
To appear in the Proceeedings of the 1st ACIS International Conference on
Software Engineering Research and Applications (SERA 2003), International Association

for Computer and Information Science Mt. Pleasant, Michigan (2003)

ADDICT: A Prototype System for Automated Test Data Generation
Using the Integrated Classification-Tree Methodology

�

A. Cain, T. Y. Chen, D. Grant
School of Information Technology

Swinburne University of Technology
Hawthorn 3122, Australia�

acain,tchen,dgrant � @it.swin.edu.au

Pak-Lok Poon†

Department of Accountancy
The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong
acplpoon@inet.polyu.edu.hk

Sau-Fun Tang‡

School of Information Technology
Swinburne University of Technology

Hawthorn 3122, Australia
sftang@hkbu.edu.hk

T. H. Tse
Department of Computer Science

and Information Systems
The University of Hong Kong
Pokfulam Road, Hong Kong

tse@csis.hku.hk

Abstract

The classification-tree method (CTM) is a black box
technique developed by Grochtmann and Grimm, which
helps software testers construct test cases systematically
from functional specifications. Later, some extension work
has been done on CTM by Chen et al., with a view to
improving the effectiveness of the method. This extension
results in their integrated classification-tree methodology
(ICTM). In this paper, we describe and discuss a prototype
system ADDICT that is based on ICTM.

1. Introduction

Software testing has two important purposes. First,
it is commonly used to reveal the presence of faults in
software. Second, even if testing does not reveal any fault,
it still provides increased justification for confidence in the
correctness of the software [1]. Without doubt, these two
purposes can be effectively achieved only when testing is
performed in a systematic and thorough manner. Because
of this, Ostrand and Balcer [2] have developed the category-

�
This work is supported in part by a grant of the Research Grants

Council of Hong Kong (Project No. HKU 7029/01E), a research and
conference grant of The University of Hong Kong, and a grant from the
Australian Research Council (ARC Discovery Project: DP 0450914).

†Contact Author. Tel: (852) 2766 7072; fax: (852) 2356 9550; e-mail:
acplpoon@inet.polyu.edu.hk

‡Also with the Department of Finance and Decision Sciences, Hong
Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong.

partition method (CPM) so that test cases can be generated
from functional specifications (hereafter simply referred to
as specifications) via the notion of formal test specifications.
Following up on their work, several studies [3, 4] on CPM
have been conducted. Recently, CPM has been enhanced by
Chen et al. by means of their choice relation framework [5].

Based on CPM, Grochtmann and Grimm [6] have
developed a similar but different method — the
classification-tree method (CTM). The major concept
of CTM is to construct test cases via the construction
of classification trees (denoted by T s). Although the
concept of CTM is promising, this method has a major
weakness — the absence of a systematic tree construction
algorithm. As a result, users of this method are left with a
loosely defined task of constructing T s. For complicated
specifications, this construction task could be difficult and
hence prone to human errors. If a T is wrongly constructed,
the quality of the resultant test cases generated from it will
be adversely affected.

The problem of the absence of a tree construction
algorithm is alleviated by Chen et al. via their integrated
classification-tree methodology (ICTM) [7]. With this
methodology, software testers can construct T s by using a
systematic tree construction algorithm. In this paper, we
discuss the functionality of a prototype system ADDICT

(which stands for AutomateD test Data generation using
the Integrated Classification-Tree methodology) built upon
ICTM.

The rest of the paper is organized as follows. Section 2
outlines the major concept of ICTM [7]. Section 3 describes

Administrator
HKU CSIS Tech Report TR-2003-03

in detail the various system features of ADDICT. Finally,
Section 4 summarizes and concludes the paper.

2. Overview of the integrated classification-tree
methodology (ICTM)

Basically, ICTM [7] helps testers construct test cases
from specifications via the construction of T s. This
construction task is supported by a predefined algorithm.
ICTM consists of the following steps:

(1) Decompose the specification into several functional
units Us that can be tested independently. For each
U selected for testing, repeat steps (2) to (7) below.

(2) Identify classifications (different criteria for parti-
tioning the input domain of the selected U) and
their associated classes (disjoint subsets of values
for each classification) for the selected U. For
every classification � X � , its associated classes should
partition the possible values of � X � completely.1 The
grouping of certain values in a single class � X : x �
indicates the belief that a test case with any value in
� X : x � is essentially as good as one with any other value
in that class [2].

(3) Construct a classification-hierarchy table HU for U,
which captures the hierarchical relation for each pair
of classifications.

(4) Construct a classification tree TU from HU .

(5) Construct a combination table from TU . Various
combinations of classes can then be selected from
the table according to a set of predefined selection
rules. Each of these combinations of classes is called a
potential test frame.

(6) Check all the potential test frames against U, with a
view to identifying those frames whose combinations
of classes contradict U. These potential test frames
contradicting U are known as illegitimate test frames;
they are not useful to testing and hence should be
discarded. After removing all the illegitimate test
frames, all the remaining potential test frames are
called complete test frames. Basically, a complete
test frame F is a set of classes such that, when we
select one element from every class in F, sufficient
information can be derived to execute U.

(7) From each F , construct a test case by selecting one
element from each class in F.

Readers may refer to [7] for details. Nevertheless, when
we describe the various system features of ADDICT in

1In this paper, classifications are enclosed by square brackets ��� while
classes are enclosed by vertical bars ��� . Furthermore, the notation � X : x �
denotes class x in classification X .

Section 3, we will elaborate on the above steps with
examples.

3. ADDICT: a prototype system for automated
test case generation

We use a commercial-like specification, denoted as
PURCHASE (part of it is given in the Appendix), to explain
each step of ICTM mentioned in Section 2 and to describe
the various features of ADDICT. Note that the current
version of ADDICT supports steps (2) to (5) of ICTM.

Step (1) of ICTM (Decomposition of Specification):
The first step is to decompose PURCHASE into a number

of independent functional units Us. In our case, because of
the simplicity of PURCHASE, no decomposition is needed. In
other words, the entire specification can be treated as one
functional unit denoted by U �
	���
������� .
Step (2) of ICTM (Identification of Classifications and
Classes):

From U �
	����������� , the tester identifies 9 classifications
and 22 classes. The number of classes contained in a
classification ranges from 2 to 5. The following lists
four examples of these classifications together with their
associated classes:

(a) Classification [Class of Credit Card], with � Class of
Credit Card: Gold � and � Class of Credit Card: Classic �
as its two associated classes.

(b) Classification [Credit Limit of Gold Card], with � Credit
Limit of Gold Card: $5,000 � and � Credit Limit of Gold
Card: $6,000 � as its two associated classes.

(c) Classification [Credit Limit of Classic Card], with
� Credit Limit of Classic Card: $2,000 � and � Credit
Limit of Classic Card: $3,000 � as its two associated
classes.

(d) Classification [Current Purchase Amount (PA)], with
� Current Purchase Amount: PA � $2 000.00 � , � Current
Purchase Amount: $2 000.00 � PA � $3 000.00 � ,
� Current Purchase Amount: $3 000.00 � PA �
$5 000.00 � , � Current Purchase Amount: $5 000.00 �
PA � $6 000.00 � , and � Current Purchase Amount: PA� $6 000.00 � as its five associated classes.

Consider Figure 1 which depicts an input screen
provided by ADDICT for entering the full and short names
of classifications and classes. In this figure, the tester
has defined classification [Credit Limit of Gold Card] in
the upper-left box, and class � Credit Limit of Gold Card:
$5 000 � in the bottom-right box. Additionally, the tester is
adding class � Credit Limit of Gold Card: $6 000 � through
the upper-right box.

2

Figure 1. Input screen for classifications and
classes

Step (3) of ICTM (Construction of Classification-
Hierarchy Table):

After entering all the classifications and classes into
ADDICT, the next step is to construct the classification-
hierarchy table H �
	���
������� for PURCHASE. Here, the
tester defines the hierarchical relation for each pair of
classifications � X � and �Y � (denoted by � X ��� �Y �). There
are four possible types of hierarchical relation as follows:

� � X � is a loose ancestor of [Y] (denoted by � X ��� �Y �),
� � X � is a strict ancestor of [Y] (denoted by � X ��� �Y �),
� [X] is incompatible with [Y] (denoted by � X ��� �Y �),

and
� [X] has other relations with [Y] (denoted by � X �
	 �Y �).
In the above, the symbols “ � ”, “ � ”, “ � ”, and “ 	 ”

are known as hierarchical operators. Readers may refer
to [7] for details, especially the conditions in determining
the correct hierarchical relation for � X ��� �Y � . Note that the
conditions associated with each of the above hierarchical
relations are mutually exclusive and exhaustive, and hence
� X ��� �Y � is well defined. These hierarchical relations will
determine the relative position of � X � and �Y � in T . For
example, � X ��� �Y � corresponds to the situation where � X �
will appear as either a parent or an ancestor of �Y � in T .2

Figure 2 depicts an input screen to capture the constraints
of [Credit Limit of Gold Card] on [Credit Limit of
Classic Card]. These captured constraints will be used by
ADDICT to determine the appropriate hierarchical operator
for [Credit Limit of Gold Card] � [Credit Limit of Classic
Card]. In the input screen, the tester indicates that � Credit
Limit of Gold Card: $5 000 � cannot be combined with any
class (that is, � Credit Limit of Classic Card: $2 000 � and
� Credit Limit of Classic Card: $3 000 �) in [Credit Limit

2For the parent-child relation, a classification is “directly” placed under
one or more classes of another classification. For the ancestor-descendant
relation, a classification is “indirectly” placed under one or more classes of
another classification.

Figure 2. Input screen for constraints between
a pair of classifications

of Classic Card] to form part of any complete test frame.
After entering some other constraints in Figure 2, ADDICT

will automatically assign the hierarchical operator “ � ” to
[Credit Limit of Gold Card] � [Credit Limit of Classic
Card]. In short, ADDICT will determine and assign the
appropriate hierarchical operator to � X ��� �Y � , based on the
captured constraints of � X � on �Y � .

Figure 3 depicts the completed H �
	����������� with every
element in it contains a hierarchical operator and
corresponds to the hierarchical relation between a pair of
classifications.3 We use ti j to denote the element in the ith
row and the jth column of HU . Consider, for example, t23

in H ��	���
������� . It contains the hierarchical operator “ � ”, and
corresponds to [Credit Limit of Gold Card] � [Credit Limit
of Classic Card]. Note that the background color of all
unassigned elements in H �
	���
�����
� is initially set to “blue”.
Once the constraints corresponding to an element ti j have
been entered and a hierarchical operator has been assigned
to it, the background color of that element will change to
“white”.

With regard to the construction of HU , the following
features provided by ADDICT are worth mentioning:

(a) A constraint of ICTM is that the parent-child or
ancestor-descendant hierarchical relation must be anti-
symmetric for any pair of classifications. Otherwise a
T cannot be constructed. In other words, � X ��� �Y �
must imply � X ��� �Y � . Software testers may need to
redefine the original set of classifications and classes
in order to meet this constraint while preserving the
requirements of the target system (see [7] for details).

3Note that, short names instead of full names for the classifications
(both names are entered via the input screen as depicted in Figure 1) are
displayed as row and column headings in H ��������������� . The idea is to fit
the entire H ��������������� into the screen. In the situation where H ��������������� is
too large (because of too many classifications) that exceeds the size of the
screen, then vertical and horizontal scroll bars can be used to view different
parts of H ��������������� .

3

Figure 3. Classification-hierarchy table
H �
	����������� for PURCHASE

Regarding this issue, ICTM helps testers identify such
unwarranted situations by means of the hierarchical
operator “ � ”. Whenever � X ��� �Y � is being defined,
we know that a symmetric parent-child or ancestor-
descendant hierarchical relation occurs between � X �
and �Y � . In this case, testers will be alerted to redefine
� X � and �Y � (and their associated classes) so as to
prevent a loop in T .

Consider t12 and t21 in H �
	���
������� of Figure 3. They
correspond to � [Class of Credit Card] � [Credit Limit
of Gold Card] � and � [Credit Limit of Gold Card]
	 [Class of Credit Card] � , respectively. Suppose,
during the process of entering the constraints between
these two classifications, the tester has made a
mistake and eventually caused ADDICT to assign
the hierarchical operator “ � ” to both t12 and t21.
Accordingly, the background color of t12 and t21 will
change from “white” to “red”, thus alerts the tester
that symmetric parent-child or ancestor-descendant
hierarchical relations occur. Note that, in this
case, the unwarranted situation happens to occur
because of an input error; symmetric parent-child
or ancestor-descendant hierarchical relations in fact
do not exist in U �
	���
������� . In some other cases,
however, this occurrence may result from correct
inputs because symmetric parent-child or ancestor-
descendant hierarchical relations do exist between
some pairs of classifications identified from U.

(b) In [7], Chen et al. have identified three properties of
the hierarchical relations as follows:

Property 1: If � X ��� �Y � , then �Y � 	 � X � .
Property 2: If � X ��� �Y � , then �Y ��� � X � .
Property 3: If � X � 	 �Y � , then �Y ��� � X � or �Y � 	 � X � .
Using these properties, ADDICT provides a certain
degree of automatic deduction and consistency check

during the construction of HU . Examples are given as
below:

Automatic deduction: Consider Figure 2 again. This
input screen is used to enter the constraints of each
class in [Credit Limit of Gold Card] on [Credit Limit of
Classic Card]. The entered constraints cause ADDICT

to assign the hierarchical operator “ � ” to [Credit Limit
of Gold Card] � [Credit Limit of Classic Card]. Later,
without automatic deduction, the tester is required to
enter the constraints of each class in [Credit Limit
of Classic Card] on [Credit Limit of Gold Card]
via another input screen similar to Figure 2, if such
constraints have not yet been entered. Now, by using
Property 2, this requirement no longer exists because
ADDICT will automatically deduce the hierarchical
operator for [Credit Limit of Classic Card] � [Credit
Limit of Gold Card] to be “ � ”. Accordingly, the
background color for t32 (which corresponds to [Credit
Limit of Classic Card] � [Credit Limit of Gold
Card]) will change from “blue” to “green” to inform
the tester that the hierarchical operator for t32 is
automatically deduced (note that the background color
for all the table elements whose hierarchical operators
are manually defined is “white”). Besides Property 2,
ADDICT will also provide automatic deduction based
on Property 1. In fact, with the feature of automatic
deduction, only about three-quarters of the hierarchical
relations in H �
	����������� have to be manually defined.

Consistency Checking: Consider t12 and t21 in
H ��	���
������� in Figure 3 again, which correspond to

� [Class of Credit Card] � [Credit Limit of Gold
Card] � and � [Credit Limit of Gold Card] 	 [Class of
Credit Card] � , respectively. Suppose,

� The constraints for t21 are entered before that for
t12.

� The constraints for t21 are entered correctly,
causing ADDICT to assign the hierarchical
operator “ 	 ” to t21.

� Thereafter, the tester has made a mistake during
the entry of the constraints for t12, causing
ADDICT to incorrectly assign the hierarchical
operator “ � ” to t12.

This mistake is undesirable because incorrect
hierarchical relations will eventually result in the
generation of illegitimate test frames, or the omission
of some complete test frames. Regarding this
problem, ADDICT provides a consistency check for
the defined hierarchical relations. In fact, the incorrect
hierarchical operator “ � ” for t12 will be detected
as an inconsistency by ADDICT with reference to
Properties (2) and (3) mentioned above. This is

4

Figure 4. Classification tree T �
	���
������� for
PURCHASE

because the combination of � [Class of Credit Card]
� [Credit Limit of Gold Card] � and � [Credit Limit of
Gold Card] 	 [Class of Credit Card] � contradicts these
two properties. Accordingly, the background of t12

and t21 in H �
	���
������� will change from “white” to “red”
to alert the tester to take correction actions. An alert
message box will also be displayed automatically by
ADDICT to inform the tester about the inconsistency.

Step (4) of ICTM (Construction of Classification Tree):
Based on the completed H ��	���
������� in Figure 3,

ADDICT will automatically construct the corresponding
classification tree T �
	���
������� (see Figure 4), based on a
predefined tree construction algorithm provided in [7].
Similarly to H �
	���
������� , short names are used for the
classifications and classes in displaying T �
	���
�����
� , and
vertical and horizontal scroll bars can be used to view
different parts of T �
	����������� if the tree is too large to fit into
the screen.

In step (5) of ICTM described in Section 2, potential
test frames are generated by selecting combinations of
classes from the combination table of T , based on certain
selection rules. Thereafter, the combination of classes in
every potential test frame P has to be checked against U,
with a view to classifying P as either a complete test frame
or an illegitimate test frame. The reason for checking is
because, occasionally, a T may not be able to capture all the
constraints among classifications identified from U. This
problem results in the selection of some illegitimate test
frames from the combination table of T .

Let Nc and Np denote the total number of complete
test frames and potential test frames, respectively, selected
from the combination table of T . In [7], Chen et al.
define an effectiveness metric ET for any T as ET �
Nc
Np

. ET is defined as such based on the argument that

T is merely a means to construct complete test frames
for testing. The ideal situation is that all potential test

frames are complete (in this case, Nc � Np), and hence
ET � 1. Obviously, a small value of ET is undesirable
since more effort is required to identify all the illegitimate
test frames. Furthermore, this manual identification process
is prone to human errors, especially when Np is large.
If some complete test frames are somehow mistakenly
classified as illegitimate and hence not being used, the
comprehensiveness of testing will be adversely affected.

Chen et al. [7] observe that a major reason for a
small value of ET is the occurrence of duplicated subtrees
in T . To deal with this problem, they develop a
classification tree restructuring technique to suppress the
occurrence of duplicated subtrees in T . This restructuring
technique is part of their integrated classification tree
construction algorithm. Two important properties of this
restructuring technique are: (i) to reduce the value of Np

by pruning some duplicated subtrees from T , and (ii) to
retain all the complete test frames and hence Nc remains
unchanged. Because of these two properties, the value of
the effectiveness metric ET can be increased. Readers may
refer to [7] for details.

In ADDICT, the construction of the resultant T is
performed on an incremental basis — classifications and
classes are firstly assembled together to form subtrees,
which in turn are joined together to form the resultant
T . During the tree construction process, ADDICT will
automatically detect the occurrence of duplicated subtrees.
If duplicated subtrees do exist, ADDICT will apply the
tree restructuring technique by Chen et al., in order to
increase the value of ET of the resultant T . Note that the
tree construction process, that incorporates the restructuring
technique, is performed by ADDICT in a fully automatic
manner without human intervention.

Step (5) of ICTM (Construction of Combination Table
and Selection of Potential Test Frames):

With T �
	���
�����
� in Figure 4, the next step is to
construct the corresponding combination table, from which
potential test frames can be selected. This step is rather
straightforward by following some selection rules given
in [7], which will not be repeated here. Same as T �
	���
������� ,
the construction of the combination table and the selection
of potential test frames are done by ADDICT automatically.
In our case, a total of 240 potential test frames will
be selected from the combination table of T �
	���
������� by
ADDICT.

Step (6) of ICTM (Differentiation between Complete
and Illegitimate Test Frames):

As discussed in step (4) above, the tester has to check
all the potential test frames with U �
	���
�����
� to see whether
any of them is illegitimate. In our case, no illegitimate test
frame exists, and hence all the 240 potential test frames are
also complete.

5

Step (7) of ICTM (Construction of Test Cases):
For each of the 240 complete test frames Fs, the tester

selects an element from each class contained in F to form
a test case. Consider, for example, F1 �

� � Class of Credit
Card: Gold � , � Credit Limit of Gold Card: $6 000 � , � Current
Purchase Amount (PA): $5000 � 00 � PA � $6000 � 00 � , ������

, which is a complete test frame generated by ADDICT for
U ��	���
������� . A possible test case for F1 is (Class of Credit
Card � Gold, Credit Limit of Gold Card � $6 000, Current
Purchase Amount � $5 123.40, �����). Obviously, a total
of 240 test cases will be constructed in this step for testing
U ��	���
������� .

4. Summary and conclusion

In this paper, we have outlined the various steps of ICTM
and discussed the various system features of ADDICT. We
believe that ICTM is a viable method for generating test
cases from specifications, especially with the support of
appropriate automated tools such as ADDICT. CTM has
successfully been applied to an airfield lighting system
and an adaptive cruise control system [8]. Since ICTM
improves on CTM with respect to the construction of T s,
and since the sets of complete test frames generated from
both methods are the same, the encouraging results when
CTM is used to test the above systems should also be
applicable to ICTM.

We note that CTM has been used for teaching software
testing to undergraduate students in computer science
and software engineering programs at two universities
in Australia [9] and a university in Hong Kong [10].
The reported results of using CTM for the teaching of
software testing are very encouraging. Students of these
universities have indicated that CTM is systematic and easy
to understand and learn. Since ICTM is an extension
of CTM, we believe that the observations should remain
unchanged if ICTM is used instead of CTM.

References

[1] K. W. Miller, L. J. Morell, R. E. Noonan, S. K. Park,
D. M. Nicol, B. W. Murrill, and J. M. Voas, “Estimating the
Probability of Failure When Testing Reveals no Failures”,
IEEE Transactions on Software Engineering, vol. 18, no. 1,
pp. 33–43, January 1992.

[2] T. J. Ostrand, and M. J. Balcer, “The Category-Partition
Method for Specifying and Generating Functional Tests”,
Communications of the ACM, vol. 31, no. 6, pp. 676–686,
June 1988.

[3] N. Amla, and P. Ammann, “Using Z Specifications in
Category-Partition Testing”, in Systems Integrity, Software
Safety, and Process Security: Building the Right System
Right: Proceedings of the 7th Annual IEEE Conference on

Computer Assurance (COMPASS ’92), Gaithersburg, MD,
June 1992, pp. 3–10.

[4] P. Ammann, and J. Offutt, “Using Formal Methods to
Derive Test Frames in Category-Partition Testing”, in Safety,
Reliability, Fault Tolerance, Concurrency, and Real Time
Security: Proceedings of the 9th Annual IEEE Conference
on Computer Assurance (COMPASS ’94), Gaithersburg, MD,
June � July 1994, pp. 69–79.

[5] T. Y. Chen, P.-L. Poon, and T. H. Tse, “A Choice Relation
Framework for Supporting Category-Partition Test Case
Generation”, IEEE Transactions on Software Engineering,
vol. 29, no. 6, June 2003.

[6] M. Grochtmann, and K. Grimm, “Classification Trees
for Partition Testing”, Software Testing, Verification and
Reliability, vol. 3, no. 2, pp. 63–82, June 1993.

[7] T. Y. Chen, P. L. Poon, and T. H. Tse, “An Integrated
Classification-Tree Methodology for Test Case Generation”,
International Journal of Software Engineering and Know-
ledge Engineering, vol. 10, no. 6, pp. 647–679, December
2000.

[8] H. Singh, M. Conrad, and S. Sadeghipour, “Test Case
Design Based on Z and the Classification-Tree Method”,
in Proceedings of the 1st IEEE International Conference
on Formal Engineering Methods (ICFEM ’97), Hiroshima,
Japan, November 1997, pp. 81–90,

[9] T. Y. Chen, and P.-L. Poon, “Experience with Teaching Black-
Box Testing in a Computer Science � Software Engineering
Curriculum”, IEEE Transactions on Education (accepted for
publication).

[10] Y. T. Yu, S. P. Ng, P.-L. Poon, and T. Y. Chen, “On the
Use of the Classification-Tree Method by Beginning Software
Testers”, in Proceedings of the 18th Annual ACM Symposium
on Applied Computing (SAC 2003), Melbourne, FL, March
2003, pp. 1123–1127.

Appendix (Part of the Specification PURCHASE
for the Program P ���
	���
�����)

XYZ is an international bank that issues credit cards to approved
customers. ����� For each purchase, P ��������������� shall accept the transaction
details together with the various information of the credit card. Thereafter,
validation of these details is performed in order to determine whether this
purchase should be approved. The following are the various inputs to
P ��������������� :

(a) Details of Credit Cards:
� Class of Credit Card: Either “Gold” or “Classic”.� Credit Limit of Credit Card: For gold credit cards, the

credit limit is either $5 000 or $6 000. For classic credit cards,
the credit limit is either $2 000 or $3 000.� �����

(b) Details of Purchase:
� Current Purchase Amount: It can be any amount greater

than $0.00.� �����

6

