
Postprint of article in Proceedings of the International Workshop on Software Technology and Engineering Practice (STEP ’03),

IEEE Computer Society, Los Alamitos, CA, pp. pp. 94–100 (2004)

Metamorphic Testing and Beyond ∗ †

T.Y. Chen ‡ , F.-C. Kuo ‡ , T.H. Tse § ¶ , Zhi Quan Zhou ‡

‡ School of Information Technology

Swinburne University of Technology

Hawthorn, Victoria 3122, Australia

Email: {tychen, dkuo}@swin.edu.au, zhiquan@uow.edu.au

§ Department of Computer Science

The University of Hong Kong

Pokfulam, Hong Kong

Email: thtse@cs.hku.hk

Abstract

When testing a program, correctly executed test cases

are seldom explored further, even though they may carry

useful information. Metamorphic testing proposes to

generate follow-up test cases to check important properties

of the target function. It does not need a human oracle

for output prediction and comparison. In this paper, we

highlight the basic concepts of metamorphic testing and

some interesting extensions in the areas of program testing,

proving, and debugging. Future research directions are also

proposed.
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1. Introduction

It is impractical, if not impossible, to test a program

with all conceivable inputs [1]. Instead, we should aim at

selecting test cases with higher probabilities of revealing

program failures. Hence, a lot of research has been done

on developing test case selection strategies.

A successful test case is one on which the program

computes correctly. Since successful test cases do not

reveal any failure, they are conventionally considered

useless [22] and thus discarded by testers or merely retained

for reuse in regression testing later. We note, however,

that successful test cases do carry useful information, albeit

seldom explored. Fault-based testing [21], for example, is

a significant attempt to make use of such information. In

fault-based testing, if a program has successfully passed all

the test cases, then it can be guaranteed to be free from

certain types of faults. Unfortunately, most testing methods

are not fault-based, and most test cases are executed

successfully. Thus, some valuable information that results

from program testing will remain buried and unused.

Another limitation of software testing is the oracle

problem [23]. An oracle is a mechanism against which

people can decide whether the outcome of the program

on test cases is correct. In some situations, the oracle

is not available or is too expensive to be applied [23].

In cryptography systems, for example, large number

arithmetic is usually involved. It is very expensive to

verify the correctness of a computed result. Other examples

include deciding the equivalence between the source and

object codes when testing a compiler; and deciding the

correctness of an output when testing a program that
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performs numerical integration. Furthermore, even when

manual prediction and comparison of testing results are

possible, they are often time consuming and error prone [18,

20]. The oracle problem is “one of the most difficult tasks

in software testing” [20] but is often ignored in the testing

theory [18].

A metamorphic testing (MT) method has been pro-

posed [4] with a view to making use of the valuable

information in successful test cases. It does not depend on

the availability of an oracle. It proposes to generate follow-

up test cases based on metamorphic relations, or properties

among inputs and outputs of the target function. In this

paper, we would like to highlight the method and explore

future research directions.

2. Metamorphic testing

Metamorphic testing is used in conjunction with other

test case selection strategies [4]. Given a test case selection

strategy S, such as path coverage, a set of test cases T =
{t1, t2, . . . , tn}, where n ≥ 1, is generated. The program is

then tested on T . If no failure is revealed after running all ti
in T for i = 1, 2, . . . , n, then T will be a set of successful

test cases.

At this stage, metamorphic testing can be carried out

to generate follow-up test cases according to metamorphic

relations. A metamorphic relation (MR) is an expected

relation among the inputs and outputs of multiple executions

of the target program. For a successful test case ti and a

chosen MR, we can construct follow-up test case(s), say t ′i ,

and run the program again. Let p denote the program under

test. We check ti, p(ti), t ′i , and p(t ′i) against the MR. If MR

cannot be satisfied, the program must have failed.

Consider, for instance, a program that computes the sine

function. The property sin x = sin(180− x) can be used

as a metamorphic relation. Let t = 57.3 be one of the

test cases chosen according to a selection strategy such as

branch coverage. Suppose the output is 0.8415. This output

may not be verified easily if an oracle is not available.

On the other hand, regardless of whether an oracle exists,

MT suggests testing the program with a follow-up test case

180−57.3. The program is run on this test case to produce

a second output, say 0.8402. The two outputs are then

compared. Obviously, they do not satisfy the expected MR

and hence a failure is detected.

It should be noted that the idea of verifying programs

against selected properties is not new. It has long been

used in practice (see [12], for example). The techniques of

program checkers [2] and self-testing / correcting [3] also

make use of properties that involve multiple executions of

the program. There are, however, significant differences

between MT and other property-based testing methods.

First, before MT is applied, a test case selection strategy

S and a set of test cases T corresponding to S must exist

in the first place. If no failure is revealed by T , then

MT can be applied to generate a new set of test cases

as a partner accompanying T , so that the program can

be further verified against some necessary metamorphic

relations. This is regardless of whether an oracle is

available. Another characteristic of MT is that MRs are

not limited to identity relations. Any expected relation

involving inputs and outputs of two or more executions of

the program can be taken as an MR. In [5], for instance, we

used the convergence property as a metamorphic relation

to test a program that solves a partial differential equation.

For more detailed discussions on the differences between

MT and other methods, readers may refer to [8].

As has been shown, MT does not check the correctness

of individual outputs. Instead, it checks the relations among

several executions. Since no manual output predictions and

comparisons are required, MT can be efficient and fully

automated. In [16], an experimental metamorphic testing

framework has been developed to follow up on our study.

Note that, since an MR is a necessary property, it may

not be sufficient for program correctness. This is indeed a

limitation of all testing methods.

3. Interesting results and potential research

directions

3.1. Testing in the absence of an oracle

In general, when oracles are not available, testers often

test the programs using special or simple values for which

correct results are actually known [23]. Our experimental

results in [7] showed, however, that these special and simple

values are not enough in revealing program defects. By

incorporating MT, the problem can be better tackled.

In [7], we studied a faulty program purportedly

computing the sine function. We first tested this program

using the following 5 special values, for which the sine

function values are well known: 0, π/6, π/4, π/3, and

π/2. The outputs computed by the program, however, are

all correct.

We then identified 10 metamorphic relations to generate

metamorphic test cases [7]. These MRs are:

R1 : sin x− sin(x+2π) = 0;

R2 : sin x+ sin(x+π) = 0;

R3 : − sin(−x)− sin x = 0;

R4 : sin x− sin(π− x) = 0;

R5 : sin x+ sin(2π− x) = 0;

R6 : sin x+ sin y+ sin z− sin(x+ y+ z)

−4 sin((x+ y)/2) sin((x+ z)/2) sin((y+ z)/2) = 0
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R7 : sin2 x+ sin2 (π/2− x)−1 = 0;

R8 : sin 3x−3 sin x+4 sin3 x = 0;

R9 : sin2 x− sin2 y− sin(x+ y) sin(x− y) = 0;

R10 : sin 5x−16 sin 5x−5 sin 3x+10 sin x = 0;

For each of the 5 special values, follow-up test

cases were generated to verify the program against

the 10 MRs R1, R2, . . . , R10, respectively. After

taking into consideration rounding errors in floating-point

computation, the results were as follows: For the special

value “0”, two MRs were violated; for “π/6”, four were

violated; for “π/4”, six were violated; for “π/3”, six were

violated; and for “π/2”, seven were violated. This result

shows that we should not stop when a program has been

tested on some special values and no failure has been

revealed. By making reference to metamorphic relations,

follow-up test cases can be constructed and the program

tested further. This will increase the chance of revealing

defects in the program. We also see from the results

that, for a given metamorphic relation, some inputs may

cause a failure while others may not. When performing

MT, therefore, the test cases should include both special

values (for which an oracle exists) and random values (for

which an oracle does not exist), in order to maximize the

possibility of revealing a failure.

Our results in [7] also show that the failure-causing

abilities of different MRs vary greatly. After metamorphic

testing based on the 5 special values, the failure rates of

R1, R2, . . . , R10 are 0, 0.8, 0.6, 0.4, 0.4, 1, 0, 0.6, 0.4,

and 0.8, respectively. This result demonstrates that, when

performing MT, we should try to employ more than one MR

because different MRs may have varying failure-causing

abilities for different types of defect.

3.2. Beyond identity relations

In this section, we shall continue our discussions on

testing in the absence of an oracle.

Metamorphic relations are not limited to identity

relations. In [5], for instance, we used the convergence

property as an MR to test a program solving a partial

differential equation. The program was adapted from [15].

It attempts to solve the following thermodynamic problem:

Suppose we are given an insulated rectangular plate. Its

boundary temperatures are homogeneous along each edge.

After the heat potential of the plate has reached stability, we

would like to find the temperature of each point on the plate.

The program calculates the temperatures on the plate

by solving a Laplace equation with Dirichlet boundary

conditions. The algorithm uses the “alternating direction

implicit” method. We have seeded a fault into the program

by replacing the correct statement

if ( fabs ( uMat[i][j] - vMat[j][i] > larg )

larg = fabs ( uMat[i][j] - vMat[j][i] );

with

if ( fabs ( uMat[i][j] - uMat[j][i] > larg )

larg = fabs ( uMat[i][j] - vMat[j][i] );

It is difficult to verify the results of computation because

of the lack of a testing oracle. We used both simple and

special values as test cases for the faulty program but no

failure was revealed. For example, it produces exactly the

same outputs as the correct program when computing on

3×3 and 7×7 mesh grids. It produces a result fairly close

to the one computed by the correct program when a 15×
15 mesh grid is used. We also used the following special

cases to test the program: (i) setting the temperatures at all

edges to be equal; (ii) using a square plate and setting the

boundary conditions to be symmetric, hence producing a

symmetric distribution of the temperatures; (iii) setting the

boundary condition to be symmetric with respect to both the

horizontal and vertical axes. All these special cases cannot

reveal the fault in the program.

We tested this program using the convergence property

of the solutions of partial differential equations [5]. Let us

use TGi
(P) to denote the temperature at a point P computed

by the program using a mesh grid Gi. Let Gi, G j, and Gk

denote any three mesh grids. We identified and proved the

following MR for testing the program:

Gi ⊂ G j ⊂ Gk →

TGi
(P) ≤ min{TG j

(P),TGk
(P)} or

TGi
(P) ≥ max{TG j

(P),TGk
(P)}.

Using this convergence property as the MR, we tested the

program at the same 9 points P1, P2, . . . , P9 using mesh

grids G1, G2, . . . , G5, where G1 ⊂G2 ⊂ . . .⊂G5. Figure 1,

for example, shows the 9 points for mesh grids G1 and G2.

By comparing the differences between the 5 computation

results, it can be found that this series of outputs do not

satisfy the expected MR. Hence, a failure has been revealed.

3.3. Fault-based testing without oracles

We have also applied the technique of metamorphic

testing to fault-based testing [9] so that prescribed faults can

be eliminated from the program even when an oracle is not

available.

The theory of fault-based testing was introduced by

Morell [21]. He observed that, although testing could not

prove the correctness of programs, correctly executed test

cases can indeed show that the program code is free from

certain types of fault. Like other testing methodologies,

Morell’s method also requires an oracle. This is because

3



G
1

G
2

Figure 1. Examples of metamorphic test

cases

we must know whether the test cases have been executed

correctly in the first place.

By employing metamorphic relations, the oracle

problem in fault-based testing can be alleviated [9].

Figure 2 shows a program that has been used as one of the

examples to illustrate our method. For the given input u and

v, the program computes uv. If v = 0, it will immediately

return “1”. If v is a positive integer, then it produces the

result by multiplying u by itself v times. Otherwise, it uses

the formula uv = ev ln(u) to compute the power.

Suppose we would like to know whether statement

11 is correct with respect to a constant substitution for

“uMinusOne”. In other words, we would like to know

whether the correct statement 11 could have been replaced

erroneously by

result = F;

where “F” is a constant value instead of the variable

“uMinusOne”. To achieve this goal, the fault-based testing

technique should be used. Because of a lack of an oracle

for this problem for the general situation, however, Morell’s

method could not be applied. On the other hand, by making

use of the simple metamorphic relation “uv×uv = (u×u)v”,

the problem can be solved. It can be proved that a constant

substitution for “uMinusOne” is impossible without causing

a failure [9]. We have also given more examples to

demonstrate the use of both actual and symbolic test cases

in eliminating prescribed faults.

3.4. Metamorphic testing using symbolic inputs

Metamorphic testing is not restricted only to actual

inputs. With the use of symbolic inputs, metamorphic

testing can be turned into a program verification method

known as semi-proving [8], which is an integration of

testing, proving, and debugging. In semi-proving, symbolic

inputs have been used to verify whether the program

double Power (double u, double v) {
double uMinusOne, numerator, lnTerm, result;

int i;

1. if (v == 0)

2. result = 1;

else {
3. if ((int)v == v) && (v>0)) {
4. result = 1;

5. for (i=1; i<=v; i++)

6. result = result * u;

}
else {
/* ln (u) = ln (1 + (u−1)) = (u−1) − 1 / 2 * (u−1) ˆ 2 +

1 / 3 * (u−1) ˆ 3 − ... */

7. i = 1;

8. uMinusOne = u − 1;

9. numerator = uMinusOne;

10. lnTerm = uMinusOne;

11. result = uMinusOne;

12. while (AbsoluteValue (lnTerm) > 1e−16) {
/* 1e−16 = 10 ˆ−16 */

13. i = i + 1;

14. numerator = (−1) * numerator * uMinusOne;

15. lnTerm = numerator / i;

16. result = result + lnTerm;

}
17. result = exp (v * result);

}
}

18. return result;

}

Figure 2. Program Power

satisfies a given MR for either the entire input domain or

selected paths in the program.

A simple program Med (a, b, c) is given in [8] to

illustrate the method. Its control flow is shown in

Figure 3 (a). The program is expected to return the median

of three real numbers a, b, and c. Obviously, the program

is expected to observe the property Med (π(a, b, c)) =
Med (a, b, c) for any input (a, b, c) and any permutation

π(a, b, c). In fact, according to group theory [17], only

two identities need to be verified, namely Med (b, a, c) =
Med (a, b, c) and Med (a, c, b) = Med (a, b, c). These

two identities are taken as the metamorphic relations.

Semi-proving verifies these metamorphic relations by

applying the techniques of global symbolic evaluation [10,

11] followed by constraint solving [19]. Global symbolic

evaluation is a technique that executes every possible path

of the program with symbolic inputs. Similar symbolic

analysis techniques are also intensively studied in the area

of parallelizing compilers [13, 14]. For certain classes

of programs, we can either prove that they satisfy the

prescribed MR for the entire input domain or identify

all failure-causing inputs violating the MR. Furthermore,

these failure-causing inputs will be expressed in constraint

expressions to support debugging. For example, for the
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begin

end

(a) (b)

begin

end

Figure 3. Control flow of program Med

faulty program with a “missing path error” as shown in

Figure 3 (b), the failure-causing inputs can be described by

the expression b < a < c. As a result, the nature of the

program defect can be better revealed [8]. In situations

where it is too difficult or expensive to perform global

symbolic evaluation, semi-proving can still be applied to

verify selected paths rather than the entire input domain.

In this way, the cost of global symbolic evaluation and

constraint solving can be reduced [8].

3.5. Stronger MRs may not necessarily be better

than weaker ones

For a given problem, usually more than one metamorphic

relation can be identified. It is important to know how to

select the most effective MR. For example, some properties

are theoretically stronger than others. Are stronger

properties necessarily better than weaker ones? Our

preliminary study in [6] suggests that it is not necessarily

the case.

A program ShortestPath(G, u, v) is used as a case

study in [6]. The parameter G is an undirected weighted

graph represented by a matrix. The program searches for

the shortest path between vertices u and v in G. For a

non-trivial input, it will be very expensive to verify the

correctness of the output. An experiment is conducted with

21 mutants as faulty programs. For each mutant, 1000 pairs

of metamorphic test cases are randomly generated.

The experiment is as follows: The identity relation

ShortestPath(π(H), A′, B′) = ShortestPath(H, A, B) is

employed to produce a hierarchy of metamorphic relations,

where H is a graph randomly generated; π(H) is a

permutation of H; A and B are different vertices in H; and

A′ and B′ are vertices in the graph π(H) corresponding to

A and B, respectively. Suppose H consists of 10 vertices

(v0, v1, . . . , v9). Let τi(H) be a transposition of H

that exchanges the positions of vertices v0 and vi, i =
1, 2, . . . , 9. Then, the input matrices corresponding to the

graphs H, τ1(H), τ2(H), . . . , τ9(H) will be different. Let

π1(H), π2(H), . . . , π9(H) be another set of permutations

of H obtained by circularly shifting (v0, v1, . . . , v9) left by

1 digit, 2 digits, . . . , and 9 digits, respectively.

According to group theory [17], the compositions of

the transpositions τ1, τ2, . . . , τ9 can generate any other

permutations of H. Hence, the metamorphic relations

τ1, τ2, . . . , τ9 as a whole are obviously stronger than the

metamorphic relations π1, π2, . . . , π9. The experimental

results in [6] show, however, that overall failure-revealing

ability of the metamorphic relations π1, π2, . . . , π9 is much

higher than that of τ1, τ2, . . . , τ9. In addition, although π1

is the strongest property among π1, π2, . . . , π9 because it

can generate any other πi for i = 2, 3, . . . , 9, it actually

demonstrates the lowest failure-causing ability. Instead, π5

demonstrates the highest failure-causing ability, followed

by π4 and π6, then followed by π3 and π7, and then π2 and

π8. The worst are π1 and π9.

Thus, the results suggest that theoretically stronger

metamorphic relations may not necessarily have a higher

failure-revealing ability than weaker ones.

3.6. How to select useful metamorphic relations

In addition to permutation properties, other MRs

have also been investigated in [6]. Among them, the

seemingly simplest property ShortestPath(H, A, B) =

ShortestPath(H, B, A) has demonstrated the highest

failure-causing ability. The reasons for this have also been

studied: In metamorphic testing, the program is run on a

first input case and then on a follow-up input case. Although

the two inputs are different, they are related by the MR.

Hence, the two executions of the program should have both

similarities and differences. It is found in [6] that the

bigger the differences between two executions, the more

effective is the MR in revealing program defects. Take

the permutation property discussed in Section 3.5 as an

example. Although the second test case is different from

the first one, the program’s search for the shortest path

on the two test cases basically follows a similar execution

sequence, that is, searching from the starting vertex A (and

correspondingly, A′) to the adjacent edges and vertices until

B (and correspondingly, B′) has been reached. Since the two

input graphs are permutations of each other, their adjacent

vertices and edges also correspond to each other. Hence,

their searching sequences are similar. As a result, it is

relatively more likely that the two executions will produce

the same outcome. On the other hand, when the MR
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ShortestPath(H, A, B) = ShortestPath(H, B, A) is used,

the starting and ending points in the second execution are

swapped and hence the searching sequence is reversed: The

program will start from B and search towards A. In this

way, the two execution sequences differ from each other

greatly. Consequently, it is relatively more likely that the

two executions will produce different outcomes if there is a

fault in the program.

In short, it is suggested in [6] that, when selecting MR

to test a given program, the algorithm and structure of the

program should be taken into consideration. Metamorphic

relations that can make the second execution most different

from the first execution are likely to achieve the best failure-

revealing effect. It should be noted that the concept of

“difference between two executions” has not been defined

explicitly. It is a concept covering all aspects of program

executions. For example, it may include the sequence of

statements exercised, sequence of different values taken by

program variables, and so on. Further research should be

conducted to give more explicit guidelines.

4. Conclusion

In this paper, we have presented the basic concept

of metamorphic testing and its applications in program

testing, proving, and debugging. We have also highlighted

several important issues that are critical to the fault-

detection effectiveness of metamorphic testing. In addition

to program verification, our semi-proving technique also

supports debugging by generating constraint expressions

for the failure-causing inputs. This kind of expression

(such as b < a < c for a program p(a, b, c)) are more

informative and explicit than actual test cases (such as

a = 1.3, b = −2.8, c = 3.6) in identifying defects, and

may even give clues to the correction of the program. In

terms of failure-revealing ability, we have observed that a

stronger metamorphic relation is not necessarily better than

a weaker metamorphic relation that can be derived from

it. As future research, it will be interesting to find out the

desirable characteristics of metamorphic relations that are

good at revealing failures.
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