the one that is near the
initial activity). Each of these subconditions has
two arithmetic relational operators. The factor
associated with these two subconditions is “GPA
Score §". Accordingly, we define the category
[GPA Score §)|. Moreover, this category should be
defined with two associated choic8SPA Score
(9: 0.0<S< 20 and |GPA Score §: 2.0 <

S < 4.0] (see steps (1)(d) and (1)(e) of the algo-
rithm). Additional categories and choices should be
defined for other guard conditions in a similar way.
Table 1 shows the three categories and their associ-
ated choices defined after this step.

(2) In Table 1, [GPA Score §)] is a category with
overlapping choices, such g8PA Score §): 2.0 <

S < 25| and |GPA Score §: 2.0 < S<4.0.
BecausgGPA Score §): 2.0 < S< 2.5/ C |GPA
Score §): 2.0 < S< 4.0/, we delete|GPA Score
(9: 2.0< S<4.0]. Note that the definition of the
choice|GPA Score §): 2.5 < S<4.0] is not needed
because it already exists. We repeat this step in
a similar way until overlapping choices no longer
exist. Table 2 shows the resultant categories and
choices upon the completion of this step.

(3) Missing choices are not found in all the three
categorieSGPA Score §)|, [Number of Years of
Study}, and[Location of Study. Hence, no action
is taken in this step.

(4) There are altogether 10 choices in Table 2. For
every table element i, . (€ach corresponds to
a choice relation for a pair of choices), we assign a
null value to it.

(5) Consider, for exampléGPA Score §: 0.0 < S<
2.0| — |GPA Score §): 0.0 < S< 2.0]in Tayarg-
We assign the (choice) relational operatar’“to
it. Similarly, we assign the same (choice) relational
operator to every other pair of identical choices in

Taward-

(6) Now, consider, for exampléNumber of Years of
Study: < 4| — |Number of Years of Study: 4 and
< 6/, which corresponds to a pair of distinct choices
in the same category. We assign the (choice)
relational operator(#” to it. The rationale is that,
no more than one choice can be selected from each
category to form part of any complete test frame.
Similarly, we assign the same (choice) relational
operator to every other pair of distinct choices of
the same category ,4rq-

(7) Consider the choicel$ssPA Score §: 0.0 < S<
2.0| and |Number of Years of Study:> 6| in
Table 2. Since:

(a) these two choices belong to different cate-
gories,

(b) both subconditions “0 < GPA Score §) <
2.0" and “Number of Years of Study 6”
appear inb 4,4 and are not associated with
any parallel thread, and

(c) only one (but not all) complete thread in
Daward associated with the subcondition
“0.0 < GPA Score § < 2.0” is also associ-
ated with the subcondition “Number of Years
of Study> 6",

we assign the (choice) relational operatar ™ to
|GPA Score §: 0.0 < S< 2.0 — |[Number of
Years of Study> 6| in T,,4rq- SOMe other choice
relations inT,,4,g Can be determined similarly.

In summary, by using the algorithm, we are able to
identify a total of three categories and 10 valid choices
for Donarg- Additionally, with respect to these cate-
gories and choices, there are no missing and overlapping
choices. Furthermore, during the identification process,
useful information has been derived to help determine
the choice relations of some pairs of choicesi4g-
This does not only improve the efficiency of completing
7, but also reduce the chance of incorrect manual defi-
nition of choice relations, resulting in the generation of
incomplete test frames byHOC' LATE. If this happens,



Table 1. Categories and choices defined after step (1) of the i dentification algorithm

| Categories || Associated Choices

[GPA Score §)] |GPA Score §): 0.0 < S< 2.0], |GPA Score §): 2.0 < S< 2.5|, |GPA Score §): 2.0 < S< 4.0/,
|GPA Score §): 2.5 < S< 3.0], |GPA Score §): 2.5 < S< 4.0/, |GPA Score §): 3.0 < S< 3.5/,
|GPA Score §): 3.0 < S<4.0[, |GPA Score §: 3.5<S<4.0|

[Number of Years of Study|| |Number of Years of Studyx 4|, [INumber of Years of Study: 4],
|[Number of Years of Study 6|, [Number of Years of Studyz 6|

[Location of Study |Location of Study: Local On-CamplsLocation of Study: Overseas Off-Campus
Table 2. Categories and choices refined after step (2) of the i dentification algorithm
‘ Categories || Associated Choices ’
[GPA Score §)] |GPA Score §): 0.0 < S< 2.0, |GPA Score §): 2.0 < S< 2.5/, |GPA Score §: 25 < S< 3.0/,

|GPA Score §): 3.0 < S< 3.5|,|GPA Score §): 3.5<S<4.0|

[Number of Years of Study|| |[Number of Years of Study< 4|, [Number of Years of Study: 4 and< 6|, [Number of Years of Studyz 6|

[Location of Study |Location of Study: Local On-CamplsLocation of Study: Overseas Off-Campus
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