
1 

Postprint of article in Proceedings of the 2003 IEEE International Conference on Systems, Man, and Cybernetics (SMC ’03), 

IEEE Computer Society, Los Alamitos, CA (2003) 

 

A Scheme for Dynamic Detection of Concurrent 

Execution of Object-Oriented Software 

1,
 

2 
 

Huo Yan Chen, Yu Xia Sun  
Department of Computer Science, Jinan University, Guangzhou 510632, P.R. China 

T.H. Tse 
Department of Computer Science, The University of Hong Kong, Hong Kong 

 

 

                                                           
1 © 2003 IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Personal use of this material is 

permitted. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are 

expected to adhere to the terms and constraints invoked by each author’s copyright. In most cases, these works may not be reposted without 

the explicit permission of the copyright holder. Permission to reprint / republish this material for advertising or promotional purposes or for 

creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other 

works must be obtained from the IEEE. 
2 This research is supported in part by the National Natural Science Foundation of China under Grant #60173038, the Guangdong 

Province Science Foundation under Grant #010421, and the Research Grants Council of Hong Kong. 

Abstract — Program testing is the most widely 

adopted approach for assuring the quality and relia-

bility of software systems. Despite the popularity of 

the object-oriented programs, its testing is much more 

challenging than that of the conventional programs. 

We proposed previously a methodology known as 

TACCLE for testing object-oriented software. It has 

not, however, addressed the aspects of concurrency 

and non-determinism.  

In this paper, we propose a scheme for 

dynamically detecting and testing concurrency in 

object-oriented software by executing selected con-

current pairs of operations. The scheme is based on 

OBJSA nets and addresses concurrency and non-

determinism problems. An experimental case study is 

reported to show the effectiveness of the scheme in 

detecting deadlocks, race conditions and other 

coherence problems. The scheme supplements our 

previous static approach to detecting deadlock in 

Java multithreaded programs. 

 

Keywords: Object-oriented program testing, dynamic 

detection and testing, concurrency, OBJSA net 

 

1. Introduction 
 

Object-oriented paradigm is becoming the main 

methodology for software systems analysis and design. 

The testing of object-oriented software, however, is 

more complex and difficult than that of conventional 

programs.  

Various approaches to testing object-oriented 

software systems have been proposed [5, 6, 8, 9, 10, 

11]. For example, we proposed in [6] a methodology 

TACCLE to test object-oriented software system at the 

class and cluster levels. We also presented in [5] an 

approach for statically detecting object-oriented 

software system at the method level. These earlier 

results, however, did not cater for concurrent or non-

deterministic situations. Because of the popularity of 

Java and its strong multi-thread mechanisms, the 

dynamic testing of concurrency and non-determinism 

in object-oriented software systems is of increasing 

importance and should be addressed properly.  

Carver and Tai [4] proposed to use sequencing 

constraints for specification-based testing of con-

current programs. Despite the effectiveness of the 

approach, the sequencing constraints only specified 

preceding and succeeding events in the concurrent 

system under test. They did not express other require-

ments and properties of the system. Zhu and He [12] 

proposed several adequacy criteria for testing concur-

rent systems based on high-level Petri nets and also 

proved subsumption relationships among them. They 

did not, however, provide techniques for constructing 

test cases to cover all or part of the criteria. 

In this paper, we propose a scheme for dynami-

cally detecting and testing concurrency in object-

oriented software by executing selected concurrent 

pairs of operations. Our scheme is based on OBJSA-

net/CLOWN specifications [1, 2], which have been 

Administrator
HKU CSIS Tech Report TR-2003-04



2 

 

successfully used in a large and significant project 

proposed by the Italian electricity company ENEL. 

We shall present the background concepts of 

OBJSA nets in the next section. We shall then discuss 

our proposed scheme in the subsequent sections. 

 

 

2. Background Concepts 
 

To lay the foundations of the paper, we present in 

this section the basic concepts of OBJSA nets 

originally proposed in [1, 2]. We shall adhere as much 

as possible to the notation of [2] for the ease of 

understanding and comparison. 

A net is a triple N = (P, T, F), where P, T, and F 

are finite non-empty sets such that P  F =  and F  

(P  T)  (T  P). The elements of P, T, and F are 

known as places, transitions, and arcs, respectively. 

In general, places are used to model conditions or 

system resources, and transitions are used to model 

operations or actions. 

Let V = P  T be the set of vertices of N. For any 

v  V, ov = {y | y  V  (y, v)  F} is called the pre-set 

of v, and vo = {y | y  V  (v, y)  F} is called the 

post-set of v. 

An extended SA net is a tuple N = (P, T, F, W, ), 

where (P, T, F) is a net. Places in P are partitioned into 

two disjoint classes OP and CP. The elements of OP 

are called open places and those of CP are called 

closed places. Transitions in T are partitioned into two 

disjoint classes OT and CT. The elements of OT are 

called open transitions and those of CP are called 

closed transitions. An arc f  OF  (OP  OT)  

(OT  OP) is said to be an open arc. An arc f  CF  

(CP  T)  (T  CP) is said to be closed. W: F  Nat 

is the arc weight function, where Nat denotes the set 

of natural numbers. In particular, W(f) = 1 for every 

open arc f.  is a partition of P into disjoint classes 

1, 2, …, m such that every i contains either open 

places only or closed places only, and for every t  T, 

p(i
ot)W(p, t) = p(i

ot)W(t, p). 

An extended SA net N is said to be closed if OP = 

OT = , and open otherwise. The nets generated only 

by classes in CP are called elementary subnets of N. 

Given an extended SA net N = (P, T, F, W, ) 

and an algebraic specification SPEC = (S, Opt, Eq),  

an OBJSA component is a SPEC-inscribed net 

(N, ins, SPEC) with an initial marking (or initial state) 

M0, where ins = (, , ) is a SPEC-inscription of N 

such that: 

(a) : P  S is a sort assignment function, which 

divides places into various sorts (or object classes) 

while respecting the partition . Each element of 

sort (p) is known as a token. It is of the form 

<ni,j, di,j>, where ni,j  Nt denotes the name of the 

token and di,j  D denotes its data content.  

(b) : T  S is a -respecting arc labeling function, 

which assigns labels to the arcs surrounding every 

transaction as follows: For every t  T, let ot = 

{p1, p2, …, pa} and t 
o = {q1, q2, …, qb}. For every 

arc f = (pi, t), if f is open, its label is a variable xi,1 

of sort (pi); otherwise its label is of the form 

xi,1 <+> xi,2 <+> … <+> xi,W(f), where each xi,j is a 

variable of sort (pi). Let Xt be a list of variables 

that label the input arcs of t. For every arc f = 

(t, qk), if f is open, its label is a term yk,1(Xt); 

otherwise its label is of the form yk,1(Xt) <+> yk,2(Xt) 

<+> … <+> yk,W(f)(Xt), where each yk,j(Xt) is a term 

of sort (qk). Furthermore, for each variable xi,j = 

<ni,j, di,j> in Xt, there exists a unique term yk,r(Xt) = 

<nk,r*, dk,r*> of sort (qk) such that nk,r* = ni,j and 

dk,r* = t(…, di,j, …) for some function t that 

specifies the change of the data content due to the 

transition t. 

(c) : T  Bool is an inscription function that assigns 

to every transaction t a pre-condition (t, Xt) for 

firing it. 

M0 associates with each closed place p a multi-set of 

tokens of sort (p), under the condition that if the 

name of a token appears in the marking of a place, it 

must not appear in the marking of any other place of 

the same elementary component. An open place op  

OP is associated with all the possible terms of the sort 

(op). 



3 

 

An OBJSA net is constructed in a bottom-up 

manner. An OBJSA component is said to be 

elementary if the underlying net N contains only one 

elementary subnet. An OBJSA component is said to 

be open if the underlying net N is open. They are 

constructed by composing elementary or other open 

components together. An OBJSA net is a closed 

OBJSA component, formed by composing elementary 

or open OBJSA components, such that the underlying 

net N is closed. Details of composition rules can be 

found in [2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
np1, np2, nc1, nc2, na1, na2, na3, na4: ObjectName in the form [type: Type, id: Nat], where Type denotes the set of object 

sorts, Nat denotes the set of natural numbers, type  {p, c}, p denotes producer, c denotes consumer, and id denotes the 

object identifier. 

da1, da2, da3, da4, da1*, da2*, da3*, da4*: FullMessage in the form [msg: Message, dest: Nat], where dest denotes a 

destination object.    da1* = dp1.    da2* = nullmsg.    da3* = da2.    da4* = nullmsg. 

dp1, dp2, dp1*, dp2*, nullmsg: FullMessage.    dp1* = nullmsg.    dp2* = produceMessage(np2). 

dc1, dc2, dc1*, dc2*, null: Message.    dc1* = msg(da4).    dc2* = null. 

pr1, pr2, pr3: Bool. pr1 = (type(na1) = = p)  (id(na1) = = id(np1)). 

 pr2 = (type(na2) = = p)  (type(na3) = = c)  (dest(da2) = = id(na3)). 

 pr3 = (type(na4) = = c)  (id(na4) = = id(nc1)). 

 

Figure 1. OBJSA Net Specifying the System in Example 1 

Agents 

generate 
consume 

<na3, da3> 

Producers Consumers 

<nc2, dc2> <nc2, dc2*> 

<nc1, dc1> 

<np2, dp2> 

<nc1, dc1*> 

<np2, dp2*> 

<np1, dp1*> 
receive 

<na1, da1> send 

<na4, da4*> 

<na4, da4> 

exchange 
<na3, da3*> <na2, da2> 

<na1, da1*> 

<na2, da2*> 

<np1, dp1> 
p2 p1 

a2 

pr1 pr3 

pr2 

c2 c1 

a3 

a1 



4 

Given an OBJSA component with a transition t  

T such that ot = {p1, p2, …, pa} and t 
o = {q1, q2, …, qb}, 

a firing mode for t is an assignment function t: Xt  

T(pi) that associates a ground term of sort (pi) to 

every variable xi,j in the list Xt. 

Given a firing mode t, for each place pP, 

IN(p, t) is defined as follows: (a) IN(p, t) = {t(xi,j) | j = 

1, 2, ..., W(p, t)} if p = pi  ot  CP; (b) IN(p, t) = 

{t(xi,1)} if p = pi  ot  OP; (c) IN(p, t) =  otherwise. 

Given a marking M, a transition t  T and a firing 

mode t, we say that t is t-enabled at M if, for each 

place pi  ot, IN(pi, t)  M(pi) and (t, t) = true. 

An enabled transition at the initial marking M0 of 

an OBJSA net is called a source transition. Starting 

with M0, the number of times that a source transition 

can be consecutively fired is known as the index of the 

source transition. A source transition with the largest 

index is called the greatest source transition.  

In order to help readers understand OBJSA net 

concepts, we give here an example adapted from [2]. 

After we have discussed our scheme in Sections 3 and 

4, we shall revisit this example in an experimental 

case study in Section 5. 

Example 1. Suppose a system comprises 5 

producers and 4 consumers asynchronously 

exchanging messages through a network of 5  + 4 

agents. The constituents of the system can be specified 

by OBJSA open components Producers, Consumers, 

and Agents, respectively. The OBJSA net specifying 

the system is shown in Figure 1. Its initial marking M0 

is as follows: 

M0(p2) = {<[p, 1], nullmsg>, <[p, 2], nullmsg>, 

<[p, 3], nullmsg>, <[p, 4], nullmsg>, 

<[p, 5], nullmsg>};  

M0(c2) = {<[c, 1], null>, <[c, 2], null>, 

<[c, 3], null>, <[c, 4], null>}; 

M0(a1) = {<[p, 1], nullmsg>, <[p, 2], nullmsg>, 

<[p, 3], nullmsg>, <[p, 4], nullmsg>, 

<[p, 5], nullmsg>, <[c, 1], null>, <[c, 2], null>, 

<[c, 3], null>, <[c, 4], null>}; 

M0(p) =  for p  P  {p2, c2, a1}. 

 

3. Our Scheme 
 

This section describes our scheme for dy-

namically detecting and testing concurrency in 

object-oriented software by simultaneously executing 

selected concurrent pairs. 

Given an OBJSA net Osn, let Mi be a reachable 

marking. If two transitions ti1 and ti2 (or their 

corresponding operations) can be fired simultaneously 

at Mi, we say that ti1 and ti2 are a concurrent pair at Mi. 

In formal terms, ti1 and ti2 are a concurrent pair at Mi if 

and only if (ti1 and ti2 are enabled respectively) and 

p (p oti1  oti2  t (IN(p, ti2)  Mi(p)  

IN(p, ti1))). For simplicity, let I1, I2, and M denote 

IN(p, ti1), IN(p, ti2), and Mi(p), respectively. It can 

easily be proved that if I1  M and I2  M, then (a) I2 

 M  I1 implies I1  I2   and (b) I2  M  I1 if 

and only if I1  M  I2. Hence, the expression IN(p, ti2) 

 Mi(p)  IN(p, ti1) above can be replaced by IN(p, ti1) 

 Mi(p)  IN(p, ti2). In other words, ti1 and ti2 will be a 

concurrent pair at Mi if and only if (ti1 and ti2 are 

enabled respectively) and p (p  oti1  oti2  

t (IN(p, ti1)  Mi(p)  IN(p, ti2))). 

Let  be a sequence of individual or concurrent 

transitions. The notation Mi 
Mj means that, 

starting with the marking Mi, we can consecutively 

fire the transitions in  to obtain the marking Mj. When 

 is null, Mi = Mj. The notation Mi   2
| |

1 ii
tt

Mj means 

that simultaneously firing ti1 and ti2 at Mi will obtain 

the marking Mj. In fact, Mi   2
| |

1 ii
tt

Mj can be taken 

as a test case.  

If M0  i


Mi, where M0 is the initial marking 

of Osn, we say that Mi can be reached by i. Thus, the 

test case Mi   2
| |

1 ii
tt

Mj can be written as i  ti1||ti2, 

which means that we can reach Mj if we start from M0, 

consecutively fire the individual or concurrent 

transitions in i, and then simultaneously fire the 

concurrent pair ti1 and ti2. 

Let t0 be the greatest source transition of a given 

OBJSA net Osn. Our scheme for selecting concurrent 

test cases of the form Mi   2
| |

1 ii
tt

Mi+1, or i  ti1||ti2, 

contains the following steps: 



5 

 

(1) set Mc := M0, Tc := {t0}, c := null, and i := 1;  

(2) if there is a sequence (t0, t1, …, tk) of transitions in 

Tc (where k < |Tc|) such that, starting with Mc, 

we can reach Mi after firing t0  t1  …  tk, that 

is, Mc  


k
ttt 

10 Mi, and if we can find ti1 

( Tc) and ti2 ( Tc) that can be fired 

simultaneously at Mi, 

then { 

 Mi   2
| |

1 ii
tt

Mi+1, Tc := Tc  {ti1}, i := c  

t0  t1  …  tk, and c := i  ti1||ti2;  

return a test case i  ti1||ti2; 

};  

else exit from the scheme; 

(3) i := i +1;  

 if we can find ti1 ( Tc) and ti2 ( Tc  {t0}) that 

can be fired simultaneously at Mi, 

then { 

Mi   2
| |

1 ii
tt

Mi+1, Tc := Tc  {ti1}, i := c, and 

c := c  ti1||ti2; 

return a test case i  ti1||ti2; 

go to (3); 

}; 

else set Mc := Mi and go to (2);  

 

4. Discussions 
 

We presented in [7] an approach to detecting 

deadlocks in Java multithreaded programs. It con-

structs Calling Hierarchy Diagrams and Lock-Calling-

Suspend Diagrams from the programs under test, and 

then analyzes special properties to determine whether 

is there are potential deadlocks in the programs. The 

approach is static and white-box based. It cannot, for 

instance, find deadlocks due to dynamic binding.  

As a supplement to the approach described in [7], 

the scheme introduced in the last section of this paper 

is for detecting and testing concurrency in object-

oriented software by executing selected concurrent 

pairs of operations. It is dynamic and black-box based. 

It can detect deadlocks due to dynamic binding.  

Because of non-determinism in concurrent 

programs, we must use replay techniques to execute 

each test case i  ti1||ti2 obtained in the proposed 

scheme. Details of replay techniques can be found in 

[3]. 

Our approach can expose various errors due to 

concurrency, such as deadlocks, race conditions, and 

other coherence problems. The scheme can be applied 

not only to Java programs, but also to programs of 

other languages that support concurrency. 

 

5. Experimental Case Study 
 

Applying the above scheme to Example 1, we 

obtained the following test cases: 

1  t11||t12 = t0  t1||t0; 

2  t21||t22 = t0  t1||t0  t2||t3; 

3  t31||t32 = t0  t1||t0  t2||t3  t3||t2; 

4  t41||t42 = t0  t1||t0  t2||t3  t3||t2  t4||t3; 

where t0 = generate, t1 = send, t2 = exchange, t3 = 

receive, and t4 = consume. 

We implemented a Java system consisting of 5 

producers and 4 consumers as specified in Example 1, 

and then injected deadlocks, race conditions and other 

coherence problems into the program. All the injected 

faults were revealed by our approach.  

 

6. Conclusion 
 

We have presented a black-box and dynamic 

scheme for detecting and testing concurrency in 

object-oriented software by executing selected 

concurrent pairs of operations based on OBJSA-net 

specifications. An experimental case study has also 

been reported. More case studies and experiments will 

be conducted as future research. 

 

Acknowledgement 
 

We would like to express our thanks to Shuang 

Quan Li for the implementation and experiments in 

the case study. 

 



6 

 

References 
 

[1] Battiston E., A. Chizzoni, and F.D. Cindio. 

CLOWN as a testbed for concurrent object-

oriented concepts. In Concurrent Object-

Oriented Programming and Petri Nets: 

Advances in Petri Nets, pages 131–163. Lecture 

Notes on Computer Science, Springer, Berlin, 

2001.  

[2] Battiston E., F. de Cindio, and G. Mauri. 

Modular algebraic nets to specify concurrent 

systems. IEEE Transactions on Software Engi-

neering, 22 (10): 689–705, 1996.  

[3] Carver R.H. and K.-C. Tai. Replay and testing 

for concurrent programs. IEEE Software, 8 (3): 

66–74, 1991. 

[4] Carver R.H. and K.-C. Tai. Use of sequencing 

constraints for specification-based testing of 

concurrent programs. IEEE Transactions on 

Software Engineering, 24 (6): 471–490, 1998.  

[5] Chen H.Y. The design and implementation of a 

prototype for data flow analysis at the method-

level of object-oriented testing. In Proceedings 

of the 2002 IEEE International Conference on 

Systems, Man, and Cybernetics (SMC ’02), pages 

140–145. IEEE Computer Society, Los Alamitos, 

CA, 2002.  

[6] Chen H.Y., T.H. Tse, and T.Y. Chen. TACCLE: 

a methodology for object-oriented software 

testing at the class and cluster levels. ACM 

Transactions on Software Engineering and 

Methodology, 10 (1): 56–109, 2001.  

[7] Chen H.Y. Race condition and concurrency 

safety of multithreaded object-oriented program-

ming in Java. In Proceedings of the 2002 IEEE 

International Conference on Systems, Man, and 

Cybernetics (SMC ’02), pages 134–139. IEEE 

Computer Society, Los Alamitos, CA, 2002. 

[8] Doong R.-K. and P.G. Frankl. The ASTOOT 

approach to testing object-oriented programs. 

ACM Transactions on Software Engineering and 

Methodology, 3 (2): 101–130, 1994. 

[9] Kung D.C., J.Z. Gao, P. Hsia, Y. Toyoshima, and 

C. Chen. A test strategy for object-oriented 

programs. In Proceedings of the 19th Annual 

International Computer Software and Applica-

tions Conference (COMPSAC ’95), pages 239–

244. IEEE Computer Society, Los Alamitos, CA, 

1995. 

[10] Smith M.D. and D.J. Robson. A framework for 

testing object-oriented programs. Journal of 

Object-Oriented Programming, 5 (3): 45–53, 

1992. 

[11] Turner C.D. and D.J. Robson. A state-based 

approach to the testing of class-based programs. 

Software: Concepts and Tools, 16 (3): 106–112, 

1995. 

[12] Zhu H. and X. He. A theory of testing high-level 

Petri nets. In Proceedings of the International 

Conference on Software: Theory and Practice, 

16th IFIP World Computer Congress, pages 

443–450. Beijing, China, 2000. 

 




