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Abstract

Recent studies suggest that projected clusters with extremely low dimensionality exist in many real datasets. A num-
ber of projected clustering algorithms have been proposed in the past several years, but few can identify clusters with
dimensionality lower than 10% of the total number of dimensions, which are commonly found in some real datasets
such as gene expression profiles. In this paper we propose a new algorithm that can accurately identify projected clus-
ters with relevant dimensions as few as 5% of the total number of dimensions. It makes use of a robust objective function
that combines object clustering and dimension selection into a single optimization problem. The algorithm can also uti-
lize domain knowledge in the form of labeled objects and labeled dimensions to improve its clustering accuracy. We
believe this is the first semi-supervised projected clustering algorithm. Both theoretical analysis and experimental re-
sults show that by using a small amount of input knowledge, possibly covering only a portion of the underlying classes,
the new algorithm can be further improved to accurately detect clusters with only 1% of the dimensions being rele-
vant. The algorithm is also useful in getting a target set of clusters when there are multiple possible groupings of the
objects.

1. Introduction

Recently many studies have suggested the presence of low dimensional clusters in high-dimensional real datasets.
For example, in a typical microarray gene expression dataset that contains the expression values of several thou-
sands of genes in different samples, it is common to find that only several tens of genes have expression pat-
terns unique to each cluster of samples [15]. The genes are called the relevant genes, as opposed to the irrelevant
genes that do not help much in identifying the cluster members. Due to the large number of genes being irrel-
evant to each cluster, two samples in the same cluster could have low similarity when measured by a similarity
function that considers the expression values of all genes. The clusters are thus undetectable by traditional clus-
tering algorithms.

The projected clustering problem [1] is defined for such a scenario. Each projected cluster is a set of member
objects with an associated set of relevant dimensions such that the member objects are similar to each other in the
subspace formed by the relevant dimensions, but dissimilar to objects outside the cluster. In this paper we measure
object similarity based on Euclidean distance, so a dimension is more relevant to a cluster if the projections of its
members on the dimension are closer to each other, but more remote from the projections of other objects. The
goal of a projected clustering algorithm is to identify clusters of objects and their relevant dimensions such that a
certain objective function (e.g. average within-cluster similarity along the relevant dimensions) is optimized.

While the clusters in real datasets can contain an extremely low percentage of relevant dimensions (less than 10%
of all genes in the previous example), it has been reported that most current projected clustering algorithms are un-
able to identify clusters with such low dimensionality [25]. This is mainly due to their use of objective functions
that highly rely on the accuracy of some input parameters, and the use of similarity calculations that involve all di-
mensions, which may not reflect the real similarity between different objects [25].
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In addition, being unsupervised methods, the algorithms make little use of domain knowledge in the clustering
process, despite the fact that a small amount of domain knowledge is usually available in some applications. For
example, in gene expression datasets, the functions of a small number of genes are usually known to the biologists.

In order to better utilize domain knowledge in the clustering process, a number of semi-supervised clustering al-
gorithms [9] have been proposed, which we will review in the next section. The basic idea is to use some domain
knowledge to guide the clustering process. For example, in a semi-supervised k-means algorithm [21], domain knowl-
edge about the relationships between some objects is used to force the assignment of some object pairs to the same
cluster or to different clusters. As reported in many studies (e.g. [8,20]), the clustering accuracy can be greatly im-
proved by inputting only a small amount of domain knowledge.

It should be noted that while some domain knowledge is being used, semi-supervised clustering is different from
classification (supervised-learning) in that the knowledge being used in semi-supervised clustering may not be suit-
able or sufficient for classification. For instance, the knowledge needs not be in the form of objects with class labels
as required by classification. The amount of knowledge for each class can be so small that is statistically insignifi-
cant to build a classifier that captures the general properties of the class, and the input knowledge can be biased to-
wards one side of the class. The input knowledge of semi-supervised clustering also needs not cover all classes, but
it is still possible to produce all the corresponding clusters.

Previous studies on semi-supervised clustering have been focused on non-projected clustering, which does not
consider the relevance of dimensions. The semi-supervised approach is in fact very useful in projected clustering.
For instance, given a small amount of example objects of a cluster (the “labeled objects”, e.g. tumor samples known
to be of a certain type), the relevant dimensions of the cluster can be estimated by the dimensions along which
the objects are significantly close to each other. Similarly, having a dimension specified as relevant to a cluster (a
“labeled dimension”, e.g. a gene known to be relevant to a tumor type), the cluster members can be estimated
from regions with unexpectedly high object densities.

Semi-supervised clustering also has an important application in handling datasets that have multiple possible
groupings. For example, in cancer study, patients can be grouped by their response to a certain treatment, or by
the risk of having cancer recurrence. Unsupervised methods can only produce a single set of clusters, which may
correspond to only one of the groupings, or even none of them. Using the semi-supervised approach, by supplying
different input knowledge, a single clustering algorithm can be guided to produce both kinds of clusters in different
runs.

All the above observations motivate the current study, which has three major contributions:

• Proposing a robust objective function for projected clustering that naturally involves dimension selection in
the optimization process.

• Proposing the use of domain knowledge (labeled objects and labeled dimensions) to improve the accuracy of
projected clustering.

• Developing a new algorithm that can (theoretically and empirically) detect clusters of extremely low dimen-
sionality, and whose accuracy can be further improved by incorporating some domain knowledge in the clus-
tering process.

In the next section we will review some related work in projected clustering and semi-supervised clustering.
In Section 3 we will formally define the semi-supervised projected clustering problem, as well as the assumptions
being made in this study. In Section 4 we will describe our new algorithm. Experimental results will be presented
in Section 5, together with some observations and discussions. In Section 6 we will summarize the whole study and
discuss some future extensions.

2. Related Work

2.1. Projected Clustering

Existing projected clustering algorithms can be classified into three categories: partitional, one cluster at a time,
and hierarchical. The partitional approach PROCLUS [1] is one of the earliest projected clustering algorithms. It is
based on the traditional k-medoids approach [13], with a goal of minimizing the average within-cluster dispersion.
It differs from traditional k-medoids in that the distance between different cluster members is computed in the
relevant subspace of the cluster. The relevant subspace of a cluster is determined by measuring the average distance



between the medoid and a set of “neighboring objects” that are close to it when all dimensions are considered. The
dimensions with the smallest average distances to the medoid of each cluster are selected as the relevant dimensions
of the cluster, which form its relevant subspace.

Another partitional algorithm ORCLUS [2] improves PROCLUS by selecting principal components so that clus-
ters not parallel to the original dimensions can also be detected. It also adds a hierarchical part that can potentially
reduce the errors due to inaccurate initial object assignments.

A limitation of these partitional methods is the determination of neighboring objects based on similarity calcu-
lations that involve all dimensions. If the number of relevant dimensions of each cluster is small, different mem-
bers of a cluster may appear to be dissimilar when all dimensions are considered. In these methods, therefore, the
neighboring objects of a medoid need not be come from the same real cluster and the relevant dimensions sug-
gested by them could be wrong. Also, as the approaches use an objective function that tends to give better scores
when fewer dimensions are regarded as relevant to a cluster [25,26], they require users to supply the average num-
ber of relevant dimensions per cluster, which is usually unknown to users. If incorrect parameter values are used,
the clustering accuracy can be seriously affected.

The Monte Carlo method DOC [16] and its variant, FastDOC, identify projected clusters one after another. To
find a cluster, an object is randomly selected as the seed, and a number of other objects are randomly sampled
to determine the relevant subspace of the cluster. A dimension is regarded as relevant to the cluster if all the
objects are within a distance ω from the seed along the dimension. A cluster is thus in the form of a hypercube of
width 2ω. The quality of a cluster is evaluated by an objective function that takes into account both the number
of objects falling in the hypercube, and the number of relevant dimensions of the cluster. The more objects and
relevant dimensions a cluster has, the less likely it is formed by random chance, and thus it receives a better score.
The relative importance between the number of objects and relevant dimensions is controlled by a user parameter
β. The algorithm repeatedly tries different seeds and neighboring objects until a certain number of iterations is
reached, when the cluster with the highest score will be returned and the algorithm will try to find a new cluster.

The algorithms perform well when each cluster is in the form of a hypercube and the parameter values are spec-
ified correctly, but in many cases these requirements cannot be met and the clustering results are quite unsatis-
factory [25]. The number of seeds and neighboring objects required to try can also be so large that causes the
algorithms to run for a long time.

The hierarchical algorithm HARP [25] makes use of the dynamic threshold loosening mechanism to avoid the
problems of the previous methods. The basic assumption is that two objects are likely to belong to the same cluster
if they are very similar to each other along many dimensions. Clusters are allowed to merge only if they are similar
enough in a number of dimensions, where the minimum similarity and minimum number of similar dimensions are
controlled by two internal threshold variables. Instead of asking users to supply fixed values for the two variables,
HARP automatically adjusts their values during the clustering process. At the beginning, the thresholds are set to
some harsh values such that only merges that are very likely to group objects belonging to the same real cluster are
allowed to be performed. As the relevant dimensions of each cluster becomes more apparent, the threshold values
are loosened to allow more cluster merges. The process repeats until the thresholds reach their baseline values, or
a target number of clusters is reached.

The method successfully avoids extensive distance calculations that involve all dimensions and user parameters
whose values are hard to determine. However, due to the hierarchical nature, the algorithm is intrinsically slow.
Also, if the number of relevant dimensions per cluster is extremely low (e.g. 5% of the dataset dimensionality), the
accuracy of HARP may drop as the basic assumption will become less valid due to the presence of large amount
of noise values in the dataset.

In summary, most of the existing projected clustering algorithms make use of objective functions whose effec-
tiveness rely greatly on the accuracy of some parameter values that are hard for users to determine. Some of them
involve similarity calculations that consider all dimensions, which can be quite misleading when cluster dimen-
sionality is small. They also do not make explicit use of domain knowledge in the common forms such as labeled
objects and labeled dimensions.

A more thorough survey of the algorithms, as well as the algorithms proposed for two related problems, namely
subspace clustering [3] and biclustering [7], can be found in [26].



2.2. Semi-supervised Clustering

A recent trend in machine learning research is to combine the techniques developed for unsupervised learning
and supervised learning to handle datasets with partial external information. One of the foci is semi-supervised
clustering, which actively uses the available domain knowledge in guiding the clustering process. These methods
can be categorized according to the following three groupings: what knowledge is being input, when the knowledge
is input, and how the knowledge affects the clustering process.

The simplest type of input is labeled objects [4, 9]. In some cases, users do not know the exact class labels
of objects, but they have some knowledge on which objects should be/should not be put into the same cluster,
which can be specified by must-links and cannot-links [5, 6, 11, 20, 21]. Some other studies propose the input of
classification rules [19], examples of similar objects [23], or even general comments like which cluster a particular
object should not be put into [8].

The knowledge can be supplied at different time. It can be supplied before clustering to guide the cluster-
ing process [4, 5, 6, 9, 11, 20,21,23], or after clustering to evaluate the clusters and guide the next round of cluster-
ing [8]. Some algorithms can also actively request users to supply some specific information at the most appropriate
time [5, 11].

There are various ways to use the input knowledge, such as guiding the formation of seed clusters [4,5,6], forc-
ing or recommending some objects to be put in the same cluster or different clusters [20, 21], and modifying the
objective function [5, 6, 9], similarity function [8, 23] or distance matrix [11].

3. Problem Definition

We now formally define the semi-supervised projected clustering problem. We start with the data model. Given
a dataset D with n objects and d dimensions, the objects can be partitioned into k clusters {Ci}k

i=1 and a possibly
empty set of outliers. We assume each cluster is a random sample of the corresponding hidden class, each of which
is associated with a set of relevant dimensions that form a relevant subspace. Denote Dj and Cij as the projections
of D and Ci on a dimension vj respectively. Suppose vj is relevant to a subset Rj of the clusters, then for each
cluster Ci ∈ Rj , Cij is a random sample of a local Gaussian population with a small variance σ2

ij . The set of all
other projected values on vj , Dj −

⋃
Ci∈Rj

Cij , is a random sample of a global population with a variance σ2
j much

larger than the local Gaussians.
Intuitively, in the relevant subspace of a cluster, the cluster members are on average close to each other, but

remote from other objects not in the cluster. Alternatively, given a cluster with an unknown relevant subspace, a
dimension is more likely to be relevant to the cluster if the projection of the cluster on the dimension has a smaller
variance.

To distinguish the actual clusters due to the hidden classes and the clusters produced by a clustering algorithm,
in the remaining of this paper we will call the former the “real clusters” and the later simply the “clusters”. We
will also call the dimensions determined by a clustering algorithm as relevant to a cluster the “selected dimensions”
of it.

The inputs to our semi-supervised projected clustering algorithm are:

• The dataset D

• The target number of clusters k

• A (possibly empty) set Io of labeled objects (<obj. ID, class label> pairs), each indicates that the object is a
member of the class. The set may or may not cover all classes.

• A (possibly empty) set Iv of labeled dimensions (<dim. ID, class label> pairs), each indicates that the di-
mension is relevant to the class. Each dimension can be specified as relevant to multiple classes. The set may
or may not cover all classes.

The outputs of the algorithm are k clusters and their selected dimensions, and a (possibly empty) set of out-
liers. The goal is to optimize an objective function whose value (the objective score) reflects the quality of the clus-
ters. In the non-projected clustering algorithm k-means [10], the objective function is defined as the total within-
cluster squared error. It can be shown that the partition of objects that minimize the function corresponds to the
maximum likelihood hypothesis of the above model when there are no irrelevant dimensions [12]. In [1], the objec-
tive function is modified for projected clustering such that only relevant dimensions are involved in the distance



calculations, and the part of objective score from each cluster is normalized by the number of selected dimen-
sions. Due to the normalization, the function tends to gives better (i.e., smaller) scores for clusters with fewer
selected dimensions [25, 26], which forces the algorithm to request users to supply the average cluster dimension-
ality in order not to select only one dimension per cluster. Also, as the function is based on the summation of
variances among different dimensions, a worse dimension (one with larger variance) constitutes more to the objec-
tive score. Since from our data model, the variance of a cluster is much smaller along a relevant dimension than
an irrelevant dimension, if some irrelevant dimensions are accidentally selected, the objective score can be domi-
nated by the constituents from the irrelevant dimensions, and it can remain virtually unchanged if some relevant
dimensions are deselected.

We therefore designed a new objective function with three goals: 1) it should facilitate the selection of dimen-
sions based on the particular data properties of different clusters and dimensions, 2) its value should be constituted
more by relevant dimensions, and 3) it should be relatively robust. The function, denoted as φ, is defined as fol-
lows:

φ =
1
nd

k∑
i=1

φi (1)

φi =
∑

vj∈Vi

φij (2)

φij = ni − 1− 1
ŝ2

ij

∑
x∈Ci

(xj − µ̃ij)2 (3)

= (ni − 1)(1−
s2

ij + (µij − µ̃ij)2

ŝ2
ij

), (4)

where Vi is the set of selected dimensions of cluster Ci, ni is the size of (number of objects in) Ci, xj is the pro-
jection of an object x on dimension vj , µ̃ij , µij and s2

ij are the sample median, sample mean and sample vari-
ance of the projection of Ci on vj respectively, and ŝ2

ij is the selection threshold whose meaning will be explained
later. The objective function φ is composed of the score components φi of each cluster, which in turn is the sum
of the score components φij of each selected dimension. φij is basically the negation of the sample variance s2

ij ad-
justed to the range (0, ni − 1], such that if all members of Ci have the same projected value on vj , φij takes the
maximum value of ni − 1.

There are three major differences between φ and the objective function defined in [1]. First, φi is not normal-
ized by the number of selected dimensions of Ci, but by the threshold ŝ2

ij instead. As to be discussed later in
this section, this allows the dimension selection mechanism to be based on the data characteristics of Ci along
vj (design goal #1). It also avoids the existence of trivial best score when each cluster selects only one dimen-
sion. Second, by setting ŝ2

ij to a value that is always larger than the sample variance s2
ij of each selected dimension,

φij is always positive, and a better dimension (a dimension with smaller s2
ij) has a larger constituent to φi (de-

sign goal #2). A good clustering is reflected by a large φ value, so the goal is to maximize the objective score.
Third, within-cluster dispersion is measured by the distance from the cluster median rather than centroid, which
makes the function less affected by outliers. We will discuss the robustness of φ later.

The definition of the objective function leads to the following lemma:

Lemma 1 Given a set of clusters {Ci}k
i=1, the objective function φ is maximized when all dimensions with s2

ij +(µij −
µ̃ij)2 smaller than ŝ2

ij are selected and all other dimensions are not selected.
Proof: To maximize φ, a dimension vj should be selected if φij is positive, and should not be selected if φij is negative,

which correspond to the cases where s2
ij + (µij − µ̃ij)2 is smaller than and larger than ŝ2

ij respectively.

The following dimension selection procedure follows directly from the lemma:
ŝ2

ij is thus called the selection threshold, whose values are critical to the accuracy of the clustering algorithm.
In the next section we will show that there is a simple scheme to determine the values of ŝ2

ij , and a more advanced
probabilistic-based scheme when certain conditions are satisfied. In both cases, only one user parameter is required,
and whose value is not critical to the clustering accuracy. So even the objective function is defined in the most
generic way with a different ŝ2

ij for each cluster and each dimension, this does not create a tremendous amount of
parameters for the algorithm.



Procedure SelectDim(Ci: target cluster)
1 Foreach dimension vj do
2 Select vj for Ci if and only if s2

ij + (µij − µ̃ij)
2 < ŝ2

ij

End

Listing 1: The dimension selection procedure.

In this study we confine the scope by a number of assumptions, most of which are also implicitly or explicitly
made in previous studies on projected clustering or semi-supervised clustering. The possibility of relaxing some of
them will be discussed in Section 6.

1. The determination of relevant dimensions is mainly to help identify the object clusters (as opposed to biclus-
tering [7] where both rows and columns of a dataset are treated equally).

2. Clusters are disjoint (as opposed to subspace clustering [3]) and axis-parallel (as opposed to ORCLUS [2]).

3. Object similarity is based on the difference between projected values (as opposed to pattern-based cluster-
ing [14,22]).

4. All objects of a class are close to each other in a certain subspace, so that one class corresponds to only one
real cluster (as opposed to decision trees [17] where the objects of one class can form multiple clusters).

5. The input knowledge is correct yet can be biased. For instance, if an object is input as the member of a
cluster, it must really belong to the cluster, although it may have projections on the relevant dimensions highly
deviated from the cluster mean.

4. The New Algorithm

The outline of the new algorithm SSPC (Semi-Supervised Projected Clustering) is shown in Listing 2. It is a
partitional method similar to the k-medoids algorithms [13]. At the beginning it determines some seeds (poten-
tial medoids) and each cluster draws a medoid from them. Every object in the dataset is then assigned to the
cluster that gives the greatest improvement to the objective score, where the value of µ̃ij in Equation 4 is tem-
porarily substituted by the projection of the medoid on vj . If an object does not improve the φi score of any
cluster, it will be put on the outlier list. After assigning all objects, the selected dimensions of each cluster are re-
determined and the overall objective score is recomputed using the actual medians. If the new score is the best
one encountered so far, the clusters will be recorded. Otherwise, the best clusters will be restored. A bad clus-
ter is then identified from the current best set of clusters, and a new medoid is selected for it with an attempt to
improve the objective score in the next iteration. The medoid of each other cluster is replaced by the cluster me-
dian (the virtual object with projected value along each dimension equal to the median of the cluster members)
as a medoid could have projected values deviated from the cluster center along some relevant dimensions accord-
ing to the data model in Section 3. In the next iteration, the values of µ̃ij will be substituted by these medians.
We will use the term “cluster representative” to call the medoid or median that represents a cluster. After replac-
ing the old cluster representatives, the members of each cluster are removed, and a new iteration of object assign-
ment, score comparison and cluster representatives replacement is carried out. The process repeats until the best
objective score remains unchanged for a certain number of iterations.

Algorithm SSPC
1 Initialization: determine the seeds and relevant dimensions of each cluster
2 For each cluster, draw a medoid from the seeds
3 Assign every object in the dataset to the cluster (or outlier list) that gives the greatest improvement to

the objective score
4 Call SelectDim(Ci) for each cluster Ci, and calculate the overall objective score
5 Record the clusters if they give the best objective score so far, restore the best clusters otherwise
6 Replace the cluster representative of each cluster, then remove its members
7 Repeat 3-6 until no score improvements are observed for a certain number of iterations
End

Listing 2: The outline of the SSPC algorithm.



There are three main differences between SSPC and the previous partitional approaches for projected clustering,
PROCLUS and ORCLUS. First, the seeds are determined based on some domain knowledge (labeled objects and
labeled dimensions) if supplied, which is potentially more accurate. Second, unlike PROCLUS and ORCLUS where
the selected dimensions are determined based on some distance calculations that involve all dimensions, the seeds
of each cluster are associated with an estimated set of relevant dimensions determined during initialization. When
a seed is picked as the medoid of a cluster, either initially or to replace an old cluster representative, the associated
dimensions become the selected dimensions of the cluster. As to be seen later, this process does not rely on distance
calculations that involve all dimensions or any user parameters that are critical to the clustering accuracy but
whose values are hard to determine. This allows SSPC to identify low-dimensional clusters more accurately. Third,
after each iteration, besides replacing a bad cluster representative by a new medoid, other cluster representatives
are also replaced by the cluster medians to avoid problems due to the potential biased projected values of the
medoids as discussed before.

In the coming subsections some core mechanisms of SSPC will be discussed in detail, followed by an overall
analysis of the whole algorithm.

4.1. Determining ŝ2
ij

In order to use the SelectDim procedure and calculate the objective score φ, we need to determine the values of
ŝ2

ij . As mentioned in Section 3, ŝ2
ij should be greater than the sample variance s2

ij for all selected dimensions. Since
the expected variance of a random sample of a population is the variance of the population, if s2

ij is no smaller
than the variance of the global population, σ2

j , the members of Ci are no more similar to each other along vj than a
group of random objects. So, σ2

j can be viewed as a baseline (maximum) value of ŝ2
ij , whose value can be estimated

by the sample variance of Dj , hereafter denoted as s2
j .

We propose two schemes to set the actual value of ŝ2
ij . The first scheme is to set it to ms2

j , where m ∈ (0, 1] is
a user parameter. A smaller m tightens the selection criterion. Although this scheme is very simple, the resulting
clustering accuracy is very stable across a wide range of m values as to be shown later by the experimental results.

The second scheme is based on a probabilistic reasoning. Users are asked to specify a value p that bounds the
maximum probability that a dimension irrelevant to a cluster is selected by chance. Suppose Ci is a cluster to
which dimension vj is irrelevant. We can write p = Pr(s2

ij < ŝ2
ij). If the sampling distribution of s2

ij has a known
probability density function (PDF), the value of ŝ2

ij can be computed accordingly.

For example, suppose the global populations are Gaussian. Then the random variable (ni−1)s2
ij

σ2
j

has a chi-square

distribution with ni − 1 degrees of freedom. With p specified and σ2
j approximated by s2

j , the value of ŝ2
ij can be

computed from the inverse of the cumulative chi-square distribution.
The first scheme is more generic as it does not need to assume the properties of the global populations. But in

case the sampling distribution of s2
ij has a known PDF, the second scheme is more recommended as parameter p

has a stronger intuitive meaning than m.
Notice that although ŝ2

ij can take different values for different Ci (when parameter p is used) and vj (in both
cases), the objective function and the SelectDim procedure involves only one user parameter whose value is not
critical to the clustering accuracy, which makes SSPC quite robust. According to the experimental results to be
presented in Section 5, the range of values of m and p that give good clustering results is usually much wider than
the range of l values (average cluster dimensionality) used by PROCLUS. In general, some reasonable values (e.g.
0.3 ≤ m ≤ 0.7, 0.01 ≤ p ≤ 0.2) can be used when the user has no ideas on the proper value to use. The value can
be tuned down if the clusters appear to have too many selected dimensions, or tuned up if too many objects are
discarded as outliers.

4.2. Initialization

In the initialization step, SSPC needs to determine the seeds. Unlike most k-medoids methods like CLARANS [13]
where each cluster draws its medoid from a single pool of seeds, SSPC puts the seeds into different seed groups. Each
seed group contains a set of seeds that are expected to come from a single real cluster. From the seeds, the set of rel-
evant dimensions of the cluster are estimated. Each time a seed of a seed group is picked as the medoid of a cluster,
the set of dimensions of the seed group is used as its selected dimensions.



SSPC creates two kinds of seed groups: private and public. For a cluster with input knowledge, it is easier to
form an accurate seed group (in terms of both the seeds and the estimated relevant dimensions). A private seed
group is thus created, which is solely used by the cluster. All other clusters share some public seed groups, where
the number of groups is larger than the number of such clusters, so that medoids can be drawn from different seed
group combinations. Whenever a cluster needs to draw a new medoid, it is randomly drawn its private seed group
if it has, or otherwise one of the public seed groups not currently used by other clusters.

The order of seed group creation is important. Having created the seed groups of some clusters accurately, it
becomes easier to accurately create the remaining seed groups. This is because objects that are close to the seeds
of the previous seed groups in the corresponding subspaces are likely members of those clusters, which need not
be considered when determining the seeds of the new seed groups. We will show in Section 4.5 that it is easier
to create seed groups accurately for clusters with more input knowledge, which suggests that clusters with more
input knowledge should have their seed groups created earlier. Based on the ease of creating accurate seed groups,
SSPC creates seed groups in the following order: 1) clusters with inputs in both Io and Iv, 2) clusters with inputs
in Io only, 3) clusters with inputs in Iv only, 4) clusters with no inputs. Within each category, clusters with larger
amount of inputs are initialized earlier.

We now discuss the details of the seed group creation process for the four cases separately. For the first three
cases, a private seed group is created, and we will use Ci to denote the target cluster, Gi to denote the result-
ing seed group, and Io

i and Iv
i as the sets of labeled objects and labeled dimensions for Ci respectively. Since Gi con-

tains both a set of objects (the seeds) and a set of estimated relevant dimensions, we will sometimes treat it as a
cluster for the sake of discussion.

4.2.1. Clusters with both kinds of inputs In this case, we have several pieces of important information.
First, the center of Ci is likely to be located near the median of Io

i . While the objects in Io
i can be biased towards

one side of Ci, they should be still relatively close to the center of Ci as compared to most other objects. Second,
if the set of objects in Io

i is viewed as a temporary cluster Ci′ , the dimensions with larger φi′j values are more
likely to be the relevant dimensions of Ci. Third, as we assume all input knowledge is correct, all dimensions in Iv

i

should be included in the set of relevant dimensions of the seed group.
This leads to a two-step process of seed group creation. We first identify the seeds in Gi to be the objects in

the dataset that are close to the median of Io
i along dimensions with large φi′j values. Then we set the relevant

dimensions of the seed group to be those selected by SelectDim(Gi) plus the ones in Iv
i . We use the dimensions from

SelectDim(Gi) rather than those from SelectDim(Ci′) as the number of seeds can be controlled to be larger than
the number of objects in Io

i , so the former can probably give a more accurate estimate of the relevant dimensions.
We developed a mechanism for the first step based on a simple idea. If we form a grid (multi-dimensional his-

togram) of the whole dataset using a fixed number of dimensions, then if the dimensions are all relevant to Ci, a cell
will be found to contain a large number of objects, which correspond to the center of Ci in the subspace. If some of
the dimensions are irrelevant to Ci, the peak density (the highest number of objects among the cells) will be much
lower. So, multiple grids are built using different sets of dimensions, and the objects in the peak cell with the high-
est density are chosen as the members of Gi.

There are several issues to consider. First, the number of dimensions used to build each grid should not be too
large as the number of cells increases exponentially as the number of building dimensions increases, which makes
each cell to have too few objects and creates a heavy computational overhead. Normally a three-dimensional grid
serves the purpose quite well.

The second issue is which dimensions should be used to build the grids. The basic principle is to allow di-
mensions with greater chance of being relevant to Ci to have higher probabilities of being involved in grid build-
ing. Therefore we define a candidate set that includes the dimensions selected by SelectDim(Ci′) as well as those in
Iv
i , where each dimension vj in the set has a probability proportional to the φi′j value of being selected as a build-

ing dimension of a grid.
The third issue is that a set of grid-building dimensions could be simultaneously relevant to multiple clusters,

in which case the grid will contain multiple peaks. Since the cluster center is expected to be close to the median of
Io
i , instead of looking for the absolute peak of the whole grid we perform a localized hill-climbing search starting

from the cell that contains the median of Io
i . The search also solves the problem that the median may be biased

towards one side of Ci.
As φi′j involves the computation of the sample variance s2

i′j , Io
i should contain at least two objects.



4.2.2. Clusters with labeled objects only The seed group creation process is almost the same as in the pre-
vious case, except that only dimensions from SelectDim(Ci′) are involved in grid building and only those from
SelectDim(Gi) are set as the relevant dimensions of the seed group.

4.2.3. Clusters with labeled dimensions only In this case, the temporary cluster Ci′ cannot be formed.
Only dimensions in Iv

i are involved in grid building, and each of them has the same probability of being involved.
Without Ci′ , there is no starting point for the localized hill-climbing search, so the seeds are chosen from the
objects in the absolute peak of the whole grid.

4.2.4. Clusters with no inputs In this case, we cannot build the grids directly due to the lack of input knowl-
edge. An alternative mechanism that makes use of the information of other seed groups is developed. It is similar to
the max-min mechanism of PROCLUS [1], which identifies an object whose minimum distance to all the seeds al-
ready picked by other seed groups is maximum. Distance calculations are performed in the subspace defined by
the relevant dimensions of the seed groups, normalized by the number of dimensions. The identified object is re-
mote from all picked seeds, so there is a good chance that it belongs to one of the clusters whose seed group has
not been created. It is thus used to replace the median of Io

i in the previous cases as the starting point of the
hill-climbing search.

An one-dimensional histogram is then constructed for each dimension of the dataset to measure the object den-
sity around the identified object along the dimension. A dimension with high object density around the identi-
fied object is likely to be relevant to a cluster that centers around the object along the dimension. The dimen-
sion is thus given a high probability of being involved in grid building. With these probabilities determined, the
seed group creation process for the case with labeled objects only can be performed.

In the extreme case, if all clusters receive no input knowledge, the object of the first seed group is randomly
drawn from the whole dataset instead of using the max-min mechanism.

4.3. Cluster Representatives Replacement

To improve the objective score, SSPC needs to identify a bad cluster and replace its cluster representative ap-
propriately. The most common situation where a bad cluster exists is that the medoids drawn by two clusters be-
long to the same real cluster. As a result, the two clusters will be quite similar, and they compete for the φi

score of the real cluster. On the other hand, one of the other real clusters will not be represented by any clus-
ter, and most of its members will be put on the outlier list.

There are several ways to detect the occurrence of this situation. One is to check whether there exists a cluster
with a very low φi score, either absolutely (compared to the maximum possible score) or relatively (compared to
the score of other clusters). The cluster is likely the loser of the two competing clusters. The other way is to check
if there exists two clusters that are very similar by calculating the change of φi score if two clusters are merged
into one. If two clusters have medoids belonging to the same real cluster, the resulting score will approach the sum
of the two original scores. Otherwise the resulting score will be much lower, since few dimensions can be selected if
the members of two different real clusters are mixed. In either case, a bad cluster can be pinpointed and its cluster
representative can be replaced by a new medoid randomly drawn from one of the associated seed groups currently
not used by other clusters.

For each other cluster, although the medoid may really be a member of the cluster, it may not be close to the
cluster center along some relevant dimensions. As a result some real members located at the other side of the
cluster may not be attracted to this cluster. The cluster can be improved by replacing the medoid with the median
of the cluster, which is probably closer to the center of the real cluster.

4.4. Complexity

We divide the complexity analysis of SSPC into two parts: seed groups creation and actual clustering. A sub-
stantial amount of time in seed groups creation is spent on the building of grids, which involve projecting O(n)
objects into the cells. With the number of building dimensions and the number of bins per dimension fixed at con-
stant, the time for building a grid and searching for the cell with peak density is O(n). With the number of grids
to build per cluster also fixed at constant, the total time spent in grid building and searching is O(kn). To es-
timate the relevant dimensions, the φij scores are to be computed, which take O(nid) for each cluster Ci (with



the selection thresholds precomputed when parameter p is used). The total time complexity for seed groups cre-
ation is thus O(knd). With the size of each grid fixed by constants, the space complexity depends on the size of
the dataset, which is O(nd).

In actual clustering, assigning each object involves computing the resulting scores of k cluster, which take a total
time of O(kd) (since the local means and variances can be computed in an incremental fashion by using cluster
features (CF) [27]). Each iteration thus takes O(knd) time in object assignment and objective score calculations.
Cluster refinements require the computation of medians, each of which can be done in O(n) time in a brute force
way when there are O(n) projected values. The total time of an iteration is therefore O(knd). The overall time
complexity of the whole algorithm, depends on the number of iterations, which is an unknown value that can vary
in different runs. As in most partitional clustering algorithms, we observe from experimental results that it does
not grow more than linearly with k, n or d. So we suggest that the overall time complexity of the whole SSPC
algorithm is also O(knd). The space complexity of actual clustering is O(nd), which is also the space complexity
of the whole algorithm.

The linear time and space complexities make it more practical to cluster large datasets as compared to some
other projected clustering algorithms such as DOC, HARP, and ORCLUS.

4.5. How much input is needed?

In many real situations the amount of available domain knowledge is very limited, or it is very costly to obtain
such knowledge. It is therefore important to predict the relationship between the amount of input knowledge and
the resulting clustering accuracy, so as to minimize the amount of input knowledge while getting a satisfactory
accuracy.

We begin with the case where only labeled objects are available. Suppose a certain cluster Ci receives |Io
i | labeled

objects. The objects form a temporary cluster, which is used to determine the grid-building dimensions. We want
to estimate the probability that at least one grid is built from dimensions that are really relevant to Ci only, which
is crucial to the accuracy of the seed group and the clustering accuracy in turn.

Assume the global distributions are Gaussian, and parameter p is used in computing the values of ŝ2
ij . By def-

inition, the probability that a dimension irrelevant to Ci being selected by the temporary cluster is p. As dis-
cussed in Section 4.1, the value of ŝ2

ij can be computed from the inverse of the cumulative chi-square distribu-
tion. Now, suppose dimension vj′ is relevant to Ci. The probability that vj′ is selected by the temporary cluster,

q = Pr(s2
ij′ < ŝ2

ij′) = Pr(
(|Io

i |−1)s2
ij′

σ2
j′

<
(|Io

i |−1)ŝ2
ij′

σ2
j′

), where σ2
j′ is the variance of the local population of the under-

lying class of Ci along vj′ . If σ2
j′ can be estimated (e.g. from the labeled objects and a histogram on vj′), q can be

estimated accordingly from the cumulative chi-square distribution.
Let di be the number of relevant dimensions of Ci, the number of “true positives” (selected dimensions that are

actually relevant to Ci) is thus a binomial random variable with di trials and probability q. Similarly, the number
of “false positives” (selected dimensions that are actually irrelevant to Ci) is a binomial random variable with d−di

trials and probability p. Denote t and f as the number of true positives and false positives respectively. Suppose
each grid is built from c dimensions, and each dimension selected by the temporary cluster has the same chance of
being involved in building a grid, the probability that a grid is built with all c dimensions being relevant to Ci is:

α =
∑di

t=c

∑d−di

f=0 (di
t )qt(1− q)di−t(d−di

f )pf (1− p)d−di−f (t
c)

(t+f
c )

, (5)

where the notation (n
r ) represents the number of ways of picking r unordered outcomes from n possibilities. If

g grids are built for each cluster, the probability that at least one of them involves relevant dimensions only is
1− (1− α)g. To visualize the change of this value with different input sizes, let us consider some real values to be
used in the experiments in Section 5. Suppose d = 3000, p = 0.01, c = 3, g = 20, and the variance ratio of a local
population to the corresponding global population is 0.15. We vary |Io

i | from 2 to 15, and the ratio di

d , from 1% to
20%. Figure 1 shows the estimated probabilities that at least one grid is formed by relevant dimensions only.

The figure shows that for a fixed di

d ratio, having more input objects increases the probability of forming a grid
by relevant dimensions only. In addition, each curve is observed to have a sharp increase followed by a flattened
region. This means users can estimate the smallest amount of input that can lead to a near maximal accuracy.
It is an exciting result to see that when di

d = 5%, only 5 inputs are enough to have an almost 100% guarantee
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Figure 1: The probability that at least one grid is formed by relevant dimensions only, when only labeled objects
are available.
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Figure 2: The probability that at least one grid with all c building dimensions being relevant to Ci only is formed,
when only labeled dimensions are available.

that a grid will be formed by relevant dimensions only. The figure also shows that for a fixed amount of input, the
probability increases as di

d increases, which suggests that input objects work better when the clusters have more
relevant dimensions.

Next, we consider the case where only labeled dimensions are available. Suppose dimension vj is specified as
relevant to a cluster Ci. If an one-dimensional histogram is built from vj , we expect to find a peak at the center
of Ci. If the cell with the highest object density is not close to the center of Ci, most probably vj is also relevant
to another cluster. Suppose there are k clusters, and on average each cluster has di relevant dimensions. Then the
probability that vj is also relevant to one or more other clusters is 1 − (1 − di

d )k−1. Denote this probability as γ,
the probability of forming a c-dimensional grid with all c dimensions being relevant to Ci only is (1−γ)c. We want
to estimate the probability of forming at least one such grid when g grids are built, which is a good indicator of
the chance of forming an accurate seed group.

Suppose there are |Iv
i | input dimensions, and no two grids are allowed to use exactly the same set of building

dimensions. When (|I
v
i |

c ) ≤ g, the required probability is 1− (1− (1−γ)c)(
|Iv

i
|

c ). When (|I
v
i |

c ) > g, it becomes 1− (1−
(1 − γ)c)g. Using the same parameter values as before, and setting k = 5, the estimated probabilities at various
|Io

i | and di

d values are shown in Figure 2.
In general, the more labeled dimensions being supplied, the higher is the chance of forming a grid with all

building dimensions being relevant to Ci only. The figure also reveals an interesting phenomenon: while labeled
objects work better when di

d is large, labeled dimensions work better when it is small as the chance for a single
dimension to be relevant to multiple clusters is small. This suggests that when trying to identify clusters with
extremely low dimensionality, which is the main focus of this study, it is more effective to use labeled dimensions
as input knowledge.

Both inferences show that a very small amount of input knowledge would enhance the accuracy a lot. Finally,
since the two kinds of input complement each other, there is a synergy when they are supplied at the same time,
provided the amount of input objects is not so small that causes a large amount of irrelevant dimensions to be



used in building the grids. Some empirical results will be presented in the next section.

5. Experiments

In this section we present various experimental results on SSPC and some comparing algorithms. We first de-
scribe the algorithms involved, the general setting, and the performance metric. Then we present the details of the
experiments in subsequent subsections.

We compare the accuracy of three projected clustering algorithms HARP [25], PROCLUS [1] and SSPC, using
the non-projected k-medoids clustering algorithm CLARANS [13] as reference. We do not include ORCLUS since
we consider only axis-parallel clusters, and it has a long execution time on large datasets. We have also tried to
include FastDOC in the experiments, but there have been some great difficulty in setting its parameter values. In
some preliminary experiments, FastDOC rapidly moved from putting all objects to a single cluster to discarding
a lot of outliers (objects that are not included in the first k clusters) with a slight change of the value of the
parameter β. We therefore focused on the four algorithms listed above, and left the more thorough comparisons
between different projected clustering algorithms to a future study.

HARP always produces the same clusters when clustering a dataset multiple times using the same set of param-
eter values. This is not true for the other three algorithms, which all use random numbers in some procedures. We
therefore repeated each experiment ten times, and report only the result that gives the best algorithm-specific ob-
jective score.

The primary performance metric used in evaluating the quality of a clustering result is the Adjusted Rand Index
(ARI) [24] that validates the produced clusters by the known real clusters. It is based on the Rand Index [18], with
the expected index value also taken into account. It measures how similar are the partition of objects according to
the real clusters (U) and the partition in a clustering result (V). Denote a, b, c and d as the number of object pairs
that are in the same cluster in both U and V, in the same cluster in U but not V, in the same cluster in V but not
U, and in different clusters in both U and V respectively, ARI is defined as follows:

ARI(U, V ) =
2(ad− bc)

(a + b)(b + d) + (a + c)(c + d)
(6)

The more similar are the two partitions (larger a and d, smaller b and c), the larger will be the ARI value. When
U and V are identical, the index value will be one. When V is only as good as a random partition, the index value
will be zero.

If input knowledge is involved in a run of SSPC, the labeled objects are removed from the resulting clusters
before computing the ARI values in order to eliminate the direct performance gain due to the input objects.

5.1. Raw accuracy

In the first set of experiments we compared the raw accuracy of the algorithms, i.e., the accuracy without us-
ing any input knowledge. A series of synthetic datasets were generated with n = 1000, d = 100 and k = 5. The
actual average dimensionality of the clusters, lreal, varies from 5 to 40, accounting for 5%− 40% of the dataset di-
mensionality. The datasets were generated according to the data model described in Section 3, with the global dis-
tributions being uniform and the local distributions having variances ranging from 1%− 10% of the value range of
the global distributions.

We set k to 5 for all algorithms, used default parameter values for HARP and CLARANS, and tried different
values of the critical parameters of PROCLUS and SSPC. For PROCLUS, we tried 9 different values of l for each
dataset. For SSPC, 5 different values of m and p were used for each dataset. We present the results in two different
figures. In Figure 3, the best results (the results with the highest ARI values) after trying different parameter
values are shown. In Figure 4, the best and average results of PROCLUS and SSPC are shown for the comparison
of their relative robustness.

Figure 3 shows that all projected clustering algorithms performed well when the cluster dimensionality is high.
In comparison, CLARANS, being a non-projected algorithm, has a much lower accuracy. When the dataset di-
mensionality is as low as 10% of d, the best performance of PROCLUS begins to drop. At 5%, the performance of
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Figure 3: The best raw accuracies of the algorithms on datasets with various average cluster dimensionality.
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Figure 4: A comparison of the best and average raw accuracies of PROCLUS and SSPC on datasets with various
average cluster dimensionality.

all three projected clustering algorithms went down, but SSPC has the mildest performance drop, no matter pa-
rameter m or parameter p is used. It is somewhat unexpected that the raw performance of SSPC when param-
eter p is used is close to the performance when parameter m is used, given the global distributions are actually
non-Gaussian. This may due to the fact that except the dimension selection mechanism, SSPC makes no assump-
tions on the global distribution. The performance of the other parts of the algorithm may compensate for the
invalid assumptions being made when parameter p is used.

Figure 4 shows that SSPC is more robust than PROCLUS in that the average accuracies when different pa-
rameter values are used are much closer to the best accuracies. The individual clustering results when lreal = 10
are shown in Figure 5. PROCLUS performed well when the value of l was supplied correctly, but the perfor-
mance went down as the input moved away from the true value. In contrast, SSPC performed well with the various
parameter values being tried, and is thus more robust.
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Figure 5: The raw accuracy of PROCLUS and SSPC on the dataset with lreal = 10 using various parameter values.
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Figure 7: The amount of objects put in the outlier list by SSPC when clustering the datasets with various amount
of outliers.

5.2. Outlier Immunity

In this set of experiments we studied how SSPC is affected by outliers. A series of synthetic datasets were gener-
ated with n = 1000, d = 100, k = 5, and lreal = 5. The amount of outliers varies from 0% to 25%. We set m to the
arbitrary value of 0.5. The clustering accuracies and the amount of objects on the outlier lists are shown in Fig-
ure 6 and Figure 7 respectively.

The results show that SSPC has a high noise-immunity, with only moderate accuracy decrease as the amount of
outliers increases. The amount of objects detected as outliers also highly resembles the actual amount of outliers
in the datasets.

5.3. Performance with input knowledge

Although SSPC has an encouraging raw accuracy, its performance also drops when lreal is very small. In this
set of experiments, we further lower the average cluster dimensionality and see if the accuracy of SSPC can be
improved by input knowledge. We generated a dataset with n = 150, d = 3000, k = 5 and lreal = 30, i.e., 1% of d.
The configuration highly resembles a real gene expression dataset when the goal is to cluster the samples, and the
number of relevant genes of each sample class is as low as 1% of d. We set m = 0.5, and tried 5 different coverage
ratios (fraction of clusters receiving inputs), 4 input categories (no inputs, Io only, Iv only, both), and 8 different
input sizes. For example, when coverage=0.6, both kinds of inputs are supplied and input size=4, 0.6 × 5 = 3
clusters receive input knowledge, each with 4 labeled objects and 4 labeled dimensions. No inputs are supplied for
the other 2 clusters.

The inputs are drawn randomly from the real cluster members and relevant dimensions. Each point in the com-
ing figures is the median of 10 repeated runs with 10 independent sets of inputs.

Figure 8 shows the accuracy of SSPC when coverage=1. For reference, the ARI values of HARP and PROCLUS
(with correct l value supplied) are 0.17 and 0.08 respectively, which are much lower than the raw accuracy of
SSPC (at input size 0). In general, SSPC has a larger accuracy improvement when more inputs are supplied. The
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Figure 8: The accuracy of SSPC with various amount of input knowledge when coverage is 1.
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Figure 9: The accuracy of SSPC with various coverage of input knowledge when input size is 3.

accuracy becomes stable with 5 objects and 3 dimensions (which is equal to the default value of c, the number of
building dimensions per grid). All these observations are consistent with our earlier analysis in Section 4.5. The
accuracy of SSPC appears to be more stable with labeled dimensions as inputs. In particular, an accuracy lower
than the raw accuracy is observed when only 2 labeled objects are supplied to each cluster. This is due to the large
probability that the two objects are close to each other along many irrelevant dimensions, which seriously misleads
the dimension selection mechanism (see Figure 1 for reference). On the other hand, the probability for a pair of
dimensions to be relevant to multiple clusters is much lower due to the low average cluster dimensionality, which
results in an observable accuracy improvement when 2 labeled dimensions are supplied.

Figures 9 and 10 show the accuracy of SSPC with changing coverage, when the input size is 3 and 6 respectively.
Again, there is a general trend of increasing accuracy when the coverage increases, and the increasing trend is
more stable at the larger input size of 6. An interesting observation from Figure 10 is that the peak performance
is reached at 60% coverage, which suggests that it is not necessary to input domain knowledge to every cluster.
By using the max-min mechanism (Section 4.2.4), clusters with no input knowledge could also locate their cluster
centers provided the seed groups of the other clusters are created accurately. During object assignment, if members
of the clusters with input knowledge are assigned correctly, the chance for the remaining clusters to identify their
members and relevant dimensions correctly is also increased.

5.4. Datasets with multiple possible groupings

As discussed in Section 1, an important application of semi-supervised clustering is to produce different desired
clusters based on different input knowledge. In this set of experiments we verify the capability of SSPC in achieving
this. We generated two datasets, each with n = 150, d = 1500, k = 5 and lreal = 30. The members and relevant
dimensions of the clusters in the two datasets are independent. We then combined the two datasets to produce
a dataset with 3000 dimensions, where the first 1500 come from the first original dataset and the last 1500 come
from the second. The average cluster dimensionality thus remains at 1% of d. We then tested the accuracy of
HARP, PROCLUS and SSPC on the dataset, with correct l value supplied to PROCLUS. For SSPC, we tested
its accuracy in three different scenarios: without inputs (raw accuracy), input based on the knowledge of the first
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Figure 10: The accuracy of SSPC with various coverage of input knowledge when input size is 6.

Table 1: The accuracy of the algorithms on the dataset with two possible groupings. The two sets of ARI values
are computed from the actual clusters of the two original datasets respectively.

Algorithm ARI (set 1) ARI (set 2)
HARP 0.054 0.012
PROCLUS 0.280 0.027
SSPC (no inputs) 0.446 0.001
SSPC (Io only, size=3) 0.329 0.397
SSPC (Io only, size=6) 0.841 0.847
SSPC (Iv only, size=3) 0.826 0.818
SSPC (Iv only, size=6) 0.833 0.834
SSPC (Io and Iv, size=3) 0.750 0.669
SSPC (Io and Iv, size=6) 0.842 0.846

original dataset, and input based on the knowledge of the second original dataset. The ARI values of the algorithms
computed from the actual clusters of the two original datasets are shown in Table 1.

The performance of HARP is seriously affected by the simultaneous existence of two possible groupings. Objects
not in the same cluster can be close to each other along many dimensions (due to the fact that they do belong to
the same cluster in the other grouping), which ruin the threshold loosening mechanism of HARP. The performance
of PROCLUS is better, but is still not very encouraging. The raw accuracy of SSPC is better than HARP and
PROCLUS when evaluated by the first set of clusters, but worse when evaluated by the second set. This shows
that without any external inputs, SSPC tends to form clusters that are more similar to the first set. But as some
external inputs were supplied, the accuracy of SSPC was significantly improved in both cases. The results confirm
the importance of external inputs in guiding the formation of some desired clusters when there are multiple possible
groupings.

5.5. Scalability

In this set of experiments we tested the scalability of SSPC with respect to an increasing dataset size (n) and di-
mensionality (d). We generated two series of datasets, the first with d = 100, and n varies from 1000 to 100000. The
second has n = 150, and d varies from 100 to 10000. We measured the execution time of 10 repeated runs of each ex-
periment, using the execution time of PROCLUS as reference. We prefer to report the time of 10 repeated runs in
order to reduce the random variation of execution time in each run. Also, in real situations, repeated runs are usu-
ally required to obtain satisfactory results. The execution time of the two algorithms are shown in Figures 11
and 12.

The figures confirm the linear time complexity of SSPC with respect to both n and d. Its speed is comparable
to PROCLUS in our implementations. With input knowledge, the execution time of SSPC can be further reduced
as fewer histograms are built, the histogram searches are localized, and fewer iterations are required before the
(locally) optimal objective score is reached.
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Figure 11: The execution time of PROCLUS and SSPC with increasing dataset size.
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Figure 12: The execution time of PROCLUS and SSPC with increasing dataset dimensionality.

6. Summary and Future Extensions

In this paper, we have discussed some potential limitations of some existing projected clustering algorithms,
including their inability to detect clusters with very low dimensionality, the use of user parameters whose proper
values are hard to determine, and the potential accuracy drop when improper parameter values are supplied.

We have proposed a new projected clustering algorithm that is robust and is able to detect clusters of ex-
tremely low dimensionality as it uses a robust objective function and avoids distance calculations that involve all
the dimensions. In addition, we have proposed ways to utilize any available domain knowledge in the form of la-
beled objects and labeled dimensions. Experimental results show that there is a clear accuracy improvement when
some input knowledge is incorporated in the clustering process. The peak performance is readily reached when
only a small amount of knowledge is supplied, and when the knowledge covers only some of the classes.

There are some obvious directions for further study. The most important one is to test the new algorithm on
some real datasets that are expected to contain projected clusters, such as gene expression profiles. When apply-
ing to complex, noisy real data, the data model and objective function may have to be revised according to the
observed data properties.

Another direction is to allow incorrect inputs. When inputs could be incorrect, they have to be validated before
being used to guide the clustering process, for example by comparing the assumed data model and the observed
data values. It is also possible to study fuzzy inputs, each of which contains a confidence level that indicates its
chance of belonging to a cluster, and/or a quality level that specifies the chance for the object to be of a certain
distance from the cluster center.

The current study is focused on distance-based clustering, i.e., the similarity between different objects is mea-
sured by a distance function. There are more and more applications where similarity is measured by other means,
such as the rise and fall pattern of values. Since most semi-supervised clustering algorithms are based on some
distance-based methods such as k-means and k-medoids, some adaptations may be required when trying to incor-
porate domain knowledge in pattern-based clustering.

It is also interesting to study the case where one class corresponds to multiple clusters. This can occur when,
for example, some samples from the same type of tumor actually belong to different subtypes. The samples are



best modeled by multiple clusters with different properties, some of which being common to all the clusters. The
simplest way to handle such datasets is to assign a different sub-class label to each cluster, and treat each cluster
as originating from a different class. But if the corresponding domain knowledge is not available, one may resort
to forming a single cluster for each class, based on the common properties. One interesting algorithm for non-
projected clustering that follows this direction is described in [11], which modifies the distance matrix to artificially
move objects of the same class towards each other. A more general approach is to allow the formation of multiple
clusters per class, which is currently not yet fully studied.
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