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ABSTRACT matically. In this article, we shall present the concepte; p

An “oracle” in software testing is a procedure by which teste cedures, and applications of metamorphic testing.

can decide whether the output of the program under test-

ing is correct. In some situations, however, the oracle ts no Keywords

available or too difficult to apply. This is known as the “or- Metamorphic testing, metamorphic relation, oracle, sssce

acle problem”. In other situations, the oracle is often the ful test case, automated testing, multiple executions.

human tester who checks the testing result manually. The

manual prediction and verification of program output ggeatl |NTRODUCTION

decreases the efficiency and increases the cost of testing.  The verification of program correctness plays a criticaé rol
in software development. In the past decades, it is shown

A metamorphic testing method has been proposed to test prothat the use of formal verification, i.e., program proving, t

grams without the involvement of an oracle. It employs prop- real-life applications has been very limited [12] owing he t

erties of the target function, known as metamorphic refajo  difficulties of proofs and automation. Software testing, [2]

to generate follow-up test cases and verify the outputs-auto therefore, remains the most popular means for practitiner

to check the correctness of their programs, although tgstin

1©2004 Software Engineering Association, Japan. This métivia  cannot prove the absence of errors in most situations [2, 14]
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and, hence, the mainstream of the researches has conceimnitial set of test cases. Let us consider a prognanm-
trated on the development tdst case selection strategies plementing functionf on domainD. Let S be the test case
that is, the approaches for selectityg that have a higher selection strategy adopted by the tester, such as data flow

chance of causing a failure. testing or branch coverage. AccordingS3pa test sefl =
o ) ) {t1, t2, ..., ta} C D, wheren > 1, can be generated. Run-

In some S|t_uat|ons, howeve_r, _the oracle is not available Ofning the program on T yields the outputs

too expensive to apply. This is known as thkacle prob- o) nt,), ..., p(ts). When there is an oracle, these test

lem[18]. For example, the outputs of programs conducting ragits can be verified againgtty), f(to), ..., f(tn); oth-

complicated computations, such as numerical integrations gpyise the tester may still have some way to identify some
are dlfflcu!t to verify; In multiple precision arithmetiché outcomes that are obviously wrong. For example, an exe-
operands involved are very large numbers and, hence, the reg;ion that runs too long can be considered a failure; when a

sults are very expensive to check; When testing a compiler, g onometric function computing caseturns a value greater

it is not easy to verify whether the generated object code is5n 1, a failure can also be found immediately [18]. When a
equivalent to the source code; When testing object-orientedjjure has been detected, testing can stop and the program
programs, it is very difficult to decide whether two objects \i|| pe debugged:; otherwis@ is a set of successful test
are equivalent. Other examples include testing programs pe cases. In the latter case, MT can be applied to automatically
forming simulations, conducting combinatorial calcuwas, generate follow-up test cas@ = {t/, t), ..., t'} c D
drawing graphs to the monitor, etc. On the other hand, whenpased on the initial successful test 3etso that the pro-

the oracle is available, if itis a human tester, the manu&l pr - gram can be further verified against some necessary prop-
dlctlons'and comparisons of the test results are often timeg ties MT is useful because the vast majority of test cases
consuming and error prone [13, 15]. As a matter of fact, the gre guccessful ones — although they have not revealed any

oracle problem Pas been “one of the most difficult tasks in f4j1yre, these test cases do carry useful information igdor
software testing” [15]. in conventional testing.

Another important topic is how to effectively utilize thecsu 47 generates follow-up test cases by making reference to

ces_sful test ca_ses_. Th_is is because, _even when the orac_le i%etamorphic relations” (MR). For program an MR is a
available, testing is still very expensive and takes a M&JOr property of its target functiorf. The unique character of

part in the total development cost [12] because test case deyR js that it involvesmultiple executions. For example, if
sign and implementation are always labor intensive. Hence,f(x) — &, then the propertg? x e = 1 is a typical MR.

it is important to make the best of each test case. Having SaidHence, for a successful test case, say 0.3, metamorphic
that, it must be pointed out that the majority of the test sase testing generates its follow-up test case- —0.3 and then

are successful test cases that do not reveal any failureninc s the program again dh Finally, the relation of the two
ventional testing, these test cases are considered useléss outputs are checked against the expected relgi@)
hence, discarded [17] or merely kgpt for r'egression testing p(—0.3) = 1. 1 If this identity does not hold, then a failure
later. The theory of fault-based testing [16] is a breakilgio i jmediately detected. Like all the other testing methods
because it employs successful test cases to prove the &bsenﬁowever, the conditions checked by MT are necessary, but

of certain types of faults. Unfortunately, most testinghtec may not be sufficient for program correctness.
nigues are not fault-based and most test cases do not reveal

any failure. As a result, useful information carried in thos Because MT checks the relations among several executions

successful test cases remains unexploited. rather than the correctness of individual outputs, MT does
) ) not need an oracle and can be fully automated. This method-

A metamorphic testing methdIT) has been proposed by gy has also been applied to fault-based testing without

Chen et al. [5] to employ successful test cases and allevi-gracies [8]. Further study has also been conducted in [11],
ate the oracle problem. Based on the successful test caseg,nere an experimental MT framework is constructed.
follow-up test cases can be generated by making reference to

metamorphic relationghat is, relations amongultiple ex- In fact, identity relations like=* x e = 1 have long been
ecutions of the target program. The generation of the follow used in practice to test programs, especially in the area of
up test cases and verification of the test results do not re-numerical computing (such as [9]). Apart from conventional
quire an oracle. In this article, we present the basic cascep testing, identity relations have also been used for faldirto

of metamorphic testing and introduce a range of its applica- ance in run time [1]. The techniquesmrogram checkef3]

tions. and self-testing / correcting4] also intensively involve the
use of identity relations of the target function. Neverthe-
BASIC CONCEPTSOF METAMORPHIC TESTING less, there are notable differences between these methdds a

Metamorphic testing (MT) [5] is a technique to generate metamorphic testing. Firstly, MT can be used in conjunction

follow-up test cases based on existing test cases that havyith other test case selection strategies, including biattio
not revealed any failure. MT should be applied in conjunc-

tion with other test case selection strategies that genéhnat IFor floating point computation, some rounding error will beakd.




and white-box testing strategies. When the initial test ast h if ( fabs (uMat[i][j] - vMat[j][i] > larg)
not revealed any failure, MT can be used to further exploit larg = fabs ( uMat][i][j] - vMat[j][i] );
the useful information carried in the successful test cases

generate follow-up accompanying test sets so that the pro-With

gram can be verified further against necessary properties ef
ficiently and automatically. Secondly, metamorphic relasi

are not limited to identity relations. It includes ineqtiat,
subsumption relations, and convergence properties to aame
few.

if (fabs (uMat[i][j] - uMat[j][i] > larg)
larg = fabs (uuMat[il[j] - vMat[j][i] );

The above fault is quite subtle, and there is no oracle to test
this program. The mutant program gives identical outputs
APPL ICATION OF MT TO NUMERICAL PROBLEMS as the correct program when running orx 3 and 7x 7

mesh grids. Both programs also return very close results on
15x 15 mesh grids. In addition, we have also tested the pro-

gram on the following special inputs: (1) All the four edges
600 000 have an equal temperature; (2) Assign equal length to all the
A A A Aol A edges and use symmetric boundary conditions. It is thexefor
T 17 7 TIT 1T expected that the distribution of the temperatures shoeild b
P S, S, P W, W symmetric as well; (3) Use symmetric boundary conditions
wrt both thex- andy-axes, respectively. The test result is that
none of the above special values could detect a failure.
G, G,

Now let us verify the program using metamorphic testing
method. The convergence property of the solutions can be
identified as a metamorphic relation [6]. For any given point
Figure 1: Metamorphic test cases p. let Tg,(p) denote its temperature calculated by the pro-
gram using a mesh gri;. If we useG;, Gj, and G, to

When testing numerical programs whose outputs are not easyienote any mesh grids, '_‘he” the following metamorphic rela-
to verify, a frequently adopted approach is to use special ortion can be identified [6]:
simple values as inputs [18]. For example, when testing a

program computing the sine function, special values such as GiCGjCcGk—
0, /4, /2, etc., are always standard test cases. These spe- Tg; (p) < min{Tg; (p), T, ()} or
cial or simple inputs, however, are not enough in building Te (p) > max{ T, (p), To, (D) }-

people’s confidence in the correctness of their programs on

more complex and random inputs. We have done experimentThe program is then tested against this MR. The temperatures
in [7], and found cases where errors could not be detected byof the same 9 pointpy, po, ..., po have been observed us-
special values. When special-value testing is combined withing mesh gridsG;, Gy, ..., Gs, whereGy; € G, C ... C
metamorphic testing, on the other hand, more subtle faultsGs. For example, Figure 1 shov;, Gy, and the 9 points.
can be revealed [7]. For example, a progra(®) for sine  When we check the differences between the computed re-
function could compute correctly on a test cage How- sults against the MR, a failure can be detected easily as the
ever, with a follow-up test case generated based on the MRexpected inequality is violated.

sin(x+ 1) = —sin(x), a failure will be immediately detected

whenp(xo + 1) # —p(Xo). fE'F\’ALSICATI ONOFMT TO NON-NUMERICAL PROB-

As discussed earlier, metamorphic relations are not |0|T‘(ﬂie Metamorphic testing iS not ||m|ted to numerica' programs
identity relations. We would like to cite one of our examples only. In fact, metamorphic relations can be identified in al-
in [6] to illustrate how to use the convergence property $t te  most every area. In this section, we shall give some but a few

programs that solve partial differential equations. Weaise examples to illustrate how to employ MT in non-numerical
program adapted from [10] that solves the following thermo- gregs.

dynamic problem: For an insulated plate in rectangularshap

with homogeneous boundary temperatures along each edgeGraph Theory

we want to know the temperature of each point on the plate A lot of graph theory problems are combinatorial problems.
after the heat potential has reached stability. As a result, it is very expensive to verify the outputs when

. _ ~ the input graph is nontrivial.
To solve this problem, the program uses the “alternating di-

rection implicit” method to solve the Laplace equation with Let us take the Shortest Path problem in an undirected graph
Dirichlet boundary conditions. We created a mutant of the as an example. When the test case is a nontrivial graph
original program by replacing the correct statement like that shown in Figure 2, there is no oracle efficiently
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Figure 2: A nontrivial graph (Weights of edges are p Q

omitted) V

applicable to verify whether the returned 8, all short-
est paths betweeA and B found by the program, are it \
deed the shortest ones or whether this set is complete, v

Sas={P1, P, ..., Py} andn>1.

In this situation, MT can help by checking the program agains Figure 3: Computer graphics
selected MRs. A popular property that can be identified for
graph theory problems is permutation. Gfis the first test
case, then leB’ be a permutation db. Running the program
again onG’ should produce the same output as produced on
G.

all the points that become farther will become darker. This

is an easy approach to check all the displayed pixels quickly
and automatically. Following this way, many other metamor-

phic relations can be identified as well.

Another MR can be identified as follows: Randomly select Compilers

an elemen® from Sae. Hence R is supposed to be one of - qegting compilers is tough. This is because the equivalence

the shortest paths froito B. Randomly select a vertekin between the source code and the object code is difficult to

pathP. Then, run the program to get the shortest paths fromqris, | this subsection, we give an example to illustrate
Ato X and fromX to B, respectively. Suppose the outputs 510 use MT to alleviate this problem.

are Sax and Sy, respectively. One of the expected MRs is

that, for any pathQ € Sax and any pattQ)) € Sxg, the con- Supposepis a parallelizing compiler. Suppose we have the
catenation of) andQ’ must be an element iBg. following source code as a test case:

Computer Graphics inta, b, c,d:

When the outputs of a program involve a large amount of read(a, b);

data, they are expensive to verify. For example, computery c=a+1;

graphics software generates graphics and prints them on theg d =100:

screen. It is, however, practically impossible for thedest 4 d=d*b:

to manually check whether each and every pixel is displayeds
properly. In this situation, a practical approach is that af
ter checking the correctness of certain amount of indiidua
outputs, we apply MT to verify all the outputs in a more cost-

. Even if we do not know whether the output object code is
effective way as follows.

correct, we can still identify metamorphic relations td teg
Figure 3 illustrates a graph generated by a realistic-geaph compiler. As a simple example, we can find that statement 2
generation software. Note that this figure is simplified for @nd statements (3, 4) are independent of each other. Hence,
illustration purpose only. For the tester, it is not easydov W€ can exchange their sequence to construct a follow-up test
ify whether all the pixels in the screen are displayed prigper Case:

because the generation of realistic graphics involves com-

plicated computation and there is a huge amount of pixels. inta, b, c, d;

Nevertheless, some metamorphic relations can be identified1 read(a, b);

For example, if the position of the light source changesithe 2 d =100;

the brightness of all the points that become closer to thw lig 3 d=d*b;

source will increase according to a certain formula; sirjla 4 c=a+l;



tive software. In this situation, an MR is a relation amorfg di

ferent sequences of user actions and their correspondtag ou
puts. For example, Figure 4 shows an illustrative flowchart

for telephone transaction software. When users have dialed
in, they will need to select their preferred service languag

Select prompt language

No first. Then they will enter their user name and password.
# In case of a failure, they will have two more chances to try.
Enter user name For legal users, they will be asked to select services: press

“1” for Service 1; press “2” for Service 2; press “*” to re-
peat the voice message, and press “#” to quit. For this kind
of software, many different combinations of user actiorss ar
expected to produce the same results. For instance, a failed
followed by a successful login should be treated the same
as a successful login without a failure; doing something and
then cancelling it should be treated the same as quitting the
program in the beginning; performing Service 2 followed by
Yes Service 1 in one dial-in should produce the same result as
performing the two transactions separately in two différen
dial-ins in the same sequence; no matter how many times
the users press “*” when selecting services, the final result
should be the same ... All these properties can be used as
metamorphic relations to test the program automatically.

Enter password

Tried 3
times?

Which key
is pressed?

CONCLUSION
This article has introduced the concepts and a wide range of
applications of metamorphic testing. The unique charaxgter

Provide Provide

service 1 service 2 MT is that it does not require human involvement to gener-
ate follow-up test cases and verify the test results and;éen

? / it can be fully automated. Because metamorphic relations

widely exist in both numerical and non-numerical areas, MT

is a practical approach applicable to the vast majority afre
life applications. Also because this method can be combined
with any test case selection strategy, MT is a useful approac
for practitioners to further exploit their successful teases.

As MRs are identified with regard to the specification, good
knowledge of the problem domain is necessary for an effec-
tive application of MT.

Say “Good-bye”

Figure 4: A flowchart of automated telephone service
It should be noted that, because MT checks necessary rather

than sufficient properties, and also because it does nokchec
5 e the correctness of individual outputs, pure MT is not enough
to establish confidence in the program’s correctness with re
gard to the original specification. Hence, MT should be com-

For the above source code, the parallelizing compiteshould pined with.other testing methods such as special-value test
detect identical parallelism as for the first one, and thisa ~ Ing to achieve the best results. In our future research, we

verified much more easily than the correctness of the objectShall investigate how to select the most effective metamor-
code. phic relations when there is more than one candidate.
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