
To appear inProceedings of the 8th International Symposium on Future Software Technology(ISFST 2004),
Software Engineers Association, Japan (2004)

Metamorphic Testing and Its Applications ∗ †

Zhi Quan Zhou ‡‖, D. H. Huang ‡, T. H. Tse §,
Zongyuan Yang ¶, Haitao Huang ¶, and T. Y. Chen ‡

‡School of Information Technology
Swinburne University of Technology
Hawthorn, Victoria 3122, Australia

Email: {zhzhou, dhuang, tchen}@it.swin.edu.au
§Department of Computer Science

The University of Hong Kong
Pokfulam Road, Hong Kong

Email: thtse@hku.hk
¶Department of Computer Science

East China Normal University
3663 Zhongshan(N) Road

Shanghai 200062 P. R. China
Email: {yzyuan, hthuang}@cs.ecnu.edu.cn

ABSTRACT
An “oracle” in software testing is a procedure by which testers
can decide whether the output of the program under test-
ing is correct. In some situations, however, the oracle is not
available or too difficult to apply. This is known as the “or-
acle problem”. In other situations, the oracle is often the
human tester who checks the testing result manually. The
manual prediction and verification of program output greatly
decreases the efficiency and increases the cost of testing.

A metamorphic testing method has been proposed to test pro-
grams without the involvement of an oracle. It employs prop-
erties of the target function, known as metamorphic relations,
to generate follow-up test cases and verify the outputs auto-

∗c©2004 Software Engineering Association, Japan. This material is
presented to ensure timely dissemination of scholarly and technical work.
Personal use of this material is permitted. Copyright and all rights therein
are retained by authors or by other copyright holders. All persons copy-
ing this information are expected to adhere to the terms and constraints in-
voked by each author’s copyright. In most cases, these works may not be
reposted without the explicit permission of the copyright holder. Permission
to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or
lists, or to reuse anyrcopyrighted component of this work in other works
must be obtained from the Software Engineers Association, Japan.

† This research is supported in part by a discovery grant of theAus-
tralian Research Council (Project No. DP 0345147), a grant of the Research
Grants Council of Hong Kong (Project No. HKU 7145/04E), and agrant of
the University of Hong Kong.

‖ Corresponding author.

matically. In this article, we shall present the concepts, pro-
cedures, and applications of metamorphic testing.

Keywords
Metamorphic testing, metamorphic relation, oracle, success-
ful test case, automated testing, multiple executions.

INTRODUCTION
The verification of program correctness plays a critical role
in software development. In the past decades, it is shown
that the use of formal verification, i.e., program proving, to
real-life applications has been very limited [12] owing to the
difficulties of proofs and automation. Software testing [2],
therefore, remains the most popular means for practitioners
to check the correctness of their programs, although testing
cannot prove the absence of errors in most situations [2, 14].

There is anoracle assumptionin the theory of testing [18].
Let p(x) be a program implementing functionf (x) on do-
main D. To test this program, the tester runsp on T, a set
of test cases: T = {t1, t2, . . . , tn} ⊂ D, wheren ≥ 1.
The outputsp(t1), p(t2), . . . , p(tn) are then checked against
the expected resultsf (t1), f (t2), . . . , f (tn), respectively. If
p(ti) = f (ti), thenti is called asuccessfultest case; ifp(ti) 6=
f (ti), thenti is called afailure-causingtest case. The mecha-
nism by which the tester can decide whetherp(ti) = f (ti) for
i = 1, 2, . . . , n is known as theoracle. In software testing
literature, it is usually assumed that the oracle is available

1

Administrator
 HKU CS Tech Report TR-2004-12

and, hence, the mainstream of the researches has concen-
trated on the development oftest case selection strategies,
that is, the approaches for selectingti ’s that have a higher
chance of causing a failure.

In some situations, however, the oracle is not available or
too expensive to apply. This is known as theoracle prob-
lem [18]. For example, the outputs of programs conducting
complicated computations, such as numerical integrations,
are difficult to verify; In multiple precision arithmetic, the
operands involved are very large numbers and, hence, the re-
sults are very expensive to check; When testing a compiler,
it is not easy to verify whether the generated object code is
equivalent to the source code; When testing object-oriented
programs, it is very difficult to decide whether two objects
are equivalent. Other examples include testing programs per-
forming simulations, conducting combinatorial calculations,
drawing graphs to the monitor, etc. On the other hand, when
the oracle is available, if it is a human tester, the manual pre-
dictions and comparisons of the test results are often time
consuming and error prone [13, 15]. As a matter of fact, the
oracle problem has been “one of the most difficult tasks in
software testing” [15].

Another important topic is how to effectively utilize the suc-
cessful test cases. This is because, even when the oracle is
available, testing is still very expensive and takes a major
part in the total development cost [12] because test case de-
sign and implementation are always labor intensive. Hence,
it is important to make the best of each test case. Having said
that, it must be pointed out that the majority of the test cases
are successful test cases that do not reveal any failure. In con-
ventional testing, these test cases are considered uselessand,
hence, discarded [17] or merely kept for regression testing
later. The theory of fault-based testing [16] is a breakthrough
because it employs successful test cases to prove the absence
of certain types of faults. Unfortunately, most testing tech-
niques are not fault-based and most test cases do not reveal
any failure. As a result, useful information carried in those
successful test cases remains unexploited.

A metamorphic testing method(MT) has been proposed by
Chen et al. [5] to employ successful test cases and allevi-
ate the oracle problem. Based on the successful test cases,
follow-up test cases can be generated by making reference to
metamorphic relations, that is, relations amongmultipleex-
ecutions of the target program. The generation of the follow-
up test cases and verification of the test results do not re-
quire an oracle. In this article, we present the basic concepts
of metamorphic testing and introduce a range of its applica-
tions.

BASIC CONCEPTS OF METAMORPHIC TESTING
Metamorphic testing (MT) [5] is a technique to generate
follow-up test cases based on existing test cases that have
not revealed any failure. MT should be applied in conjunc-
tion with other test case selection strategies that generate the

initial set of test cases. Let us consider a programp im-
plementing functionf on domainD. Let S be the test case
selection strategy adopted by the tester, such as data flow
testing or branch coverage. According toS, a test setT =
{t1, t2, . . . , tn} ⊂ D, wheren≥ 1, can be generated. Run-
ning the program on T yields the outputs
p(t1), p(t2), . . . , p(tn). When there is an oracle, these test
results can be verified againstf (t1), f (t2), . . . , f (tn); oth-
erwise the tester may still have some way to identify some
outcomes that are obviously wrong. For example, an exe-
cution that runs too long can be considered a failure; when a
trigonometric function computing cosx returns a value greater
than 1, a failure can also be found immediately [18]. When a
failure has been detected, testing can stop and the program
will be debugged; otherwiseT is a set of successful test
cases. In the latter case, MT can be applied to automatically
generate follow-up test casesT ′ = {t ′1, t ′2, . . . , t ′n} ⊂ D
based on the initial successful test setT, so that the pro-
gram can be further verified against some necessary prop-
erties. MT is useful because the vast majority of test cases
are successful ones — although they have not revealed any
failure, these test cases do carry useful information ignored
in conventional testing.

MT generates follow-up test cases by making reference to
“metamorphic relations” (MR). For programp, an MR is a
property of its target functionf . The unique character of
MR is that it involvesmultiple executions. For example, if
f (x) = ex, then the propertyea × e−a = 1 is a typical MR.
Hence, for a successful test case, sayti = 0.3, metamorphic
testing generates its follow-up test caset ′i = −0.3 and then
runs the program again ont ′i . Finally, the relation of the two
outputs are checked against the expected relationp(0.3) ∗
p(−0.3) = 1. 1 If this identity does not hold, then a failure
is immediately detected. Like all the other testing methods,
however, the conditions checked by MT are necessary, but
may not be sufficient for program correctness.

Because MT checks the relations among several executions
rather than the correctness of individual outputs, MT does
not need an oracle and can be fully automated. This method-
ology has also been applied to fault-based testing without
oracles [8]. Further study has also been conducted in [11],
where an experimental MT framework is constructed.

In fact, identity relations likeex × e−x = 1 have long been
used in practice to test programs, especially in the area of
numerical computing (such as [9]). Apart from conventional
testing, identity relations have also been used for fault toler-
ance in run time [1]. The techniques ofprogram checker[3]
and self-testing / correcting[4] also intensively involve the
use of identity relations of the target function. Neverthe-
less, there are notable differences between these methods and
metamorphic testing. Firstly, MT can be used in conjunction
with other test case selection strategies, including both black-

1For floating point computation, some rounding error will be allowed.

2

and white-box testing strategies. When the initial test set has
not revealed any failure, MT can be used to further exploit
the useful information carried in the successful test casesto
generate follow-up accompanying test sets so that the pro-
gram can be verified further against necessary properties ef-
ficiently and automatically. Secondly, metamorphic relations
are not limited to identity relations. It includes inequalities,
subsumption relations, and convergence properties to namea
few.

APPLICATION OF MT TO NUMERICAL PROBLEMS

G1 G2

Figure 1: Metamorphic test cases

When testing numerical programs whose outputs are not easy
to verify, a frequently adopted approach is to use special or
simple values as inputs [18]. For example, when testing a
program computing the sine function, special values such as
0, π/4, π/2, etc., are always standard test cases. These spe-
cial or simple inputs, however, are not enough in building
people’s confidence in the correctness of their programs on
more complex and random inputs. We have done experiment
in [7], and found cases where errors could not be detected by
special values. When special-value testing is combined with
metamorphic testing, on the other hand, more subtle faults
can be revealed [7]. For example, a programp(x) for sine
function could compute correctly on a test casex0. How-
ever, with a follow-up test case generated based on the MR
sin(x+π) =−sin(x), a failure will be immediately detected
whenp(x0 +π) 6= −p(x0).

As discussed earlier, metamorphic relations are not limited to
identity relations. We would like to cite one of our examples
in [6] to illustrate how to use the convergence property to test
programs that solve partial differential equations. We usea
program adapted from [10] that solves the following thermo-
dynamic problem: For an insulated plate in rectangular shape
with homogeneous boundary temperatures along each edge,
we want to know the temperature of each point on the plate
after the heat potential has reached stability.

To solve this problem, the program uses the “alternating di-
rection implicit” method to solve the Laplace equation with
Dirichlet boundary conditions. We created a mutant of the
original program by replacing the correct statement

if (fabs (uMat[i][j] - vMat[j][i] > larg)
larg = fabs (uMat[i][j] - vMat[j][i]);

with

if (fabs (uMat[i][j] - uMat[j][i] > larg)
larg = fabs (uMat[i][j] - vMat[j][i]);

The above fault is quite subtle, and there is no oracle to test
this program. The mutant program gives identical outputs
as the correct program when running on 3× 3 and 7× 7
mesh grids. Both programs also return very close results on
15×15 mesh grids. In addition, we have also tested the pro-
gram on the following special inputs: (1) All the four edges
have an equal temperature; (2) Assign equal length to all the
edges and use symmetric boundary conditions. It is therefore
expected that the distribution of the temperatures should be
symmetric as well; (3) Use symmetric boundary conditions
wrt both thex- andy-axes, respectively. The test result is that
none of the above special values could detect a failure.

Now let us verify the program using metamorphic testing
method. The convergence property of the solutions can be
identified as a metamorphic relation [6]. For any given point
p, let TGi (p) denote its temperature calculated by the pro-
gram using a mesh gridGi . If we useGi , G j , and Gk to
denote any mesh grids, then the following metamorphic rela-
tion can be identified [6]:

Gi ⊂ G j ⊂ Gk →

TGi (p) ≤ min{TG j (p),TGk(p)} or

TGi (p) ≥ max{TG j (p),TGk(p)}.

The program is then tested against this MR. The temperatures
of the same 9 pointsp1, p2, . . . , p9 have been observed us-
ing mesh gridsG1, G2, . . . , G5, whereG1 ⊂ G2 ⊂ . . . ⊂
G5. For example, Figure 1 showsG1, G2, and the 9 points.
When we check the differences between the computed re-
sults against the MR, a failure can be detected easily as the
expected inequality is violated.

APPLICATION OF MT TO NON-NUMERICAL PROB-
LEMS
Metamorphic testing is not limited to numerical programs
only. In fact, metamorphic relations can be identified in al-
most every area. In this section, we shall give some but a few
examples to illustrate how to employ MT in non-numerical
areas.

Graph Theory
A lot of graph theory problems are combinatorial problems.
As a result, it is very expensive to verify the outputs when
the input graph is nontrivial.

Let us take the Shortest Path problem in an undirected graph
as an example. When the test case is a nontrivial graph
like that shown in Figure 2, there is no oracle efficiently

3

A

B

Figure 2: A nontrivial graph (Weights of edges are
omitted)

applicable to verify whether the returned setSAB, all short-
est paths betweenA and B found by the program, are in-
deed the shortest ones or whether this set is complete, where
SAB = {P1, P2, . . . , Pn} andn≥ 1.

In this situation, MT can help by checking the program against
selected MRs. A popular property that can be identified for
graph theory problems is permutation. IfG is the first test
case, then letG′ be a permutation ofG. Running the program
again onG′ should produce the same output as produced on
G.

Another MR can be identified as follows: Randomly select
an elementPi from SAB. Hence,Pi is supposed to be one of
the shortest paths fromA to B. Randomly select a vertexX in
pathPi . Then, run the program to get the shortest paths from
A to X and fromX to B, respectively. Suppose the outputs
areSAX andSXB, respectively. One of the expected MRs is
that, for any pathQ ∈ SAX and any pathQ′ ∈ SXB, the con-
catenation ofQ andQ′ must be an element inSAB.

Computer Graphics
When the outputs of a program involve a large amount of
data, they are expensive to verify. For example, computer
graphics software generates graphics and prints them on the
screen. It is, however, practically impossible for the tester
to manually check whether each and every pixel is displayed
properly. In this situation, a practical approach is that af-
ter checking the correctness of certain amount of individual
outputs, we apply MT to verify all the outputs in a more cost-
effective way as follows.

Figure 3 illustrates a graph generated by a realistic-graphics-
generation software. Note that this figure is simplified for
illustration purpose only. For the tester, it is not easy to ver-
ify whether all the pixels in the screen are displayed properly
because the generation of realistic graphics involves com-
plicated computation and there is a huge amount of pixels.
Nevertheless, some metamorphic relations can be identified.
For example, if the position of the light source changes, then
the brightness of all the points that become closer to the light
source will increase according to a certain formula; similarly,

Light
Source

Figure 3: Computer graphics

all the points that become farther will become darker. This
is an easy approach to check all the displayed pixels quickly
and automatically. Following this way, many other metamor-
phic relations can be identified as well.

Compilers
Testing compilers is tough. This is because the equivalence
between the source code and the object code is difficult to
verify. In this subsection, we give an example to illustrate
how to use MT to alleviate this problem.

Supposecp is a parallelizing compiler. Suppose we have the
following source code as a test case:

int a, b, c, d;
1 read(a, b);
2 c = a + 1;
3 d = 100;
4 d = d * b;
5 . . .

Even if we do not know whether the output object code is
correct, we can still identify metamorphic relations to test the
compiler. As a simple example, we can find that statement 2
and statements (3, 4) are independent of each other. Hence,
we can exchange their sequence to construct a follow-up test
case:

int a, b, c, d;
1 read(a, b);
2 d = 100;
3 d = d * b;
4 c = a + 1;

4

begin

Select prompt language

Enter user name

Enter password

Select service

Which key

is pressed?

Legal user?

Provide

service 1

Provide

service 2

End

Say “Good-bye”

Tried 3

times?

No

Yes

No

Yes

‘*’

‘1’ ‘2’

‘#’

Figure 4: A flowchart of automated telephone service

5 . . .

For the above source code, the parallelizing compilercpshould
detect identical parallelism as for the first one, and this can be
verified much more easily than the correctness of the object
code.

Interactive Software
For interactive software, the program inputs can be a serial
of user actions rather than static data. For example, when
testing an Internet browser, the test cases can be HTML files
and consecutive user actions as follows: Enter URL→ Click
“Item 1” → Click “Refresh”→ Click “Back” → Select menu
“File” → Select menu “Print”→ Click “OK” . . .

Metamorphic relations can be identified when testing interac-

tive software. In this situation, an MR is a relation among dif-
ferent sequences of user actions and their corresponding out-
puts. For example, Figure 4 shows an illustrative flowchart
for telephone transaction software. When users have dialed
in, they will need to select their preferred service language
first. Then they will enter their user name and password.
In case of a failure, they will have two more chances to try.
For legal users, they will be asked to select services: press
“1” for Service 1; press “2” for Service 2; press “*” to re-
peat the voice message, and press “#” to quit. For this kind
of software, many different combinations of user actions are
expected to produce the same results. For instance, a failed
followed by a successful login should be treated the same
as a successful login without a failure; doing something and
then cancelling it should be treated the same as quitting the
program in the beginning; performing Service 2 followed by
Service 1 in one dial-in should produce the same result as
performing the two transactions separately in two different
dial-ins in the same sequence; no matter how many times
the users press “*” when selecting services, the final results
should be the same . . . All these properties can be used as
metamorphic relations to test the program automatically.

CONCLUSION
This article has introduced the concepts and a wide range of
applications of metamorphic testing. The unique characterof
MT is that it does not require human involvement to gener-
ate follow-up test cases and verify the test results and, hence,
it can be fully automated. Because metamorphic relations
widely exist in both numerical and non-numerical areas, MT
is a practical approach applicable to the vast majority of real-
life applications. Also because this method can be combined
with any test case selection strategy, MT is a useful approach
for practitioners to further exploit their successful testcases.
As MRs are identified with regard to the specification, good
knowledge of the problem domain is necessary for an effec-
tive application of MT.

It should be noted that, because MT checks necessary rather
than sufficient properties, and also because it does not check
the correctness of individual outputs, pure MT is not enough
to establish confidence in the program’s correctness with re-
gard to the original specification. Hence, MT should be com-
bined with other testing methods such as special-value test-
ing to achieve the best results. In our future research, we
shall investigate how to select the most effective metamor-
phic relations when there is more than one candidate.

REFERENCES
1. Ammann, P. E. and Knight, J. C. Data diversity: an ap-

proach to software fault tolerance,IEEE Transactions on
Computers37 (4), 1988, pp. 418–425.

2. Beizer, B.Software Testing Techniques, Van Nostrand
Reinhold, New York, 1990.

3. Blum, M. and Kannan, S. Designing programs that check
their work, In Proceedings of the 31st Annual ACM

5

Symposium on Theory of Computing(STOC ’89), ACM
Press, New York, 1989, pp. 86–97. AlsoJournal of the
ACM, 42 (1), 1995, pp. 269–291.

4. Blum, M. Luby, M. and Rubinfeld, R.
Self-testing / correcting with applications to numerical
problems,Journal of Computer and System Sciences,
47 (3), 1993, pp. 549–595.

5. Chen, T. Y., Cheung, S. C., and Yiu, S. M. Metamor-
phic testing: a new approach for generating next test
cases, Technical Report HKUST-CS98-01, Department
of Computer Science, Hong Kong University of Science
and Technology, Hong Kong, 1998.

6. Chen, T. Y., Feng, J., and Tse, T. H. Metamorphic test-
ing of programs on partial differential equations: a
case study, InProceedings of the 26th Annual Interna-
tional Computer Software and Applications Conference
(COMPSAC 2002), IEEE Computer Society Press, Los
Alamitos, California, 2002, pp. 327–333.

7. Chen, T. Y., Kuo, F.-C., Liu, Y., and Tang, A. Meta-
morphic testing and testing with special values, InPro-
ceedings of the 5th International Conference on Soft-
ware Engineering, Artificial Intelligence, Networking,
and Parallel / Distributed Computing(SNPD 2004), In-
ternational Association for Computer and Information
Science, Mt. Pleasant, Michigan, 2004.

8. Chen, T. Y., Tse, T. H., and Zhou, Z. Q., Fault-based test-
ing without the need of oracles,Information and Soft-
ware Technology, 45 (1), 2003, pp. 1–9.

9. Cody, W. J., Jr. and Waite, W.Software Manual for the
Elementary Functions, Prentice Hall, Englewood Cliffs,
New Jersey, 1980.

10. Gerald, C. F. and Wheatley, P. O.Applied Numeri-
cal Analysis, Addison Wesley, Reading, Massachusetts,
1999.

11. Gotlieb, A. and Botella, B. Automated metamorphic
testing, In Proceedings of the 27th Annual Interna-
tional Computer Software and Applications Conference
(COMPSAC 2003), IEEE Computer Society Press, Los
Alamitos, California, 2003, pp. 34–40.

12. Hailpern, B. and Santhanam, P. Software debugging,
testing, and verification,IBM Systems Journal41 (1),
2002, pp. 4–12.

13. Hamlet, D. Predicting dependability by testing, InPro-
ceedings of the ACM SIGSOFT International Symposium
on Software Testing and Analysis(ISSTA 1996), ACM
Press, New York, 1996, pp. 84–91.

14. Howden, W. E. Reliability of the path analysis testing
strategy, IEEE Transactions on Software Engineering
SE-2, 3, 1976, pp. 208–215.

15. Manolache, L. I. and Kourie, D. G. Software testing us-
ing model programs,Software: Practice and Experi-
ence, 31 (13), 2001, pp. 1211–1236.

16. Morell, L. J. A theory of fault-based testing,IEEE Trans-
actions on Software Engineering, 16 (8), 1990, pp. 844–
857.

17. Myers, G. J.The Art of Software Testing, Wiley, New
York, 1979.

18. Weyuker, E. J. On testing non-testable programs,The
Computer Journal, 25 (4), 1982, pp. 465–470.

6

