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Abstract 

 
Testing is the most commonly used approach to the 

assurance of software quality and reliability.  The testing 
of object-oriented software is much more complex than 
that of conventional programs.  Although we proposed 
previously a method called TACCLE for testing object-
oriented software at the class and cluster levels, it did not 
cover concurrent or non-deterministic situations.  123 

This paper puts forward a strategy for selecting 
synchronization sequences to test concurrent object-
oriented software, including non-deterministic cases.  It is 
based on OBJSA net/CLOWN specifications.  Experiments 
have been carried out in a case study to verify the efficacy 
of the strategy. 

Keywords: Object-oriented program testing, concur-
rency, non-determinism, OBJSA net 
 
1.  Introduction 
 

Object-oriented programming is among the most 
popular software development technique today.  It consists 
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of many distinct features within the same paradigm.  The 
application domain is modeled by objects that include not 
only data structures but all the operations also.  Data 
abstraction and encapsulation allows us to separate object 
behaviors and interfaces from implementation details.  
Inheritance enhances reuse.  Polymorphism enables us to 
use the same operation symbols for different purposes in 
different situations.  The resulting software has been found 
to be more flexible, maintainable, and reusable.   

On the other hand, objects may interact with one 
another in unforeseen combinations in object-oriented 
systems, which are much more complex to test than the 
hierarchical structures in conventional programs.  Various 
proposals for testing object-oriented software system have 
been made [1�5].  In [1], for instance, we recommended a 
TACCLE methodology for testing object-oriented software 
at the class and cluster levels.  We must concede, however, 
that it did not take concurrency and non-determinism into 
account. 

Since the introduction of the Java language with 
strong multi-thread mechanisms and Internet support, the 
static analysis and dynamic testing of concurrency and 
non-determinism are increasing in importance.  Although 
Carver and Tai [6] presented an effective technique for the 
use of sequencing constraints for specification-based 
testing of concurrent programs, these constraints are only 
limited to preceding and succeeding events.  Although Zhu 
and He [7] put forward adequacy criteria for testing 
concurrent systems based on high-level Petri nets and 
proved subsumption relationships among them, the authors 
did not offer techniques for actually constructing test 
cases. 

In [8], Chen presented an approach for the static 
analysis of concurrent and non-deterministic object-
oriented programs in Java.  As a supplement, we shall 
present in this paper a strategy for selecting synchron-
ization sequences to dynamically test non-deterministic 
concurrent object-oriented software.  The strategy is based 
on OBJSA net / CLOWN specifications [9, 10].  In a 
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companion paper [11], we shall further supplement this 
strategy by proposing a scheme for dynamically executing 
selected pairs of synchronization sequences.   

An OBJSA net in CLOWN is composed of a super-
posed automata (SA) net inscribed with algebraic terms of 
an OBJ module.  It supports the components-based 
analysis and incremental development of specifications 
with good modularity and reusability.  By adding OBJ 
notions to Petri nets, such as order-sorted algebra, theory, 
and view [12], OBJSA net provides testers with more 
information for the selection of test cases.  An OBJSA Net-
support Environment (ONE) has been built to facilitate 
construction and validation of the specifications.   

We shall outline in Section 2 the underlying concepts 
and rules of OBJSA net specifications.  Based on these 
fundamentals, we shall propose in Section 3 a strategy for 
selecting synchronization sequences to test concurrent 
non-deterministic object-oriented software.  Section 4 
presents an experimental case study to verify the 
effectiveness of the strategy.  Section 5 concludes the 
paper. 
 
2.  Underlying Concepts of OBJSA Nets 
 

In this section, we outline the underlying concepts of 
OBJSA nets, which were due originally to Battiston et al.  
Interested readers may refer to [9, 10] for more details. 

 
(a)  Nets 

A net is a bipartite graph with two types of nodes:  
places and transitions.  Places are used to model the 
statuses of system conditions and transitions are used to 
model operations that affect such statuses.  More formally, 
a net is a triple (P, T, F) such that: 

(i) P is a finite non-empty set of places, 
(ii) T is a finite non-empty set of transitions, 
(iii) P ∩ T = ∅   
(iv) F ⊆  (P × T) ∪  (T × P) is a set of arcs. 

V = P ∪  T is known as the set of vertices.  For any vertex 
v ∈ V, the set of arcs ov = {x ∈  V | (x, v) ∈  F} is called its 
pre-set, and the set of arcs vo = {y ∈  V | (v, y) ∈  F} is called 
its post-set. 

 
(b)  Extended SA Nets 

Given a net (P, T, F), an extended SA net N is a tuple 
(P, T, F, W, ∏) satisfying the following conditions:   

(i) OP is a set of open places and CP is a set of closed 
places such that OP ∪  CP = P and OP ∩ CP = ∅ .   

(ii) OT is a set of open transitions and CT is a set of closed 
transitions such that OT ∪  CT = T and OT ∩ CT = ∅ .   

(iii) OF ⊆  (OP × OT) ∪  (OT × OP) is a set of open arcs. 
(iv) CF ⊆  (CP × T) ∪  (T × CP) is a set of closed arcs. 
(v) W: F → Nat is an arc weight function.  It assigns to 

every arc a natural number denoting its weight.  In 
particular, every open arc is assigned a weight of 1. 

(vi) ∏ is a partition of P, dividing it into m subsets 
(∏i)i=1,2,...,m such that ∏1 ∪  ∏2 ∪  � ∪  ∏m = P and 
∏i ∩ ∏j = ∅  for i ≠ j.  Each ∏i contains open places 
only or closed places only.  For every transition t ∈  T, 
the total weights of all the arcs from the places in ∏i to 
t is the same as the total weights of all the arcs from t 
to the places in ∏i.   

An extended SA net is open if it contains at least one open 
place or open transition; otherwise it is closed.  An 
extended SA net is elementary if it is contains only closed 
places. 

 
(c)  OBJSA Nets 

Let N = (P, T, F, W, ∏) be an extended SA net and 
SPEC = (S, Σ, E) be an algebraic specification, where S is a 
set of sorts (or object classes), Σ is a family of operation 
symbols, and E is a set of equational axioms, possibly 
conditional.  An OBJSA component is a SPEC-inscribed 
net (N, ins, SPEC), where ins = (ϕ, λ, η) satisfies the 
following conditions: 

(i) ϕ: P → S is a sort assignment function.  It classifies 
the places into different sorts while respecting the 
partition Π.  Every element of sort ϕ(p) is called a 
token.  It is of the form 〈n, d〉, where n denotes the 
token name and d denotes the data content.   

(ii) λ: F → TermS,Σ[X] is an arc labeling function.  It 
assigns labels to the arcs while respecting the sort 
assignment.  Given any transition t ∈  T and any place 
p ∈  ot, the label of the arc f = (p, t) is the concatenated 
string x1 ⊕  x2 ⊕  � ⊕  xW(f).  Each xi is a variable of sort 
ϕ(p).  Let Xt be a list of variables that label the input 
arcs of t, and X be the set of variables for all the arcs of 
the net.  Given any transition t ∈  T and any place q ∈  
t 

o, the label of the arc f = (t, q) is the concatenated 
string y1(Xt) ⊕  y2(Xt) ⊕  � ⊕  yW(f)(Xt).  Each yj(Xt) is a 
term of the form 〈nj′, dj′〉 of sort ϕ(q) such that nj′ = ni 
and dj′ = σt(�, di, �) for some xi = 〈ni, di〉 in Xt and for 
some operation σt that specifies the change of the data 
content due to the transition t.   

(iii) η: T → 2X → Bool is a guard function that assigns a 
pre-condition η(t)(Xt) to every transaction t before it 
can be fired. 

Furthermore, an OBJSA component is associated with an 
initial marking (or initial state) M0, which assigns to each 
closed place p a family of tokens of sort ϕ(p).   
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An OBJSA component is elementary if the underlying 
net N contains only an elementary subnet.  An OBJSA 
component is open if it is formed by composing 
elementary or other open components, such that the 
underlying net is open.  Finally, an OBJSA net is a closed 
OBJSA component, formed by composing elementary or 
open OBJSA components, such that the underlying net is 
closed.   

 
(d)  Firing Mode 

Given an OBJSA component, a firing mode for a 
transition t ∈  T is an assignment function βt: Xt → TermS,Σ 
that substitutes every variable x ∈  Xt by a ground term (that 
is, a term without variables) of sort ϕ(p) some p ∈  ot.   

For a place p ∈  P, a transition t ∈  T, and a firing 
mode βt, if p ∈  ot, then IN(p, t) is defined as {βt(xi) | i = 
1, 2, ..., W(p, t)}; otherwise IN(p, t) is defined as the empty 
set.  Similarly, if p ∈  t 

o, then OUT(t, p) is defined as 
{βt(yj(Xt)) | j = 1, 2, ..., W(t, p)}; otherwise OUT(t, p) is 
defined as the empty set.  Given a marking M, a transition 
t ∈  T, and a firing mode βt, if η(t)(βt(Xt)) = true and IN(p, t) 
⊆  M(p) for every place p ∈  ot, then t is said to be βt-enabled 
at M.  In this case, t may fire in mode βt.  Such firing 
returns a new marking M′ such that M′(p) = M(p) \ IN(p, t) 
∪  OUT(t, p) for every p∈ P. 

 
3. Our Strategy for Selecting 

Synchronization Sequences 
 
Based on the concept of OBJSA nets, we present in 

this section a strategy for selecting synchronization 
sequences to test non-deterministic concurrent object-
oriented software. 

Given an OBJSA net Osn, we say that a marking M is 
reachable if, starting from the initial marking M0, we can 
obtain M by firing a sequence τ of consecutively enabled 
transitions.  In this case, we call τ an enabled sequence and 
write M0 → τ M.  We assume that τ is annotated with 
arc information so that any intermediate marking can be 
tracked unambiguously.  If τ = null, M = M0. 

Let M* = {M | M0 → τ M for some enabled 
sequence τ} be the set of reachable markings of Osn.  For 
any M ∈  M*, the number of non-deterministic enabled 
transitions of Osn at M is called the enabled degree of Osn 
at M, and is denoted by ed(Osn, M).  Let md(Osn) = 
max{ed(Osn, M) | M ∈  M*} be the maximum 
non-deterministic enabled degree.  We say that Mg is a 
goal marking of Osn if ed(Osn, Mg) = md(Osn).  Let ET(Mg) 
be the set of enabled transitions at Mg.  Obviously, |ET(Mg)| 
≥ md(Osn). 

md(Osn) must exist, because ed(Osn, M) for any M ∈  
M* must be a non-negative integer satisfying ed(Osn, M) ≤ 
|T|.  The goal marking Mg corresponding to md(Osn), 
however, is not necessarily unique.  At Mg, the firings of 
transitions in Osn have the maximum non-determinism 
and hence the maximum competition on system resources.  
At this moment, the system is in a most complex state and 
is therefore most error prone.  Hence, we should catch the 
state corresponding to Mg in our testing.  This is the 
motivation and the general idea of our strategy for 
selecting synchronization sequences. 

Suppose M0 → gτ Mg.  Let TCg = {τg · ti | 
ti ∈  ET(Mg)}, where τg · ti denotes the firing of ti 
immediately after τg.  We say that τg is a goal sequence and 
TCg is a goal set.  Our strategy is to select TCg as a set of 
initial test cases. 

Let TC be any set of test cases.  For any given 
transition t ∈  T, is there an M ∈  M* such that t is enabled at 
M?  The problem is difficult because M* is infinite in 
general, and is NP-hard even if M* is finite. 

From the complexity point of view, seeking a goal 
marking Mg, goal sequence τg, or a goal set TCg is also a 
difficult problem.  For a particular Osn, however, we can 
give a heuristic strategy for seeking a ballpark goal 
marking Mg′ and the corresponding ballpark goal sequence 
τg′ such that there will be as many enabled transitions at 
Mg′ as possible.  The corresponding ballpark goal set TCg′ 
is {τg′ · ti | ti ∈  ET(Mg′)}. 

An enabled transition at initial marking M0 is called a 
source transition of Osn.  The number of times that a 
source transition in an enabled sequence can be 
consecutively fired from M0 is known as the index of the 
source transition.  We shall refer to a source transition with 
the largest index as the greatest index source transition, or 
GIST for short. 

Suppose t0 is the GIST of Osn with M0.  Our heuristic 
strategy to seek a ballpark goal marking Mg′ and the 
corresponding ballpark goal sequence τg′ includes a 
reachability search [13�17], such as the following 
hill-climbing procedure: 

(1) set τg′ = null and Mg′ = M0; 

(2) fire t0 at M0 and obtain M1, that is, M0 → 0
t

M1; 

(3) at M1: 
if t0 is not enabled, return τg′ and Mg′, and exit; 
if t0 is still enabled, { 

if there is no other enabled transition t1, return τg′ 
and Mg′, and exit; 

if there is another enabled transition t1,{ 
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set τg′ = τg′ · t0, M1′ = M1, Mg′ = M1, and i = 1; 
}; 

}; 

(4) if there are adequately many 4 non-deterministic 
enabled transitions at Mg′, then return τg′ and Mg′,    

and exit; otherwise Mi′ → i
t

Mi+1; 

(5) at Mi+1: 
if t0 is not enabled, return τg′ and Mg′, and exit; 
if t0, t1, �, ti are still enabled, { 

if there is no other enabled transition ti+1, return 
τg′ and Mg′, and exit; 

if there is another enabled transition ti+1, { 
set τg′ = τg′ · ti, Mi+1′ = Mi+1, Mg′ = Mi+1′, and 

i = i+1; 
go to (4); 
}; 

}; 
if t0 is still enabled but some of t1, t2, �, ti are not 
enabled, { 

if firing some of t0, t1, �, ti�1 several times can 
enable all of t0, t1, �, ti, { 

let τi be the corresponding sequence of the fired 
transitions and let Mi+1′ be the marking 

obtained, that is, Mi+1 → i
τ

Mi+1′; 
if there is no other enabled transition ti+1 at Mi+1′, 

return τg′ and Mg′, and exit; 
if there is another enabled transition ti+1 at Mi+1′, { 

set τg′ = τg′ · ti · τi, Mg′ = Mi+1′, and i = i + 1; 
go to (4); 
}; 

}; 
else return τg′ and Mg′, and exit; 
};  

 
In order to understand the strategy, readers may like to 

construct a decision tree for the above steps. 

After obtaining the ballpark goal sequence τg′ and the 
corresponding Mg′, we can construct the ballpark goal set 
TCg′ = {τg′ · ti | ti ∈  ET(Mg′)} and take TCg′ as a set of test 
cases. 

A transition in OBJSA net represents an operation in 
the implementation triggered by some message passing 
from another object.  A test case in TCg′ represents a 
sequence of inter-object operations in the implementation, 
which we shall call a synchronization sequence.  We can 
then substitute the relevant parts of these synchronization 

                                                           
4 That is, in the most recent m loops, the number of enabled 

transitions at Mg′ does not increase, where m is a parameter 
specified by the user. 

sequences into the axioms of corresponding classes, and 
apply our class-level testing strategy for observational 
equivalence [1].  Because of the non-determinism of 
concurrent programs, we must use a replay technique to 
execute each synchronization sequence in TCg′.  Details of 
replay techniques can be found, for example, in [18]. 

Note that TCg′ may not cover all the transitions of Osn.  
In this case, and if TCg′ cannot reveal errors, we also need 
to construct other sets of test cases covering the remaining 
transitions T \ (ET(Mg′) ∪  {t | t appears in τg′}) as 
supplements.  Finally, the testing of Osn may be repeated 
by choosing other initial markings.  Such initial markings 
may be given in the specification, or obtained from a 
reachability search or category-partitioning scheme. 
 
5.  Case Study and Experiments 

 
As a case study, we have applied the above strategy to 

a system consisting of four generators and five users 
synchronously exchanging messages through four buffers.  
These three constituents can be specified by OBJSA open 
components Generator, User, and Buffer, respectively.  
Each object is identified by a natural number together with 
the component type.  The structures of these components 
are similar to those in the worked example in [9].  The 
OBJSA net specifying the integrated system fused from 
these components is shown in Figure 1.  Suppose an initial 
marking M0 is as follows: 

M0(g2) = {〈[g, 1], null〉, 〈[g, 2], null〉,  
〈[g, 3], null〉, 〈[g, 4], null〉}; 

M0(u2) = {〈[u, 1], nullmsg〉, 〈[u, 2], nullmsg〉, 
〈[u, 3], nullmsg〉, 〈[u, 4], nullmsg〉, 
〈[u, 5], nullmsg〉}; 

M0(b1) = {〈[b, 1], nullmsg〉, 〈[b, 2], nullmsg〉, 
〈[b, 3], nullmsg〉, 〈[b, 4], nullmsg〉}; 

M0(p) = ∅  for p ∈  P \ {g2, u2, b1}. 

Following the definition in Section 4, we obtain the GIST 
t0 = generate.  Following the proposed strategy, we have 
the following process:  (i) Set τg′ = null and Mg′ = M0.  (ii) 
Fire t0 and obtain M1 by the rules in Section 2.  (iii) Here t0 
is still enabled.  By the definition in Section 2, another 
transition t1 = fetch is enabled.  Set τg′ = generate, M1′ = M1, 
Mg′ = M1, and i = 1.  (iv) Fire t1 = fetch and obtain M2 by the 
rules in Section 2.  (v) Here t0 is still enabled but t1 is not.  
Fire τ1= t0 and obtain M2′.  By the rules in Section 2, 
another transition t2 = accept is enabled.  Set τg′ = 
generate · fetch · generate, Mg′ = M2′, and i = 2.  Go back to 
step (4) of the strategy. 



8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ig1, ig2, iu1, iu2, ib1, ib2, ib3, ib4: ObjectName in the form [type: Type, id: Nat], where Type denotes the set of object sorts, 

Nat denotes the set of natural numbers, type ∈  {g, u, b}, g denotes generator, u denotes user, b denotes buffer, and id 
denotes object identity number. 

mg1, mg2, mg1′, mg2′, null: Message.    mg1′ = null.    mg2′ = generateMessage(ig2). 
mu1, mu2, mu1′, mu2′, nullmsg: FullMessage in the form [msg: Message, orig: Nat], where orig denotes the originating 

object.    mu1′ = mb4.    mu2′ = nullmsg. 
mb1, mb2, mb3, mb4, mb1′, mb2′, mb3′, mb4′: FullMessage.    mb1′ = [mg1, num(ig1)].    mb2′ = mb2.    mb3′ = mb3.    

mb4′ = nullmsg. 
 
 
 

Figure 1.  Case Study 
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      Finally, we have obtained the ballpark goal sequence 
τg′ = generate · fetch · generate · accept · generate · fetch ·  
dispatch ·  generate · fetch · accept · deposit · generate ·  
fetch · accept · dispatch.  Obviously, in this case we have 
ET(Mg′) = T, and hence the ballpark goal set TCg′ is 
{τg′ · generate, τg′ · fetch, τg′ · accept, τg′ · dispatch, 
τg′ · deposit, τg′ · use}.  This can then be followed-up with 
class-level testing of observational equivalence [1]. 

We have implemented, in Java, a system consisting of 
these components.  We have embedded 30 different 
mutants into the program.  The above strategy in generat-
ing the test set TCg′ can kill all the mutants.   
 
6.  Conclusion 

 
Based on an OBJSA net/CLOWN specification, we 

have proposed a strategy to select synchronization 
sequences for testing non-deterministic concurrent object-
oriented software.  We have reported an effectiveness case 
study and experiments on the proposed strategy.  More 
case studies and experiments are being planned. 
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