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Abstract. We study the problem of mining frequent value sets from a
large sensor network. We discuss how sensor stream data could be repre-
sented that facilitates efficient online mining and propose the interval-list
representation. Based on Lossy Counting, we propose ILB, an interval-
list-based online mining algorithm for discovering frequent sensor value
sets. Through extensive experiments, we compare the performance of ILB
against an application of Lossy Counting (LC) using a weighted trans-
formation method. Results show that ILB outperforms LC significantly
for large sensor networks.

1 Introduction

Data mining is an area of active database research because of its applicabil-
ity in various areas such as decision support and direct marketing. One of the
important tasks of data mining is to extract frequently occurring patterns or as-

sociations hidden in very large datasets. Different off-line data mining algorithms
have been devised for mining data of different nature. As a couple of examples,
there are the classic Apriori algorithm for market-basket transactions [1] and
SPADE for mining sequence data [21]. There are also algorithms for mining
text, time series, multimedia objects, and DNA sequences [4, 13, 14, 20].

In recent years, stream processing and in particular sensor networks has
attracted much research interest [5, 17]. Stream processing poses challenging re-
search problems due to large volumes of data involved and, in many cases, on-line
processing requirements.

As an example application, a telecommunication network monitoring system
installs network sensors that report link bandwidth utilizations [8]. The data
is used for detecting congestion, balancing load, and signaling alarms when ab-
normal conditions arise. Discovering association between sensor values is very
important in this application. For example, if one finds that the loads of several
links that are connected to the same switch are often high at the same time
and cause congestion, the network engineers could consider installing additional
switches or selectively re-routing the traffic to achieve better load balancing.

As another example, enforcing network security often requires continuous
monitoring of network traffic, such as the number of packets received and sent,
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and the number of DNS lookup requests. Such statistics can be modeled as
sensors that report continuously the corresponding figures. To detect attacks,
one needs to distinguish “typical” and “atypical” system behaviors. For example,
if the outbound traffic of a subnet is significantly larger than its inbound traffic
while the reverse is the norm, the network administrator should be alerted.

The examples given above share a number of common properties:

– The number of sensors is huge.
– Each sensor derives a continuous rapid update stream of values.
– Due to the large volume of data, it is important that only “interesting”

knowledge be extracted to aid decision making.
– Discovering associations among values from different sensor streams is de-

sirable.
– Since many applications, such as monitoring systems, are reactive in nature,

data analysis algorithms are preferably online.
– Due to large data volumes, algorithms are preferably one-pass. That is, mul-

tiple scans over the dataset should be avoided.

With the above observation, we study in this paper the problem of mining
frequently occurring sensor values that co-exist temporally from large-scaled
sensor networks. We argue that existing data mining algorithms are inadequate
in a large sensor network environment. We discuss how existing solutions could
be adapted to such an environment and propose an interval-list-based algorithm
that takes advantage of the special characteristics of sensor data to achieve better
performance.

1.1 Data Model, Representation, and Frequent Value Sets

Any device that detects and reports the state of a monitored attribute can be
regarded as a sensor. For example, thermometer, barometer and anemometer
are sensors for monitoring weather conditions, while a stock quotation system is
a system of sensors for monitoring stock prices. In our model, we assume that a
sensor only takes on a finite number of discrete states. (For continuous values, we
assume that a suitable quantization method is applied.) Also, we assume that a
sensor only reports state changes. (An alternative model would require a sensor
to report its state periodically even when there are no state changes. This model
could be mapped to ours by simply removing duplicate state values.) A sensor
stream can thus be considered as a sequence of updates (or values) such that
each update is associated with a time at which the state change occurs.

To illustrate, Figure 1 shows a system of six binary sensors (S1, ..., S6), each
could be in one of two possible states, namely “low” (L) or “high” (H). The
figure indicates, for example, that S1’s state is H from time 0 to time 15.

Our goal is to discover associations among sensor values that co-exist during
a significant portion of time. For example, from Figure 1, we see that sensors S2

and S3 are both “high” during the time interval [6,10], or four seconds. Since our
example has a 15 seconds span, the set of sensor values, namely, {S2 = H, S3 =
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Fig. 1. Sensor data

Transaction ID S1 S2 S3 S4 S5 S6

1 H L L H L H
2 H L L H L H
3 H L L H L L
4 H L L L L L
5 H L L L L L
6 H L H L L L

Table 1. A simple transformation

Transaction ID S1 S2 S3 S4 S5 S6 weight
1 H L L H L H 2
2 H L L H L L 1
3 H L L L L L 2
4 H L H L L L 1

Table 2. A weighted transformation

H}, co-exist for a fraction of 4/15 of time. We use the term support to refer to
the fraction of time during which a set of sensor values co-exist in the stream
data. We call a sensor value set frequent if its support exceeds a user-specified
support threshold ρs. Our association analysis is about finding frequent sensor
value sets from a large set of rapidly updating sensor streams.

If one considers a sensor value, such as “S1 = H”, as an item, mining fre-
quent value sets is similar to mining frequent itemsets. One possible approach
is to transform the stream data into a dataset of transactions, and then apply
a traditional mining algorithm like Apriori to the resulting dataset. A straight-
forward data transformation would quantize time into regular intervals, or clock

ticks. A transaction (or itemset) is then derived for each clock tick by taking a
snapshot of the sensor states. Using our example in Figure 1, if each clock tick
lasts one second, Table 1 shows the first few transactions derived.

The simple transformation suffers from the difficulty of determining a suitable
clock tick. To cover all state changes, it is obvious that a clock tick has to be
shorter than the time between any two updates from any sensors. For example,
in Figure 1, an update of sensor S3 at time 5 is followed by an update of S2 at
time 6. So, a clock tick cannot last more than one second. On the other hand,
if a small clock tick is chosen, the derived dataset is huge with many duplicated
transactions. For example, from Table 1, we see that transactions 4 and 5 are
the same. For a large sensor network with rapidly updating streams, the derived
dataset could be too big to allow efficient processing.

To reduce the size of the dataset, we could derive a transaction only when
there is an update (from any sensor). With this approach, different snapshots
of the sensor states could have different life-span. Each transaction is thus aug-
mented with a weight that equals the life-span of the snapshot from which the
transaction is derived. Table 2 illustrates this transformation.

Typically, algorithms for mining frequent itemsets determine the support of
an itemset, say X , by counting the number of transactions that contain X . With
the weighted transformation, those algorithms have to be modified so that the
weights of transactions are taken into account during support counting.



Another problem with the weighted transformation approach is that the
dataset is still very large with a lot of redundancy. One can observe from Table 2
that successive transactions only differ by one sensor value. This redundancy
causes traditional mining algorithms to perform poorly for three reasons. First,
the large dataset makes scanning the dataset an expensive operation. Second,
for a sensor network that consists of n sensors, each transaction could contain n
items. Hence, for large sensor networks, transactions are large. While a market
basket transaction may contain a few dozens items, a transaction derived from
a large sensor network could contain a few thousand items. Large transactions
may pose problems to existing mining algorithms. Third, subset testing, which is
done frequently by many mining algorithms for determining whether an itemset
is contained in a transaction, is redundantly performed. Due to the high sim-
ilarity between two successive transactions, most subsets contained by one are
also contained by another. A more efficient algorithm should strive for avoiding
redundant computation.

A third transformation that could avoid the redundancy problem is to rep-
resent a sensor stream by an interval list. Given a sensor S and a value v, the
interval list IL(S = v) is a list of (start-time, end-time) pairs. Each pair speci-
fies the start time and the end time of a time interval during which S assumes
the value v. Using Figure 1 as an example again, the interval list of S3 = L is
IL(S3 = L) = {(0, 5), (10, 15)}. With the interval list representation, the support
of a sensor value, S = v, is simply the total length of all the intervals in IL(S = v)
expressed as a fraction of the length of the stream history. We can extend the
definition of interval list to cover sensor value set as well. For example, the in-
terval list of the value set X = {S3 = L, S6 = H} is IL(X) = {(0, 2), (13, 15)}).
Given a value set A = A1 ∪ A2, one can easily see that the interval list IL(A) is
equal to the intersection of IL(A1) and IL(A2).

Intuitively, the interval-list representation has the potential of supporting a
more efficient mining algorithm in a large sensor network environment over the
traditional apriori-based approaches. This is because the representation avoids
data redundancy which leads to a much smaller dataset. Moreover, determining
the support of a sensor value set is achieved by list intersection. This avoids the
large number of redundant subset testing performed by apriori-based algorithms.

As we have argued, due to the reactive nature of monitoring systems and
the large volume of data generated by a massive sensor network, data analysis
algorithms should be online and one-pass. Most traditional mining algorithms,
however, are off-line and that they require multiple scanning of the dataset. If a
system had an unlimited amount of memory, counting itemsets’ (or sensor value
sets in our context) supports can be done in one pass by storing (and tallying)
a count for every itemset that has ever appeared in the stream. For large sensor
networks, this approach is obviously infeasible due to the large number of counts
the algorithm has to keep track of.

In [19] Manku and Motwani proposed the Lossy Counting algorithm, which
is an online, one-pass procedure for finding frequently occurring itemsets from a
data stream of transactions. The algorithm is an approximation algorithm with



an accuracy guarantee. Given a user-specified support threshold ρs and an error
bound parameter ǫ, Lossy Counting reports a set of itemsets L with the following
properties: (1) all itemsets with supports exceeding ρs are in L, and (2) L does
not contain any itemset whose support is smaller than ρs − ǫ. That is to say,
even if Lossy Counting reports an itemset X that is not frequent, X ’s support
is guaranteed to be not too far off the support threshold.

In this paper we study how the Lossy Counting framework can be used to
derive online one-pass algorithms for mining large sensor streams under the two
data representations (weighted transactions and interval list).

The rest of the paper is structured as follows. We formally define the problem
of finding frequently co-existing sensor value sets in Section 2. In Section 3, we
review the Lossy Counting algorithm. In Section 4, we define interval list and
propose an interval-list-based algorithm for solving the problem. We compare
the interval-list-based algorithm against Lossy Counting using the weighted rep-
resentation. Section 5 reports the experimental results. Section 6 reviews some
related research work, and finally, Section 7 concludes the paper.

2 Problem definition

We define a sensor as a device for monitoring and reporting the states of some
physical attribute. The set of all possible states of a sensor S is called the domain

of S. We assume that every sensor has a finite domain. (If a sensor’s state is taken
from a continuous domain, we assume an appropriate quantization method is
applied that maps the domain into a finite one.) We assume that the state of
a sensor changes at discrete time instants called updates. The state of a sensor
stays the same between updates.

A sensor value is a state reported by a sensor. We denote a sensor value by
S = v where S is a sensor and v is the state reported. If the state of sensor S
is v at a certain time t, we say that the sensor value S = v is valid at time t.
Given a time interval I, if S = v is valid at every instant of I, we say that S = v
is valid in I. A sensor network consists of a number of sensors. A set of sensor
values V is valid in an interval I if all sensor values in V are valid in I. We call
such a set a valid value set in I.

We assume that all sensors in a sensor network start reporting values at time
0. At any time instant T (> 0), the support duration of a value set V , denoted
by SD(V), is the total length of all non-overlapping intervals within [0, T ] in
which V is valid. We define the support of V , denoted by sup(V), as SD(V)/T ,
that is, it measures the fraction of time in [0, T ] during which the value set V
is valid. Given a user specified support threshold ρs, a value set V is frequent if
sup(V) ≥ ρs.

As we have mentioned in the introduction, we are interested in deriving an
online one-pass algorithm for finding the set of frequent value sets. Unfortunately,
such an algorithm would require keeping track of all possible value sets that
have ever occurred in the data stream and tallying their support durations. The
high memory and processing requirements render this approach infeasible. As an
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Fig. 2. Lossy Counting

alternative, we adopt the Lossy Counting framework proposed in [19]: instead
of finding the exact set of frequent value sets, we report all value sets that are
frequent plus some value sets whose supports are guaranteed to be not less than
ρs − ǫ for some user-specified error bound ǫ.

3 Lossy Counting

In [19], Manku and Motwani propose Lossy Counting, a simple but effective
algorithm for counting approximately the set of frequent itemsets from a stream
of transactions. Since our algorithms use the framework of Lossy Counting , we
briefly describe the algorithm in this section.

With Lossy Counting, a user specifies a support threshold ρs and an error
bound ǫ. Itemsets’ support counts are stored in a data structure D. We can
consider D as a table of entries of the form (e, f, ∆), where e is an itemset, f
is an approximate support count of e, and ∆ is an error bound of the count.
The structure D is properly maintained such that if N is the total number of
transactions the system has processed, the structure D satisfies the following
properties:

P1: If the entry (e, f, ∆) is in D, then f ≤ fe ≤ f + ∆, where fe is the exact
support count of e in the N transactions.

P2: If the entry (e, f, ∆) is not in D, then fe must be less than ǫN .

We describe how D is maintained incrementally so that the above properties
hold. The data structure D is initially empty. To update D, transactions are
divided into batches. The size of a batch is limited by the amount of memory
available. The data structure D is updated after a batch of transactions is pro-
cessed. Figure 2(a) illustrates the update procedure of D. Let B be a batch of
transactions. Let N1 denote the number of transactions before B and let D1

denote the data structure D before B is processed. Let us assume that D1 is
properly maintained (i.e., D1 satisfies Properties P1 and P2). When the batch
B is processed, Lossy Counting enumerates itemsets that are present in B and
count their supports in B. Let e be an itemset that appears in B whose support
count w.r.t. B is fB. The data structure D is then updated by the following
simple rules (D2 denotes the updated D in the figure):

Insert: If D1 does not contain an entry for e, the entry (e, fB, ǫN1) is created
in D unless fB + ǫN1 ≤ ǫN2, where N2 is the total number of transactions
processed including those in B.



Update: Otherwise, the frequency f of e in D1 is incremented by fB.
Delete: After all the updates are done, an entry (e, f, ∆) in D is deleted if

f + ∆ ≤ ǫN2.

At any point in time, if a user requests the set of itemsets with supports
larger than ρs, Lossy Counting reports each itemset e such that there is an entry
(e, f, ∆) in D and that f ≥ (ρs − ǫ)N , where N is the number of transactions
processed so far. It is proved in [19] that the exact support of any so reported
itemset e must exceed ρs − ǫ and that all frequent itemsets (i.e., those with
supports exceeding ρs) are reported.

For an efficient implementation of Lossy Counting, certain optimization is
done. For example, a special BUFFER structure is used to represent the trans-
actions in a batch and a special SETGEN module is used to selectively enumerate
itemsets in a batch and to count their supports.

To apply Lossy Counting to our frequent value set mining problem, A few
modifications have to be made. These changes are illustrated in Figure 2(b).
First, we have to transform our sensor updates into a stream of transactions.
This can be done using either the simple transformation (see Table 1) or the
weighted transformation (see Table 2). These transactions are again partitioned
into batches. Second, N1 and N2, which are the number of transactions processed
before and after a batch B (see Figure 2(a)) are replaced by T1 and T2, which
are the lengths of the stream history just before and just after B. Third, we
consider a sensor value (such as S = v) as an item and we consider a sensor
value set as an itemset. Finally, frequency counts should now be interpreted as
support durations, that is the amount of time during which a particular value
set is valid. These mappings should be applied when executing the three rules
for updating the data structure D. For example, the insert rule now reads:
Insert: If D1 does not contain an entry for a value set V , the entry (V , fB, ǫT1)
is created in D if fB + ǫT1 > ǫT2, where fB is the support duration of V in B.

As we have discussed, since the simple transformation suffers from the dif-
ficulty of choosing an appropriate clock tick and from the problem of space
efficiency, the weighted transformation is more desirable. As a result, transac-
tion weights should be taken into account when Lossy Counting “counts” the
support durations of value sets that are present in batch B for updating the
structure D. In particular, the Buffer and SetGen modules of Lossy Counting
have to be modified. The modified code is shown in the Appendix.

4 Interval List

Another way of representing sensor stream data is to use interval lists. In this
section we formally define interval lists and discuss how they could be used to
mine frequent value sets under the Lossy Counting framework.

An interval is a continuous period of time. We denote an interval I by (t, t̄),
where t and t̄ are the start time and the end time of the interval, respectively.
The duration of I is given by δ(I) = t̄ − t. Given two intervals I1 = (t1, t̄1)
and I2 = (t2, t̄2) such that t1 ≤ t2, if t2 < t̄1, the two intervals are said to be



1 C1 ← set of all size-1 value sets;
2 B ← {IL(V) | V ∈ C1};
3 i← 1;
4 While Ci 6= ∅ do
5 Foreach V ∈ Ci do

6 IL(V) =
⋂
{IL(v) | v ∈ V};

7 SD = δ(IL(V));
8 Update(D, V, SD , T1, T2, ǫ);
9 end-for
10 Di ← {(V, f, ∆) | (V, f, ∆) ∈ D ∧ |V| = i};
11 Ci+1 ← ApGen(Di, i + 1);
12 i← i + 1;
13 end-while

Fig. 3. Procedure for updating D using the
interval list representation.

1 function Update (D, V, SD , T1, T2, ǫ)
2 if (∃(V, f, ∆) ∈ D) do
3 f ← f + SD ;
4 if (f + ∆ < ǫT2) do
5 remove all entries (X, ., .) from D

where X ⊇ V;
6 end-if
7 else if (SD ≥ ǫ(T2 − T1)) do
8 D = D ∪ (V, SD, ǫT1);
9 end-if

Fig. 4. Function Update()

overlapping. The intersection of two overlapping intervals I1 and I2 is given by
I1 ∩ I2 = (t2, min(t̄1, t̄2)).

An interval list is a sequence of non-overlapping intervals. The intervals in
an interval list are ordered by their start time. The duration of an interval list
IL is given by δ(IL) =

∑
δ(I) | I ∈ IL. Given two interval lists IL1 and IL2,

their intersection is defined as: IL1 ∩ IL2 =
⋃
{I1 ∩ I2 | I1 ∈ IL1 ∧ I2 ∈ IL2}.

Given a set of sensor value V , we use the notation IL(V) to denote the interval
list that contains all and only those intervals in which the value set V is valid.
We call such an interval list the interval list of V . Given two sensor value sets, V1

and V2, it can be easily verified that the interval list of V1∪V2 can be obtained by
intersecting the interval lists of V1 and V2. That is, IL(V1∪V2) = IL(V1)∩IL(V2).

The interval list representation can be used to mine frequent value sets under
the Lossy Counting framework in the following way. First of all, time is parti-
tioned into a number of intervals, each corresponds to a batch of sensor updates
(see Figure 2(b)). Instead of representing a batch of updates as a set of weighted
transactions, the updates are represented by the interval lists of the sensor val-
ues. Similar to the case of Lossy Counting, the size of a batch is limited by the
amount of buffer memory available. Also, a data structure D is again used that
keeps track of certain sensor value sets’ support durations. The function and
properties of D is the same as those described in Section 3.

In Lossy Counting (with the modification listed in the Appendix applied
for handling weighted transactions), sensor value sets are enumerated by the
SETGEN module that also counts the value sets’ support durations within a
batch. These counts are used to update the data structure D at the end of
processing a batch. If the batch of sensor updates is represented by interval lists
instead of weighted transactions, an alternative way of enumerating and counting
sensor value sets for updating D is required. Here, we describe such a procedure.

Our procedure follows the iterative strategy of Apriori and is outlined in
Figure 3. The number of sensor values in a value set V is its size. The procedure
starts by collecting all size-1 value sets into a set of candidates, C1. The batch B
is represented by a set of interval lists, one for each sensor value. The procedure
then executes a while loop. During each iteration, a set of candidate value sets,
Ci, is considered. Essentially, each value set V in Ci is of size i and that V has the



potential of being included in D after the update. In other words, V ’s support
duration up to time T2 has the potential of exceeding ǫT2. The procedure then
verifies whether V should be included in D by finding its support duration in
batch B. This is achieved by first computing IL(V), the interval list of V in batch
B, through intersecting the interval lists of relevant sensor values, followed by
determining the total length of all the intervals in IL(V). The support duration is
stored in a temporary variable SD . The structure D is then updated by function
Update() (to be discussed shortly).

After all candidates in Ci are processed, all the entries in D for size-i value
sets are properly updated. These entries are collected in Di. The set Di is used
to generate the candidate set Ci+1 for the next iteration. More specifically, a
size-(i+1) value set V is put into Ci+1 unless there is a size-i subset V ′ of V that
is not in Di. This is because by Property P2 of D (see Section 3), if the entry
(V ′, f, ∆) is not in Di, we know that the support duration of V ′ w.r.t. time T2

must be smaller than ǫT2. Since the support duration of V cannot be larger than
the support duration of its subset V ′, the support duration of V is smaller than
ǫT2 as well. That is, V should be left out of D and needs not be considered.

Given a value set V and its support duration in a batch B, updating D
essentially follows the three update rules listed in Section 3. Figure 4 shows the
function Update().

There are a number of optimizations that can be applied to speed up our
procedure of processing a batch. For example, in Figure 3, Line 6, the interval
list of a value set V is computed by intersecting the interval lists of all the values
in V . For example, if V = {S1 = v1, S2 = v2, S3 = v3}, IL(V) is obtained by
intersecting IL(S1 = v1), IL(S2 = v2) and IL(S3 = v3). Note that for V to be
included in C3, we require that all size-2 subsets of V are in D2. That is to
say, we would have already determined, for example, IL({S1 = v1, S2 = v2})
and IL({S2 = v2, S3 = v3}) in the previous iteration. Since IL(V) = IL({S1 =
v1, S2 = v2})∩ IL({S2 = v2, S3 = v3}), if we had retained the interval lists of the
size-2 value sets, determining IL(V) only require the intersection of two interval
lists instead of three.

Retaining all intermediate interval lists, however, requires a lot of space,
especially when there are many value sets in D. An alternative approach would
be to temporarily retain a small number of intermediate interval lists that are
likely be used shortly after they are generated. For example, suppose one sorts
the value sets in Ci in such a way that successive value sets considered in the for-
loop (Figure 3, Line 8) share many common values, then only a few intermediate
interval lists need to be kept. Specifically, after a value set V is processed in the
for-loop, we retain all the interval lists of V ’s subsets; other interval lists are
discarded. If the next value set, say Y, shares many common elements with
V , then the intermediate interval list IL(V ∩ Y) can be re-used since IL(Y) =
IL(V ∩ Y) ∩ (

⋂
IL(v) | v ∈ Y − V). Our interval-list-based algorithm for mining

frequent value sets uses this optimization.
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5 Results

We perform extensive experiments comparing the performance of the mining
algorithms using different data representations. The experiments are performed
on a 4-CPU Pentium III Xeon 700MHz machine running SunOS 5.8. In this
section we summarize some representative results. We use LC to denote the
Lossy Counting algorithm using the weighted transformation described in Sec-
tion 3 with all the necessary modifications applied (including those mentioned
in the Appendix). We use ILB to denote the Interval-List-Based Lossy Counting
algorithm described in Section 4.

To evaluate the algorithms’ performance and to understand their character-
istics, we constructed a synthetic data generator that generates sensor stream
updates. The generator is a very flexible one in that it allows us to simulate many
different aspects of a sensor stream system. The details of the data generator is
documented in Appendix B.

As we have alluded to earlier, one major advantage of the interval list rep-
resentation is that it is more space-efficient than the weighted representation.
Figure 5 shows the size of the dataset generated for a stream history of 92000
time units when the number of sensors in the network varies from 100 to 600.

In the experiment, the update rates of all the streams are the same. Since the
amount of memory required to represent a stream’s updates under the interval
list approach is proportional to the number of updates in the stream, the dataset
size grows linearly w.r.t. the number of sensors under ILB. The weighted trans-
formation representation, however, does not scale well. This is because, as the
number of sensor streams increases, not only does the number of sensor updates
(and thus the number of transactions) increase, the size of each transaction also
increases proportionally. This results in a quadratic growth of the dataset size
under LC.

The dataset size has a significant impact on the algorithms’ performance. As
an example, Figure 6 shows the execution times of LC and ILB under different
support threshold ρs for a 600-sensor network.

From the figure, we see that both algorithms take more time to finish when
ρs decreases. This is because a smaller support threshold means more and larger



frequent value sets. This leads to more support duration counting and for the case
of ILB, more iterations. For this large sensor network, Figure 6 shows that ILB
is much more efficient than LC. The performance gain is particularly impressive
when ρs is small.

To understand the performance difference, let us consider the adverse factors
that affect the two algorithms’ performance. For ILB, a source of inefficiency
comes from the repeated interval list intersections performed in computing the
interval lists of candidate value sets (see Figure 3, Line 6). Even with the opti-
mization we mentioned in Section 4 applied, some redundant list intersections
are inevitable. For example, when ILB computes the interval list of the candi-
date value set {S1 = v1, S2 = v2, S3 = v3}, the intersection of IL(S1 = v1) and
IL(S2 = v2) would be computed even though IL({S1 = v1, S2 = v2}) should
have already been computed in the previous iteration when the candidate value
set {S1 = v1, S2 = v2} is considered. A smaller ρs implies larger and more can-
didates and thus the effect of redundant list intersection is more substantial,
causing ILB to take more time.

For LC, a major source of inefficiency comes from the large amount of mem-
ory required to represent the dataset. Recall that transactions are processed in
batches. The number of sensor updates contained in a batch is limited by the
amount of buffer memory available. From Figure 5, we see that for a 600-sensor
network, the dataset size under LC is 31 times larger than that under ILB. In
other words, for LC, a batch contains 31 times fewer updates than that of ILB.

The small batch size causes the phenomenon of false alarm to happen in
LC. To understand false alarm, let us consider a value set V whose support in
the stream history is less than ǫ. Referring to Figure 2(b), which illustrates the
processing of a batch B, LC has to update the data structure D from D1 to D2

based on the support duration of the value sets in B. Recall that the purpose of
D is to keep track of all value sets whose maximum supports (considering both
the known durations and the maximum error bounds) exceeds ǫ. Ideally, the
value set V should be kept out of D for its insufficient support. Now, consider
the (modified) insert rule (second last paragraph, Section 4), V is inserted into
D if fB > ǫ(T2 −T1), where fB is V ’s support duration in B. If the batch size is
small, ǫ(T2−T1) is small. So, even if the support of V < ǫ over the whole stream
history, the occurrences of V may be concentrated locally in the batch B for it
to just exceed the small threshold ǫ(T2 −T1). If so, V is inserted in D. However,
due to its small support over the whole stream history, V will get kicked out
of D eventually, perhaps when the next batch of updates is considered. This
argument suggests that with a small batch size, the structure D is likely to
contain many value sets unnecessarily. This significantly slows down LC due to
many unnecessary update operations applied to D.

To illustrate the effect of false alarm, Table 3 shows the maximum number of
entries D ever reaches under ILB and LC for two particular sets of experiment
settings. From the table, we see that D contains many more entries under LC
than under ILB, signifying that false alarm is much more severe under LC. In



ρs ǫ ILB LC

5% 0.5% 40,895 19,966,164
8% 0.8% 14,059 70,969

Table 3. Maximum size of D
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Fig. 7. Running time vs. ρs (400-sensor network)

fact, when ρs = 5%, there are simply too many false alarms for LC to complete
execution within a reasonable amount of time.

Figure 7 compares the performance of ILB and LC for a (smaller) 400-sensor
network. From the figure, we see that the performance difference between ILB
and LC is not as drastic as in the 600-sensor case. However, ILB still outperforms
LC by a significant margin. For a 400-sensor network, the dataset size is much
smaller for LC (see Figure 5). This allows a larger batch and thus the effect of
false alarm is ameliorated.

6 Related Work

Data stream analysis has recently attracted much attention in the research com-
munity. In particular, data stream modeling and query processing are discussed
in [2, 11, 3]. Besides, there are studies on solving traditional data mining prob-
lems, such as classification [9, 15], clustering [12] and frequent pattern mining [19,
7, 16, 6, 10], in stream environments.

Click stream analysis is an example application of stream data classification
problems [9]. The goal of the application is to predict from web request data the
web sites that users in an organization frequently access. The prediction is useful
for caching purposes. In [9], a novel decision tree-based algorithm, the Hoeffding
tree, is devised for this problem. The Hoeffding tree incrementally updates a
decision tree by using only a small sample of the dataset but with good accuracy.
The algorithm is extended in [15] to handle time-changing streams.

Stanford’s STREAM project has studied approximate k-median clustering
with guaranteed probabilistic bound [12]. The techniques can be used in network
intrusion detection to find any bursts of activities or abrupt changes in real time.

Frequent pattern mining is an important problem in applications such data
mining and computer network monitoring. In Section 3, we reviewed the Lossy
Counting algorithm which generates frequent itemsets with supports accurate to
within a user-specified error bound. Besides, algorithms are proposed for various
applications such as finding large flows in network traffic [10], solving the top k
(iceberg) queries [7, 16] and estimating the most frequent items in a data stream
using very limited storage space [6]. All these applications require identification
of frequent patterns in a data stream.



Sensor network is one of the emerging applications of data streams. Among
recent research works in this area, a framework for building an efficient data
stream management system for sensor networks is presented in [17] and the
problem of query processing in sensor networks is addressed in [18].

7 Conclusion

In this paper we study the problem of mining frequent sensor value sets from a
massive sensor network. We discuss a few methods for representing sensor stream
data. These include mapping sensor streams into transactions using either the
simple transformation or the weighted transformation, and the interval-list ap-
proach. We discuss the pros and cons of the representations and derive online
mining algorithms, namely, LC and ILB, for the two approaches. We evaluate
the algorithms’ performance through experiments. Due to space limitation, only
the performance results from a couple of experiment settings are presented. The
results show that ILB could outperform LC by a significant margin, particularly
for large sensor networks. Besides the two illustrative examples shown in Sec-
tion 5, we have compared the two algorithms under various experiment settings
and have observed similar performance behavior. The interval list representation
is thus a viable option in representing a massive sensor network.
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A Modifying Lossy Counting for weighted transactions

We mentioned in Section 3 that we need to modify Lossy Counting so that the
algorithm can handle weighted transactions. In this appendix, we give an account
on

As a recapitulation, Lossy Counting is an online algorithm for finding fre-
quent itemsets with approximate support counts from a stream of market-basket
transaction data. The algorithm guarantees three things: (1) all frequent item-
sets are reported, (2) the reported support of any itemset is at most ρs + ǫ, and
(3) the actual support of any reported itemset is at least ρs − ǫ, where ǫ is some
user-specified error tolerance.

A conceptual description on how Lossy Counting works is given in Section 3.
In [19], an efficient implementation was proposed with the following character-
istics.

– The data structures used in the implementation are highly compact.
– For finding itemset supports, a depth-first approach is adopted.
– No candidate generation is needed when finding itemset supports.

A.1 Efficient implementation of Lossy Counting

The proposed implementation includes three modules, namely, Buffer, Trie and
SetGen. In particular, Buffer is a structure for keeping incoming data as a batch
of transactions in the available memory. Trie maintains the data structure D
described in Section 3. Finally, SetGen generates itemsets with supports in the
current batch of transactions. Since modifications are made only to Buffer and
SetGen, we focus our discussion on these two modules. For a full description on
the proposed implementation, please refer to [19].

Buffer The Buffer structure contains two parts: an array for storing the trans-
actions and a bitmap for marking boundaries of transactions.

As transactions, which are in the form of sets of item-ids, are being read into
memory, they are laid out one after another in a big array. Here, we assume that
a lexicographical order exists among item-ids and that transactions are sorted by
that order. An auxiliary bitmap is used to mark the boundary of transactions.
Each bit in the bitmap corresponds to an element in the array. A “True” (1)
in the bitmap means that the corresponding element in the array is the end of
some transaction.
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Fig. 9. Construction of the initial Heap

Suppose transactions abde, acd, bcd are among a batch of transactions read
in Buffer. Figure 8 shows an example of the Buffer structure. Transactions are
flattened and item-ids are put in the array. A “True” bit in the bitmap marks
the end of a transaction.

SetGen SetGen uses a priority queue called Heap to support its operations.
Intuitively, the Heap is a collection of chains of pointers. A pointer is the mem-
ory address of some transaction stored in Buffer. Initially, each chain contains
pointers to transactions that start with the same item-id in Buffer.

An interesting property of the Heap is that, for the smallest item-id in the
Heap that contains a chain, the number of pointers in the chain gives the support
count of the item (or itemset as we will see later) in this batch. It is because
any transaction in Buffer that contains the smallest item-id must start with the
item-id. In addition, each pointer corresponds to a transaction in Buffer and
thus contributes one count to the support of the itemset.

In practice, the Heap is designed to be as memory-efficient as possible by
keeping only the head of the chain for each item-id and converting some of the
item-ids in Buffer to pointers to represent the chain. The following paragraphs
illustrate how this works.

Assume that the array in Figure 8 starts at memory address “0”, and recall
that the Buffer in Figure 8 contains three transactions abde, acd, bcd. We con-
struct the initial Heap by inserting memory addresses of the smallest item-id of
each transaction into Heap. As an illustration, the first transaction is abde which
starts with a at memory address “0”. Then we insert the address “0” to Heap
under the chain a. Figure 9(a) shows the Heap after this step.
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The second transaction, acd, also starts with a, which is located at memory
address “4”. Thus, we insert the address “4” into Heap under a. Now, since the
chain head is occupied by some memory address, we know that a chain exists
under this item-id and so we need to do an insertion to the chain. This is done
by converting the a at memory address “4” in Buffer to the original chain head
(i.e., address “0”) and make “4” the new head of the chain. See Figure 9(b).

When we finish adding all transactions to Heap, we can get all transactions
starting with a particular item-id by following memory addresses in Heap and
Buffer. For example, to get all transactions starting with a, we consult the Heap
and get the chain head “4”. The element at memory address “4” in the Buffer is
“0”, so we know that the transaction at “0” also starts with a. We comment that
the last transaction of the chain is reached if an item-id instead of an address is
encountered.

After the Heap is initialized, SetGen generates frequent itemsets starting
from the smallest entry that has a chain in Heap. SetGen first checks whether
the singleton itemset has enough support to remain in D. If so, SetGen extends
the itemset by one item. This is done by recursively generating a new Heap
following successors of the pointers in the chain. For example, we have two
pointers within the chain a in Figure 9(b). Suppose a remains in D after D is
updated with the support count of a in this batch. Then we extend the itemset
a by one item and generate a new heap by adding successors of the pointers in
the chain a to the new Heap. In other words, if a pointer does not refer to a
transaction boundary, the address of the item-id that follows is inserted to the
new Heap. Figure 10 shows the new Heap generated by extending the itemset a.

When the recursion returns, the chain is removed after successors of the
pointers in the chain are added to the Heap. Removal of a chain is done by
reverting the corresponding pointers in Buffer to the item-id and set the head
of the chain to null in Heap.

A.2 Modifying Lossy Counting for weighted transactions

As we have discussed in the previous sub-section, support of an itemset is deter-
mined by the number of pointers in a chain. This works fine for market-basket
data since every transaction is equally important in terms of support. However,
for sensor data, if we adopt the weighted transformation (See Section 1), the



derived transactions can have different weights because snapshots can last for
different life-spans. When determining the support of a value set, we need to
consider the weights of different transactions.

To make Lossy Counting capable of handling weighted transactions, modifi-
cations to the Buffer and SetGen modules are necessary. There are two possibil-
ities.

– The weight of each transaction is stored in the array in Buffer as if it was
an item-id. Then, a True bit in the bitmap indicates that the corresponding
element of the array is the weight of some transaction. Each time when
SetGen references a transaction, it obtains the weight of the transaction by
traversing down the array until it reaches an element which corresponds to
a True bit in the bitmap.

– The weight of each transaction is stored alongside each pointer in the chain
when the initial heap is constructed. As SetGen generates value sets and
constructs new Heaps, successor of a pointer is added alongside the weight
attached to the pointer to a new Heap.

We tried both modifications and we found that the second method outper-
formed the first one. This is because searching weights in the first modification
was slow, especially when transactions are long. Our experimental study (Sec-
tion 5) uses the second modification.

B Synthetic data generation

We generated synthetic data to evaluate the performance of interval list-based
algorithms. The data model emulates a system of homogeneous sensors, and
the data generation process can be divided into three phases. Firstly, we decide
the properties, namely, the probabilities of different states and the frequency
that the sensor refreshes its value, of each sensor. Then, we generate a set of
potentially frequent patterns in a way similar to that described in [1]. Finally,
data are generated as state changes “happen” at the sensors under the influence
of the potentially frequent patterns.

In the rest of this sub-section, we give a detailed description on our data
generation model.

B.1 Basic settings of the data model

Table 4 lists the parameters of our data model. The model emulates a system of
n homogeneous sensors S1, S2, ..., Sn, whereas possible states of the sensors are
denoted by v1, v2, ..., vx.

In the first phase of the data generation process, we decide the properties of
the sensors. For the sensor Si, let ti denote the mean time that zi refreshes its
value and let Pi = (pi,1, pi,2, ..., pi,x), the state probability vector for Si, denote
the probabilities of different states. The value ti is obtained from an exponential
distribution with mean equals to t. The probabilities are determined as follows.



Symbol Meaning

General settings:

|D| No. of sensor updates to be generated
n No. of sensors
x No. of possible states for each sensor

p1, p2, ..., px Mean probabilities for each of the possible states
t Mean time that a sensor refreshes its state

Potentially frequent patterns:

|F | No. of potentially frequent patterns
l Mean length of potentially frequent patterns
w Base weight of potentially frequent patterns
a Mean no. of effective potentially frequent patterns
c Coherence factor

Table 4. User input

The j-th value in the vector, i.e., pi,j , is firstly obtained by weighting pj by a
normally distributed random number with mean 1 and variance 0.25. Then the
probabilities are normalized so that they sum to 1.

B.2 Generation of potentially frequent patterns

The second phase, generation of potentially frequent patterns, is inspired by the
data model described in [1]. Each potentially frequent pattern is a set of sensor
values accompanied by a weight and a corruption level. The weight of a pattern
controls the effect of a pattern to the sensors. It is obtained from an exponential
distribution with unit mean plus the base weight w, which is a user input. The
corruption level, on the other hand, controls the regularity of the data generated,
as we will see in the next stage of the data generation process. The corruption
level is obtained from a normal distribution with mean 0.5 and variance 0.1.

The length (i.e., number of sensor values) of each potentially frequent pattern
is obtained from a Poisson distribution with mean l. For the first pattern, distinct
sensors are randomly selected. Since, in our experiment settings (Section 5), we
are only interested in sensors with “On” state, we set all sensors in the pattern to
“On”. For each of the remaining patterns, a fraction of the sensor values is picked
from its previous pattern, where the fraction is decided by a an exponential
distribution with mean equals to a correlation level, which is set to 0.5. The
remaining sensor values are randomly picked in the same way as for the first
pattern.

B.3 Data generation

At any time, state changes are affected by a pool of effective potentially frequent
patterns. The pool is maintained as follows. The size of the pool is decided by
a Poisson distribution with mean a. Then, potentially frequent patterns are
selected for the pool by a uniform distribution. For each selected pattern, we



Attribute Notation Value

Number of sensors n Variable
Size of domain 2
Mean probability vector P < 0.99, 0.01 >

Mean length of potentially frequent (PF) value sets l 4% × n

Mean number of effective PF value sets a 10
Mean time between update t 1

Table 5. Data generation settings

repeatedly drop a sensor value from the pattern as long as a uniformly distributed
random variable between 0 and 1 is less than the corruption level of the pattern.
Then, the state probability vectors for the sensors covered by the corrupted
pattern are recalculated. For example, let a corrupted pattern, whose weight is
w, contain the sensor value Si = vj . Then, for Si, the probability of the state
vj is multiplied by w whereas the probability of any other state is divided by w.
The probabilities are then normalized so that they sum to 1. The pool remains
effective for a period of length t × c. After that, the pool is refreshed and all
state probabilities are reset to their original values.

Data are generated as state changes are simulated at the sensors. For each
sensor, the initial state is decided by throwing an x-faced die with each face
weighted by its respective probability. Then, the next state change will “happen”
after δ, where δ is determined by repeatedly throwing the x-faced die until it
gives a different state from the original one. Each time the die is thrown, a value
obtained from an exponential distribution with mean t is added to δ. State
changes are taken as data generated, and we repeat this process until we get |D|
state changes.

Table 5 shows some parameters of the generator and their baseline settings.

C Discussion - adaptation of the algorithm for a sliding

window scenario

In some applications, recent data are more important than those that are dated.
For example, to detect for network intrusion, one may only need the data gener-
ated by a network monitoring system during the past 10 minutes or so. In other
words, data older than 10 minutes become obsolete and are not considered when
associations are found. This is an example of “sliding window”.

A sliding window can be modelled by a buffer that only contains the most
recent data. The amount of data a window holds is called the “width”, denoted
by w, of the window. In general, the width need not be fixed.

To maintain an exact sliding window is not feasible if the width is very big. It
is because we need to keep every sensor update happened in the window so that,
when data items obsolete, we know what to remove from the window. To ease
space requirements, different algorithms for maintaining sliding windows based
on sampling and randomization techniques are developed.



We can make simple modifications to our algorithm to find frequent value
sets over a sliding window. Here, let us recall the relevant part of the original
algorithm first. In our algorithm, we buffer incoming data as a batch B and find
supports of value sets in the batch. Then, we merge the supports into a data
structure D, which keeps a bounded over-estimate of the actual support for each
value set if its actual support can exceed a pre-defined error-tolerance ǫ. Each
entry kept in D is in the form (e, f, ∆) where e is a value set, f is the observed
frequency since the entry is added to D, and ∆ is the maximum error such that
f ≤ fe ≤ f + ∆ where fe is the actual support. The ∆, obtained by ǫT where T
is the length of history before this batch, is fixed when the entry first enters D.

We need some changes to extend our algorithm to find frequent value sets
over a sliding window. First, we restrict the size of a batch to w/n, i.e., 1-n-th of
the width of the sliding window. This allows that, after a batch is processed, we
keep the frequency counts of value sets for the batch and discard the raw data.
When a batch of data obsoletes, we discount the value set frequency counts for
the batch from overall counts.

The second change is on the entries in D. We change the format of entries
in D to a 3-tuple (e, f, F ), where e is a value set, f is the frequency count of
e after the entry enters D, and F is a first-in-first-out queue keeping observed
frequencies of e in batches of data that are not obsolete. Each element in F is
merely a frequency count, where the last element in F is the observed frequency
of e in the latest batch of data, the second last element corresponds to the
frequency in the previous batch, and so on. Since the size of a batch is w/n,
there are at most n elements in F . Note that, in the original algorithm, there
is ∆ which gives an over-estimate of the frequency of e missed before the entry
enters D. We comment that it is not necessary here because this information
can be deduced from F . Let |F | denote the number of elements in F . If |F | = n,
it means the whole window is captured by F and so f is the exact frequency of
e during the window. Hence there is no need for an over-estimate and ∆ is 0.
If |F | < n, then we need to over-estimate the frequency of e for the portion of
the window before the entry is inserted to D. In this case, ∆ is determined by

ǫ × (n−|F |
n

× w), where ǫ is the error tolerance and n−|F |
n

× w gives the portion
of the window which has no frequency information in F .

Finally, the insert, update and delete operations of D are modified as follows.

Insert: When an entry is inserted to D, we initialize f to fB where fB is the
frequency of e in the current batch B. Besides, the queue F is initialized to
contain the only element fB.

Update: Given fB the frequency of the value set e in the current batch, to
update an existing entry (e, f, F ) in D, we first append a new element fB

to F and update f to f + fB. Then, we check whether F contains more
than n elements. If so, the leading element of F is removed from F and the
frequency count the element represents is deducted from f .

Delete: After updating, an entry (e, f, F ) is removed from D if f + ∆ < ǫw,

where ∆ = ǫ × (n−|F |
n

× w).




