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1 Introduction

1.1 The Oracle Problem

Program correctness has always been a critical issue for both researchers and practition-
ers. The past decades have shown that the use of formal verification (i.e., program
proving) to real-life applications has been very limited [1] due to the difficulties in
proofs and automation. Program testing, therefore, remains the most popular means
adopted by practitioners [1, 2]. Nevertheless, testing hastwo fundamental limitations.
First, the use of test cases cannot guarantee program correctness on untested inputs [2,
3]. In other words, testing cannot prove the absence of faults in most situations. Second-
ly, in some situations, it is impossible or practically too difficult to decide whether the
program outputs on test cases are correct. This is known as the oracle problem [4].

This article is concerned with the oracle problem. Letp be a program implementing
a specificationf . Let D represent the input domain. Usually, it is impossible to do
exhaustive testing to check whetherp(t) = f (t) ∀t ∈ D. As a result, a great amount
of research in the literature of software testing has been devoted to the development
of test case selection strategies, aiming at selecting those test cases that have a higher
chance of detecting afailure. Let T = {t1, t2, . . . , tn} ⊂ D be the set of test cases
generated according to some test case selection strategy, wheren ≥ 1. Running the
program on these test cases, the tester will check the outputs p(t1), p(t2), . . . , p(tn)
against the expected resultsf (t1), f (t2), . . . , f (tn), respectively. If it is found that
p(ti) 6= f (ti) for somei, where 1≤ i ≤ n, then we say a “failure” is revealed andti is
a failure-causing input. Otherwiseti is a successful test case. The procedure through
which the tester can decide whetherp(ti) = f (ti) is called anoracle [4]. For instance,
let f (x, y) = x× y, the test caseti be{x = 3.2, y = 4.5}, andp(ti) = 14.4. The tester
can verify this output either by manually calculating the product of 3.2×4.5 or using
the inverse function to check whether 14.4/4.5 = 3.2, where the inverse can be done
either manually or using a correct division program if available. In many situations,
however, the oracle is not so easy to apply. In cryptosystems, for example, the operands
in the multiplication are multiprecision integers with hundreds of hexadecimal digits.
As a result, the output is so large that it is practically too expensive to verify the
result. Although the use of the inverse function can help, correct programs for these
inverse functions may not be available, and many functions do not have an inverse, such
as the Greatest Common Divisor. In this situation, where theoracle is not available
or too difficult to apply, there is an “oracle problem” [4]. Other examples include,
to name a few, testing programs conducting numerical integrations or solving partial
differential equations; deciding the equivalence betweenthe source code and object
code when testing compilers; testing programs that calculate combinatorial problems,
perform simulations, draw complicated graphics, etc. In fact, even when the oracle is
available, if it cannot be automated, the manual predictions and comparisons of the
outputs are often expensive and error-prone [5, 6]. As pointed out in [6], the oracle
problem has been “one of the most difficult tasks in software testing” but it is often
ignored by researchers in software testing.

It should be noted that even when the oracle is not available,the tester usually
is somehow still able to check the outcome of the programs to some extent. In [4],
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Weyuker investigated various approaches to testing programs when there is an oracle
problem. Special or simple test cases are often used in such asituation. When testing
the sine function, for instance, the special inputs 0,π/4, π/2, etc., are standard test
cases. Nevertheless, special values cannot give us enough confidence in the correctness
of the program on more complex or random inputs. Another practical approach is to
check the outputs against properties of the target functionknown from theory. When
testing a programp supposedly implementing the sine function, for example, let 1.28
be a test case. Although we do not know the exact value of sin1.28, a failure can still
be identified if the outputp(1.28) > 1 because|sinx| ≤ 1 ∀x ∈ R. By employing more
mathematical properties of the sine curve, the range of plausible values ofp(1.28) can
be further narrowed down greatly.

1.2 Successful Test Cases

No matter how the outputs are checked, with or without an oracle, we all know that in
practice most test cases are “successful test cases” (i.e.,they do not reveal any failure)
if the program is written by a competent programmer [7]. On the other hand, successful
test cases have been considered useless in conventional testing because they do not
reveal any failure [8]. As a result, in conventional testingthe successful test cases have
been discarded or retained merely for regression testing later.

Our perspective, however, is different from the conventional view. We argue that
successful test cases are informative and should be exploited further in a systematic and
cost-effective way. Our argument is based on two observations: First, successful test
cases do carry useful information that has been ignored in conventional testing. Fault-
based testing [9], for example, is an important breakthrough because it uses successful
test cases to prove the absence of certain types of error. Unfortunately, not all testing
methods are fault-based and the majority of test cases are successful.

Secondly, no matter whether an oracle is available, testingis expensive in most
situations [1] because test case design, implementation, output prediction and compari-
son, as well as documentation, are labor intensive. Hence,each test case is valuable. It
is a great waste if most of the test cases are immediately castoff after running once. It is
therefore highly desirable to develop methodologies to effectively utilize the successful
test cases so that the program can be verified in a more cost-effective way.

1.3 Metamorphic Testing

A metamorphic testing (MT) method has been proposed by Chen et al. [10] and further
developed ([11–13], among others). It is an automated approach to alleviating the oracle
problem and employing successful test cases.

MT is to be used in conjunction with other test case selectionstrategies. To test
program p implementing functionf on domainD, let S be the test case selection
strategy adopted by the tester, such as branch coverage testing, data flow testing, or
just random testing. LetT = {t1, t2, . . . , tn} ⊂ D be the test set generated according
to S, wheren ≥ 1. If the outputsp(t1), p(t2), . . . , p(tn) reveal no failure, then we
encounter a set of successful test cases.
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At this stage, MT can be employed to make use of the successfultest cases: By
referring to certain properties calledmetamorphic relations (MR) of the target function
f , follow-up test cases can be automatically constructed, executed, and checked to
further verify programp without the need of an oracle. A “metamorphic relation” is
any relation among the inputs and the outcomes ofmultiple executions of the target
program. For example, letp(a, b, g) be a program supposedly computing the numerical
integration

R b
a g(x)dx. When g(x) is complicated, there is no straightforward oracle

to test the program. Nevertheless, we can identify metamorphic relations known from
theory, such as

R b
a k× g(x)dx = k×

R b
a g(x)dx, wherek is any constant. Metamorphic

testing (MT) checks programs against metamorphic relations (MR). For our example,
if the initial test case ist : {a = 2.3, b = 4.5, g = g1(x)} and no failure is detected,
then MT proposes to go one step further to generate one (or more) follow-up test case
t ′ : {a = 2.3, b = 4.5, g = g2(x)}, whereg2(x) = k× g1(x) for some constantk, and
run the program again ont ′. The outputs are then compared against the prescribed MR.
If p(t ′) 6= k× p(t), 3 then the program must be at fault. Certainly, an MR is a necessary
property, but may not be sufficient for program correctness.This is indeed the limitation
of all testing methods.

Since it is the relation among multiple executions rather than the correctness of
individual outputs that is checked, MT is performed regardless of the existence of an
oracle. In addition, because the whole process can be fully automated without human
involvement, MT is an easy and efficient approach to exploiting successful test cases.

In fact, the idea of employing identity relations to check programs is not new.
In [14], for example, many identity relations are used to test programs, such as testing
programp(x) against the identity “ea×e−a = 1”, where the target function isex. Identity
relations are also intensively used in fault-tolerance techniques [15],program checker
[16, 17] andself-testing/correcting [18], and so on. There are, however, great differences
between these methods and metamorphic testing. First, MT isto be used in conjunction
with a test case selection strategyS, whereS can be any black- or white-box testing
strategy. A test setT generated fromS must also exist in the first place. If no failure
can be revealed byT , then MT can be applied to generate a follow-up set of test
cases to accompanyT to further verify the program against selected metamorphic
relations, which are necessary properties for program correctness. Secondly, an MR
is not necessarily an identity relation. Any relation involving two or more executions
of the target program is an MR. To name a few, it includes inequalities, convergence
properties, subsumption relations in set theory, and so on.In [11], for example, we
employed the convergence property as an MR to test the program solving the partial
differential equation.

We have found that metamorphic relations can be identified ina wide range of
applications. In fact, for most problems, more than one MR can be identified. Let
us take the numerical integration program as an example. Apart from the property
already discussed, the following properties can be identified as MRs as well:

R b
a

(

g1(x)

+ g2(x)
)

dx =
R b

a g1(x)dx +
R b

a g2(x)dx,
R b

a g(x)dx = −
R a

b g(x)dx, . . . In fact, even

for a given property like
R b

a k× g(x)dx = k×
R b

a g(x)dx, different valuations ofk can

3 In practice, some rounding error will be allowed due to floating-point arithmetic.
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be regarded as different MRs. It is, therefore, very useful and important to know how
to select good metamorphic relations that have a higher chance of revealing failures in
testing.

This article proposes a guideline for selecting good metamorphic relations for soft-
ware testing. In Section 2, we shall conduct case studies to investigate how likely it
is to select good MRs solely based on theoretical knowledge of the problem domain.
Our result shows that theoretically stronger MRs do not necessarily have a higher
failure-detecting capability. As a result, the program structure must be considered for
the selection of good MRs. In Section 3, we propose our MR selection strategy based
on the white-box knowledge of the program structure. Our experiment result shows that
the proposed method is effective. Section 4 will conclude the paper.

2 Comparing MRs from a Black-Box Perspective

Since MRs are identified with regard to the original specification rather than the program
under test, it would be ideal if we could also have a way to select good MRs without
white-box knowledge of the program. In this section, therefore, we shall treat the
program as a black box and discuss the selection of MRs solelybased on the specificat-
ion, i.e., the target function.

For a given specification, suppose two MRs have been identified, namelyR1 and
R2. An intuition is that ifR1 is stronger thanR2 from theory, i.e., ifR1 ⇒ R2, thenR1 is
likely to have a higher chance of detecting failures. However, since the implementation
is not necessarily correct,R1 is not necessarily better thanR2 in revealing the defect in
the implementation. Nevertheless, in order to provide a practical guideline for software
testers, it is still worthwhile to investigate how likely the stronger relations are better
than the weaker ones for testing and the reasons behind.

2.1 A Case Study on the Shortest Path Program

Our first case study is on a programShortestPath(G, a, b) that implements Dijkstra’s
algorithm to find theshortest path between verticesa andb in graphG and also output
its length, whereG is an undirected graph with positive edge weights. WhenG is
nontrivial, the program is difficult to test because no oracle can be practically applied.
Nevertheless, many MRs can be identified for this problem, with which MT can be
performed.

Left Circular Shifts as the MRs A property that can be commonly found for programs
in graph theory is the permutation property. Let(G1, a1, b1) be the first input to
programShortestPath. Let (G2, a2, b2) be the second input, whereG2 is any permut-
ation of G1, vertex a2 in G2 corresponds to the vertexa1 in G1, and vertexb2 in
G2 corresponds to the vertexb1 in G1. Then ShortestPath(G1, a1, b1) and
ShortestPath(G2, a2, b2) must return the same length for the paths found.

In this section, let us consider a special kind of permutation, the circular shift.
We regard different circular shifts as different MRs. In ourexperiments, we used 10-
vertex graphs as test cases. As a result, we have got 9 MRs applicable to any test case,
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Fig. 1. Graphs and their representations

namelyShift1, Shift2, . . . , Shift9, whereShifti represents the following identity, for
i = 1, 2, . . . , 9:

ShortestPath(G, a, b).length = ShortestPath(τi(G), σi(a), σi(b)).length, (1)

whereτi(G) denotes the graph generated by circularly shifting left thevertices ofG
i times. For instance, if the vertices ofG are denoted by(v0, v1, . . . , v9), then the
same vertices are denoted by(v2, v3, . . . , v9, v0, v1) in τ2(G). Vertexσi(a) in τi(G)
corresponds to the vertexa in G, and vertexσi(b) in τi(G) corresponds to the vertexb
in G, such asσ2(v1) = v3 in our preceding example. “ShortestPath(I).length” denotes
the path length returned byShortestPath on inputI.

The 9 MRs can be categorized into the following 3 classes:

Class1 = {Shift1, Shift3, Shift7, Shift9}

Class2 = {Shift2, Shift4, Shift6, Shift8}

Class3 = {Shift5}. (2)

It is not difficult to prove that, for any 10-vertex graphG, the MRs that belong to the
same class are equivalent to one another. For example, inClass1, Shift3 can be obtained
by applyingShift1 for 3 times, andShift1 can be obtained by applyingShift3 for 7
times. Furthermore, any MR inClass1 implies all the other MRs inClass2 andClass3,
i.e., Ri ⇒ R j, wherei = 1, 3, 7, 9 and j = 2, 4, 5, 6, 8. Note thatShift5 does not
imply any other MR. Hence, the 4 MRs inClass1 are the strongest among the 9. We
shall investigate the failure-detecting capabilities of all these MRs to see whether the
stronger MRs have a higher chance of revealing a failure.

The Representation of Graphs and Vertices For programShortestPath(G, a, b),
the input graphG is represented by anadjacent matrix of sizen× n, wheren is the
number of vertices in graphG. Let us usev0, v1, . . . , vn−1 to denote then vertices. If
there is an edge(vi, v j) in graphG, where 0≤ i, j < n, then the(i + 1, j + 1)-entry
of the adjacent matrix stores the weight of this edge; if there is no such an edge, then
the (i + 1, j + 1)-entry of the matrix will be assigned a special value to indicate “no
edge”. It is also assumed that there is always an edge with weight 0 from a vertex to
itself. For example, for graphH shown in subfigure (a) of Fig. 1, its adjacent matrix
is shown in subfigure (b). If we want to find the shortest path between verticesv0 and
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v2 in H, then the input to programShortestPath(G, a, b) will be G = H, a = 0 and
b = 2. Suppose this(H, 0, 2) is the first test case. In metamorphic testing, if we apply
an MR “circularly shift left once” to this test case, then thefollow-up test case will be
(H ′, 1, 3), whereH ′ is shown in subfigure (c) and (d) of Fig. 1. The expected relation
is that the path length returned byShortestPath(H, 0, 2) and the length returned by
ShortestPath(H ′, 1, 3) must equal each other.

The Mutants To investigate the failure-detecting capabilities of the MRs, we manually
seeded various faults into the source code of programShortestPath. Each faulty version
of the program is called amutant, and each mutant has included onesimple fault, i.e.,
each mutant can be turned into the correct version by making asingle correction to
the program. Examples of these “simple faults” are operator/ operand replacements,
deletion of a statement, etc. We have excluded mutants whosefailures can easily be
detected, such as an execution that never terminates, returning a negative path length,
returning a path length of 0 when the two terminal vertices are different, and returning
a nonzero path length when the two terminal vertices are identical. Furthermore, we
excluded equivalent mutants using the following heuristicapproach: if the outputs of
two mutants are identical on all the 1000 initial test cases (which will be explained
shortly), then remove one of the two mutants. In the end, we have obtained 19 mutants.

The Test Cases We first generated a set of initial test casesT = {t1, t2, . . . , t1000}.
To generate this test set, we first randomly generated 50 graphs as follows: Each graph
has 10 verticesv0, v1, . . . , v9. In each graph, each pair of the vertices have a 50%
chance of being connected, i.e., the existence of any edge isdecided by tossing a fair
coin. If two vertices are connected, then the weight of the edge is randomly chosen from
integers 1, 2, . . . , 50; otherwise a special value will be assigned to the corresponding
entry of the adjacent matrix to indicate that the edge does not exist. For each graph thus
generated, we randomly selected 20 different pairs of different nodes as the terminal
vertices (note that if(a, b) are selected, then(b, a) will not be selected). Hence, each
graph further generated 20 test cases. As a result, we have obtained a set of 20×50=
1000 test casesT = {t1, t2, . . . , t1000}.

For each metamorphic relationShifti, wherei = 1, 2, . . . , 9, a follow-up test setTi =
{ti,1, ti,2, . . . , ti,1000} was generated based on the initial test setT = {t1, t2, . . . , t1000},
whereti,k in Ti was a follow-up input oftk in T , for k = 1, 2, . . . , 1000. For each
mutant programmutant j, where j = 1, 2, . . . , 19, and for each MRShifti, wherei =
1, 2, . . . , 9, mutant j was run onT and Ti, respectively. The relation of the outputs
(mutant j(tk), mutant j(ti,k)) was checked against the MRShifti, for k = 1, 2, . . . , 1000.
Among the 1000 pairs of the outputs, if, let’s say 530 pairs did not satisfy the MRShifti,
then we say thefailure rate of mutant j againstShifti was 53%. The above procedure is
described by the following pseudocode:

for i = 1 to 9 do
for j = 1 to 19 do{

f ailureCount = 0;
for k = 1 to 1000 do{

if (mutant j(tk).length 6= mutant j(ti,k).length), wheretk ∈ T andti,k ∈ Ti
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Fig. 2. A comparison of the failure-detecting capabilities of the 3 classes of metamorphic relations
on the 19 mutants for the shortest path problem

then f ailureCount = f ailureCount + 1;
}

Print: The failure rate ofmutant j againstShifti is f ailureCount /1000.
}

The Experiment Result Our experiment result shows that, among the 9 identified
MRs Shift1, Shift2, . . . , Shift9, the theoretically weakest propertyShift5 exhibited the
highest failure-detecting capability. For clarity and ease of understanding, we grouped
the 9 MRs into 3 classes according to Equation (2). Their average failure-detecting
capabilities demonstrated in the experiment are shown in Fig. 2. Thex-axis in the
figure has been divided into 19 regions. Regioni of thex-axis corresponds tomutanti,
for i = 1, 2, . . . , 19. They-axis denotes the failure rate, from 0% to 100%. The
histogram in region 1, for example, shows that whenmutant1 was tested using 1000
pairs of test cases against the MRs inClass1 = {Shift1, Shift3, Shift7, Shift9}, the
average failure rate was 20%; whenmutant1 was tested against the MRs inClass2 =
{Shift2, Shift4, Shift6, Shift8}, the average failure rate was 27%; whenmutant1 was
tested againstShift5, the failure rate was 39%. Note thatmutant3, mutant6, andmutant15

could not be killed by any MR on the test cases (the performance will be improved
using our proposed MR selection strategy as will be described in Section 3). Hence,
let us consider the remaining 16 mutants. AlthoughShift5 is the weakest mathematical
property among the 9 from theory because it cannot imply any other MR, it has demons-
trated the highest failure-detecting capability on 15 of the 16 mutants; on the other hand,
the average performance ofClass1 (the group of the strongest mathematical properties
from theory because any MR in this group can imply all the other 8 MRs) was the worst
on 13 of the 16 mutants and medium on the other 3 mutants.
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This experiment has shown that theoretically stronger MRs are not necessarily good
at detecting program defects. It is suggested, therefore, that selecting MRs from a pure
black-box perspective is not adequate. This point is confirmed by our next case study.

2.2 A Case Study on the Critical Path Program

In project planning and scheduling, we often need to find thecritical path, i.e., the
activity that takes the longest time to complete, so that we can know what the bottleneck
of the project is. Hence, the critical path problem is essentially to find the longest path in
a directed and weighted graph. Let us useCriticalPath to denote the program. Although
it is also a graph theory program, its algorithm and data structure are totally different
from the shortest path program. Hence, this program has beenselected for our second
case study.

The input to programCriticalPath is a directed and weighted graphG. If G is
acyclic, the longest path inG and its length will be returned; otherwise the program
will report that a cycle exists in the graph. The graph is represented by a dynamic data
structureadjacent list (rather than the static adjacent matrix). ProgramCriticalPath is
difficult to test because a practically feasible oracle is not available when the input graph
is nontrivial. Hence, we have applied MT to test it.

The identification of MRs and construction of mutants and test cases were very
similar to our previous case study for the shortest path problem. We used randomly
generated 10-vertex directed acyclic graphs as test cases and used the 9 identified
relationsShift1, Shift2, . . . , Shift9 as MRs, whereShifti has the same meaning as
described previously. The graph is acyclic and representedby an array of dynamically
linked lists. Again, these 9 MRs are grouped into 3 classes asin Equation (2). The initial
test setT included 1000 random test cases. In addition, 18 nonequivalent mutants were
created.

The experiment result is shown in Fig. 3. Among the 18 mutants, 6 could not
be killed by any MR on the test cases (the performance will be improved using our
proposed MR selection strategy as will be described in Section 3). Hence, let us consider
the remaining 12 mutants. From the figure, we see that the performance of the 3 groups
of MRs was quite close. Still,Shift5 demonstrated relatively higher failure-detecting
capability than the other two groups. Its failure rate ranked first on 10 of the 12 mutants,
second on 1 mutant, and third on 1 mutant. On the other hand, the average performance
of Class1 = {Shift1, Shift3, Shift7, Shift9} was still the worst.

As a result, our second case study confirms that the theoretically stronger MRs are
not necessarily better at detecting program defects. In conclusion, selecting MRs from
a pure black-box perspective is not adequate. In the next section, we shall look inside
the program structure to find the reasons behind the different performance of different
MRs.

3 Identifying Good MRs from a White-Box Perspective

As has been shown, theoretical knowledge of the problem domain is not adequate for
distinguishing good MRs. Hence, we suggest looking into theprogram structure.
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3.1 The Proposed MR Selection Strategy

Let p be the program under test,t be the initial successful test case,R be an MR, and
t ′ be the follow-up test case generated according toR. For ease of presentation and
understanding, let us concentrate on MRs that are identity relations. For non-identity
relations, the discussion will be similar. Hence, it is the relation “p(t) = p(t ′)” that is
checked in MT. Our aim is to select such an MR that has a higher chance to cause
p(t) 6= p(t ′). We propose the following hypothesis:

Hypothesis 1
For a faulty programp and a pair of metamorphic test cases(t, t ′), in most situations
the more the execution ofp(t ′) differs from the execution ofp(t), the more likely it is
that their outputs are not equal.

We have not explicitly defined the concept of “difference between two executions”.
This concept covers all aspects of program executions, including the paths traversed,
sequence of the statements exercised, sequence of different values assigned to variables,
etc. Based on Hypothesis 1, our MR selection strategy is to select such MRs that can
make the two executions as different as possible.

For programp(t), the inputt is a tuple including one or more parameters, i.e.,
t = (x1, x2, . . . , xn), wheren ≥ 1. Usually, differentxi’s (1≤ i ≤ n) play different roles
in the execution and, hence, they have different influence onthe overall execution flow
(i.e., paths executed, variable values, iteration times, etc.) Hence, we propose selecting
those MRs that can change the values of thecritical parameters as greatly as possible.
A “critical parameter” is such anxi in t that plays the most important role in controlling
how the program is to be executed. The follow-up test caset ′ thus generated will,
therefore, force a very different execution. As a result, according to Hypothesis 1, it
will be more likely that the outputp(t ′) differs from the output ofp(t).
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Hence, our strategy considers the algorithm adopted by the programmer to be the
most important factor for selecting effective MRs. Even forthe same problem, an
MR may have very different performance with regard to different algorithms. In the
following subsections, we shall conduct case studies to test our hypothesis and the
proposed MR selection strategy.

3.2 Further Study on the Shortest Path Program

Identifying More MRs The general structure of the algorithm for program
ShortestPath(G, a, b) is as follows: The control starts from the source vertexa. The
search is conducted along the edges connected toa and will go through the vertices
directly or indirectly connected toa until the destinationb is reached.

According to Hypothesis 1, we identified an MR, namelyReverse, that was expected
to be good; we also deliberately identified two more MRs, namely Exchange(0,9) and
ChangeSource, that were expected to be less effective.Reverse represents the property

ShortestPath(G, a, b).length = ShortestPath(G, b, a).length.

Exchange(0,9) represents the property

ShortestPath(G, a, b).length = ShortestPath(π(G), a′, b′).length,

whereπ(G) is a transposition ofG obtained by exchanging the verticesv0 andv9, and
a′ andb′ in π(G) correspond to the verticesa andb in G, respectively. The third MR
ChangeSource represents the property

ShortestPath(G, a, b).length = ShortestPath(G, vi, b).length+d,

where(a, vi) is the first edge in the shortest path returned byShortestPath(G, a, b)
andd is the weight of the edge(a, vi).

The MR Reverse was selected because we found that thesearch direction plays a
critical role in the algorithm: for an input(G, a, b), the algorithm always starts from
a, searching along the adjacent vertices, and finish at the destination vertexb. Hence,
when the source and destination are exchanged, the search sequence will be totally
reversed: the control will start fromb and search backwards toa. Hence, the sequence
of the edges and vertices traversed in the execution of(G, b, a) will be very different
from that in(G, a, b). According to Hypothesis 1, this MR is expected to be effective
for revealing failures.

On the other hand, changing the notations of two vertices viaExchange(0,9) or
moving forward the starting vertex viaChangeSource would not have as much impact
because they do not make much change to the overall executionthat follows: the edges
and vertices will be traversed in a similar sequence as the original execution. According
to Hypothesis 1, these two MRs are expected to be less effective thanReverse.

Experiment Result The experiment result is shown in Fig. 4, where the mutants and
the 1000 initial test cases were the same as before. Among the19 mutants,mutant3
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Fig. 4. Further experiment result on the shortest path program

could not be killed by any MR on the test cases. On the remaining 18 mutants, the
performance ofReverse was obviously better than the other two: its failure rate ranked
first for 15 times and second for 3 times.

We have also comparedReverse with Shift5, the most effective MR in Section 2.1.
Their average failure rate was similar, butReverse can kill two mutants (mutant6 and
mutant15) that could not be killed byShift5. Hence, we conclude thatReverse is the
best MR among all the MRs studied. This experiment result supports Hypothesis 1 and
shows that our MR selection strategy is effective.

3.3 Further Study on the Critical Path Program

Although the data structure and algorithm of programCriticalPath are very different
from those ofShortestPath, we found that the “search direction” is still the critical
factor. This is understandable because almost all searching algorithms are performed
along a certain direction. In a graph, the search usually starts from the source vertex
and go along the adjacent edges towards the destination vertex. If the search direction
is changed greatly, the execution sequence will be changed greatly as well and, as a
result, the second output will be more likely to differ from the first one. For program
CriticalPath, the source vertex is the one whose in-degree is 0; the destination vertex
is the one whose out-degree is 0. According to Hypothesis 1, we have identified the
MR ChangeDirection : CriticalPath(G).length = CriticalPath(G′).length, whereG′

is obtained by reversing the directions of all the edges inG.
We would like to compare the failure-detecting capabilities of the 3 MRs

ChangeDirection, Exchange(0,9), and Shift5, as shown in Fig. 5. Among the same
18 mutants and on the same 1000 initial test cases,mutant4 andmutant6 could not be
killed by any MR on the test cases. For the remaining 16 mutants,ChangeDirection has
killed all of them, butShift5 andExchange(0,9) could only kill 12 of them. For the 12
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Fig. 5. Further experiment result on the critical path program

mutants that can be killed by all these MRs, the failure rate of ChangeDirection ranked
first for 10 times and slightly lower thanShift5 on mutant3 andmutant16.

3.4 Why Does It Work?

We have also studied individual cases for the reasons why ourproposed strategy works.
Because of the length limit of this paper, we shall only describe the rationale behind.
For programp(x) implementing functionf (x), let t be the first test case andt ′ be the
follow-up test case generated with regard to an MR. Supposep(t) has not revealed any
failure, then there are actually two possibilities: (1)p(t) = f (t); (2) p(t) 6= f (t) but
this could not be detected by the tester because of the lack ofthe oracle. For case (1),
there are two subcases: (1.1)p(t) did not touch the buggy code; (1.2)p(t) touched the
buggy code but the output happened to be correct. For case (1.1), obviously the more
the execution ofp(t ′) differs from that ofp(t), the higher is the chance forp(t ′) to touch
the buggy code and, hence, to reveal a failure; For case (1.2), if the execution ofp(t ′) is
very similar to that ofp(t), then the cause that madep(t) = f (t) may still remain in the
execution ofp(t ′) and, as a result,p(t ′) may also compute correctly; For case (2), the
reasoning is similar: the greater the similarity between the execution ofp(t) andp(t ′),
the higher the chance for both executions to make the same error and, hence, output the
same result. In this situation, although both outputs are wrong with regard to function
f , the failure cannot be detected with regard to the MR.

4 Discussions and Conclusion

Metamorphic testing method effectively exploits successful test cases and alleviates the
oracle problem. Since the procedure is straightforward andcan be fully automated, MT
is cost-efficient and, hence, useful and practical for practitioners.
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For many problems, more than one MR can be identified. It wouldbe ideal if all
MRs could be used for testing. Since the resources for software development are always
limited, however, it is desirable to know which MRs should begiven priority for use
in testing. In this article, we conducted case studies usingthe mutants of two programs
in graph theory, where there is an oracle problem. The main results are: (a) theoretical
knowledge of the problem domain is not adequate for distinguishing good MRs, and
(b) good MRs should be those that can make the multiple executions of the program as
different as possible.

Strictly speaking, our MR selection strategy emphasizes the importance of the
structure of the program under test. However, it is not practical to require the testers
to fully understand the program code before testing. Hence,we propose that good
MRs should be selected with regard to thealgorithm that the program follows because
algorithms are easier to understand than the source code. Although the programmer may
make mistakes in the implementation, the general structureof the algorithm should be
kept because of the competent programmer hypothesis.

It must be pointed out that: (1) MT is a technique for generating follow-up test cases.
In other words, pure MT is not adequate for software quality assurance. It must be
combined with other test case selection strategies. (2) Ourexperiment result shows that
different MRs have different failure-detecting capabilities with regard to different types
of program defect. How to employ different MRs in a collaborative and complementary
way to achieve the best result will be a future research topic.

We have not defined the concept of “difference between two executions” explicitly
because the execution of programs is very complicated. We shall study this issue and
give more explicit guidelines in our future research. In addition, we shall look seriously
into the phenomenon that some mutants could not be killed by any identified MR on
the test cases.
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