
1

To appear in Proceedings of the 27th Annual International Computer Software and Applications Conference
(COMPSAC 2003), IEEE Computer Society Press, Los Alamitos, California (2003)

A Strategy for Selecting Synchronization Sequences

to Test Concurrent Object-Oriented Software
1,

2

Huo Yan Chen

Department of Computer Science
Jinan University, China

tchy@jnu.edu.cn

Yu Xia Sun
Department of Computer Science

Jinan University, China
sabrinna@21cn.com

T. H. Tse
3

Department of Computer Science
and Information Systems

The University of Hong Kong
tse@csis.hku.hk

Abstract

Testing is the most commonly used approach to the

assurance of software quality and reliability. The testing
of object-oriented software is much more complex than
that of conventional programs. Although we proposed
previously a method called TACCLE for testing object-
oriented software at the class and cluster levels, it did not
cover concurrent or non-deterministic situations. 123

This paper puts forward a strategy for selecting
synchronization sequences to test concurrent object-
oriented software, including non-deterministic cases. It is
based on OBJSA net/CLOWN specifications. Experiments
have been carried out in a case study to verify the efficacy
of the strategy.

Keywords: Object-oriented program testing, concur-
rency, non-determinism, OBJSA net

1. Introduction

Object-oriented programming is among the most
popular software development technique today. It consists

1 © 2003 IEEE. This material is presented to ensure timely
dissemination of scholarly and technical work. Personal use of
this material is permitted. Copyright and all rights therein are
retained by authors or by other copyright holders. All persons
copying this information are expected to adhere to the terms and
constraints invoked by each author�s copyright. In most cases,
these works may not be reposted without the explicit permission
of the copyright holder. Permission to reprint / republish this
material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work in other
works must be obtained from the IEEE.

2 This research is supported by the National Natural Science
Foundation of China under Grant #60173038, the Guangdong
Province Science Foundation under Grant #010421, the Research
Grants Council of Hong Kong under Grant No. HKU 7029/01E,
and The University of Hong Kong under a CRCG grant.

3 Corresponding author.

of many distinct features within the same paradigm. The
application domain is modeled by objects that include not
only data structures but all the operations also. Data
abstraction and encapsulation allows us to separate object
behaviors and interfaces from implementation details.
Inheritance enhances reuse. Polymorphism enables us to
use the same operation symbols for different purposes in
different situations. The resulting software has been found
to be more flexible, maintainable, and reusable.

On the other hand, objects may interact with one
another in unforeseen combinations in object-oriented
systems, which are much more complex to test than the
hierarchical structures in conventional programs. Various
proposals for testing object-oriented software system have
been made [1�5]. In [1], for instance, we recommended a
TACCLE methodology for testing object-oriented software
at the class and cluster levels. We must concede, however,
that it did not take concurrency and non-determinism into
account.

Since the introduction of the Java language with
strong multi-thread mechanisms and Internet support, the
static analysis and dynamic testing of concurrency and
non-determinism are increasing in importance. Although
Carver and Tai [6] presented an effective technique for the
use of sequencing constraints for specification-based
testing of concurrent programs, these constraints are only
limited to preceding and succeeding events. Although Zhu
and He [7] put forward adequacy criteria for testing
concurrent systems based on high-level Petri nets and
proved subsumption relationships among them, the authors
did not offer techniques for actually constructing test
cases.

In [8], Chen presented an approach for the static
analysis of concurrent and non-deterministic object-
oriented programs in Java. As a supplement, we shall
present in this paper a strategy for selecting synchron-
ization sequences to dynamically test non-deterministic
concurrent object-oriented software. The strategy is based
on OBJSA net / CLOWN specifications [9, 10]. In a

Administrator
HKU CSIS Tech Report TR-2003-05

5

companion paper [11], we shall further supplement this
strategy by proposing a scheme for dynamically executing
selected pairs of synchronization sequences.

An OBJSA net in CLOWN is composed of a super-
posed automata (SA) net inscribed with algebraic terms of
an OBJ module. It supports the components-based
analysis and incremental development of specifications
with good modularity and reusability. By adding OBJ
notions to Petri nets, such as order-sorted algebra, theory,
and view [12], OBJSA net provides testers with more
information for the selection of test cases. An OBJSA Net-
support Environment (ONE) has been built to facilitate
construction and validation of the specifications.

We shall outline in Section 2 the underlying concepts
and rules of OBJSA net specifications. Based on these
fundamentals, we shall propose in Section 3 a strategy for
selecting synchronization sequences to test concurrent
non-deterministic object-oriented software. Section 4
presents an experimental case study to verify the
effectiveness of the strategy. Section 5 concludes the
paper.

2. Underlying Concepts of OBJSA Nets

In this section, we outline the underlying concepts of
OBJSA nets, which were due originally to Battiston et al.
Interested readers may refer to [9, 10] for more details.

(a) Nets

A net is a bipartite graph with two types of nodes:
places and transitions. Places are used to model the
statuses of system conditions and transitions are used to
model operations that affect such statuses. More formally,
a net is a triple (P, T, F) such that:

(i) P is a finite non-empty set of places,
(ii) T is a finite non-empty set of transitions,
(iii) P ∩ T = ∅
(iv) F ⊆ (P × T) ∪ (T × P) is a set of arcs.

V = P ∪ T is known as the set of vertices. For any vertex
v ∈ V, the set of arcs ov = {x ∈ V | (x, v) ∈ F} is called its
pre-set, and the set of arcs vo = {y ∈ V | (v, y) ∈ F} is called
its post-set.

(b) Extended SA Nets

Given a net (P, T, F), an extended SA net N is a tuple
(P, T, F, W, ∏) satisfying the following conditions:

(i) OP is a set of open places and CP is a set of closed
places such that OP ∪ CP = P and OP ∩ CP = ∅ .

(ii) OT is a set of open transitions and CT is a set of closed
transitions such that OT ∪ CT = T and OT ∩ CT = ∅ .

(iii) OF ⊆ (OP × OT) ∪ (OT × OP) is a set of open arcs.
(iv) CF ⊆ (CP × T) ∪ (T × CP) is a set of closed arcs.
(v) W: F → Nat is an arc weight function. It assigns to

every arc a natural number denoting its weight. In
particular, every open arc is assigned a weight of 1.

(vi) ∏ is a partition of P, dividing it into m subsets
(∏i)i=1,2,...,m such that ∏1 ∪ ∏2 ∪ � ∪ ∏m = P and
∏i ∩ ∏j = ∅ for i ≠ j. Each ∏i contains open places
only or closed places only. For every transition t ∈ T,
the total weights of all the arcs from the places in ∏i to
t is the same as the total weights of all the arcs from t
to the places in ∏i.

An extended SA net is open if it contains at least one open
place or open transition; otherwise it is closed. An
extended SA net is elementary if it is contains only closed
places.

(c) OBJSA Nets

Let N = (P, T, F, W, ∏) be an extended SA net and
SPEC = (S, Σ, E) be an algebraic specification, where S is a
set of sorts (or object classes), Σ is a family of operation
symbols, and E is a set of equational axioms, possibly
conditional. An OBJSA component is a SPEC-inscribed
net (N, ins, SPEC), where ins = (ϕ, λ, η) satisfies the
following conditions:

(i) ϕ: P → S is a sort assignment function. It classifies
the places into different sorts while respecting the
partition Π. Every element of sort ϕ(p) is called a
token. It is of the form 〈n, d〉, where n denotes the
token name and d denotes the data content.

(ii) λ: F → TermS,Σ[X] is an arc labeling function. It
assigns labels to the arcs while respecting the sort
assignment. Given any transition t ∈ T and any place
p ∈ ot, the label of the arc f = (p, t) is the concatenated
string x1 ⊕ x2 ⊕ � ⊕ xW(f). Each xi is a variable of sort
ϕ(p). Let Xt be a list of variables that label the input
arcs of t, and X be the set of variables for all the arcs of
the net. Given any transition t ∈ T and any place q ∈
t

o, the label of the arc f = (t, q) is the concatenated
string y1(Xt) ⊕ y2(Xt) ⊕ � ⊕ yW(f)(Xt). Each yj(Xt) is a
term of the form 〈nj′, dj′〉 of sort ϕ(q) such that nj′ = ni
and dj′ = σt(�, di, �) for some xi = 〈ni, di〉 in Xt and for
some operation σt that specifies the change of the data
content due to the transition t.

(iii) η: T → 2X → Bool is a guard function that assigns a
pre-condition η(t)(Xt) to every transaction t before it
can be fired.

Furthermore, an OBJSA component is associated with an
initial marking (or initial state) M0, which assigns to each
closed place p a family of tokens of sort ϕ(p).

6

An OBJSA component is elementary if the underlying
net N contains only an elementary subnet. An OBJSA
component is open if it is formed by composing
elementary or other open components, such that the
underlying net is open. Finally, an OBJSA net is a closed
OBJSA component, formed by composing elementary or
open OBJSA components, such that the underlying net is
closed.

(d) Firing Mode

Given an OBJSA component, a firing mode for a
transition t ∈ T is an assignment function βt: Xt → TermS,Σ
that substitutes every variable x ∈ Xt by a ground term (that
is, a term without variables) of sort ϕ(p) some p ∈ ot.

For a place p ∈ P, a transition t ∈ T, and a firing
mode βt, if p ∈ ot, then IN(p, t) is defined as {βt(xi) | i =
1, 2, ..., W(p, t)}; otherwise IN(p, t) is defined as the empty
set. Similarly, if p ∈ t

o, then OUT(t, p) is defined as
{βt(yj(Xt)) | j = 1, 2, ..., W(t, p)}; otherwise OUT(t, p) is
defined as the empty set. Given a marking M, a transition
t ∈ T, and a firing mode βt, if η(t)(βt(Xt)) = true and IN(p, t)
⊆ M(p) for every place p ∈ ot, then t is said to be βt-enabled
at M. In this case, t may fire in mode βt. Such firing
returns a new marking M′ such that M′(p) = M(p) \ IN(p, t)
∪ OUT(t, p) for every p∈ P.

3. Our Strategy for Selecting

Synchronization Sequences

Based on the concept of OBJSA nets, we present in

this section a strategy for selecting synchronization
sequences to test non-deterministic concurrent object-
oriented software.

Given an OBJSA net Osn, we say that a marking M is
reachable if, starting from the initial marking M0, we can
obtain M by firing a sequence τ of consecutively enabled
transitions. In this case, we call τ an enabled sequence and
write M0 → τ M. We assume that τ is annotated with
arc information so that any intermediate marking can be
tracked unambiguously. If τ = null, M = M0.

Let M* = {M | M0 → τ M for some enabled
sequence τ} be the set of reachable markings of Osn. For
any M ∈ M*, the number of non-deterministic enabled
transitions of Osn at M is called the enabled degree of Osn
at M, and is denoted by ed(Osn, M). Let md(Osn) =
max{ed(Osn, M) | M ∈ M*} be the maximum
non-deterministic enabled degree. We say that Mg is a
goal marking of Osn if ed(Osn, Mg) = md(Osn). Let ET(Mg)
be the set of enabled transitions at Mg. Obviously, |ET(Mg)|
≥ md(Osn).

md(Osn) must exist, because ed(Osn, M) for any M ∈
M* must be a non-negative integer satisfying ed(Osn, M) ≤
|T|. The goal marking Mg corresponding to md(Osn),
however, is not necessarily unique. At Mg, the firings of
transitions in Osn have the maximum non-determinism
and hence the maximum competition on system resources.
At this moment, the system is in a most complex state and
is therefore most error prone. Hence, we should catch the
state corresponding to Mg in our testing. This is the
motivation and the general idea of our strategy for
selecting synchronization sequences.

Suppose M0 → gτ Mg. Let TCg = {τg · ti |
ti ∈ ET(Mg)}, where τg · ti denotes the firing of ti
immediately after τg. We say that τg is a goal sequence and
TCg is a goal set. Our strategy is to select TCg as a set of
initial test cases.

Let TC be any set of test cases. For any given
transition t ∈ T, is there an M ∈ M* such that t is enabled at
M? The problem is difficult because M* is infinite in
general, and is NP-hard even if M* is finite.

From the complexity point of view, seeking a goal
marking Mg, goal sequence τg, or a goal set TCg is also a
difficult problem. For a particular Osn, however, we can
give a heuristic strategy for seeking a ballpark goal
marking Mg′ and the corresponding ballpark goal sequence
τg′ such that there will be as many enabled transitions at
Mg′ as possible. The corresponding ballpark goal set TCg′
is {τg′ · ti | ti ∈ ET(Mg′)}.

An enabled transition at initial marking M0 is called a
source transition of Osn. The number of times that a
source transition in an enabled sequence can be
consecutively fired from M0 is known as the index of the
source transition. We shall refer to a source transition with
the largest index as the greatest index source transition, or
GIST for short.

Suppose t0 is the GIST of Osn with M0. Our heuristic
strategy to seek a ballpark goal marking Mg′ and the
corresponding ballpark goal sequence τg′ includes a
reachability search [13�17], such as the following
hill-climbing procedure:

(1) set τg′ = null and Mg′ = M0;

(2) fire t0 at M0 and obtain M1, that is, M0 → 0
t

M1;

(3) at M1:
if t0 is not enabled, return τg′ and Mg′, and exit;
if t0 is still enabled, {

if there is no other enabled transition t1, return τg′
and Mg′, and exit;

if there is another enabled transition t1,{

7

set τg′ = τg′ · t0, M1′ = M1, Mg′ = M1, and i = 1;
};

};

(4) if there are adequately many 4 non-deterministic
enabled transitions at Mg′, then return τg′ and Mg′,

and exit; otherwise Mi′ → i
t

Mi+1;

(5) at Mi+1:
if t0 is not enabled, return τg′ and Mg′, and exit;
if t0, t1, �, ti are still enabled, {

if there is no other enabled transition ti+1, return
τg′ and Mg′, and exit;

if there is another enabled transition ti+1, {
set τg′ = τg′ · ti, Mi+1′ = Mi+1, Mg′ = Mi+1′, and

i = i+1;
go to (4);
};

};
if t0 is still enabled but some of t1, t2, �, ti are not
enabled, {

if firing some of t0, t1, �, ti�1 several times can
enable all of t0, t1, �, ti, {

let τi be the corresponding sequence of the fired
transitions and let Mi+1′ be the marking

obtained, that is, Mi+1 → i
τ

Mi+1′;
if there is no other enabled transition ti+1 at Mi+1′,

return τg′ and Mg′, and exit;
if there is another enabled transition ti+1 at Mi+1′, {

set τg′ = τg′ · ti · τi, Mg′ = Mi+1′, and i = i + 1;
go to (4);
};

};
else return τg′ and Mg′, and exit;
};

In order to understand the strategy, readers may like to

construct a decision tree for the above steps.

After obtaining the ballpark goal sequence τg′ and the
corresponding Mg′, we can construct the ballpark goal set
TCg′ = {τg′ · ti | ti ∈ ET(Mg′)} and take TCg′ as a set of test
cases.

A transition in OBJSA net represents an operation in
the implementation triggered by some message passing
from another object. A test case in TCg′ represents a
sequence of inter-object operations in the implementation,
which we shall call a synchronization sequence. We can
then substitute the relevant parts of these synchronization

4 That is, in the most recent m loops, the number of enabled

transitions at Mg′ does not increase, where m is a parameter
specified by the user.

sequences into the axioms of corresponding classes, and
apply our class-level testing strategy for observational
equivalence [1]. Because of the non-determinism of
concurrent programs, we must use a replay technique to
execute each synchronization sequence in TCg′. Details of
replay techniques can be found, for example, in [18].

Note that TCg′ may not cover all the transitions of Osn.
In this case, and if TCg′ cannot reveal errors, we also need
to construct other sets of test cases covering the remaining
transitions T \ (ET(Mg′) ∪ {t | t appears in τg′}) as
supplements. Finally, the testing of Osn may be repeated
by choosing other initial markings. Such initial markings
may be given in the specification, or obtained from a
reachability search or category-partitioning scheme.

5. Case Study and Experiments

As a case study, we have applied the above strategy to

a system consisting of four generators and five users
synchronously exchanging messages through four buffers.
These three constituents can be specified by OBJSA open
components Generator, User, and Buffer, respectively.
Each object is identified by a natural number together with
the component type. The structures of these components
are similar to those in the worked example in [9]. The
OBJSA net specifying the integrated system fused from
these components is shown in Figure 1. Suppose an initial
marking M0 is as follows:

M0(g2) = {〈[g, 1], null〉, 〈[g, 2], null〉,
〈[g, 3], null〉, 〈[g, 4], null〉};

M0(u2) = {〈[u, 1], nullmsg〉, 〈[u, 2], nullmsg〉,
〈[u, 3], nullmsg〉, 〈[u, 4], nullmsg〉,
〈[u, 5], nullmsg〉};

M0(b1) = {〈[b, 1], nullmsg〉, 〈[b, 2], nullmsg〉,
〈[b, 3], nullmsg〉, 〈[b, 4], nullmsg〉};

M0(p) = ∅ for p ∈ P \ {g2, u2, b1}.

Following the definition in Section 4, we obtain the GIST
t0 = generate. Following the proposed strategy, we have
the following process: (i) Set τg′ = null and Mg′ = M0. (ii)
Fire t0 and obtain M1 by the rules in Section 2. (iii) Here t0
is still enabled. By the definition in Section 2, another
transition t1 = fetch is enabled. Set τg′ = generate, M1′ = M1,
Mg′ = M1, and i = 1. (iv) Fire t1 = fetch and obtain M2 by the
rules in Section 2. (v) Here t0 is still enabled but t1 is not.
Fire τ1= t0 and obtain M2′. By the rules in Section 2,
another transition t2 = accept is enabled. Set τg′ =
generate · fetch · generate, Mg′ = M2′, and i = 2. Go back to
step (4) of the strategy.

8

ig1, ig2, iu1, iu2, ib1, ib2, ib3, ib4: ObjectName in the form [type: Type, id: Nat], where Type denotes the set of object sorts,

Nat denotes the set of natural numbers, type ∈ {g, u, b}, g denotes generator, u denotes user, b denotes buffer, and id
denotes object identity number.

mg1, mg2, mg1′, mg2′, null: Message. mg1′ = null. mg2′ = generateMessage(ig2).
mu1, mu2, mu1′, mu2′, nullmsg: FullMessage in the form [msg: Message, orig: Nat], where orig denotes the originating

object. mu1′ = mb4. mu2′ = nullmsg.
mb1, mb2, mb3, mb4, mb1′, mb2′, mb3′, mb4′: FullMessage. mb1′ = [mg1, num(ig1)]. mb2′ = mb2. mb3′ = mb3.

mb4′ = nullmsg.

Figure 1. Case Study

〈ib1, mb1′〉

g1

u2

g2

u1

b2

b4

Generator

Use

〈iu2, mu2〉

〈iu2, mu2′〉

Buffer
b1

〈iu1, mu1〉

〈ig2, mg2〉

〈iu1, mu1′〉

〈ig2, mg2′〉

〈ig1, mg1′〉

〈ib1, mb1〉

〈ib4, mb4′〉

〈ib4, mb4〉

〈ib2, mb2〉
〈ig1, mg1〉

〈ib2, mb2′〉

〈ib3, mb3〉

〈ib3, mb3’ 〉

b3

dispatch

generate acceptfetch

use deposit

6

 Finally, we have obtained the ballpark goal sequence
τg′ = generate · fetch · generate · accept · generate · fetch ·
dispatch · generate · fetch · accept · deposit · generate ·
fetch · accept · dispatch. Obviously, in this case we have
ET(Mg′) = T, and hence the ballpark goal set TCg′ is
{τg′ · generate, τg′ · fetch, τg′ · accept, τg′ · dispatch,
τg′ · deposit, τg′ · use}. This can then be followed-up with
class-level testing of observational equivalence [1].

We have implemented, in Java, a system consisting of
these components. We have embedded 30 different
mutants into the program. The above strategy in generat-
ing the test set TCg′ can kill all the mutants.

6. Conclusion

Based on an OBJSA net/CLOWN specification, we

have proposed a strategy to select synchronization
sequences for testing non-deterministic concurrent object-
oriented software. We have reported an effectiveness case
study and experiments on the proposed strategy. More
case studies and experiments are being planned.

7. Acknowledgement

We are grateful to Shuang Quan Li of Jinan University
for implementing the system and conducting the
experiments and tests in the case study.

8. References

[1] H. Y. Chen, T. H. Tse, and T. Y. Chen. TACCLE: a

methodology for object-oriented software testing at the class
and cluster levels. ACM Transactions on Software
Engineering and Methodology, 10 (1): 56�109, 2001.

[2] R.-K. Doong and P. G. Frankl. The ASTOOT approach to
testing object-oriented programs. ACM Transactions on
Software Engineering and Methodology, 3 (2): 101�130,
1994.

[3] D. C. Kung, J. Z. Gao, P. Hsia, Y. Toyoshima, and C. Chen.
A test strategy for object-oriented programs. In Proceedings
of the 19th Annual International Computer Software and
Applications Conference (COMPSAC ’95), pages 239�244.
IEEE Computer Society Press, Los Alamitos, California,
1995.

[4] M. D. Smith and D. J. Robson. A framework for testing
object-oriented programs. Journal of Object-Oriented
Programming, 5 (3): 45� 53, 1992.

[5] C. D. Turner and D. J. Robson. A state-based approach to
the testing of class-based programs. Software: Concepts and
Tools, 16 (3): 106�112, 1995.

[6] R. H. Carver and K.-C. Tai. Use of sequencing constraints
for specification-based testing of concurrent programs.
IEEE Transactions on Software Engineering, 24 (6): 471�
490, 1998.

[7] H. Zhu and X. He. A theory of testing high-level Petri nets.
In Proceedings of the International Conference on Software:
Theory and Practice, 16th IFIP World Computer Congress,
pages 443�450. Beijing, China, 2000.

[8] H. Y. Chen. Race condition and concurrency safety of
multithreaded object-oriented programming in Java. In
Proceedings of the 2002 IEEE International Conference on
Systems, Man, and Cybernetics (SMC 2002), pages 134�139.
IEEE Computer Society Press, Los Alamitos, California,
2002.

[9] E. Battiston, F. de Cindio, and G. Mauri. Modular algebraic
nets to specify concurrent systems. IEEE Transactions on
Software Engineering, 22 (10): 689�705, 1996.

[10] E. Battiston, A. Chizzoni, and F. D. Cindio. CLOWN as a
testbed for concurrent object-oriented concepts. In
Concurrent Object-Oriented Programming and Petri Nets:
Advances in Petri Nets, pages 131�163. Lecture Notes on
Computer Science, Springer, Berlin, 2001.

[11] H. Y. Chen, Y. X. Sun, and T. H. Tse, �A scheme for
dynamic detection of concurrent execution of object-
oriented software�, in Proceedings of the 2003 IEEE
International Conference on Systems, Man, and Cybernetics
(SMC 2003), IEEE Computer Society Press, Los Alamitos,
California, 2003.

[12] J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and
J.-P. Jouannaud. Introducing OBJ3. In J. A. Goguen and G.
Malcolm, editors, Software Engineering with OBJ:
Algebraic Specification in Action. Kluwer Academic
Publishers, Boston, 2000.

[13] S. C. Cheung and J. Kramer. Context constraints for
compositional reachability analysis. ACM Transac-
tions on Software Engineering and Methodology, 5(4):
334�377, 1996.

[14] H. S. Hong, S. D. Cha, D. H. Bae, and H. Ural. A test
sequence selection method for statecharts. Software Testing,
Verification and Reliability, 10(4): 203�257, 2000.

[15] T. H. Kim, I. S. Hwang, M. S. Jang, and J. Y. Lee. Test case
generation of a communication protocol by an adaptive state
exploration. Computer Communications, 24(13): 1242�
1255, 2001.

[16] D. Lee, K. K. Sabnani, D. M. Kristol, and S. Paul.
Conformance testing of protocls specified as communicat-
ing finite state machines: a guided random walk based
approach. IEEE Transactions on Communications, 44(5):
631�640, 1996.

[17] P. Tripathy and B. Sarikaya. Test generation from LOTOS
specifications. IEEE Transactions on Computers, 40(4):
543�552, 1991.

[18] R. H. Carver and K.-C. Tai. Replay and testing for con-
current programs. IEEE Software, 8 (3): 66�74, 1991.

