
Fitting B-Spline Curves to Point Clouds by

Squared Distance Minimization

Wenping Wang1, Helmut Pottmann2, Yang Liu1

1 Department of Computer Science, The University of Hong Kong, Hong Kong SAR, China
2 Geometric Modeling and Industrial Geometry, Vienna University of Technology, Austria

Abstract

Computing a curve to approximate data points is a problem encountered frequently in many
applications in computer graphics, computer vision, CAD/CAM, and image processing. We
present a novel and efficient method, called squared distance minimization (SDM), for computing
a planar B-spline curve, closed or open, to approximate a target shape defined by a point
cloud, i.e., a set of unorganized, possibly noisy data points. We show that SDM outperforms
significantly other optimization methods used currently in common practice of curve fitting. In
SDM a B-spline curve starts from some properly specified initial shape and converges towards
the target shape through iterative quadratic minimization of the fitting error. Our contribution
is the introduction of a new fitting error term, called the squared distance (SD) error term,
defined by a quadratic approximant of squared distances from data points to a fitting curve.
The SD error term measures faithfully the geometric distance between a fitting curve and a
target shape, thus leading to faster and more stable convergence than the point distance (PD)
error term, which is commonly used in computer graphics and CAGD, and the tangent distance
(TD) error term, which is adopted in the computer vision community. To provide a theoretical
explanation of the superior performance of SDM, we formulate the B-spline curve fitting problem
as a nonlinear least squares problem and conclude that SDM is a quasi-Newton method, which
employs a carefully chosen positive definite approximant to the true Hessian of the objective
function. Furthermore, we show that the method based on the TD error term is a Gauss-Newton
iteration which is unstable for target shapes with corners, whereas optimization based on the
PD error term is the alternating method that is known to have linear convergence.

Keywords: Curve fitting, Squared distance minimization, nonlinear least squares, B-Spline
curve, unorganized point cloud

1 Introduction

We consider the following problem: Given a set of unorganized data points Xk, k = 1, 2, . . . , n, in
the plane, compute a planar B-spline curve to approximate the points Xk. The data points Xk are
assumed to represent the shape of some unknown planar curve, which can be open or closed, but
not self-intersecting; this curve is called a target curve or target shape. We suppose that unorganized

1

Administrator
 HKU CS Tech Report TR-2004-11

data points, often referred to as a point cloud or scattered data points in the literature, may have
non-uniform distribution with considerable noise; this assumption makes it difficult or impossible to
order data points along the target curve. Hence, we assume that such an ordering is not available.

The above problem can be formulated as a nonlinear optimization problem as follows. Consider
a B-spline curve P (t) =

∑m
i=1

PiBi(t) with control points Pi. We suppose that the order and the
knots of the B-spline curve are fixed, so they are not subject to optimization. Given data points
Xk, k = 1, 2, . . . , n, we want to find the control points Pi, i = 1, 2, . . . , m, such that the objective
function

f =
1

2

n∑

k=1

d2(P (t), Xk) + λfs (1)

is minimized, where d(P (t), Xk) = mint ||P (t) − Xk|| is the distance of the data point Xk to the
curve P (t), fs is a regularization term to ensure a smooth solution curve and λ is a positive constant
to modulate the weight of fs. Here the distance d(P (t), Xk) is measured orthogonal to the curve
P (t) from Xk. The exceptional case where the shortest distance from Xk to an open curve P (t)
occurs at an endpoint of P (t) will be discussed separately in Section 5.

We present a novel solution to the present problem that approximates unorganized data points
with a B-spline curve that starts with some properly specified initial curve and converges through
iterative optimization towards the target shape of data points. Our contribution is the introduction
of a novel error term defined by a quadratic approximant of squared distances from data points to
the fitting curve. Therefore, this new error term is called the squared distance error term or SD
error term, and the resulting iterative minimization scheme will be referred to as squared distance
minimization or SDM. Because the SD error term measures faithfully the geometric distance be-
tween data points and the fitting curve, SDM converges fast and stably, in comparison with other
commonly used error terms, as will be discussed shortly.

The remainder of the paper is organized as follows. We first review related previous work.
Then we introduce the SD error term, outline our SDM method, and use some test examples to
show the superior performance of SDM in comparison with two other commonly used methods
— point distance minimization (PDM) and tangent distance minimization (TDM). We shall also
discuss the B-spline curve fitting problem from the viewpoint of optimization to provide insights
into the superior performance of SDM. We shall show that SDM is, in fact, a quasi-Newton method
which employs a carefully chosen positive definite approximant to the true Hessian of the objective
function. We shall also show that TDM is a Gauss-Newton method. Furthermore, PDM is, in
fact, the alternating method for solving a separable problem and is known to have only linear
convergence [1, 33]. This systematic study of the relationship between these curve fitting methods
and standard optimization techniques is another contribution of our work.

2

2 Related Work

2.1 Spline curve fitting techniques

Fitting a curve to a set of data points is a fundamental problem in graphics (e.g. [7, 23, 25, 29, 35])
and many other application areas. Instead of attempting a comprehensive review, we shall only
discuss some main results in the literature to provide a background for our work.

Let Xk ∈ R2, k = 1, 2, . . . , n, be unorganized data points representing a target shape, which is to
be approximated by a closed or open planar B-spline curve P (t) =

∑m
i=1

Bi(t)Pi, where the Bi(t)
are the B-spline basis functions of a fixed order and knots, and the Pi are the control points. Since
f in Eqn. (1) is a nonlinear objective function, iterative minimization comes as a natural approach.
Many existing B-spline curve fitting methods invoke a data parameterization procedure to assign a
parameter value tk to each data point Xk; in some methods dealing with ordered data points, the
chord length method or the centripetal method [4,13,17] are used for data parameterization. Then
the function

f̂ =
1

2

∑

k

||P (tk) − Xk||
2 + λfs, (2)

which is a local model of f in (1), is minimized to yield updated control points Pi, and hence the
fitting curve P (t). Since f̂ is quadratic in the Pi, f̂ can easily be minimized by solving a linear
system of equations.

Hoschek [12] proposes an iterative scheme, called intrinsic parametrization, to assign parameter
values tk to data points Xk. Here, with some initial fitting curve P (t) that roughly matches the
shape of input data points, each tk is computed by finding the closest point from the data point
Xk to the current curve P (t); this closest point is also called the foot point of Xk. (Note that only
an approximate formula is used in [12] to obtain the parameter value tk of the foot point. Recently
the foot point computation is carefully studied and improved in [31].) Then with the known tk, the
same function in Eqn. (2) is minimized to get the updated fitting curve P (t). These two steps of
data parameterization and minimization are performed iteratively until convergence is attained.

We note that the error term ||P (tk) − Xk||
2 in (2) measures the squared distance between the

data point Xk and a particular point P (tk) on the fitting curve; therefore, we call this error term
the point distance error term or the PD error term, and denote it by

ePD,k = ||P (tk) − Xk||
2. (3)

(The PD error term is illustrated in Figure 1.) Accordingly, the intrinsic parameterization method
by Hoschek [12] will be called point distance minimization, or PDM for short. Note that, since the
ordering of data points is not required for data parameterization via foot point projection, PDM
is applicable to fitting a curve to a point cloud.

PDM or its simple variants are the most commonly applied method for curve fitting in computer
graphics and CAD [7, 12, 24, 25, 31]. The same idea of PDM is also widely used for surface fitting
[3,5,8–11,19,20,34,36,37], with B-spline surfaces as well as other types of surfaces. The popularity

3

of PDM might be explained by the fact that the error term ePD,k is derived by simply substituting tk
in the squared distance d2(P (t), Xk) in the original objective function f in (1). However, considering
that P (tk) is a variable point depending on the variable control points, we shall see that ePD,k is
a rather poor approximation to d2(P (t), Xk), thus causing slow convergence. As a matter of fact,
the present paper is just about how to use a better approximation of d2(P (t), Xk) to devise a more
efficient optimization scheme. Figure 4 shows the slow convergence of PDM in comparison with
SDM, the new method we are going to propose.

Another error term, used in the computer vision community (e.g. [2]), is defined by

eTD,k = [(P (tk) − Xk)
T Nk]

2, (4)

where Nk is a unit normal vector of the curve P (t) at the point P (tk). We shall call eTD,k the
tangent distance error term or the TD error term, since it measures the squared distance from Xk

to the tangent of the curve P (t) at P (tk). The TD error term is illustrated in Figure 2. Note that
Nk is fixed and thus not subject to optimization.

The TD error term eTD,k = [(P (tk) − Xk)
T Nk]

2 can also be used in combination with data
parametrization via projection to yield a B-spline curve fitting method, as used in [2] for boundary
extraction in motion tracking. We shall call this method tangent distance minimization or TDM.
TDM minimizes in each iteration the function

fTD =
1

2

∑

k

eTD,k + λfs. (5)

Hence, treating the control points Pi as variables to be optimized, the TD error term measures the
squared distance from the point Xk to a moving straight line Lk that has the fixed normal vector
Nk and passes through the moving point P (tk). See Figure 3.

The TD error eTD,k = [(Xk − P (tk)) · Nk]
2 becomes zero if the point Xk is contained in the

line Lk. On the other hand, the line Lk is a relatively poor approximation to the curve P (t) in a
neighborhood of a high-curvature point P (tk) or if Xk is far from P (tk). Hence, in these cases, the
point Xk may be poorly approximated by the curve P (t) even if Xk is nearly on Lk, i.e. when the
TD error [(Xk − P (tk)) · Nk]

2 is nearly zero (see Figure 3). This disparity between approximation
quality and error measurement tends to cause the instability of TDM near a high-curvature part
of the target shape, as will be illustrated later with our test examples. This unstable behavior of
TDM is, in fact, the consequence of using an inappropriately large step size to solve a nonlinear
optimization problem; indeed, we shall show that TDM is a Gauss-Newton method for solving a
nonlinear least-squares problem and its excessively large step size is due to omission of important
curvature related parts in the true Hessian.

Now let us consider the geometric interpretations of the PD error term and the TD error term.
If P (tk) is fixed foot point on P (t) of Xk, then both ePD,k and eTD,k give the same value of
d2(P (tk), Xk). However, for optimization purpose, we need to regard d2(P (tk), Xk) as a function of
the variable control points Pi, and in this sense ePD,k and eTD,k give very different approximations
to d2(P (tk), Xk).

4

If treating Xk as a free point, for any constant c > 0, the iso-value curve ePD,k ≡ ||X−P (tk)||
2 = c

of the PD error term is a circle (see Figure 1), and the iso-value curve eTD,k ≡ [(Xk−P (tk)·Nk]
2 = c

of the TD error term is a pair of parallel lines, which can be regarded as a degenerate ellipse (see
Figure 2). Since PDM has relatively slow convergence, and TDM tends to have fast but unstable
convergence, one may speculate whether or not a new error term with elliptic iso-value curves can
be devised to yield a more balanced performance between efficiency and stability. We shall see that
such an error term is naturally provided by a second order approximation to the squared distance
function.

2.2 Quadratic approximation to squared distance function

Given a curve or surface C, one may associate with it the squared distance function, which assigns
to each point X the square of its shortest distance to C. It has been shown recently how to compute
local quadratic approximants of the squared distance function, and how to use these approximants
to solve a number of geometric optimization problems [26]. We now review briefly this work. Let
O be the closest point on a second-order differentiable curve C to a fixed point X0 (see Figure 5).
Consider the local Frenet frame of C with its origin at O and its two coordinate axes being the
tangent vector and the normal vector of the curve C at O. Let ρ > 0 be the curvature radius of C
at O; we use an orientation of the curve normal such that K = (0, ρ)T is the curvature center of
C at O. Let d be the signed distance from X0 to O, i.e. |d| = ||X0 − O|| with d < 0 if X0 and K
are on opposite sides of the curve C, and d > 0 if X0 and K are on the same side of C. We note
that there is always d < ρ when d > 0, for otherwise O cannot be the closest point on the curve C
to X0. Consider a point X = (x, y)T in a neighborhood of X0 in the local Frenet frame. Then the
second order approximant of the squared distance from X to the curve C is [26]

f0(x, y) =
d

d − ρ
x2 + y2. (6)

Geometrically, the conic section f0(x, y) = d2 has second order contact with the offset curve of the
target curve C that passes through X0.

Since f0(x, y) in (6) is indefinite when 0 < d < ρ, the unified expression

f̂0(x, y) =
|d|

|d| + ρ
x2 + y2 (7)

is used in [27] as a positive semi-definite quadratic error term for solving geometric optimization
problems. Note that, with this modification to (6) in the case of 0 ≤ d < ρ, f̂0(x, y) is only a first
order approximation to the squared distance function to C in a neighborhood of X0.

The above approximant of squared distance is used in [27] for fitting a B-spline curve to a smooth
target curve as follows. Given a target curve to be approximated and some initial B-spline curve
P (t) with control points Pi, a set of densely distributed points Sk, called sensor points, are first
sampled on P (t). Then the approximate squared distance fk(Sk) defined by (7) from each sensor

5

point Sk to the fixed target curve is computed. One next needs to determine unknown incremental
updates Di to the current control points Pi so that the B-spline curve with the updated control
points Pi + Di approximates the target curve more closely. Since fk(Sk) is quadratic in Sk and
each Sk is a linear combination of the control points Pi + Di,

ek ≡ fk(Sk(P1 + D1, P2 + D2, . . . , Pn + Dn))

is quadratic in the Di. Supposing that the regularization term fs is also quadratic in Di, the
objective function f = 1

2

∑
k ek + λfs can then be minimized efficiently by solving a linear system

of equations to determine the updates Dk. The above optimization is iterated to make the fitting
curve P (t) move towards the target curve. The squared distance is an appropriate error metric for
shape approximation since it measures the distance from a sensor point to the target curve, rather
than the distance from a sensor point to a particular point on the target curve, as in PDM. Note
that the above curve fitting scheme is applicable to a smooth target curve but is unsuitable for a
point cloud because of its difficulty in computing accurate tangent and curvature of a target shape
defined by noisy or sparsely distributed data points.

3 Fitting a B-spline Curve to a Point Cloud Using SDM

In this section we introduce the SD error term defined by a quadratic approximant of squared
distance function and outline its application to fitting a B-spline curve to a point cloud. We
emphasize that the new SD error term is defined by the squared distance function of the B-spline
fitting curve, rather than that of the fixed target shape. In other words, we measure the fitting error
as defined in Eqn.(1), namely orthogonal to the fitting curve. This is different from the method
used in [27] (or see Section 2.2), where errors are measured orthogonal to the fixed target curve and
therefore also a different objective function is minimized. Our new SD error term leads to a new
approach to fitting a B-spline curve to a point cloud. Because of its use of an approximant of the
squared distance function, our proposed method will be referred to as squared distance minimization
or SDM.

3.1 A new quadratic approximation to squared distance

Given a B-spline curve P (t) =
∑m

i=1
Bi(t)Pi with control points P = (P1, P2, . . . , Pm), let D =

(D1, D2, .., Dm) be the variable incremental updates to give the new control points P + D. Let
PD(t) =

∑m
i=1

Bi(t)(Pi +Di) denote the B-spline curve with updated control points. For each data
point Xk, define its corresponding parameter value tk by finding the closest point P (tk), called
the foot point, on the B-spline curve P (t). Let d be the signed distance from Xk to P (tk), i.e.
|d| = ||P (tk) − Xk||, with the assumption on its sign being the same as made in Section 2.2. Let
T̃k and Ñk be the unit tangent vector and the unit normal vector of the curve PD(t) at the point
PD(tk). Let ρ̃ denote the curvature radius of PD(t) at PD(tk). With the fixed tk, when the control
points P are changed by D, using the approximant obtained in [26] (see Section 2.2) expressed in

6

the global coordinate frame, it is easy to see that the second-order approximant of the squared
distance from Xk to the curve PD(t) is

h̃k(D) =
d

d − ρ̃
[(PD(tk) − Xk)

T T̃k]
2 + [(PD(tk) − Xk)

T Ñk]
2. (8)

The function h̃k(D) has, in general, a complicated expression in D, since PD(tk), T̃k, Ñk and
ρ̃ all depend on the variable control points P + D. (See Figure 6 for an illustration of h̃k(D)).
In order to obtain a quadratic error term that is positive semi-definite, some simplification has to
be made to h̃k(D). Among several possibilities, balancing simplicity and accuracy, we adopt the
scheme of letting only the point PD(tk) vary with D and fixing T̃k and Ñk and ρ̃, i.e. as if D = 0.
This simplifies h̃k(D) into the quadratic function

hk(D) =
d

d − ρ
[(PD(tk) − Xk)

T Tk]
2 + [(PD(tk) − Xk)

T Nk]
2, (9)

where Tk and Nk are respectively the unit tangent vector and the unit normal vector of the curve
P (t) at the point P (tk), and ρ is the curvature radius of P (t) at P (tk). That is, Tk, Nk, and ρ do
not vary with D.

Note that hk(D) may take a negative value when 0 < d < ρ̃. In order to obtain a positive
semi-definite error term, based on hk(D), we define the SD error term as

eSD,k(D) =

{
d

d−ρ [(PD(tk) − Xk)
T Tk]

2 + [(PD(tk) − Xk)
T Nk]

2, if d < 0,

[(PD(tk) − Xk)
T Nk]

2
, if 0 ≤ d < ρ,

(10)

Clearly, eSD,k(D) is a positive semi-definite quadratic function of D in all cases. Note that, in the
case of 0 ≤ d < ρ, eSD,k is only a first order approximation to the squared distance function.

When d < 0, the level-set curve of eSD,k(D) = c is an ellipse centered at the point PD(tk), if
the Xk is treated as a variable point. When the control points Pi change, the ellipse is translated
by keeping its center at PD(tk) but with its shape, size and orientation remaining unchanged (see
Figure 7). Note that the SD error term eSD,k becomes the TD error term eTD,k if 0 ≤ d < ρ, i.e.
when the data point Xk is sufficiently near P (tk) (relative to the magnitude of ρ) and Xk is on the
convex side of the curve P (t) (i.e. Xk and the curvature center K are on the same side of the curve
P (t)). The use of the TD error term here will not cause instability, since in this case the tangent
line is a relatively good approximation to the curve P (t) in a neighborhood of P (tk).

3.2 Main steps of SDM

The main steps of the SDM method are as follows.

(1) Specify a proper initial shape of a B-spline fitting curve.

7

(2) Compute SD error terms for all data points to obtain a local approximation fSD of the
objective function f , defined by

fSD =
1

2

∑

k

eSD,k + λfs.

(3) Solve a linear system of equations to minimize fSD to obtain an updated B-spline curve.

(4) Repeat steps 2 and 3 until convergence, e.g. until a pre-specified error threshold is satisfied
or the incremental change of the control points falls below a preset threshold.

4 Experiments and Comparison

In this section we use some test examples to compare SDM with PDM and TDM for fitting a closed
B-spline curve to unorganized data points in the plane. The quadrtic function to be optimized in
each iteration has the form

f =
1

2

n∑

k=1

ek + αF1 + βF2, (11)

where ek is defined by a particular error term (PD, TD, or SD) for data point Xk, and F1 and F2

are energy terms defined by

F1 =

∫
‖P ′(t)‖2dt, F2 =

∫
‖P ′′(t)‖2dt, (12)

and α, β ≥ 0 are constants. In our implementation F1 and F2 are integrated explicitly without
numerical approximation.

For a fixed B-spline fitting curve P (t), the Euclidean distance from data point Xk to P (t) is
denoted by dk. Then, for evaluating the approximation error, we define the average error

Error Ave =

[
1

n

n∑

k=1

d2
k

]1/2

,

and the maximum error
Error Max =

n
max
k=1

{dk}.

We present below the results of applying the three methods – PDM, TDM, and SDM – to fitting
a cubic B-spline curve with uniform knots to several sets of unorganized data points. The same
values of energy coefficients α = 0 and β = 0.001 are used for all the examples in this section,
unless specified otherwise. In some examples we use an initial shape that is quite different from the
target shape in order to compare the abilities of different methods in converging to an acceptable
minimum.

8

For some of the test examples shown below, we place the fitting curves generated in successive
iterations at successive heights to form an evolution surface to show the evolution of an iterative
optimization process under consideration (PDM or SDM). Data points or a subset of them are
displayed at the top of an evolution surface. A striped texture is used to depict the trajectories
of points of fixed parameter values on the fitting curve. The trajectories of control points are also
shown. Log scale (base-10) is used for the height axis in these figures to accommodate for the large
number of iterations needed by PDM. For size reference, a base square of size 2.2 × 2.2 is shown
along with these evolution surfaces.

Example 1 Non-uniform data points on a circle. (Refer to Figure 8.) TDM and SDM converge
with roughly the same speed, and both of them converge much faster than PDM does, as shown in
Figures 8(e) and (f). The evolution surfaces in Figure 9 show that PDM takes about 100 iterations
to reach the same small error values that is produced by SDM in less than 10 iterations. Close
inspection on Figure 9(b) reveals slight rotation of the fitting curves generated by SDM, which is
due to the non-uniqueness of a minimizer, since an optimal fitting curve is nearly invariant under
rotation for data points on a circle.

Example 2 (Refer to Figure 10.) For this set of data points, SDM again converges much faster than
PDM does, while TDM is trapped in a local minimum, producing a curve with self-intersection.
The evolution surfaces formed by the curves generated by PDM and SDM are shown in Figure 11,
viewed from two different directions.

Example 3 (Refer to Figure 12.) After three iterations, the fitting curve generated by SDM already
reaches a much smaller error than the curve generated by PDM and TDM. Furthermore, TDM
becomes divergent after 40 iterations. The evolution surfaces for PDM and SDM are shown in
Figure 13.

Example 4 (Refer to Figure 14.) This set of data points is extremely noisy. After 50 iterations,
SDM has already produced an acceptable result, but PDM is still converging slowly and TDM
becomes unstable.

Example 5 (Refer to Figure 15.) The difficulty with this test lies in the corner points of the target
shape and the highly non-uniform distribution of the control points of the initial B-spline curve.
After 20 steps of iteration, PDM is trapped in an unacceptable local minimum and TDM becomes
divergent, while SDM converges successfully. The most remarkable property of SDM demonstrated
in this example is its strong tangential flow responsible for re-distributing clustered control points
over the target shape to well approximate the four corner points.

Example 6 (Refer to Figure 16.) PDM is trapped in a local minimum and stops improving after
four iterations (see Figure 13(a)). TDM does not converge for this data set. For SDM, the stable
convergence begins to set in after 30 iterations. The radical reduction of the fitting error of SDM
at iteration 30 is caused by a large tangential displacement of the control points, as shown by the
evolution surface in Figure 13(b). The coefficients α = 0 and β = 0.00001 are used in this example.

9

The six examples presented above are selected from numerous examples which we have experi-
mented with. The following observations can be made from our experiments.

1) PDM exhibits the slowest convergence among the three methods, and is often trapped at a
poor local minimum. Our experiments confirm the theoretical conclusion that PDM has, in
general, only linear convergence. This is further explained in Section 6.

2) TDM demonstrates fast convergence when the target shape is not so noisy (i.e. representing
a small-residue problem) and the fitting curve is relatively near the target shape (i.e. |d| ≤ ρ),
but often becomes unstable or even develops self-intersection in a high curvature region of
the target shape or if the fitting curve is relatively far from the target shape. Increasing the
value of the energy coefficient β in (11) may improve the stability of TDM, as well as the
fairness of the fitting curve, but often at the expense having to accept a larger fitting error.

3) SDM exhibits much faster convergence than PDM does. The convergence of SDM is about
as fast as that of TDM; moreover, SDM is much more stable than TDM, since TDM often
does not converge at all for target shapes with shape features. This is mainly due to the fact
that TDM is a Gauss-Newton method without step size control. We shall discuss this in more
detail in Section 6.

4) The iso-value curves of the SD error term are ellipses aligned with the tangent at a point of
the fitting curve. Therefore, at a low-curvature region of a B-spline fitting curve, the control
points of the fitting curve, as well as points on the fitting curve, can flow in the tangential
direction to attain a better distribution without causing much penalty from the SD error
term. Meanwhile, as desired, such a flow is dampened at a high-curvature region due to the
role played by the curvature radius ρ in the SDM error formula. As a comparison, tangential
flow of control points is inhibited by the PD error term, causing stagnant improvement. In
contrast, this tangential flow is checked nowhere by the TD error term, since the TD error
term ignores curvature variation on the fitting curve, thus leading to unstable convergence in
the presence of corner points in the target shape.

The ease of implementation and per-iteration computation time of SDM are nearly the same as
those of PDM and TDM, since the three methods share the same framework but only with different
quadratic error terms. The per-iteration computation time of SDM is mainly determined by the
number of data points. The dominant part of computation time is the computation of foot points
of all data points in each iteration. For example, for the set of 1,630 data points used in Example 4,
computation of each iteration takes about 0.15 seconds on a PC with Pentium IV 2.4GHz CPU
and 256 MB RAM, with over 95% of this time spent on foot point computation.

5 Implementation Issues

In this section we discuss the following implementation issues for facilitating the convergence or
improving the computational efficiency of SDM: 1) initial shape specification; 2) insertion and

10

deletion of control points; 3) fast computation of error terms; and 4) adapting SDM to fit an open
B-spline curve to data points.

5.1 Initial shape specification

Although SDM has better convergence behavior than PDM or TDM, it is still a scheme based on
iterative local optimization. Therefore, there is no guarantee of convergence to a global optimum
by using SDM. In fact, like PDM and TDM, the success of using SDM to obtain an optimal
approximation depends on the choice of the initial B-spline curve. While a simple initial curve may
work well for relatively simple target shapes, for a complex target shape, an initial shape roughly
matching the target shape is necessary for stable convergence. Given a complex target shape, we
first use a quad-tree cell partition to obtain a collection of connected cells of possibly different sizes
that cover the data points (see Figure 18). Then a sequence of feature points of these covering cells
are used as the control points of an initial B-spline curve.

Note that the union of all the covering cells should be topologically equivalent to the target
curve. This is ensured by determining the cell sizes by the sampling density of the data points
and the sizes of features in the target shape. Specifically, the cell sizes should be large enough to
ensure cell connectivity when data sampling density (1/d in Figure 18) is small, and they should be
sufficiently small so that features of the target shape are preserved; for example, the gap of width
f in Figure 18 must not be filled.

We assume that the target shape is a simply connected curve or an open curve without self-
intersection; fitting target shapes with self-intersection is possible only if an appropriate initial
shape is specified using more a priori knowledge about the target shape.

As an alternative to our approach, one could certainly also use the approach based on minimum
spanning tree as in [18] to specify an initial B-spline curve.

5.2 Control point insertion and deletion

The number of control points of a fitting curve may be inadequate or redundant for achieving a
pre-specified approximation accuracy. The inadequacy can be caused by the use of an initial shape
that is too simple for the target shape, while the redundancy may be a problem when the initial
polygon is generated by the procedure described in Section 5.1. When there are not enough control
points, more control points need to be inserted to provide sufficient degree of freedom of a B-spline
curve in order to achieve the desired approximation accuracy. When there are redundant control
points, some control points need to be deleted in order to yield a compact B-spline fitting curve.

Control point insertion and deletion for a B-spline curve is studied in [38], though in a slightly
different context. A method similar to the one in [38] is used in our implementation.

11

5.3 Fast setup of error terms

Efficient computation of foot points on the fitting curve of data points is important, especially in
the case of a large number of data points, since an error term needs to be computed for each of
these points in every iteration. We use the following speedup method consisting of two phases:
preprocessing and query. In preprocessing we first sample a sufficient number of points on the
fitting curve and compute the normal lines of the fitting curve at all the sample points. Then we
record the intersections between these normal lines and all non-empty quad-tree cells generated in
the preceding step of specifying an initial fitting curve (see Figure 19). In the query phase, for
a data point, X0 say, we find its covering cell and the two normal lines closest to X0. Let the
two normal lines be associated with parameter values t1 and t2 of the fitting curve. Let d1 and d2

denote the distances from X0 to the two lines. Then a good estimate P (t̃0) of the foot-point of X0

is given by the linear interpolation t̃0 = (d2t1 + d1t2)/(d1 + d2). The point P (t̃0) is then used as an
initial point in a Newton-like iterative procedure to find the foot point P (t0) of X0.

Figure 20 shows an example of using SDM and PDM to fit a B-spline curve to the contour of a
Chinese character “Tian”, meaning sky. In this example, the procedures described in subsections 5.1
to 5.3 are used. Again we see that, to achieve the same level of approximation error, PDM needs
more control points and more iterations to produce a fitting curve than SDM does. In this example,
PDM does not reach the same local minimum of SDM, explaining why different numbers of control
points might be needed by PDM and SDM. Our test showed that TDM fails to converge for this
example, because the font outline has a number of high curvature feature points.

5.4 Fitting an open B-spline curve

SDM can also be used to fit an open curve to a point cloud that represents an open target curve,
with some necessary modifications to ensure that the endpoints of the fitting curve are properly
determined. We assume that the target curve is not self-intersecting and that a proper initial shape
of an open fitting curve is provided. The data points near an end of the target curve are called
target endpoints. There are two cases to consider: Case 1: some data points cannot be projected
to inner points of the fitting curve, and such points are called outer data points with respect to the
fitting curve under consideration. Case 2: all data points can be projected to inner points of the
fitting curve. In the first case, the error term associated with an outer data point is derived by
interpolation of the SD error term and the PD error term. Specifically, referring to Figure 21, let
T0 be the unit tangent vector of the fitting curve P (t) at its endpoint P0. Let X0 be an outer point
such that P0 is the closest point from the curve P (t) to X0. Let θ denote the angle between the
tangent line of the curve P (t) at P0 and the vector X0 − P0, with |θ| < π/2. Then the error term
used eouter,0 for X0 is given by the following interpolation of the PD error term and SD error term,

eouter,0 = cos θ ePD,0 + (1 − cos θ)eSD,0. (13)

Here P0 is regarded as a function of the control points. The rationale behind the interpolation in (13)
is to use the PD error term partially for outer data points so that, through iterative optimization,

12

the endpoint P0 of the fitting curve is pulled towards the target endpoints; of course, the SD error
terms are still used for all other non-outer points. Note that the outer points in a target shape are
identified relative to the current fitting curve; therefore we may have different data points as outer
points in every iteration.

In the second case the initial fitting curve is longer than the target shape. In this we just use the
standard SDM method — that is, use the SDM error term for each data point, to make the fitting
curve to contract to fit the target shape. A non-zero but small value of α for the energy term F1 in
(12) may also be used to speed up the speed of contraction. We note that, when the initial shape is
specified by the quad-tree partition approach in Sections 5.1, it suffices to just follow the procedure
in case (1) to produce a satisfactory fitting curve.

We are going to present two examples of fitting open B-spline curves to data points, using the
technique described above, in combination with SDM and PDM. The first example is shown in
Figure 22. We note that, in this example, PDM takes about 600 iterations to reach the same
approximation error that is achieved by SDM in 20 iterations. This is again due to the strong
tangential flow of B-spline control points that is accommodated by the SDM error term. We note
that TDM works well for this example as well.

The second example, shown in Figure 23, is an application to reconstructing a revolution surface
from a point cloud scanned in by a laser range scanner, following a method proposed in [28]. The
basic idea is as follows. First, the rotation axis of the revolution surface is estimated, and this axis
is used to rotate the input data points in 3D (Figure 23(a)) into data points lying on a 2D plane
(Figure 23(b)), from which the profile curve is to be reconstructed. Here we use SDM to fit an
open B-spline curve to the 2D data points shown in Figure 23(b), and then use this B-spline curve
to generate a revolution surface approximating the input 3D data points shown in Figures 23(c)
and (d).

6 Discussion from the Viewpoint of Optimization

In this section we discuss SDM, as well as PDM and TDM, for B-spline curve approximation from
the viewpoint of optimization. The B-spline fitting problem, as formulated in (1), can also be seen
as the nonlinear optimization problem of minimizing

f =
1

2

n∑

k=1

||P (tk) − Xk||
2 + λfs, (14)

where P (tk) is a normal foot point of Xk, i.e.,

(P (tk) − Xk)
T P ′

t(tk) = 0, k = 1, 2, . . . , n. (15)

This viewpoint will be helpful in the computation of gradient and Hessian of the objective function
f . For simplicity of discussion, in the following we will ignore the regularization term fs; our
conclusion is still applicable with fs being taken into consideration, since fs is independent of the

13

tk and is quadratic in the Pi, assuming that λ is a fixed constant throughout all iterations. We
note that the present problem of curve fitting is a nonlinear least squares problem.

We now explain why PDM is a variant of the steepest descent method, and therefore has a linear
convergence rate. Given a planar B-spline fitting curve P (t) with control points Pi and data points
Xk, PDM minimizes the error function f(P, T) defined by (14), which is a function in the Euclidean
space E2m+n spanned by P and T , where P = {Pi}

m
i=1 are the control points of the fitting curve

and T = {tk}
n
k=1

are the parameter values associated the data points Xk.

PDM has the following two steps that are carried out in each iteration (see Figure 24): (1) For
fixed parameter values T0 = {tk,0} and current control points P0 = {Pi,0}, find new control points
P1 = {Pi,1} by minimization of the quadratic function f(P, T0). This is done by solving a linear
system of equations; (2) Considering the control points P1 produced in step 1 as fixed, find new
parameter values T1 = {tk,1} by minimization of the error function f(P1, T). This is done by
computing the foot points P (tk) of the data points Xk on the fitting curve P (t) with the control
points P1.

Due to the separate and alternate minimization of the P and T variables in each iteration, PDM
is an alternating method, which is a typical optimization technique for solving a separable nonlinear
least squares problem and is known to have only linear convergence [1, 33]. Figure 24 shows the
zigzag behavior of PDM near a local minimum, which is reminiscent of the crawling behavior of
the gradient descent method.

We shall investigate the standard algorithms for nonlinear least squares problems, namely Gauss-
Newton iteration and the Levenberg-Marquart method [15], in connection with TDM. We shall
show that Gauss-Newton based on variable projection [1] is exactly the same as TDM, which is
used in [2]. From this we conclude on scenarios where TDM works well: small residual problems
(data points are close to the solution curve) and a good initial position of the fitting curve; for
a zero residual problem, optimization theory tells us that this method exhibits even quadratic
convergence. Levenberg-Marquart is seen as a regularized version of TDM.

Our SDM scheme is finer than these standard methods (i.e. gradient descent and Gauss-Newton)
for solving a nonlinear least squares problem. Although SDM is not a full Newton method because
we do not compute the complete Hessian, it comes close to it; in SDM we approximate the com-
plete Hessian by simply approximating the squared distance to a fitting curve, thus making SDM
adaptable to local curvature variation.

In fact, all the methods above can be seen as gradient descent schemes in some metric. Whereas
SDM chooses carefully the metric and TDM does this at least close to the target shape, PDM uses
a metric which is not well adapted at all. Finally, we point to a global convergence improvement
of all three methods, namely step size control with standard methods of optimization [15].

6.1 Methods based on gradient

The objective function in (14) can also be regarded as a function of the m control points P =
(P1, P2, . . . , Pm), i.e., a function f : R2m → R; the dependence of T on P is built in the constraints

14

in (15). For a fixed k, to indicate the dependence of tk on P, we write tk = t(P), omitting the
subscript for simplicity. Denote F = P (tk) − Xk and fk = ‖F‖. Then the constraints (15) can be
re-written, for each k, as

FT
t F = 0. (16)

Here and in the sequel we will denote partial derivatives with a subscript, e.g. F t := ∂F/∂t, F tt :=
∂2F/∂t2.

We first compute the gradients of f2
k and fk. Since f2

k = FTF , by (16), we have

∇f2
k = ∇(FTF) = 2

(
FT

P + ∇tFT
t

)
F = 2FT

PF . (17)

Here, ∇t is the gradient of tk with respect to P, and FP is the matrix representing the derivative
of F with respect to P, not taking the dependency of tk on P into account. Since ∇f2

k = 2fk∇fk,
we obtain

∇fk = FT
P

F

fk
= FT

P

F

||F||
= −FT

PNk, (18)

where Nk = −F/||F|| is the unit normal vector of the curve P (t) at P (tk). Then the gradient of f
is found to be

∇f =
1

2

∑

k

∇f2
k =

(
n∑

k=1

B1(tk)(P (tk) − Xk), . . . ,
n∑

k=1

Bm(tk)(P (tk) − Xk)

)T

.

Each component of the above gradient vector, i.e.

(∇f)i =

n∑

k=1

Bi(tk)(P (tk) − Xk), (19)

stands for a 2D vector associated with the i-th control point Pi, which is a weighted sum of the
error vectors P (tk) − Xk, where the weights are given by the i-th basis function Bi, evaluated at
the parameter tk of the foot point; of course, only error vectors in the support of Bi have influence.

At some places, it will be convenient to represent the B-spline curve in matrix form,

P (t) = B(t)P.

Here, B(t) is the 2 × 2m matrix (B1(t)I2, . . . , Bm(t)I2) with I2 being 2 × 2 identity matrix. Now,
the gradient vector ∇f ∈ R2m can be written as

∇f =
n∑

k=1

BT (tk)(P (tk) − Xk) =
n∑

k=1

BT (tk)B(tk)P −
n∑

k=1

BT (tk)Xk. (20)

Moving with an appropriate step size s in the direction of the negative gradient means displacement
of the control points via

Pi,new = Pi + s
n∑

k=1

Bi(tk)(Xk − P (tk)). (21)

15

Updating the control points iteratively by (21) results in a gradient descent algorithm as the simplest
solution to the present optimization problem. With a careful choice of the step size s, this algorithm
converges linearly to a local minimum [15]. Even with another method with faster convergence being
employed in the later phase, a few gradient-descent steps can be useful to improving a given initial
position of a B-spline curve.

6.2 Gauss-Newton iteration and its variants

A Newton method minimizes the second-order approximant of the objective function at the current
position xc to obtain the next iterate x+. To find this quadratic approximant for a nonlinear least
squares problem with f = 1

2

∑
k f2

k , one needs to compute the Hessian of f , which is

∇2f =
n∑

k=1

∇fk · (∇fk)
T +

n∑

k=1

fk∇
2fk. (22)

Since the computation of ∇2fk is usually too costly, the Gauss-Newton method uses only the first
part in (22) to approximate the Hessian ∇2f . This is equivalent to computing the minimizer x+

of the linear least squares problem

min
1

2

∑

k

[fk(xc) + ∇(fk(xc))
T · (x − xc)]

2.

That is, a linear approximation of fk is used in the Gauss-Newton method.

In the problem of B-spline curve fitting, the step x − xc is given by the displacement vectors
D = (D1, . . . , Dm) of the m control points. From Eqn. (18), we have

∇fk = −FT
PNk = −BT (tk)Nk

Therefore Gauss-Newton iteration for B-spline curve fitting performs iterative minimization of

fGN =
1

2

∑

k

[fk −
∑

i

Bi(tk)D
T
i Nk]

2,

interleaved the step of foot point computation in order to satisfy the constraints (15). Since
Nk = (Xk−P (tk))/‖P (tk)−Xk‖, we have fk = (Xk−P (tk))

T Nk. Noting that P (tk) =
∑

i Bi(tk)Pi,
we obtain

fGN =
1

2

∑

k

[(Xk − P (tk))
T Nk −

∑

i

Bi(tk)D
T
i Nk]

2

=
1

2

∑

k

[(Xk −
∑

i

Bi(tk)(Pi + Di))
T Nk]

2 (23)

=
1

2

∑

k

[(Xk − PD(tk))
T Nk]

2 =
1

2

∑

k

eTD,k, (24)

16

where eTD,k is defined in Eqn. (4). Hence, the Gauss-Newton method is equivalent to tangent
distance minimization (TDM). Note that the Gauss-Newton method does not consider the change
of tangent direction of the fitting curve. Moreover, the TD error term eTD,k, unlike the SDM error
term proposed in this paper, counts for neither the distance from the Xk to the curve P (t) nor
the curvature of the curve P (t), reflecting the fact that the Gauss-Newton method omits the term
fk∇

2fk in (22).

It is well-known [Kelley 1999, pp. 24] that, if xc is sufficiently close to the minimizer x∗ of f ,
the distance ‖ec‖ = ‖xc − x∗‖ of the current iterate to x∗ is related to the error ‖e+‖ in the next
iterate by

‖e+‖ ≤ K(‖ec‖
2 + ‖R(x∗)‖ ‖ec‖), (25)

where R(x∗) = (f1, . . . , fn)(x∗) is the residual at x∗, and K is a constant which involves the Jacobian
of R(x). It follows from (25) that for a zero residual problem Gauss-Newton iteration converges
quadratically and the data points can be fitted exactly. Furthermore, Gauss-Newton iteration has
fast convergence for good initial data and a small residual problem. For a large residual problem,
the Gauss-Newton iteration may not converge at all.

Some variants of the Gauss-Newton method are possible. If only a scalar multiple of the Gauss-
Newton step, s(x+ − xc), usually with 0 < s < 1, is used for stepping to the next solution, then
one obtains the damped Gauss-Newton method [15].

Another way to modify Gauss-Newton is a regularization with the Levenberg-Marquart method
[15], in which a scalar multiple of the unit matrix is added to the approximate Hessian. In our
setting, this method requires the minimization of

fLM =
1

2

∑

k

[(Xk − PD(tk))
T Nk]

2 + νc

∑

i

||Di||
2.

Thus, the regularization term penalizes large changes Di in the control points. It can be shown
that using a regularization parameter νc of the order of the norm of the residual, i.e. O(‖R(xc)‖),
one obtains still quadratic convergence for a zero residual problem. A drawback of the Levenberg-
Marquart method is that the same magnitude of regularization is applied to every control point,
without taking into account the curvature variation at different locations.

By writing the fitting error as a function of the parameter values tk, the Levenberg-Marquart
method is used in [30] to iteratively update the tk, and faster convergence of this method than a
variant of PDM is reported. However, although the foot point computation is avoided, it is noted
in [30] that this L-M method is about 10 times slower than PDM per iteration.

A Gauss-Newton method is implemented in [33] to update the control points Pi and the Tj

together, therefore avoiding the costly step of computing foot points of data points. However, a
relatively large linear system of equations needs to be solved, since now the parameter values of
a large number of data points also enter optimization. The comparison of TDM with this global
Gauss-Newton method, as well as other variants of the L-M method, is an interesting problem but
is beyond the scope of this paper.

17

6.3 SDM – a quasi-Newton method

We shall derive the expression of the Newton method and then reveal the difference between our
SDM scheme and the Newton method to show that SDM is, in fact, a quasi-Newton method. The
key to this analysis is deriving a suitable expression of the Hessian of the objective function.

For a fixed k, consider at first the term f2
k = FTF . By (17), we have ∇f2

k = 2FT
P
F . The

derivative of ∇f2
k yields the Hessian

∇2f2
k = 2[

(
FPP + FPt∇tT

)T
F + FT

P

(
FP + F t∇tT

)
]

= 2[∇tFT
PtF + FT

PFP + FT
PF t∇tT]. (26)

Here we used FPP = 0, since F is linear in P. Again ∇t is the gradient of tk = t(P) with respect
to P.

On the other hand, we need to find the relationship between ∇t and FP . Differentiating the
constraint (16), we obtain

(
FT

Pt + ∇tFT
tt

)
F +

(
FT

P + ∇tFT
t

)
F t = 0. (27)

Solving for ∇t yields

∇t = −
FT

PtF + FT
P
F t

FT
ttF + FT

t F t
.

Substituting this expression of ∇t in (26), we can obtain the complete Hessian ∇2f2
k .

We will now make a simplification and neglect the term FT
PtF , i.e. set it to zero. This results

in an approximate Hessian ∇̃2f2
k . To interpret this approximate Hessian geometrically, we let s

denote the arc length parameter of the B-spline curve P (t). Then we have

1

2
∇̃2f2

k = FT
PFP −

FT
P
F tF

T
t FP

FT
ttF + FT

t F t

= FT
PFP −

(s t)
2FT

P
F sF

T
s FP

[FT
ss(s t)2 + FT

s s tt]F + FT
s F s(s t)2

= FT
PFP −

(s t)
2FT

P
F sF

T
s FP

FT
ssF(s t)2 + FT

s F s(s t)2
= FT

PFP −
FT

P
F sF

T
s FP

(FT
ssF + FT

s F s)
.

In the above, the term FT
s Fs tt drops out due to the constraint (16) and the fact that FT

s and FT
t

are collinear.

Clearly, FT
s F s = 1, since F s = Tk is the unit tangent vector of P (t). Also, F ss = κNk is the

curvature vector of P (t) at P (tk), where Nk is the unit normal vector of P (t) at P (tk). Therefore
FT

ssF = −dκ, where d is defined in Section 3, since, by the constraint (16), F = P (tk) − Xk is in
the direction of the unit normal vector. Hence, we obtain

1

2
∇̃2f2

k = FT
PFP −

FT
P
TkT

T
k FP

−dκ + 1
. (28)

18

This equation is further rewritten as

1

2
∇̃2f2

k = FT
P

(
I − TkT

T
k

)
FP −

dκFT
P
TkT

T
k FP

−dκ + 1

= FT
PNkN

T
k FP +

d

d − ρ
FT

PTkT
T
k FP . (29)

Now we consider the relationship between SDM and the quasi-Newton method obtained above
by replacing the Hessian ∇2f2

k by ∇̃2f2
k . Note that

FT
PNkN

T
k FP = ∇fk(∇fk)

T ,

which is the first term in (22) that is used by Gauss-Newton iteration to approximate the true
Hessian. Thus, replacing the Hessian ∇2f2

k by ∇̃2f2
k in the Newton method is equivalent to adding

the second term in (29) to the Gauss-Newton method to yield a quasi-Newton method. Recall that
the Gauss-Newton method is the same as TDM. Therefore, noting that (P (tk) − Xk)

T Tk = 0 (by
(15)), the above quasi-Newton method minimizes the quadratic function

fQN = fGN +
1

2

n∑

k=1

d

d − ρ
[(
∑

i

Bi(tk)Di)
T Tk]

2

=
1

2

n∑

k=1

{
[(PD(tk) − Xk)

T Nk]
2 +

d

d − ρ
[(PD(tk) − P (tk))

T Tk]
2

}

=
1

2

n∑

k=1

{
[(PD(tk) − Xk)

T Nk]
2 +

d

d − ρ
[(PD(tk) − Xk)

T Tk]
2

}

=
1

2

n∑

k=1

hk(D),

where hk(D) is defined in (9). Hence, the quasi-Newton method given by fQN above is exactly the
SDM scheme before replacing indefinite quadratic forms by semi-definite ones, i.e. the SD error
term defined in (10). Hence, we have shown that the SDM method is a quasi-Newton method
obtained by discarding the term FTFPt, which amounts to disregarding the change FPt of the
tangent vector P ′

t(tk) caused by the change of the control points.

SDM does not fall into the category of the quasi-Newton methods that fulfill the so-called secant
equation [15]. Instead, SDM uses another positive definite approximant of the Hessian, based
on geometric considerations. Although SDM is not a standard optimization procedure, it is a
computationally attractive and effective compromise between a full Newton scheme and Gauss-
Newton – it picks up more contributions of the true Hessian than Gauss-Newton does, but it
ignores the remaining part for reasons of computational efficiency and simplicity. Indeed, SDM is
an optimization scheme that is particularly suited for solving shape fitting problems, because SDM
uses an error metric that is adaptable to local curvature variation of a target shape.

19

6.4 Another view about PDM, TDM and SDM

It is a simplified view to regard the gradient of f : R2m → R as the vector formed by the partial
derivatives of f with respect to the 2m variables in P. We consider a point P ∈ R2m, and a unit
vector D attached to it. Then, the directional derivative of f with respect to D is ∇f(P)TD.
Hence, the direction D = ∇f/‖∇f‖ has the largest directional derivative, and the magnitude of
that derivative is ‖∇f‖. These two properties can be used as a characterization of the gradient.

We see that this interpretation of the gradient depends on the metric. So far we have used the
canonical Euclidean metric, ‖X‖2 = X TX , X ∈ R2m. With any positive definite matrix M , a more
general metric can be defined as

‖X‖2 = X T MX . (30)

The gradient ∇Mf with respect to this metric is related to the canonical gradient ∇f by

∇Mf = M−1∇f. (31)

In fact, M may even depend on X ; then we have a Riemannian metric.

In the notation used above for our B-spline fitting problem, a gradient descent algorithm with
respect to the gradient ∇Mf and step size s is formulated as

PD = P − sM−1∇f(P). (32)

All algorithms discussed above fall into this scheme. An ordinary gradient descent results from
M = I. The Newton method defines the metric with the Hessian M = ∇2f(P), supposing that
M is positive definite. Our SDM scheme uses the approximate Hessian M =

∑
∇̃2f2

k , caused by
omitting the differential change of the tangent vector P ′

t(tk) and making the approximate Hessian
positive semi-definite. Of course, TDM also belongs to this class, but with even more terms from
the true Hessian being discarded, since it does not include any second order derivative.

Finally, we can interpret PDM as follows. For any B-spline curve P (t) = B(t)P associated with
the vector P ∈ R2m, one computes the parameter values tk of the foot points of the data points
Xk. With help of these parameters, one defines a local distance measure between the curve P (t)
and another B-spline curve Q(t) by

d2(P (t), Q(t)) :=
n∑

k=1

(P (tk) − Q(tk))
2 = (P −Q)T

n∑

k=1

B(tk)
T B(tk)(P −Q). (33)

Here D := P −Q can be considered as a first order displacement of P (t). Thus, this introduces a
local metric in R2m represented the matrix

M :=
n∑

k=1

B(tk)
T B(tk).

20

We now show that PDM is precisely a gradient descent method with respect to this Riemannian
metric in R2m. Given the current curve P (t), the next curve PD(t) = B(t)PD is given by mini-
mization of

n∑

k=1

(PD(tk) − Xk)
T (PD(tk) − Xk) = PT

DMPD − 2
n∑

k=1

XT
k B(tk)PD +

n∑

k=1

XT
k Xk.

The minimizer is found to be

PD = M−1

n∑

k=1

B(tk)
T Xk. (34)

With the gradient ∇f from equation (20), we see immediately that

PD = P − M−1∇f(P),

showing that PDM is a gradient descent method with respect to M and a full step s = 1.

6.5 Step size control

We have tested step size control on PDM, TDM, and SDM, using the Armijo rule [15]. It is found
that step size control does not help much with PDM and SDM — PDM still converges slowly, and
the per-iteration computation of SDM becomes much longer with moderate degree of improvement
in stability. It is found that the stability of TDM improves greatly with the help of step size
control, however, at the cost of much longer per–iteration time, especially when approaching a
local minimum, since, due to the “flat” gradient near a local minimum, it normally gets more
time-consuming to select an appropriate step size via repetitive evaluations of the fitting error.

Figure 25 shows the result of applying step size control (the Armijo rule) to TDM on the same
data points and initial B-spline curves as shown in Figures 10(a) and 15(a); now both data sets are
satisfactorily approximated by TDM. For comparison, refer to Figures 10(c) and 15(c) to see the
unacceptable fitting curves generated by TDM without step size control.

7 Concluding Remarks

PDM is so far a dominant method used in the practice of parametric curve and surface fitting [4].
As we have shown, PDM has linear convergence in theory, converges slowly in practice, and is
often trapped in a poor local minimum. TDM is another existing method used for curve fitting in
computer vision (e.g. [2]). TDM converges faster than PDM, but its convergence is highly unstable.
Against this backdrop, we have proposed a novel and efficient method, called SDM, for fitting B-
spline curves to point cloud data. We have shown that SDM converges much faster than PDM and
that SDM is much more stable than TDM. In addition, SDM is easy to implement and has similar
per-iteration computation time as PDM and TDM, since they share the same framework. All this
suggests that SDM is a favorable alternative to PDM or TDM for B-spline curve fitting.

21

In order to gain a better understanding of the above optimization methods, we have also studied
the B-spline curve fitting problem from the optimization viewpoint. We note that PDM is a
gradient descent method in a metric that is not well chosen. We have also shown that TDM is
exactly a Gauss-Newton method for solving a nonlinear least squares problem, and its instability
at high curvature regions is thus due to its omission of important parts in the true Hessian of the
objective function and the lack of step size control. Finally, we have shown that our proposed
SDM scheme is a quasi-Newton method using a carefully chosen approximate Hessian, and thus its
superior performance in both convergence and stability does not come as a surprise. Interestingly,
unlike most other quasi-Newton methods, the approximate Hessian used by SDM is not explicitly
computed; it arises naturally as the consequence of using the simple SDM error term devised
out of entirely geometric considerations, i.e. making use of curvature information to give a close
approximation of the squared distance function. This contributes to the simplicity and efficiency
of SDM.

We expect to see more studies on SDM and related problems, both theoretically and from the
viewpoint of applications. An immediate extension is to apply SDM to optimize the weights and
knots of a NURBS fitting curve, an issued addressed in [6, 16]. Other significant problems include
the analysis of the convergence rate of SDM (i.e. to show if SDM has superlinear convergence) and
the improvement of the global convergence to the target shape from a very simple “seed” shape;
the latter topic has a close connection to the work on active contours [14, 21,22,32].

Our ongoing research shows that SDM can be applied to a large class of shape reconstruction
and geometric optimization problems, such as fitting B-spline surfaces or subdivision surfaces,
optimization over an analytical surface or a mesh surface, and surface registration. This extension
of SDM to the surface case would be of great practical importance, in view of the wide application
of the inefficient PDM to surface fitting in graphics and CAD.

References

[1] Ake Bjorck. Numerical Methods for Least Squares Problems. Mathematics Society for Industrial
and Applied Mathematics, Philadelphia, 1996.

[2] Andrew Blake and Michael Isard. Active Contours. Springer, New York, 1998.

[3] M. Djebali, M. Melkemi, and N. Sapidis. Range-image segmentation and model reconstruction
based on a fit-and-merge strategy. In Proceedings of the seventh ACM symposium on Solid
Modeling and Applications, pages 127–138, 2002.

[4] Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide.
Academic Press, New York, 4th edition, 1997.

[5] David R. Forsey and Richard H. Bartels. Surface fitting with hierarchical splines. ACM
Transactions on Graphics, 14:134–161, 1995.

22

[6] Rony Goldenthal and Michel Bercovier. Spline curve approximation and design by optimal
control over the knots. Computing, 72:53–64, 2004.

[7] A. Ardeshir Goshtasby. Grouping and parameterizing irregularly spaced points for curve fitting.
ACM Transactions on Graphics, 19:185–203, 2000.

[8] Andreas Kolb Günther Greiner and Angela Riepl. Scattered data interpolation using data
dependant optimization techniques. Graphical Models, 64:1–18, 2002.

[9] Jörg Haber, Frank Zeilfelder, Oleg Davydov, and Hans Peter Seidel. Smooth approximation
and rendering of large scattered data sets. In Proceedings of the conference on Visualization
’01, pages 341–348, 2001.

[10] Hugues Hoppe. Progressive meshes. In Proceedings of SIGGRAPH’96, pages 99–108, 1996.

[11] Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark Halstead, Hubert Jin, John McDonald,
Jean Schweitzer, and Werner Stuetzle. Piecewise smooth surface reconstruction. In Proceedings
of SIGGRAPH’94, pages 295–302, 1994.

[12] Josef Hoschek. Intrinsic parameterization for approximation. Computer Aided Geometric
Design, 5:27–31, 1988.

[13] Josef Hoschek and Dieter Lasser. Fundamentals of Computer Aided Geometric Design. AK
Peters, 1993.

[14] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour models. International Journal
of Computer Vision, 1:321–331, 1988.

[15] C. T. Kelley. Iterative Methods for Optimization. Society for Industrial and Applied Mathe-
matics, Philadelphia, 1999.

[16] Pascal Laurent-Gengoux and Mounib Mekhilef. Optimization of a NURBS representation.
Computer-Aided Design, 25:699–710, 1993.

[17] E. T. Y. Lee. Choosing nodes in parametric curve interpolation. Computer-Aided Design,
21:363–370, 1989.

[18] In-Kwon Lee. Curve reconstruction from unorganized points. Computer Aided Geometric
Design, 16:161–177, 1999.

[19] W. Y. Ma and J. P. Kruth. Parameterization of randomly measured points for least squares
fitting of B-spline curves and surfaces. Computer-Aided Design, 27:663–675, 1995.

[20] I. Maekawa and K.H. Ko. Surface construction by fitting unorganized curves. Graphical Models,
64:316–332, 2002.

23

[21] R. Malladi, J. Sethian, and B. C. Vemuri. Shape modeling with front propagation: A level
set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17:158–175,
1995.

[22] S. Osher and Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, New
York, 2003.

[23] Theodosios Pavlidis. Curve fitting with conic splines. ACM Transactions on Graphics, 2:1–31,
1983.

[24] Les Piegl and Wayne Tiller. The NURBS book. Springer, New York, 2nd edition, 1997.

[25] Michael Plass and Maureen Stone. Curve-fitting with piecewise parametric cubics. Computer
Graphics, 17(3):229–239, 1983.

[26] H. Pottmann and M. Hofer. Geometry of the squared distance function to curves and surfaces.
In H.C. Hege and K. Polthier, editors, Visualization and Mathematics III, pages 223–244. 2003.

[27] H. Pottmann, S. Leopoldseder, and M. Hofer. Approximation with active B-spline curves and
surfaces. In Proceedings of Pacific Graphics 2002, pages 8–25. IEEE Computer Society Press,
2002.

[28] H. Pottmann and J. Wallner. Computational Line Geometry. Springer-Verlag, Berlin, 2001.

[29] Vaughan Pratt. Techniques for conic splines. In Proceedings of SIGGRAPH’85, pages 151–160,
1985.

[30] Biplab Sarkar and Chia-Hsiang Menq. Parameter optimization in approximating curves and
surfaces to measurement data. Computer Aided Geometric Design, 8:267–290, 1991.

[31] Eric Saux and Marc Daniel. An improved Hoschek intrinsic parametrization. Computer Aided
Geometric Design, 20:513–521, 2003.

[32] J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press,
1999.

[33] T. Speer, M. Kuppe, and J. Hoschek. Global reparameterization for curve approximation.
Computer Aided Geometric Design, 15:869–877, 1998.

[34] Gabriel Taubin. Dual mesh resampling. Graphical Models, 64:94–113, 2002.

[35] D. J. Walton and R. Xu. Turning point preserving planar interpolation. ACM Transactions
on Graphics, 10:297 – 311, 1991.

[36] Xiaohuan Corina Wang and Cary Phillips. Multi-weight enveloping: least-squares approxima-
tion techniques for skin animation. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 129 – 138, 2002.

24

[37] V. Weiss, L. Andor, G. Renner, and T. Varady. Advanced surface fitting techniques. Computer
Aided Geometric Design, 19:19–42, 2002.

[38] H. P. Yang, W. Wang, and J. G. Sun. Control point adjustment for B-spline curve approxi-
mation. Computer-Aided Design, 36:639–652, 2004.

PD error

Xk

d

P(tk)

Figure 1: Iso-values curves of the point
distance (PD) error term.

TD error

Xk

d

P(tk)

Figure 2: Iso-values curves of the tan-
gent distance (TD) error term.

PD(tk)

X0

d

P(tk)

X0

d

P(t) --------> PD(t)

Lk Lk

Figure 3: In a neighborhood of a high curvature point, the true approximation error can be big
even though the TD error is small.

25

(a) Data points on a circle with an initial B-spline spline
curve.

(b) The fitting curve generated by PDM in 50 iterations.

(c) The fitting curve generated by SDM in 3 iterations. (d) The fitting curve generated by SDM in 10 iterations.

Figure 4: Comparison of PDM and SDM for sparse data points on a circle (Number of data points:
32).

(0,ρ)

x

y

X0

O

d

Figure 5: Quadratic approximant of the squared distance function to the curve C at X0.

26

Xk

(a)

Xk

(b)

P(tk) PD(tk)

Figure 6: The approximate squared distance function h+(D) defined by (8) is shown via its iso-
value curves in the case of d < 0. (a) Before updating the control points P. (b) After updating the
control points P.

X0

(a) (b)

X0

P
D
(t0)

P(t0)

Figure 7: The SD error term eSD,k(D) defined by (10) is shown via its iso-value curves in the case
of d < 0. (a) Before updating the control points P. (b) The translation of eSD,k(D) after updating
P.

27

(a) Data points on a circle and an initial B-spline curve. (b) The fitting curve generated by PDM in 10 iterations.

(c) The fitting curve generated by TDM in 10 iterations. (d) The fitting curve generated by SDM in 10 iterations.

0.5 1 1.5 2 2.5

-1

log
10

(Error_Ave)

log
10

(# of iterations)

PDM

TDM

SDM

-1.5

-2

-2.5

-0.5

(e) The average error versus the number of it-
erations of the three methods.

0.5 1 1.5 2 2.5

-2.5

-2

-1.5

-1

-0.5

PDM

TDM

SDM

log
10

(Error_Max)

log
10

(# of iterations)

(f) The maximum error versus the number of
iterations of the three methods.

Figure 8: (Example 1) Comparison of the three methods on sparse data points a circle (Number
of data points: 32). Log scale (base 10) is used for the error axis. In this figure the iteration axes
in Figures (e) and (f) use log scale (base 10) in order to distinguish the error curves of TDM and
SDM.

28

(a) The evolution surface of PDM. (b) The evolution surface of SDM.

Figure 9: The evolution surfaces of PDM and SDM for the data in Example 1 (Figure 8). Log scale
is used for the height axis to accommodate for the large number of iteration needed by PDM. The
base square has the size 2.2 × 2.2.

29

(a) Unorganized data points on a ”C” shape
and an initial B-spline curve. (b) The fitting curve generated by PDM in 20

iterations.

(c) The fitting curve generated by TDM in 20
iterations.

(d) The fitting curve generated by SDM in 20
iterations.

100 200 300 400 500

-1.8

-1.6

-1.4

-1.2

-1

-0.8

log
10

(Error_Ave)

of iterations

PDM

TDM

SDM

(e) The average error versus the number of it-
erations of the three methods.

100 200 300 400 500

-1.6

-1.4

-1.2

-0.8

-0.6

-0.4

log
10

(Error_Max)

of iterations

PDM

TDM

SDM

(f) The maximum error versus the number of
iterations of the three methods.

Figure 10: (Example 2) Comparison of the three methods. Log scale (base 10) is used for the
error axis. SDM converges faster than PDM does. TDM is trapped in a local minimum with
self-intersection in the fitting curve. Number of data points: 102.

30

(a) The evolution surface of PDM – the same
view angle as in (b).

(b) The evolution surface of SDM – the same
view angle as in (a).

(c) The evolution surface of PDM – the same
view angle as in (d).

(d) The evolution surface of SDM – the same
view angle as in (c).

Figure 11: The evolution surfaces of PDM and SDM for the data in Example 2 (Figure 10). Two
different views are shown for each surface.

31

(a) A closed target curve of smooth shape and
an initial B-spline curve.

(b) The fitting curve generated by PDM in 3
iterations.

(c) The fitting curve generated by TDM in 3
iterations.

(d) The fitting curve generated by SDM in 3
iterations.

100 200 300 400 500

-2.2

-1.8

-1.6

-1.4

-1.2

-1

log
10

(Error_Ave)

of iterations

PDM

SDM

(e) The average error versus the number of it-
erations of PDM and SDM.

100 200 300 400 500

-1.6

-1.4

-1.2

-0.8

-0.6

log
10

(Error_Max)

of iterations

PDM

SDM

(f) The maximum error versus the number of
iterations of PDM and SDM.

Figure 12: (Example 3) Comparison of the three methods for fitting a smooth target shape. Log
scale (base 10) is used for the error axis. TDM becomes divergent after 40 iterations. (Number of
data points: 1048)

32

(a) The evolution surface of PDM. (b) The evolution surface of SDM.

Figure 13: The evolution surfaces of PDM and SDM for the data in Example 3 (Figure 12). Only
104 of the original 1048 data points are shown for ease of visualization.

33

(a) A closed target shape and an initial B-
spline curve.

(b) The fitting curve generated by PDM in 50 iterations.

(c) The fitting curve generated by TDM in 50 iterations. (d) The fitting curve generated by SDM in 50 iterations.

Figure 14: (Example 4) Comparison of the three methods for fitting an extremely noisy target
shape. After 50 iterations, SDM generates a satisfactory fitting curve (d), but TDM becomes
unstable (c), PDM is still improving at a slow rate; PDM needs about 400 iterations to generate a
fitting curve similar to the one shown in (d). (Number of data points: 1630)

34

0
1
2
3
4
5
6
7
8
910

11

(a) A square-shaped target shape and an initial
B-spline curve.

(b) The fitting curve generated by PDM in 20
iterations.

(c) The fitting curve generated by TDM in 20
iterations.

0
1

2 3
4

5

6
789

10

11

(d) The fitting curve generated by SDM in 20
iterations.

Figure 15: (Example 5) Comparison of the three methods for approximating a square-shaped target
shape. Both PDM is trapped in a poor local minimum, and TDM eventually becomes divergent.
(Number of data points: 33)

35

(a) A target shape with sparse data points and
an initial B-spline curve.

(b) The fitting curve generated by PDM in 35
iterations.

(c) The fitting curve generated by SDM in 35
iterations.

100 200 300 400 500

-2.25

-1.75

-1.5

-1.25

-1

-0.75
log

10
(Error_Ave)

of iterations

PDM

SDM

(d) The average error versus the
number of iterations of PDM and
SDM.

100 200 300 400 500

-1.75

-1.5

-1.25

-1

-0.75

-0.5

log
10

(Error_Max)

of iterations

PDM

SDM

(e) The maximum error versus the number of
iterations of PDM and SDM.

Figure 16: (Example 6) Comparison of the three methods for fitting sparse data points with sharp
features. PDM is trapped in a local minimum that gives a larger error than the fitting curve
generated in by SDM shown in (d). TDM does not converge for this example. (Number of data
points: 83)

36

(a) The evolution surface of PDM. (b) The evolution surface of SDM.

Figure 17: Evolution surfaces of PDM and SDM for the data in example 6 (Figure 16.

f
d

Figure 18: Quad-tree cell partition for
specifying an initial curve.

P(t0)

P(t2)

P(t1)

X0

d1

d2

Figure 19: Computation of foot-points
on a fitting curve.

37

(a) A Chinese character, tian.
(b) The contour of the character (2656 points).

(c) 44 control points of an initial B-spline
curve.

(d) The initial B-spline curve.

(e) Control points generated by SDM. (f) The B-spline fitting curve from (e).

(g) Control points generated by PDM. (h) The B-spline fitting curve from (g).

Figure 20: Control points insertion a deletion is applied together with SDM and PDM to fitting a B-spline
curve to the contour of a character. The initial control points are obtained by quad-tree partition (c). The
coefficient of smoothing term is λ = 0.005 and the threshold (summation of Euclidean distances) is 0.028.
SDM leads to 59 control points after 54 iterations and PDM leads to 60 control points after 352 iterations.

38

P(t)

X0

θ T0

P0

Figure 21: Deriving an error
term for an outer data point
X.

(a) An open target shape and an initial open
B-spline curve with 8 control points.

(b) The fitting curve generated by PDM in 20
iterations.

(c) The fitting curve generated by TDM in 20
iterations.

(d) The fitting curve generated by SDM in 20
iterations.

Figure 22: Comparison of the three methods for fitting an open curve to point cloud data. PDM
needs about 600 iterations to reach the small approximation quality of SDM as shown in (c). TDM
works well for this data set. (Number of data points: 472)

39

(a) A 3D point cloud representing an

approximate revolution surface. The

original scan data with 423697 points has

been reduced to the shown 5077 points.

(b) The thick planar point cloud is fitted

with a uniform cubic B-spline curve

computed by SDM.

(c) The reconstructed revolution surface

with the B-spline curve as a meridian.
(d) The reconstructed revolution surface.

Figure 23: Reconstruction of a revolution surface from point clouds using a B-spline fitting curve
computed by SDM.

40

P0

T

P

Hessian

Figure 24: The alternating minimization steps of PDM. P and T stand for the linear subspaces
spanned by the control points Pi and the data parameters tk.

(a) The fitting curve generated by TDM in

20 iterations, using the Armijo rule, for

the data set in Figure 10(a).

0
1

2
3

4

5

6
78

9
10

11

(b) The fitting curve generated by TDM in

20 iterations, using the Armijo rule, for

the data set in Figure 15(a).

Figure 25: TDM with step size control.

41

