
To appear in Software Engineering Research and Applications,
C. V. Ramamoorthy, R. Y. Lee, and K. W. Lee (eds.),

Lecture Notes in Computer Science, vol. 3026, Springer, Berlin (2004)

An Automatic Test Data Generation System Based on
the Integrated Classification-Tree Methodology⋆, ⋆⋆, ⋆⋆⋆

A. Cain1, T. Y. Chen1, D. Grant1, Pak-Lok Poon2, Sau-Fun Tang1, 3, and T. H. Tse4

1 School of Information Technology
Swinburne University of Technology

Hawthorn 3122, Australia
2 School of Accounting and Finance

The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

e-mail: afplpoon@inet.polyu.edu.hk
phone: (+852) 2766 7072 fax: (+852) 2356 9550

3 Department of Finance and Decision Sciences
Hong Kong Baptist University

Kowloon Tong, Kowloon, Hong Kong
4 Department of Computer Science and Information Systems

The University of Hong Kong
Pokfulam Road, Hong Kong

Abstract. Grochtmann and Grimm have developed the classification-tree method
(CTM) to facilitate software testers in generating test cases from functional specifi-
cations. While the method is very useful, it is hindered by the lack of a systematic
tree construction algorithm. This problem has been alleviated by Chen et al.
via their “integrated” classification-tree methodology (ICTM). In this paper, we
describe and discuss a prototype systemADDICT that is built on ICTM.

Keywords Automatic test case generation, black box testing, category-partition
method, choice relation framework, classification-tree method, software testing

⋆ c©2004 Springer. This material is presented to ensure timely dissemination ofscholarly and
technical work. Personal use of this material is permitted. Copyright and all rights therein
are retained by authors or by other copyright holders. All persons copying this information
are expected to adhere to the terms and constraints invoked by each author’s copyright. In
most cases, these works may not be reposted without the explicit permission of the copyright
holder. Permission to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution to servers or lists, or to reuse
anyrcopyrighted component of this work in other works must be obtained from Springer.

⋆⋆ A preliminary version of this paper was presented at the 1st ACIS International Conference
on Software Engineering Research and Applications (SERA ’03) [3].

⋆⋆⋆ This work is supported in part by a grant of the Research Grants Council of Hong
Kong (Project No. HKU 7029/01E), a research and conference grant of The University of
Hong Kong, and a grant from the Australian Research Council (ARC Discovery Project:
DP 0345147).

Administrator
HKU CSIS Tech Report TR-2004-04

1 Introduction

The generation of test cases is an important aspect in software testing because it affects
the scope and, hence, the quality of the process [1, 7]. This importance has inspired
researchers to develop various test case generation methods. Among these researchers,
Grochtmann and Grimm [8] have developed theclassification-tree method(CTM). The
major concept of the method is to generate test cases via the construction of classifica-
tion trees (which we shall denote byT s). Although the concept of CTM is promising,
this method has a major weakness — the absence of a systematictree construction
algorithm. As a result, users of CTM are left with a loosely defined task of constructing
T s. For complicated specifications, this construction task could be difficult and hence
prone to human errors. If aT is wrongly constructed, the quality of the resulting test
cases generated from it will be adversely affected.

The problem of the absence of a tree construction algorithm is alleviated by Chen et
al. via their integrated classification-tree methodology (ICTM) [5]. With this methodol-
ogy, software testers can constructT s by using a systematic tree construction
algorithm. In this paper, we discuss the development and functionality of a prototype
systemADDICT (which stands forAutomateD testData generation using theIntegrated
Classification-Tree methodology) built upon ICTM.

The rest of the paper is organized as follows. Section 2 outlines the major concept of
ICTM [5]. Section 3 describes in detail the hardware and software platforms on which
ADDICT is built, the various system features ofADDICT, and the major contribution
of ADDICT. Section 4 discusses our planned extension toADDICT. Section 5 describe
other work related to CTM and ICTM. Finally, Sect. 6 summarizes and concludes the
paper.

2 Overview of the Integrated Classification-Tree Methodology
(ICTM)

Basically, ICTM [5] helps testers generate test cases from specifications via the con-
struction ofT s. The tree construction task is supported by a predefined algorithm. ICTM
consists of the following steps:

(1) Decompose the specification into severalfunctional unitsU s that can be tested
independently. For eachU selected for testing, repeat steps (2) to (7) below.

(2) Identify classifications and their associated classes for the selectedU . Classifi-
cationsare different criteria for partitioning the input domain ofthe selectedU ,
whereasclassesare disjoint subsets of values for each classification. For every
classification[X], its associated classes should partition the possible values of[X]
completely.5 The grouping of certain values in a single class|X: x| indicates the
belief that a test case with any value in|X: x| is essentially as good as one with any
other value in that class [11].

5 In this paper, classifications are enclosed by square brackets[] while classes are enclosed by
vertical bars| |. Furthermore, the notation|X: x| denotes classx in classificationX.

2

(3) Construct aclassification-hierarchy tableHU for U , which captures the hierarchi-
cal relation for each pair of classifications.

(4) Construct aclassification treeTU from HU .

(5) Construct acombination tablefrom TU . Various combinations of classes can then
be selected from the table according to a set of predefined selection rules. Each of
these combinations of classes is called apotential test frame B.

(6) Check allB’s againstU , with a view to identifying whether they are complete or
incomplete. Given aB, if a standalone input toU can be formed by selecting one
element from every class inB, thenB is a complete test frame(denoted byBc).
Otherwise,B is incomplete. Incomplete test frames are not useful to testing and,
hence, should be discarded before testing commences.

(7) From eachBc, construct a test case by selecting one element from each class inBc.

In step (6) above, two potential reasons for aB to be incomplete are: (a)B contains
insufficient classes to form a standalone input toU , and/or (b) the combination of
classes inB contradictsU . Readers may refer to [5] for details. Nevertheless, when we
describe the various system features ofADDICT in Sect. 3.2, we shall elaborate on the
above steps with examples.

3 ADDICT: A Prototype System for Automated Test Case
Generation

3.1 Technical Details

We have carefully considered the hardware and software platforms on whichADDICT

should be built. To improve its applicability, we have implementedADDICT on the stan-
dard PC platform with Microsoft Windows as the operating system.ADDICT is written
in Delphi, which is a Pascal-based object-oriented programming language. We have
applied object-oriented techniques when designing and coding ADDICT. For examples,
a classification[X] is an aggregation of classes|X: x1|, |X: x2|, . . . , |X: xk|, and[X] is
related to other classifications through hierarchical relationships. In general,ADDICT

does not impose a maximum limit on the number of classifications and classes, as long
as the available memory in the PC can support them. The current version ofADDICT

supports steps (2) to (5) of ICTM outlined in Sect. 2 above.

3.2 Functionality of ADDICT

We use a commercial specification, denoted byPURCHASE, to explain each step of
ICTM mentioned in Sect. 2 and to describe the various features of ADDICT. Part of
the specification is listed below:

Part of the SpecificationPURCHASE for the Program PPURCHASE:

XYZ is an international bank that issues credit cards to approved customers. . . . For
each purchase,PPURCHASE shall accept the transaction details together with the various

3

information of the credit card. Thereafter, validation of these details is performed in
order to determine whether the purchase should be approved.The following are the
various inputs toPPURCHASE:

(a) Details of Credit Cards:
• Class of Credit Card: Either “Gold” or “Classic”.
• Credit Limit of Credit Card: For gold credit cards, the credit limit is either

$5 000 or $6 000. For classic credit cards, the credit limit iseither $2 000 or
$3 000.

• . . .
(b) Details of Purchase:

• Current Purchase Amount: It can be any amount greater than $0.00.
• . . .

Step (1) of ICTM (Decomposition of Specification):
The first step is to decomposePURCHASE into a number of independent functional

units U s. In our case, because of the simplicity ofPURCHASE, no decomposition is
needed. In other words, the entire specification can be treated as one functional unit
denoted byU PURCHASE.

Step (2) of ICTM (Identification of Classifications and Classes):
FromU PURCHASE, the tester identifies 9 classifications and 22 classes. The number

of classes contained in a classification ranges from 2 to 5. The following lists four
examples of these classifications together with their associated classes:

(a) Classification [Class of Credit Card], with|Class of Credit Card: Gold| and|Class
of Credit Card: Classic| as its two associated classes.

(b) Classification [Credit Limit of Gold Card], with|Credit Limit of Gold Card: $5,000|
and|Credit Limit of Gold Card: $6,000| as its two associated classes.

(c) Classification [Credit Limit of Classic Card], with|Credit Limit of Classic Card:
$2,000| and|Credit Limit of Classic Card: $3,000| as its two associated classes.

(d) Classification [Current Purchase Amount (PA)], with |Current Purchase Amount:
PA ≤ $2 000.00|, |Current Purchase Amount: $2000.00 < PA ≤ $3000.00|,
|Current Purchase Amount: $3000.00 < PA ≤ $5000.00|, |Current Purchase
Amount: $5000.00 < PA ≤ $6 000.00|, and |Current Purchase Amount:
PA> $6000.00| as its five associated classes.

It can be seen from (d) above that a class can be defined for a range of values and, hence,
although all the classes in a classification[X] should cover the input domain relevant to
[X], the number of classes in[X] is not necessarily large.

Consider Fig. 1 which depicts an input screen provided byADDICT for entering the
full and short names of classifications and classes. In this figure, the tester has defined
classification [Credit Limit of Gold Card] in the upper-leftbox, and class|Credit Limit
of Gold Card: $5 000| in the bottom-right box. Additionally, the tester is addingclass
|Credit Limit of Gold Card: $6 000| through the upper-right box.

4

Fig. 1. Input screen for classifications and classes

Step (3) of ICTM (Construction of Classification-Hierarchy Table):
After entering all the classifications and classes intoADDICT, the next step is to

construct the classification-hierarchy tableH PURCHASE for PURCHASE. Here, the tester
defines the hierarchical relation for each pair of classifications [X] and[Y] (denoted by
[X] → [Y]). There are four possible types of hierarchical relation asfollows:

• [X] is aloose ancestor of [Y] (denoted by[X] ⇔ [Y]),

• [X] is astrict ancestor of [Y] (denoted by[X] ⇒ [Y]),

• [X] is incompatible with [Y] (denoted by[X] ∼ [Y]), and

• [X] hasother relations with [Y] (denoted by[X]⊗ [Y]).

In the above, the symbols “⇔”, “⇒”, “∼”, and “⊗” are known ashierarchical
operators. Readers may refer to [5] for details, especially the conditions in determining
the correct hierarchical relation for[X] → [Y]. Note that the conditions associated with
each of the above hierarchical relations are mutually exclusive and exhaustive and,
hence,[X]→ [Y] is well defined. These hierarchical relations will determine the relative
position of[X] and[Y] in T . For example,[X]⇒ [Y] corresponds to the situation where
[X] will appear as either a parent or an ancestor of[Y] in T .6

Figure 2 depicts an input screen to capture the constraints of [Credit Limit of Gold
Card] on [Credit Limit of Classic Card]. These captured constraints will be used by
ADDICT to determine the appropriate hierarchical operator for [Credit Limit of Gold
Card]→ [Credit Limit of Classic Card]. In the input screen, the tester indicates that
|Credit Limit of Gold Card: $5 000| cannot be combined with any class (that is,|Credit
Limit of Classic Card: $2 000| and |Credit Limit of Classic Card: $3 000|) in [Credit
Limit of Classic Card] to form part of any complete test frame. By clicking the “Make

6 For theparent-childrelation, a classification is “directly” placed under one or more classes
of another classification. For theancestor-descendantrelation, a classification is “indirectly”
placed under one or more classes of another classification.

5

Fig. 2. Input screen for constraints between a pair of classifications

all the same” button near the bottom-right part of the input screen, the tester also
indicates that the constraint of|Credit Limit of Gold Card: $6 000| on all the classes in
[Credit Limit of Classic Card] is the same as that of|Credit Limit of Gold Card: $5 000|
on all the classes in [Credit Limit of Classic Card]. This saves the effort in defining
all constraints individually. Based on the entered constraints in Fig. 2,ADDICT will
automatically assign the hierarchical operator “∼” to [Credit Limit of Gold Card]→
[Credit Limit of Classic Card]. In short,ADDICT will determine and assign the appro-
priate hierarchical operator to[X] → [Y], based on the captured constraints of[X] on
[Y].

Figure 3 depicts the completedH PURCHASE with every element in it contains a hier-
archical operator and corresponds to the hierarchical relation between a pair of classi-
fications.7 We useti j to denote the element in theith row and thejth column ofHU .
Consider, for example,t23 in H PURCHASE. It contains the hierarchical operator “∼”, and
corresponds to [Credit Limit of Gold Card]∼ [Credit Limit of Classic Card]. Note
that the background color of all unassigned elements inH PURCHASE is initially set to
“blue”. Once the constraints corresponding to an elementti j have been entered and a
hierarchical operator has been assigned to it, the background color of that element will
change to “white”.

With regard to the construction ofHU , the following features provided byADDICT

are worth mentioning:

(a) A constraint of ICTM is that the parent-child or ancestor-descendant hierarchi-
cal relation must beanti-symmetricfor any pair of classifications. Otherwise aT
cannot be constructed. In other words,[X] ⇒ [Y] must imply[X] 6⇒ [Y]. Software

7 Note that, short names instead of full names for the classifications (both names are entered via
the input screen as depicted in Fig. 1) are displayed as row and column headings inH PURCHASE.
The idea is to fit the entireH PURCHASE into the screen. In the situation whereH PURCHASE is too
large (because of too many classifications) that exceeds the size of the screen, then vertical and
horizontal scroll bars can be used to view different parts ofH PURCHASE.

6

Fig. 3.Classification-hierarchy tableH PURCHASE for PURCHASE

testers may need to redefine the original set of classifications and classes in order to
meet this constraint while preserving the requirements of the target system (see [5]
for details).

Regarding this issue, ICTM helps testers identify such unwarranted situations by
means of the hierarchical operator “⇔”. Whenever[X] ⇔ [Y] is being defined, we
know that a symmetric parent-child or ancestor-descendanthierarchical relation
occurs between[X] and[Y]. In this case, testers will be alerted to redefine[X] and
[Y] (and their associated classes) so as to prevent a loop inT .

Considert12 andt21 in H PURCHASE of Fig. 3. They correspond to([Class of Credit
Card]⇒ [Credit Limit of Gold Card]) and([Credit Limit of Gold Card]⊗ [Class
of Credit Card]), respectively. Suppose, during the process of entering thecon-
straints between these two classifications, the tester has made a mistake and even-
tually causedADDICT to assign the hierarchical operator “⇔” to both t12 andt21.
Accordingly, the background color oft12 andt21 will change from “white” to “red”,
thus alerts the tester that symmetric parent-child or ancestor-descendant hierarchi-
cal relations occur. Note that, in this case, the unwarranted situation happens to
occur because of an input error; symmetric parent-child or ancestor-descendant
hierarchical relations in fact do not exist inU PURCHASE. In some other cases, however,
this occurrence may result from correct inputs because symmetric parent-child or
ancestor-descendant hierarchical relations do exist between some pairs of classifi-
cations identified fromU .

7

(b) In [5], Chen et al. have identified three properties of thehierarchical relations as
follows:

Property 1: If [X] ⇒ [Y], then[Y]⊗ [X].

Property 2: If [X] ∼ [Y], then[Y] ∼ [X].

Property 3: If [X]⊗ [Y], then[Y] ⇒ [X] or [Y]⊗ [X].

Using these properties,ADDICT provides a certain degree of automatic deduction
and consistency check during the construction ofHU . Examples are given as below:
(i) Automatic deduction: Consider Fig. 2 again. This input screen is used to

enter the constraints of each class in [Credit Limit of Gold Card] on [Credit
Limit of Classic Card]. The entered constraints causeADDICT to assign the
hierarchical operator “∼” to [Credit Limit of Gold Card]→ [Credit Limit of
Classic Card]. Later, without automatic deduction, the tester is required to enter
the constraints of each class in [Credit Limit of Classic Card] on [Credit Limit
of Gold Card] via another input screen similar to Fig. 2, if such constraints have
not yet been entered. Now, by using Prop. 2, this requirementno longer exists
becauseADDICT will automatically deduce the hierarchical operator for [Credit
Limit of Classic Card]→ [Credit Limit of Gold Card] to be “∼”. Accordingly,
the background color fort32 (which corresponds to [Credit Limit of Classic
Card]∼ [Credit Limit of Gold Card]) will change from “blue” to “green” to
inform the tester that the hierarchical operator fort32 is automatically deduced
(note that the background color for all the table elements whose hierarchical
operators are manually defined is “white”). Besides Prop. 2,ADDICT will also
provide automatic deduction based on Prop. 1. In fact, with the feature of
automatic deduction, only about three-quarters of the hierarchical relations in
H PURCHASE have to be manually defined.

(ii) Consistency Checking: Considert12 and t21 in H PURCHASE in Fig. 3 again,
which correspond to([Class of Credit Card]⇒ [Credit Limit of Gold Card])
and ([Credit Limit of Gold Card]⊗ [Class of Credit Card]), respectively.
Suppose,

• The constraints fort21 are entered before that fort12.

• The constraints fort21 are entered correctly, causingADDICT to assign the
hierarchical operator “⊗” to t21.

• Thereafter, the tester has made a mistake during the entry ofthe constraints
for t12, causingADDICT to incorrectly assign the hierarchical operator “∼”
to t12.

This mistake is undesirable because incorrect hierarchical relations will eventu-
ally result in the generation of incomplete test frames, or the omission of some
complete test frames. Regarding this problem,ADDICT provides a consistency
check for the defined hierarchical relations. In fact, the incorrect hierarchical
operator “∼” for t12 will be detected as an inconsistency byADDICT with refer-
ence to Prop(s). (2) and (3) mentioned above. This is becausethe combination
of ([Class of Credit Card]∼ [Credit Limit of Gold Card]) and([Credit Limit
of Gold Card]⊗ [Class of Credit Card]) contradicts these two properties.
Accordingly, the background oft12 and t21 in H PURCHASE will change from

8

“white” to “red” to alert the tester to take correction actions. An alert message
box will also be displayed automatically byADDICT to inform the tester about
the inconsistency (see Fig. 4).

Fig. 4.Message box to alert users about inconsistent hierarchical relations

In summary,ADDICT adopts the following principles in order to improve on the
effectiveness and efficiency of table construction:
• To perform automatic deduction instead of manual definitionfor each unas-

signedti j whenever possible.

• To perform consistency checking after every manual definition of ti j .

Step (4) of ICTM (Construction of Classification Tree):
Based on the completedH PURCHASE in Fig. 3, ADDICT will automatically construct

the corresponding classification treeT PURCHASE (see Fig. 5), based on a predefined tree
construction algorithm provided in [5]. Similarly toH PURCHASE, short names are used
for the classifications and classes in displayingT PURCHASE, and vertical and horizontal
scroll bars can be used to view different parts ofT PURCHASE if the tree is too large to fit
into the screen.

In step (5) of ICTM described in Sect. 2, potential test frames B’s are generated by
selecting combinations of classes from the combination table of T , based on certain
selection rules. Thereafter, the combination of classes inevery B has to be checked
againstU , with a view to classifyingB either as a complete test frameBc or as an

9

Fig. 5.Classification treeT PURCHASE for PURCHASE

incomplete test frame. The reason for checking is because, occasionally, aT may not
be able to capture all the constraints and relationships among classifications identified
fromU . This problem results in the selection of some incomplete test frames from the
combination table ofT .

Let NB andNBc denote the total number ofB’s and (Bc)’s, respectively, selected
from the combination table ofT . In [5], Chen et al. define an effectiveness metricET
for anyT as:

ET =
NBc

NB
(1)

ET is defined as such based on the argument thatT is merely a means to construct(Bc)’s
for testing. The ideal situation is that allB’s are complete (that is,NB = NBc) and, hence,
ET = 1. Obviously, a small value ofET is undesirable since more effort is required to
identify all the incomplete test frames. Furthermore, thismanual identification process
is prone to human errors, especially whenNB is large. If some(Bc)’s are somehow
mistakenly classified as incomplete and hence not being used, the comprehensiveness
of testing will be adversely affected.

Chen et al. [5] observe that a major reason for a small value ofET is the occurrence
of duplicated subtrees inT . To deal with this problem, they develop a classification
tree restructuring technique to suppress the occurrence ofduplicated subtrees inT .
This restructuring technique is part of their integrated classification tree construction
algorithm. Two important properties of this restructuringtechnique are: (i) to reduce
the value ofNB by pruning some duplicated subtrees fromT , and (ii) to retain all the
(Bc)’s and, hence,NBc remains unchanged. Because of these two properties, the value
of the effectiveness metricET can be increased. Readers may refer to [5] for details.

10

In ADDICT, the construction of the resultingT is performed on an incremental
basis — classifications and classes are firstly assembled together to form subtrees, which
in turn are joined together to form the resultingT . During the tree construction process,
ADDICT will automatically detect the occurrence of duplicated subtrees. If duplicated
subtrees do exist,ADDICT will apply the tree restructuring technique by Chen et al.,
in order to increase the value ofET of the resultingT . Note that the tree construction
process, that incorporates the restructuring technique, is performed byADDICT in a
fully automatic manner without human intervention.

Step (5) of ICTM (Construction of Combination Table and Selection of Potential
Test Frames):

With T PURCHASE in Fig. 5, the next step is to construct the corresponding combination
table, from whichB’s can be selected. This step is rather straightforward by following
some selection rules given in [5], which will not be repeatedhere. Same asT PURCHASE,
the construction of the combination table and the selectionof B’s are done byADDICT

automatically. In our case, a total of 240B’s will be selected from the combination table
of T PURCHASE by ADDICT. Figure 6 shows a partial list ofB’s constructed byADDICT.

Fig. 6.Partial list of potential test frames forPURCHASE

Step (6) of ICTM (Differentiation between Complete and Incomplete Test Frames):
As discussed in step (4) above, the tester has to check all theB’s with U PURCHASE to

see whether any of them is incomplete. In our case, no incomplete test frame exists and,
hence, all the 240B’s are also complete.

11

Step (7) of ICTM (Construction of Test Cases):
For each of the 240(Bc)’s, the tester selects an element from each class contained in

Bc to form a test case. Consider, for example, the followingBc
1 for U PURCHASE generated

by ADDICT:

{|Class of Credit Card: Gold|, |Credit Limit of Gold Card: $6 000|, |Current
Purchase Amount (PA): $5000.00< PA≤ $6000.00|, . . .}

A possible test case forBc
1 is:

(Class of Credit Card= Gold, Credit Limit of Gold Card= $6 000, Current
Purchase Amount= $5 123.40, . . .)

Obviously, a total of 240 test cases will be constructed in this step for testingU PURCHASE.

3.3 Major Contribution of ADDICT

As mentioned earlier in the paper, the main purpose of ICTM and ADDICT is to provide
a systematic method for the construction ofT s from specifications. This feature does
not exist in CTM. Hence, users of CTM have to constructT s in an ad hoc manner
based on their knowledge and experience. This ad hoc approach does not provide
assurance on the quality of the constructedT s. If theseT s are incorrectly constructed,
some(Bc)’s may not be generated and, hence, parts of the system that contain faults
may not be tested. In this respect, the contribution of ICTM and ADDICT is obvious.
Readers may note that the effectiveness of ICTM andADDICT is greatly improved via
the automatic detection of symmetric parent-child or ancestor-descendant hierarchical
relations, the automatic deduction and consistency checking of hierarchical relations,
and the automatic detection and removal of duplicated subtrees (in order to improve on
the effectiveness metricE T).

4 Planned Extensions to ADDICT

The current version ofADDICT supports steps (2) to (5) of ICTM outlined in Sect. 2.
For step (1), the decomposition of the specification into severalU s is not a trivial task
that can be easily automated. Similarly, it is difficult, if not impossible, to automate
step (6) regarding the differentiation between complete and incomplete test frames.

With regard to step (7), we plan to extend the system featuresprovided by the
current version ofADDICT in the following two ways:

(a) After the automatic construction of the combination table and the selection ofB’s
in step (5), the next task is to construct a test case from every B. This task can
be performed automatically byADDICT by arbitrarily selecting one element from
every class contained inB. Note that, in this approach, the generated test cases
may contradictU because theB’s have not been checked againstU to determine
whether they are complete or incomplete. Hence, the tester has to check all the
generated test cases againstU to see which of them are useful for testing.

12

(b) In (a) above, only one test case is generated for eachB. (Similarly, in the original
ICTM, only one test case is generated for eachBc.) In our planned extension to
ADDICT, the approach in (a) can be made more flexible so that one or more test
cases can be generated for eachB. This caters for the situation where the tester can
afford to testU with more test cases.

5 Related Work

Finally, we would like to compare CTM and ICTM with other related work, thus
allowing readers to have a better grasp of the current state of research and practice:

(1) Ostrand et al. [2, 11] have developed thecategory-partition method(CPM) for gen-
erating test cases from specifications. The basic approach of CPM is very similar
to that of CTM/ICTM — all of them aim at constructing a model of the constraints
in the input domain so that combinations of compatible classes8 can be generated
and combinations of incompatible classes can be suppressedas far as possible.
The main difference between CPM and CTM/ICTM is how the constraints among
classes are captured. While the former captures the constraints via the notion of a
formal test specifications (which is a list of categories9, choices, and constraints
in textural format), the latter capture these constraints by means of a classification
tree T . CPM has also been enhanced by Chen et al. [6] via thechoice relation
frameworkso that the test case generation process can be more systematic.

(2) Singh et al. [12] have developed a technique to generate test cases from Z specifica-
tions by combining CTM with disjunctive normal forms (DNFs). In this technique,
“high-level” test cases are first generated from the Z specification via the con-
struction of aT . These high-level test cases are then refined by generating aDNF
for them. Also working on Z, Hierons et al. [9] have introduced an approach that
extracts predicates from a Z specification and constructs aT from these predicates,
thus showing how the construction of aT can be semi-automated based on a formal
specification.
Readers may note that the work described in [9] and [12] mainly focuses on the
application of CTM to Z specifications, whereas our work in this paper is more
general, in the sense that our prototype systemADDICT does not impose any limi-
tation on the type of specification, as long as a set of classifications and classes can
be identified.

(3) In [10], Lehmann and Wegener have described a classification-tree editor (CTE)
known as CTE XL (eXtended Logics). This editor is used to solve some weaknesses
they have identified in CTM. An example of such weaknesses is that CTM does not
provide a feature to specify logical dependencies between classes. Hence, when
selecting potential test frames from the combination table, software testers have to
take care of the logical compatibility of the classes themselves.
The objective of our work is quite different from that of [10]. Our prototype
ADDICT helps testers constructT s from specifications. On the other hand, CTE

8 “Classes” in CTM/ICTM are known as “choices” in CPM.
9 “Classifications” in CTM/ICTM are known as “categories” in CPM.

13

XL is mainly a classification-tree “editor” rather than a “generator”, and requires
testers to construct aT by themselves, usually in an ad hoc manner.

(4) At the initial stage of CTM/ICTM, software testers have to identify a set of clas-
sifications and classes. Owing to the absence of a systematicidentification tech-
nique, this identification process is currently performed in an ad hoc approach.
Chen et al. [4] argue that this approach does not provide reasonable assurance on
the quality of the identified classifications and classes, and hence on the quality of
the resulting test cases. They have performed case studies to find out the common
mistakes made by software testers when they identify classifications and classes
from specifications in such an ad hoc approach.

6 Summary and Conclusion

In this paper, we have introduced ICTM and outlined its majorsteps. This is followed
by discussions of the technical details and system featuresof ADDICT, particularly
the automatic detection of symmetric parent-child or ancestor-descendant hierarchical
relations, the automatic deduction and consistency checking of hierarchical relations,
and the automatic detection and removal of duplicated subtrees. We have also high-
lighted the major contribution ofADDICT and two possible areas for extending the
current version ofADDICT in order to make it more useful. We believe that ICTM
is a viable method for generating test cases from specifications, especially with the
support of appropriate automated tools such asADDICT. We plan to perform case
studies to further investigate the contributions ofADDICT, especially with respect to
the application of the system to the testing of real-life software.

References

1. P. Ammann and J. Offutt. Using formal methods to derive test frames in category-
partition testing.Safety, Reliability, Fault Tolerance, Concurrency, and Real Time Security:
Proceedings of the 9th Annual IEEE Conference on Computer Assurance (COMPASS ’94),
pages 69–79. Los Alamitos, California: IEEE Computer Society Press, 1994.

2. M. J. Balcer, W. M. Hasling, and T. J. Ostrand. Automatic generation of test scripts from
formal test specifications.Proceedings of the 3rd ACM Annual Symposium on Software
Testing, Analysis, and Verification(TAV ’89), pages 210–218. New York: ACM Press, 1989.

3. A. Cain, T. Y. Chen, D. Grant, P.-L. Poon, S.-F. Tang, and T. H.Tse. ADDICT: a prototype
system for automated test data generation using the integrated classification-tree methodology.
Proceedings of the 1st ACIS International Conference on Software Engineering Research and
Applications(SERA ’03), pages 76–81. Mt. Pleasant, Michigan: International Association for
Computer and Information Science, 2003.

4. T. Y. Chen, P.-L. Poon, S.-F. Tang, and T. H. Tse. An experimental analysis of the
identification of categories and choices from specifications.Proceedings of the 3rd ACIS
International Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing(SNPD 2003), pages 99–106. Mt. Pleasant, Michigan:
International Association for Computer and Information Science, 2002.

5. T. Y. Chen, P.-L. Poon, and T. H. Tse. An integrated classification-tree methodology for test
case generation.International Journal of Software Engineering and Knowledge Engineering,
10(6):647–679, 2000.

14

6. T. Y. Chen, P.-L. Poon, and T. H. Tse. A choice relation framework for supporting category-
partition test case generation.IEEE Transactions on Software Engineering, 29(7):577–593,
2003.

7. T. Chusho. Test data selection and quality estimation based on the concept of essential
branches for path testing.IEEE Transactions on Software Engineering, 13(5):509–517, 1987.

8. M. Grochtmann and K. Grimm. Classification trees for partition testing.Software Testing,
Verification and Reliability, 3(2):63–82, 1993.

9. R. M. Hierons, M. Harman, and H. Singh. Automatically generating information from a Z
specification to support the classification tree method. Volume 2651 ofLectures Notes in
Computer Science, pages 388–407. Berlin, Heidelberg: Springer-Verlag, 2003.

10. E. Lehmann and J. Wegener. Test case design by means of the CTE XL. Proceedings
of the 8th European International Conference on Software Testing, Analysis and Review
(EuroSTAR 2000), 2000.

11. T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and generating
functional tests.Communications of the ACM, 31(6):676–686, 1988.

12. H. Singh, M. Conrad, and S. Sadeghipour. Test case design based on Z and the classification-
tree method.Proceedings of the 1st IEEE International Conference on Formal Engineering
Methods(ICFEM ’97), pages 81–90. Los Alamitos, California: IEEE Computer Society Press,
1997.

15

