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Abstract

Interval routing is a space-efficient (compact) routing method for point-to-
point communication networks. The method is based on proper labeling of
edges of the graph with intervals. An optimal labeling would result in routing
of messages through the shortest paths. Optimal labelings exist for regular as
well as some of the common topologies, but not for arbitrary graphs. It has
been shown that it is impossible to find optimal labelings for arbitrary graphs
[4]. In this paper, we prove the lower bound of 2D − 3 on the longest routing
path for arbitrary graphs, where D = O(

√
n) is the graph’s diameter and n is

the number of nodes, as well as a lower bound of 2D − o(D) for D = O(n).
Our results are very close to the best known upper bound which is 2D.
Keywords : interval routing, longest path, disjoint interval, cyclic order, chains.

1 Introduction

Interval routing was first proposed by Santoro and Khatib [6], and subsequently
refined by van Leeuwen and Tan [11]. The idea is to label the nodes by integers
(called node numbers) from a cyclicly ordered set, say, {0, 1, . . . , n − 1}, where n
is the number of nodes; and the edges by intervals of the form 〈p, q〉, where p, q
are node numbers. 〈p, q〉 is the set {p, p + 1, . . . , q} if p < q, or {p, p + 1, . . . , n −
1, 0, . . . , q} if p > q. 〈p〉 is the short form for 〈p, p〉, i.e., the set {p}. During routing,
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a message is routed along an edge whose interval label contains the destination
node number, until the message reaches the destination. An example of interval
routing is shown in Figure 1. The figure shows the routing path of a message that
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Figure 1: An example of interval routing

travels from Node 2 to Node 0. The message first takes the edge to Node 3 because
0 is contained in the interval 〈3, 0〉, and then takes the edge to Node 4 because 0 is
contained in 〈4, 0〉, and so on. Clearly, with interval routing, at most O(d) space is
needed at a node, where d is the node’s degree. In general, d is smaller than n, the
size of the network, and we say that the routing information stored at a node as
required by interval routing is “compact”. See the survey by Tan and van Leeuwen
[7] for an overview of the field of compact routing.

One of the main questions in interval routing research is that given G, how to
label its nodes and edges so that all the routing paths are shortest paths, where G
represents either a specific kind of graphs or arbitrary graphs (general networks). A
successful labeling satisfying the condition constitutes an optimum interval rout-
ing scheme (IRS). For a number of specific graphs, optimum IRSs are known to
exist [7]. What about arbitrary graphs? Ružička answered this in the negative way
by constructing a graph that has no optimum IRS [4].

In practice, it might not always be necessary to insist on shortest-path routing,
as long as the paths are not too far from the optimal. Santoro and Khatib have
proposed an algorithm that can label any graph to yield paths whose lengths are
at most two times the graph’s diameter [6]. Instead of considering all the paths,
we could look at just the longest path which is commonly used as a performance
indicator in many analyses. In shortest-path routing, the longest path equals the
diameter of the network. In other cases, it is useful to establish a lower bound in
terms of the network’s diameter on the longest path. This bound can then be used
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to determine the goodness of any routing scheme to be applied to the network. The
aim of this paper is to present a lower bound on the longest path in 1-label interval
routing.

Interestingly, only one upper bound exists, which is the 2D upper bound for 1-
IRS according to Santoro and Khatib [6]. In this paper, the lower bounds are 2D−3
and 2D − o(D), improving the result 7

4D − 1 in [8]. Since there is no any better
algorithm yielding an upper bound less than 2D, and no any lower bound higher
than 2D − 3 there are still rooms for improvement on both sides.

2 Properties

The network in question is a connected graphs, G = (V,E). where V is the set
of nodes, and E the set of the edges. Every edge in E is bidirectional. There are
n nodes in V . To implement interval routing, each node is labeled with a unique
node number, from the set {0, . . . , n − 1}, and every edge in each direction by an
interval called the edge’s interval label. For u, v ∈ V that are directly connected,
L(u, v) denotes the interval label for the edge that goes from u to v.

An interval 〈a, b〉 is the set a, a + 1, . . . , b (mod n). We refer to such a set an
interval set. A set A is not an interval if and only if A is a proper subset of every
interval set containing it. If an interval B contains an interval B′, B′ is called a
subinterval of B.

We use the notation u ≺ v ≺ w, to denote the cyclic ordering of node numbers,
for u, v,w ∈ {0, . . . , n − 1}. Naturally, 0 ≺ 1 ≺ . . . ≺ n − 1 ≺ 0. As in [8], the
expression u ≺ {v,w} ≺ x means that v and w are contained in some interval and
that they are ordered after u and before x, but the order of v and w is not shown.

Property 1 (Completeness) The set of interval labels for edges directed from a node u is

complete. That is, ∀u ∈ V , V − {u} ⊂ ∪(u,v)∈EL(u, v).

Property 2 (No ambiguity) The interval labels for edges directed from a node u are dis-

joint. That is, for u �= v, v is contained in exactly one of these intervals.

Property 3 (No bouncing) For each (u, v) ∈ E, there exists no node w �= u, v, such that

w is contained in both L(u, v) and L(v, u).

Property 4 (Lossless) Given a chain of nodes w1, w2, . . . , wk. ∀i ∈ [1, k − 1], if u �=
wj ∀j ∈ [i, k − 1] and u ∈ L(wi, wi+1), we have u ∈ L(wi, wi+1) ∩ . . . ∩ L(wk−1, wk).

Property 5 (Reachable) Given a chain of nodes w1, w2, . . . , wk. ∀r, s, t ∈ [2, k − 1], r <
s < t, ws is contained in L(wr, wr+1) ∪ L(wt+1, wt).
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Property 4 and 5 are referred to the interval labels of edges in a chain. For a chain
a, b, c, d, e, Property 4 guarantees that ∀x ∈ L(a, b), x is in L(b, c) if x �= b; and x is
in L(c, d) if x �= b, c, etc; otherwise, either the routing information about x is lost
or Property 3 is violated. For the same chain, Property 5 guarantees that c, say, is
included in L(a, b) or L(e, d); otherwise, c is not reachable. It should be noted that
these 5 properties are necessary but not sufficient for a valid IRS for general graphs.
A valid IRS is one that can route a message from any node to any other node. If
Property 3 is changed to ”No cycle” instead of ”No bouncing”, these properties is
sufficient for a valid IRS. We need not impose the Property of No Cycle because we
will prove our bound by contradiction to our assumption that every routing path
is shorter than 2D −K, K ≥ 3. By the structure of the graph used in our proof, it
is impossible to have any cycle in a routing path with length not greater than 2D.
Hence, under our assumption on the longest path, the properties are sufficient for
a valid IRS in the graph used below.

3 The Graph GL,C,F

We define a graph GL,C,F , as shown in Figure 2, based on which we prove our
lower bound. Define GL,C,F = (VL,C,F , EL,C,F ) which is of diameter D = 2C + 2,

1

w1

u2 u3

w2

w3

wL

uFu

C nodes

Figure 2: The skeleton of GL,C,F .

and size n = LCF + L+ F ; VL,C,F and EL,C,F are as follows.

VL,C,F = {vl,c,f |1 ≤ l ≤ L, 1 ≤ c ≤ C, 1 ≤ f ≤ F}
∪ {uf |1 ≤ f ≤ F}
∪ {wl|1 ≤ l ≤ L}

EL,C,F = {(vl,c,f , vl,c+1,f)|1 ≤ l ≤ L, 1 ≤ c ≤ C − 1, 1 ≤ f ≤ F}
∪ {(uf , vl,1,f )|1 ≤ l ≤ L, 1 ≤ f ≤ F}
∪ {(wl, vl,C,f )|1 ≤ l ≤ L, 1 ≤ f ≤ F}
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There are F flaps, whose roots are the nodes u1, u2, . . . , uF , and within each
flap, C columns and L layers. We will prove the lower bound by contradiction.
The values of L, C and F will be defined later. We use the subscripts l, c, f to
denote the layer, the column, and the flap, respectively.

Definition 1 An lf -chain (or simply chain) is the set {vl,1,f , vl,2,f , . . . , vl,C,f}.

Example of Definition 1: a 32-chain is the set {v3,1,2, v3,2,2, . . . , v3,C,2}, and a
(12)(91)-chain is the set {v12,1,91, v12,2,91, . . . , v12,C,91}. The nodes of a chain may
fall into one or more disjoint intervals. Two chains are disjoint if their nodes fall
into two disjoint intervals, respectively. Similarly, two layers (or flaps) are disjoint
if the nodes of their chains fall into two disjoint intervals, respectively.

For the edge labels L(uf , vl,1,f ) and L(wl, vl,C,f ) at the end points of an lf -chain,
we have two cases. The first case is that the union of the edge labels is an interval;
and the second case is just the opposite. We need to divide all the chains into two
cases because our proof is mainly based on the first case, and on the other hand, we
can prove the number of chains of the second case is bounded (Lemma 4.2). The
chains of the first case are called normal because the number of them is unbounded;
and the other chains are, therefore, called abnormal.

Definition 2 An lf -chain is normal if L(uf , vl,1,f )∪L(wl, vl,C,f ) is an interval. A chain
which is not normal is said to be abnormal.

Lemma 3.1 The union of two non-disjoint intervals is an interval. ♦

A

A U B

B

Figure 3: Idea of Lemma 3.1.

Lemma 3.2 If an lf -chain is abnormal, L(uf , vl,1,f ) ∩ L(wl, vl,C,f ) = ∅.

Proof: Directly by Lemma 3.1. ♦

Lemma 3.3 If an lf -chain is abnormal, ∃a, b �∈ L(uf , vl,1,f ) ∪ L(wl, vl,C,f ) such that

a ≺ L(uf , vl,1,f ) ≺ b ≺ L(wl, vl,C,f ) ≺ a.
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Proof: Directly by Definition 2. ♦
Hierachery of lemmas and theorems.

The main results are Theorem 7.1 and Theorem 7.2, which are direct consequence
from Theorem 6.1. We use counter proof technique and assume every path is no
longer than 2D − K. To prove Theorem 6.1, we need the lemmas. The main
Lemma—Lemma 5.1 proves that there is at least a path no shorter than 3

2D − 1
if we allow partial disjointness of two layers (labeled as “A” in Figure 4). However,

L layers

F flaps

B : Disjointness between two flapsA : Partial disjointness between two layers

Figure 4: A matrix of vl,1,f , ∀l ∈ [1, L], f ∈ [1, F ].

such a path of length 3
2D−1 will result a path no shorter than 2D−1 (Theorem 6.1)

which violates our assumption on the longest path length. Hence, such partial
disjointness between layers (Lemma 5.1) cannot exist. However, the absence of this
partial disjointness between layers will lead to the presence of disjointness between
two flaps (labeled as “B” in Figure 4). Lastly, the presence of disjointness between
two flaps will lead to the violation of the assumption on longest path length (The-
orem 6.1).

Most of the dependencies of theorems and lemmas are shown in Figure 5 which
may increase the readability of this proof.
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Thm 7.1

Thm 6.1

Thm 7.2

Lemma 4.11

Lemma 4.5Lemma 4.4Lemma 4.3

Lemma 3.2 Lemma 3.1 Lemma 4.1

Lemma 3.3 Lemma 5.1Lemma 4.2 Lemma 4.10

Lemma 4.8 Lemma 4.9 Lemma 4.6

Figure 5: Hierachery of theorems and lemmas.

4 Lemmas on Chains

The Lemmas from 4.1 to 4.11, hold under the assumption that there exists a label-
ing scheme such that every path is shorter than 2D − K , K ≥ 3. The results of
these lemmas are that in any layer, there are at least F − �DK � − 2 normal chains.
The main lemma—Lemma 5.1 will hold for sufficient number of normal chains
which can be obtained from a good choice of the value of F . The lemmas, from
Lemma 4.1 onwards, will be used in the proof of main Lemma 5.1, and in the proof
of Theorem 6.1.

Lemma 4.1 ∀ l ∈ [1, L], f ∈ [1, F ], an lf -chain can be partitioned into at most 4 inter-
val sets, Wl,f , Xl,f , Yl,f , Zl,f , such that a1 ≺ Wl,f ≺ a2 ≺ Xl,f ≺ a3 ≺ Yl,f ≺ a4 ≺
Zl,f ≺ a1 where ai ∈ VL,C,F − {vl,1,f , vl,2,f , . . . , vl,C,f}, i ∈ [1, 4].

Proof: Assume there are at least 5 interval setsWl,f ,Xl,f , Yl,f , Zl,f , Tl,f which parti-
tion the lf -chain such that a1 ≺ Wl,f ≺ a2 ≺ Xl,f ≺ a3 ≺ Yl,f ≺ a4 ≺ Zl,f ≺ a5 ≺
Tl,f ≺ a1 where ai ∈ VL,C,F − {vl,1,f , vl,2,f , . . . , vl,C,f}, i ∈ [1, 5].

Wl,f ,Xl,f , Yl,f , Zl,f , Tl,f ⊂ L(uf , vl,1,f )∪(∪c=C−1
c=1 L(vl,c,f , vl,c+1,f)). SinceL(uf , vl,1,f )

and L(vl,1,f , vl,2,f ) are not disjoint (because vl,2,f ∈ L(uf , vl,1,f ) ∩ L(vl,1,f , vl,2,f ) un-
der the assumption on the longest path), the union ofL(uf , vl,1,f ) and L(vl,1,f , vl,2,f )
is an interval, by Lemma 3.1. Moreover, ∀c ∈ [1, C − 2], L(vl,c,f , vl,c+1,f ) and
L(vl,c+1,f , vl,c+2,f ) are not disjoint, L(uf , vl,1,f ) ∪ (∪c=C−1

c=1 L(vl,c,f , vl,c+1,f)) is an in-
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terval. Then 4 of a1, . . . , a5 are contained in L(uf , vl,1,f )∪ (∪c=C−1
c=1 L(vl,c,f , vl,c+1,f )),

and by Property 4, these 4 elements are contained in L(vl,C,f , wl). Then, by Prop-
erty 3, L(wl, vl,C,f ) will contain at most 2 of Wl,f ,Xl,f , Yl,f , Zl,f , Tl,f .

Similarly, L(uf , vl,1,f ) will also contain at most 2 ofWl,f ,Xl,f , Yl,f , Zl,f , Tl,f . Then,
at least one of Wl,f ,Xl,f , Yl,f , Zl,f , Tl,f is not a subset of L(uf , vl,1,f ) ∪ L(wl, vl,C,f ).
Property 5 is violated. ♦
Lemma 4.2 In a layer, there are at most �DK � + 2 abnormal chains.

Proof: Assume in the lth layer, there are p chains in f1th, f2th,. . . ,fpth flaps, such
that ∀i ∈ [1, p], L(ufi

, vl,1,fi
) ∪ L(wl, vl,C,fi

) is not an interval. For all i ∈ [1, p], let
xi = max{c|vl,c,fi

∈ L(ufi
, vl,1,fi

)} and yi = min{c|vl,c,fi
∈ L(wl, vl,C,fi

)}.
For all i ∈ [1, p], if yi > xi + 1, we have vl,xi+1,fi

�∈ L(ufi
, vl,1,fi

) ∪ L(wl, vl,C,fi
);

contradicting Property 5. Hence, yi ≤ xi + 1.
∀r, s ∈ [1, C], 0 < r − s ≤ 2K − 1, we want to argue that there are at most 2

elements, say, i, j ∈ [1, p], such that yi, yj ∈ [s, r]. Assume the contrary, there are
3 elements, say, i, j, k ∈ [1, p], such that yi, yj, yk ∈ [s, r]. Consider xi, yi. vl,xi,fi

∈
L(ufi

, vl,1,fi
) implies vl,xi,fi

∈ L(vl,c−1,fi
, vl,c,fi

),∀c ≤ xi. By the assumption on the
path lengths, vl,yi,fi

∈ L(vl,c−1,fi
, vl,c,fi

),∀c ∈ [yi−K+1, yi]. Since yi ≤ xi +1, there
exists a c ∈ [yi−K + 1, yi− 1] such that vl,xi,fi

, vl,yi,fi
∈ L(vl,c−1,fi

, vl,c,fi
). Similarly,

there exists a c′ ∈ [xi + 1, xi +K − 1] such that vl,xi,fi
, vl,yi,fi

∈ L(vl,c′+1,fi
, vl,c′,fi

).
Obviously, c < c′. By Property 3 and 4, L(vl,c−1,fi

, vl,c,fi
) ∩ L(vl,c′+1,fi

, vl,c′,fi
) will

contain elements only in {vl,c,f , vl,c+1,f , . . . , vl,c′,f}. Hence, we have the cyclic struc-
ture in Figure 6 due to the presence of a, b (also in the figure) by Lemma 3.3, where
a, b �∈ L(ufi

, vl,1,fi
) ∪ L(wl, vl,C,fi

).

wlL( ,vl,C,fi
)

L(v )
il,c,fv,l,c-1,fi

L(u )
il,1,fv,f i

il,c’,fvL(vl,c’+1,f ),
i

vl,x ,fi i

v
il,y ,f i

a b

Figure 6: Cyclic structure of L(vl,c−1,fi
, vl,c,fi

) and L(vl,c′+1,fi
, vl,c′,fi

).

Consider xj , yj . Like xi and yi, yj ≤ xj+1. We now want to find the positions of
vl,xj ,fj

and vl,yj ,fj
in the cyclic structure as in Figure 6. By Lemma 3.2, L(ufj

, vl,1,fj
)∩

L(wl, vl,C,fj
) = ∅. Therefore, vl,xj ,fj

�∈ L(wl, vl,C,fj
) and vl,yj ,fj

�∈ L(ufj
, vl,1,fj

).
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If vl,xj ,fj
∈ L(vl,c−1,fi

, vl,c,fi
), the routing path from vl,c−1,fi

to vl,xj ,fj
will passes

through vl,c−1,fi
, wl, uf ′ , wl′ , ufj

, vl,xj ,fj
. Choosing c = yi −K + 1, the routing path

length is (D2 −(c−1))+D
2 +D

2 +D
2 +xj = 2D−(c−1)+xj ≥ 2D−(yi−K)+(yj−1) =

2D − (yi − yj) +K − 1 ≥ 2D − (2K − 1) +K − 1 = 2D −K . Contradiction to the
assumption on the path length. Hence, vl,xj ,fj

∈ L(vl,c′+1,fi
, vl,c′,fi

).
If vl,yj ,fj

∈ L(vl,c′+1,fi
, vl,c′,fi

), the routing path from vl,c′+1,fi
to vl,yj ,fj

will
passes through vl,c′+1,fi

, ufi
, wl′ , uf ′ , wl, vl,yj ,fj

. Choosing c′ = xi+K−1, the routing
path length is (c′+1)+D

2 +D
2 +D

2 +(D2 −yj) = 2D+(c′+1)−yj = 2D+(xi+K)−yj ≥
2D+(yi+K−1)−yj = 2D−(yj−yi)+K−1 ≥ 2D−(2K−1)+K−1 = 2D−K. Con-
tradiction to the assumption on the path length. Hence, v l,yj ,fj

∈ L(vl,c−1,fi
, vl,c,fi

).
Similarly, vl,xk,fk

∈ L(vl,c′+1,fi
, vl,c′,fi

) and vl,yk,fk
∈ L(vl,c−1,fi

, vl,c,fi
), as in Fig-

ure 7(a).

vl,x ,fi i

v
il,y ,f i

vl,y ,fj j

vl,x ,fj j

vl,x ,fi i

vl,x ,fj j

vl,y ,fj j

v
il,y ,f i

v
il,y ,f i

vl,y ,fj j

v
kl,x  ,f k

k
vl,y  ,f k

k
vl,y  ,f k

k
vl,y  ,f k

v
kl,x  ,f k

vl,x ,fj j
vl,x ,fi i

v
kl,x  ,f k

(b) (c)(a)

contains contains contains containscontains contains

Figure 7: Cyclic structure of vl,xi,fi
, vl,yi,fi

, vl,xj ,fj
, vl,yj ,fj

, vl,xk,fk
, and vl,yk,fk

.

Since, fith, fjth, fkth flaps are symmetric, we have another two cases of cyclic
structures as in Figure 7(b)(c). Obviously, the three cases in Figure 7(a)(b)(c) will
contradict to one another.

Hence, ∀r, s ∈ [1, C], 0 < r − s ≤ 2K − 1, there are at most 2 elements, say,
i, j ∈ [1, p], such that yi, yj ∈ [s, r]. Therefore, p ≤ 2� D

2K � < �DK � + 2. ♦

Lemma 4.3 ∀l ∈ [1, L], f ∈ [1, F ], if an lf -chain is partitioned into 4 interval sets, Wl,f ,

Xl,f , Yl,f and Zl,f , such that a1 ≺ Wl,f ≺ a2 ≺ Xl,f ≺ a3 ≺ Yl,f ≺ a4 ≺ Zl,f ≺ a1

where ai ∈ VL,C,F − {vl,1,f , vl,2,f , . . . , vl,C,f}, i ∈ [1, 4], the lf -chain is abnormal.

Proof: For l ∈ [1, L], f ∈ [1, F ], assume there are 4 interval sets Wl,f ,Xl,f , Yl,f , Zl,f
which partition the lf -chain such that a1 ≺ Wl,f ≺ a2 ≺ Xl,f ≺ a3 ≺ Yl,f ≺ a4 ≺
Zl,f ≺ a1 where ai ∈ VL,C,F − {vl,1,f , vl,2,f , . . . , vl,C,f}, i ∈ [1, 4].

By using similar argument as in the proof of Lemma 4.1, at least 3 of a1, . . . , a4

are contained in L(uf , vl,1,f ) ∪ (∪c=C−1
c=1 L(vl,c,f , vl,c+1,f )), and by Property 4, these
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3 elements are contained in L(vl,C,f , wl). By Property 3, at most one element of
a1, . . . , a4 is contained in L(wl, vl,C,f ). Hence, L(wl, vl,C,f ) can only contain at most
2 ofWl,f ,Xl,f , Yl,f , Zl,f , say,Wl,f andXl,f (or {Xl,f , Yl,f} or {Yl,f , Zl,f} or {Zl,f ,Wl,f}).
Similarly, L(uf , vl,1,f ) can only contain at most 2 of Wl,f ,Xl,f , Yl,f , Zl,f , too. Hence,
L(uf , vl,1,f ) will only contain Yl,f , Zl,f , which are not contained by L(wl, vl,C,f ), by
Property 5.

Recall that both L(uf , vl,1,f ) and L(wl, vl,C,f ) contain at most one element from
a1, . . . , a4, and according to the given cyclic structure, L(uf , vl,1,f ) contains a4 and
L(wl, vl,C,f ) contains a2. The cyclic structure is

a1 ≺ L(wl, vl,C,f ) ≺ a3 ≺ L(uf , vl,1,f ) ≺ a1.

Hence, L(wl, vl,C,f ) ∪ L(uf , vl,1,f ) is not an interval, because it can contain neither
a1 nor a3. Then, the lf -chain is abnormal. ♦

Hereafter, if a chain is said to have exactly k interval sets, there exist k intervals
which only contain all elements in the chain and any k − 1 intervals contain all
elements in the chain will contain at least one element in other chain. Lemma 4.1
shows that k ≤ 4 for all chains. Lemma 4.2 shows that the abnormal chains are
the minority. Lemma 4.3 shows that k ≤ 3 for normal chains. So, we have 3 cases.
Lemma 4.4 is for the chains having exactly 1 interval set; Lemma 4.5 and 4.6 are for
the chains having exactly 2 interval sets; and Lemma 4.7, 4.8, 4.9 and 4.11 are for
the chains having 3 interval sets.

Lemma 4.4 Given an l ∈ [1, L] and an interval A containing {vl,C,f |f ∈ [1, F ′]}, where
3 ≤ F ′ ≤ F , and b ≺ vl,C,1 ≺ vl,C,2 ≺ · · · ≺ vl,C,F ′ ≺ b, where b �∈ A. If an lf -chain,

f ∈ [2, F ′ − 1], has exactly one interval set Xl,f , and if all routing paths from wl through
vl,C,f ′ is shorter than 3

2D − 1, ∀vl,C,f ′ ∈ A where f ′ ∈ [1, F ], we have either

· · · ≺ vl,C,f−1 ≺ H ≺ vl,1,f ≺ vl,C,f ≺ vl,C,f+1 ≺ · · ·
or · · · ≺ vl,C,f−1 ≺ vl,C,f ≺ vl,1,f ≺ H ≺ vl,C,f+1 ≺ · · ·

where the set H = L(wl, vl,C,f ) −Xl,f .

Proof: By the assumption on the length path, all paths will be shorter than 2D−K,
K ≥ 3. Therefore, ∀f ′′ ∈ [1, F ], vl,C,f ′′ ∈ L(wl, vl,C,f ′′). Then,

• vl,1,f ∈ L(wl, vl,C,f ).
Assume vl,1,f �∈ L(wl, vl,C,f ), ∃f ′′′ �= f such that vl,1,f ∈ L(wl, vl,C,f ′′′), by
Property 1 on wl. If vl,C,f ′ �∈ A, L(wl, vl,C,f ′) will contain at least vl,C,1 or
vl,C,F ′, because vl,1,f ∈ Xl,f , ie. vl,1,f is a non-marginal element in A, and
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hence, a contradiction to Property 2 on wl. Therefore, vl,C,f ′ ∈ A and the
routing path length from wl to vl,1,f through vl,C,f ′ ∈ A is longer than 3

2D− 1.
Contradiction.

• vl,C,f−1 ≺ vl,1,f ≺ vl,C,f ≺ vl,C,f+1 ⇒ vl,C,f−1 ≺ H ≺ vl,1,f ≺ vl,C,f ≺ vl,C,f+1.

Assume ∃h ∈ H such that vl,C,f−1 ≺ vl,1,f ≺ vl,C,f ≺ h ≺ vl,C,f+1. By
Property 4, L(vl,C−1,f , vl,C−2,f ) will contain h and vl,1,f . By the longest path
assumption (ie. 2D − K), L(vl,C−1,f , vl,C,f ) will contain vl,C,f−1, vl,C,f and
vl,C,f+1. So the underlined nodes of

vl,C,f−1 ≺ vl,1,f ≺ vl,C,f ≺ h ≺ vl,C,f+1

are belonged toL(vl,C−1,f , vl,C,f ), and h, vl,1,f are belonged toL(vl,C−1,f , vl,C−2,f ).
Contradiction to Property 2 on vl,C−1,f .

The other case— vl,C,f−1 ≺ vl,C,f ≺ vl,1,f ≺ vl,C,f+1 ⇒ vl,C,f−1 ≺ vl,C,f ≺ vl,1,f ≺
h ≺ vl,C,f+1 is just similar to the above case. Hence, result follows. ♦

Lemma 4.5 ∀l ∈ [1, L], f ∈ [1, F ], assume an lf -chain has exactly two interval sets Xl,f
and Yl,f . Let A = L(wl, vl,C,f ) − Xl,f − Yl,f and B = L(uf , vl,1,f ) − Xl,f − Yl,f . We

have either
Xl,f ≺ B ≺ Yl,f ≺ A ≺ Xl,f

or Xl,f ≺ A ≺ Yl,f ≺ B ≺ Xl,f

Proof: SinceXl,f ∪Yl,f is not an interval, Xl,f and Yl,f divide the set VL,C,F −Xl,f −
Yl,f into 2 intervals, say, P and Q. Without loss of generality, we have the cyclic
structure P ≺ Xl,f ≺ Q ≺ Yl,f ≺ P .

Using similar technique as the proof of Lemma 4.3, we can prove that at least
one of P and Q is contained in L(uf , vl,1,f ) ∪ (∪c=C−1

c=1 L(vl,c,f , vl,c+1,f)) which is an
interval, by Lemma 3.1. Hence, at least one of P and Q is contained in L(vl,C,f , wl),
by Property 4. By Property 3, at most one of P and Q will have intersection with
L(wl, vl,C,f ). In other words, if L(wl, vl,C,f ) contains elements not in the lf -chain,
these elements will be in either P or Q, say P .

AssumeL(uf , vl,1,f ) contains elements which is also in P . Let pu ∈ L(uf , vl,1,f )∩
P and pw ∈ L(wl, vl,C,f ) ∩ P . So, by Property 4, we have pu ∈ L(uf , vl,1,f ) ∩
(∩c=C−1

c=1 L(vl,c,f , vl,c+1,f)) and pw ∈ L(wl, vl,C,f ) ∩ (∩c=Cc=2 L(vl,c,f , vl,c−1,f )). And,
by Property 3, we have pw �∈ L(uf , vl,1,f ) ∪ (∪c=C−1

c=1 L(vl,c,f , vl,c+1,f)) and pu �∈
L(wf , vl,C,f) ∪ (∪c=Cc=2 L(vl,c,f , vl,c−1,f)).

Since Xl,f ∪ Yl,f = {vl,1,f , vl,2,f , . . . , vl,C,f}, ∃x ∈ Xl,f , y ∈ Yl,f such that (x, y) is
an edge. Without loss of generality, let x = vl,c,f and y = vl,c+1,f . Since x, y, pu ∈

11
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pu pw
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Q

Figure 8: Q ⊂ L(x, y) ∩ L(y, x).

L(x, y) and pw �∈ L(x, y), Q ⊂ L(x, y), as in Figure 8. On the other hand, x, y, pw ∈
L(y, x) and pu �∈ L(y, x), Q ⊂ L(y, x). Contradiction to Property 3. ♦

Lemma 4.6 Given an l ∈ [1, L] and an interval A containing {vl,C,f |f ∈ [1, F ′]}, where

3 ≤ F ′ ≤ F , and b ≺ vl,C,1 ≺ {vl,C,2, vl,C,3, . . . , vl,C,F ′−1} ≺ vl,C,F ′ ≺ b, where b �∈ A.
Assume the lf -chains are normal, ∀f ∈ [1, F ′]. Let 3 ≤ T ≤ F ′ − 2. If there are T

lf -chains, f ∈ [2, F ′ − 1], having exactly two interval sets, we have at least T − 2 of these
chains which are contained in A. Further, if the routing paths from wl through vl,C,f ′ is

shorter than 3
2D−1, ∀vl,C,f ′ ∈ A where f ′ ∈ [1, F ], then each of the above T −2 lf -chains

will be belonged to L(wl, vl,C,f ), respectively.

Proof: Assume there are T lf -chains, f ∈ [2, F ′−1], and each has exactly two inter-
val sets. Without loss of generality, let these T chains be l2-chain, l3-chain,. . . ,l(T +
1)-chain and let Yl,f be the interval set containing vl,C,f , ∀f ∈ [2, T + 1]. Assume
Yl,2 ≺ Yl,3 ≺ · · · ≺ Yl,T+1 ≺ Yl,2, then we have b ≺ vl,C,1 ≺ Yl,2 ≺ Yl,3 ≺ · · · ≺
Yl,T+1 ≺ vl,C,F ′ ≺ b.

LetXl,f be another interval set of the lf -chain, ∀f ∈ [2, T +1]. We now going to
prove that there are at most 2 chains, say, lf1-chain and lf2-chain, f1, f2 ∈ [2, T +1],
such that for i = 1, 2, Xl,fi

≺ vl,C,1 ≺ Yl,2 ≺ Yl,3 ≺ · · · ≺ Yl,T+1 ≺ vl,C,F ′ ≺ Xl,fi
.

We will prove it by contradiction. Assume that there are at least 3 chains, say,
lf1-chain, lf2-chain and lf3-chain, f1, f2, f3 ∈ [2, T + 1], such that Xl,f1 ≺ Xl,f2 ≺
Xl,f3 ≺ vl,C,1 ≺ Yl,2 ≺ Yl,3 ≺ · · · ≺ Yl,T+1 ≺ vl,C,F ′ ≺ Xl,f1 as Figure 9.

Obviously, for i = 1, 2, 3, L(wl, vl,C,fi
) will not contain any elements in Xl,fi

;
otherwise, L(wl, vl,C,fi

) will contain either vl,C,1 or vl,C,F ′, contradicting to Prop-
erty 2 on wl. Hence, for i = 1, 2, 3, L(ufi

, vl,1,fi
) will contain Xl,fi

, by Property 5.
Since lf2-chain (Figure 9) is normal, L(uf2 , vl,1,f2) ∪ L(wl, vl,C,f2) is an interval and
therefore, L(uf2 , vl,1,f2) will contain either Xl,f3 or Xl,f1 , say Xl,f1 as Figure 9. So,

12



l vl,C,f 2
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w

vl,C,F’
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Xl,f 1

Xl,f 3

Figure 9: L(uf2 , vl,1,f2) ∪ L(wl, vl,C,f2) is an interval.

the routing path from uf2 to Xl,f1 will be uf2 , wl, uf ′ , wl′ , uf1 ,Xl,f1 , where f ′ �= 2, f1

and l′ �= l. The length of this routing path is longer than 2D and contradicts to the
assumption on the longest path.

Hence, there are at most 2 lf -chains, say, lf1-chain and lf2-chain, f1, f2 ∈ [2, T +
1], such that for i = 1, 2, Xl,fi

≺ vl,C,1 ≺ Yl,2 ≺ Yl,3 ≺ · · · ≺ Yl,T+1 ≺ vl,C,F ′ ≺ Xl,fi
.

In other words, in the lth layer, we have at least T − 2 lf -chains in f3, f4, . . . , fT+1

flaps such that b ≺ vl,C,1 ≺ Xl,fj
≺ vl,C,F ′ ≺ b, for j ∈ [3, T + 1].

We are now going to prove the disjoint property of these T − 2 chains. Using
the same argument in the first point of the proof of Lemma 4.4, L(wl, vl,C,f ) must
contain every element in Yl,f , ∀f ∈ [2, T + 1]; otherwise, the assumption of path
length from wl (3

2D − 1) will be violated.
For f ∈ [2, T + 1], if the cyclic order is b ≺ vl,C,1 ≺ Xl,f ≺ vl,C,F ′ ≺ b,

L(wl, vl,C,f ) must contain Xl,f (by the same argument in the first point of the proof
of Lemma 4.4); otherwise, the assumption of path length from wl (3

2D − 1) will be
violated. Hence, L(wl, vl,C,f ) contains Xl,f ∪ Yl,f . ♦

Lemma 4.7 ∀l ∈ [1, L], f ∈ [1, F ], if an lf -chain has exactly 3 interval sets Xl,f , Yl,f ,
Zl,f , we have the following : (1) among Xl,f , Yl,f , Zl,f , one (say Xl,f ) will be a subset of

L(uf , vl,1,f ) − L(wl, vl,C,f ), (2) another one (say Zl,f ) will be a subset of L(wl, vl,C,f ) −
L(uf , vl,1,f ), and (3) L(uf , vl,1,f ) ∩ L(wl, vl,C,f ) ⊂ Yl,f .

Proof: Using similar technique as the proof of Lemma 4.3, we can prove that
both L(uf , vl,1,f ) and L(wl, vl,C,f ) can contain elements from at most 2 of Xl,f ,
Yl,f and Zl,f . (The detail is left to the reader.) By Property 5, at least one of
Xl,f , Yl,f and Zl,f , say Xl,f , is a subset of L(uf , vl,1,f ) − L(wl, vl,C,f ). Similarly, at
least one of Xl,f , Yl,f and Zl,f , say Zl,f , is a subset of L(wl, vl,C,f ) − L(uf , vl,1,f ).
Hence, L(wl, vl,C,f ) ∩ L(uf , vl,1,f ) will not contain element in Xl,f and Zl,f . If
L(wl, vl,C,f )∩L(uf , vl,1,f ) �= ∅. L(wl, vl,C,f )∩L(uf , vl,1,f ) will only contain elements
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in {vl,c,f |c ∈ [1, C]}; otherwise, by Property 4, it is a contradiction to Property 3.
Hence, it will only contain elements in Yl,f . Therefore, L(wl, vl,C,f) ∩L(uf , vl,1,f ) ⊂
Yl,f . ♦

By Lemma 4.7, if an lf -chain has exactly 3 interval sets Xl,f , Yl,f and Zl,f , one
of them, say Xl,f , will be a subset of L(uf , vl,1,f ) − L(wl, vl,C,f ), and another one of
them, say Zl,f , will be a subset of L(wl, vl,C,f ) − L(uf , vl,1,f ), and the last one Yl,f
will contain the elements of L(uf , vl,1,f ) ∩ L(wl, vl,C,f ), if any. Hereafter, we use
Xl,f , Yl,f and Zl,f for the above meaning.

Lemma 4.8 ∀l ∈ [1, L], f ∈ [1, F ], assume an lf -chain has exactly 3 interval sets. Let
A = L(wl, vl,C,f ) − Xl,f − Yl,f − Zl,f and B = L(uf , vl,1,f ) − Xl,f − Yl,f − Zl,f . If

Xl,f ≺ Yl,f ≺ Zl,f ≺ Xl,f , we have either

Xl,f ≺ B ≺ Yl,f ≺ A ≺ Zl,f ≺ Xl,f

or Xl,f ≺ B ≺ Yl,f ≺ Zl,f ≺ A ≺ Xl,f

or Xl,f ≺ Yl,f ≺ A ≺ Zl,f ≺ B ≺ Xl,f

If Zl,f ≺ Yl,f ≺ Xl,f ≺ Zl,f , we have either

Zl,f ≺ A ≺ Yl,f ≺ B ≺ Xl,f ≺ Zl,f

or Zl,f ≺ A ≺ Yl,f ≺ Xl,f ≺ B ≺ Zl,f

or Zl,f ≺ Yl,f ≺ B ≺ Xl,f ≺ A ≺ Zl,f

Proof: We will give the outline proof of the case Xl,f ≺ Yl,f ≺ Zl,f ≺ Xl,f , and
leave the other case to the reader.

Since none of (Xl,f ∪ Yl,f), (Yl,f ∪ Zl,f ) and (Xl,f ∪ Zl,f ) is an interval, these 3
interval setsXl,f , Yl,f andZl,f divide the set VL,C,F−Xl,f−Yl,f−Zl,f into 3 intervals,
say, P ,Q andR. Without loss of generality, we have the cyclic structure P ≺ Xl,f ≺
Q ≺ Yl,f ≺ R ≺ Zl,f ≺ P .

Using the same technique as the proof of Lemma 4.5, we can prove that only
one of P ,Q andR can containA and another one can containB. The one containing
A should be next to Zl,f and the one containing B should be next to Xl,f . Hence,
the result follows. ♦

Lemma 4.9 Given an l ∈ [1, L] and an interval A containing {vl,C,f |f ∈ [1, F ′]}, where
3 ≤ F ′ ≤ F , and b ≺ vl,C,1 ≺ {vl,C,2, vl,C,3, . . . , vl,C,F ′−1} ≺ vl,C,F ′ ≺ b, where b �∈ A.

Assume the routing paths from wl through vl,C,f ′ is shorter than 3
2D − 1, ∀vl,C,f ′ ∈ A

where f ′ ∈ [1, F ], and assume the lf -chains are normal, ∀f ∈ [1, F ′]. Then, we have at

most 2 lf -chains, f ∈ [2, F ′ − 1], each of which has exactly 3 interval sets.
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Proof: Assume there are at least 3 lf -chains, and each has exactly 3 interval sets.
Without loss of generality, choose the first three, and let these 3 chains be l2-chain,
l3-chain and l4-chain. Recall that for f = 2, 3, 4, Xl,f ⊂ L(uf , vl,1,f ) − L(wl, vl,C,f )
and Zl,f ⊂ L(wl, vl,C,f ) − L(uf , vl,1,f ).

For f = 2, 3, 4, since L(wl, vl,C,f ) cannot contain Xl,f , if the cyclic order is b1 ≺
vl,C,1 ≺ Xl,f ≺ vl,C,F ′ ≺ b2 ≺ b1, the assumption of path length fromwl (3

2D−1) will
be violated, by using the same argument in the first point of the proof of Lemma 4.4.
Hence, for f = 2, 3, 4, Xl,f ≺ vl,C,1 ≺ {vl,C,2, . . . , vl,C,F ′−1} ≺ vl,C,F ′ ≺ Xl,f . With-
out loss of generality, assume Xl,2 ≺ Xl,3 ≺ Xl,4 ≺ vl,C,1 ≺ {vl,C,2, . . . , vl,C,F ′−1} ≺
vl,C,F ′ ≺ Xl,2, as Figure 9 in the proof of Lemma 4.6, where fi in Figure 9 is consid-
ered to be i+ 1, for i = 1, 2, 3.

Since l3-chain is normal, L(u3, vl,1,3) ∪ L(wl, vl,C,3) is an interval and therefore,
L(u3, vl,1,3) will contain either Xl,2 or Xl,4, say Xl,2 as Xl,f1 in Figure 9. So, the
routing path from u3 to Xl,2 will be u3, wl, uf ′ , wl′ , u2,Xl,2, where f ′ �= 2, 3 and
l′ �= l. The length of this routing path is longer than 2D and contradicts to the
assumption on the longest path. ♦

Lemma 4.10 Given an l ∈ [1, L] and an interval A containing {vl,C,f |f ∈ [1, F ′]}, where
3 ≤ F ′ ≤ F , and b ≺ vl,C,1 ≺ {vl,C,2, vl,C,3, . . . , vl,C,F ′−1} ≺ vl,C,F ′ ≺ b, where b �∈ A.

Assume the lf -chains are normal, ∀f ∈ [1, F ′]. Let 3 ≤ T ≤ F ′ − 2. If there are T
lf -chains, f ∈ [2, F ′−1], having exactly three interval sets, we have at least T −2 of these

chains which are contained in A.

Proof: Using the similar argument in the first part of the proof of Lemma 4.6. ♦

Lemma 4.11 Given an f ∈ [1, F ] and an interval A containing {vl,1,f |l ∈ [1, L]}, and

b ≺ v1,1,f ≺ {v2,1,f , v3,1,f , . . . , vL−1,1,f} ≺ vL,1,f ≺ b, where b �∈ A. Assume the lf -
chains are normal, ∀l ∈ [1, L]. Let 3 ≤ T ≤ L− 2. If there are T lf -chains, l ∈ [2, L− 1],
having exactly two or exactly three interval sets, we have at least T − 2 of these chains
which are contained in A.

Proof: Using the similar argument in the first part of the proof of Lemma 4.6. ♦

5 The Main Lemma

Lemma 5.1 Assume there exists a labeling scheme such that every path is shorter than
2D − K, K ≥ 3. Given that there are 2 disjoint intervals A, B such that A contains

{vl,C,f |f ∈ [1, (2(L− 2)(20(3�DK �+ 15) + 4) + 3)(L− 1) + 2]}∪ {vla,1,f |f ∈ [1, (2(L−
2)(20(3�DK �+15)+4)+3)(L−1)+2]}, B contains {vlb,1,f |f ∈ [1, (2(L−2)(20(3�DK �+
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15)+4)+3)(L−1)+2]}, and vla,1,f ∈ L(wl, vl,C,f ), where ∀f ∈ [1, (2(L−2)(20(3�DK �+
15) + 4) + 3)(L− 1) + 2]. Then, ∃f ∈ {π ∈ [1, F ] | vl,C,π ∈ A} such that a routing path
from wl passing through the edge (wl, vl,C,f ) no shorter than 3

2D − 1.

Intuitively, the purpose of this lemma is to show that if we allow some disjointness
of layers, say la, lbth layers, we can find a path from a wl of length 3

2D − 1. Such a
path will not contradict our longest path assumption. However, after some argu-
ment in the proof of Theorem 6.1, we will find out that such a path of length 3

2D−1
will come up with a path from a uf of length 2D−1. In the lemma statement, there
are 3 layers—l, la and lbth layers concerned. The reader will then find 5 layers—
l, la, lb, l′, l′′th layers in the proof. Among these 5 layers, l, la, lbth layers are the
platforms on which l, l′ and l′′th layers will play an important role in the proof.

Proof of the Main Lemma 5.1
Since this proof of main lemma is complicated, we use 14 Claims to make it sim-
pler. A reader may also get enough details about this proof without looking into
the Reasons of each claims.

Assume there exist a labeling scheme such that every path is shorter than 2D−
K, K ≥ 3. And ∀vl,C,f ∈ A, assume that all routing paths from wl passing through
vl,C,f is shorter than 3

2D− 1. It is also important to point out the initial condition of
this lemma as (1).

∀f ∈ [1, (2(L − 2)(20(3�D
K

� + 15) + 4) + 3)(L− 1) + 2], vla,1,f ∈ L(wl, vl,C,f ). (1)

Since every interval has 2 margins, there are 2 elements a1, a2 ∈ {vla,1,f |f ∈
[1, (2(L − 2)(20(3�DK � + 15) + 4) + 3)(L− 1) + 2]} such that ∃ an interval, which is
not a subinterval of A, containing a1, a2 but not containing {vla,1,f |f ∈ [1, (2(L −
2)(20(3�DK �+15)+4)+3)(L−1)+2]}−{a1 , a2}. Without loss of generality, for i =
1, 2, we assume ai to be vla,1,fi

, and fi = (2(L−2)(20(3�DK �+15)+4)+3)(L−1)+ i.
Therefore, we have the cyclic structure a1 ≺ {vla,1,f |f ∈ [1, (2(L − 2)(20(3�DK � +
15) + 4) + 3)(L − 1)]} ≺ a2 ≺ B ≺ a1. (Figure 10)

Claim 1 The routing path from wl to any element in 〈a1, a2〉− {a1, a2} should be shorter

than 3
2D − 1.

Reason: ∀x ∈ 〈a1, a2〉 − {a1, a2}, assume the routing from wl to x will start with
edge (wl, vl,C,f ). We have two cases.

• vl,C,f ∈ A.
By the assumption on the routing path from wl, this routing path should be
shorter than 3

2D − 1.
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Figure 10: Cyclic structure of A and B (Not to scale).

• vl,C,f �∈ A.
x ∈ L(wl, vl,C,f ) ⇒ ai ∈ L(wl, vl,C,f ), i = 1 or 2, It is a contradiction to (1), or
a contradiction to Property 2, because for i = 1 or 2, ai ∈ L(wl, vl,C,fi

) where
vl,C,fi

∈ A.

♠

Claim 2 The routing from uf , ∀f ∈ [1, F ], to any elements in {vlb,1,f |f ∈ [1, (2(L −
2)(20(3�DK � + 15) + 4) + 3)(L− 1)]} cannot pass through wl.

Reason: Assume the contrary and the routing from uf , f ∈ [1, F ], to an element
vlb,1,f ′ , f

′ ∈ [1, (2(L−2)(20(3�DK �+15)+4)+3)(L−1)], passes throughwl. If f = f ′, it
is a contradiction because L(uf , vlb,1,f) must contain vlb,1,f ′ ; otherwise, the longest
path assumption (2D −K) is violated. If f �= f ′, L(wl, vl,C,f ′) must contain vlb,1,f ′ ;
otherwise, the routing path from uf to vlb,1,f ′ will be uf , wl, uf ′′ , wlb , vlb,1,f ′ , where
f ′′ �= f, f ′, and of length 2D − 1. Hence, L(wl, vl,C,f ′) contains vlb,1,f ′ , and also
contains vla,1,f ′ , according to (1). However, vla,1,f ′ and vlb,1,f ′ are in two disjoint
intervals—A and B, respectively, and therefore, L(wl, vl,C,f ′) will contain one of
the marginal elements of A, say a1. Contradiction of (1) or Property 2 on wl. ♠

By Claim 2, the routing from uf , ∀f �∈ [1, (2(L−2)(20(3�DK �+15)+4)+3)(L−1)],
to {vlb,1,f |f ∈ [1, (2(L−2)(20(3�DK �+15)+4)+3)(L−1)]} will not pass throughwl.
Then, without wl, there are still L− 1 choices. By the Pigeon Hole Principle, there
are 2(L− 2)(20(3�DK �+ 15) + 4) + 3 elements in {vlb,1,f |f ∈ [1, (2(L− 2)(20(3�DK �+
15)+4)+3)(L−1)]} to which the routing path from uf will pass throughwl′ , l′ �= l.
Without loss of generality, we assume these 2(L−2)(20(3� DK �+15)+4)+3 elements
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are belonged to the first 2(L− 2)(20(3�DK � + 15) + 4) + 3 flaps. Therefore,

∀f ∈ [1, 2(L − 2)(20(3�D
K

� + 15) + 4) + 3], vlb,1,f ∈ L(wl′ , vl′,C,f ). (2)

By the same argument in the second paragraph in page 16, there are 2 elements
b1, b2 such that b1 ≺ {vlb,1,f |f ∈ [1, 2(L− 2)(20(3�DK �+ 15) + 4) + 1]} ≺ b2 ≺ A ≺ b1

(Figure 10), where for j = 1, 2, bj is vlb,1,fj
, fj = 2(L− 2)(20(3�DK �+15)+4)+1+ j.

Let A′ be an interval containing {vl,C,f |f ∈ [1, 2(L − 2)(20(3�DK � + 15) + 4) +
1]} ∪ {vla,1,f |f ∈ [1, 2(L − 2)(20(3�DK � + 15) + 4) + 1]} and B′ contains {vlb,1,f |f ∈
[1, 2(L − 2)(20(3�DK � + 15) + 4) + 1]}. Obviously, A′ ⊂ A, B′ ⊂ B. Let p = 2(L −
2)(20(3�DK � + 15) + 4) + 1. Without loss of generality, assume the cyclic order in A
is

a2 ≺ B ≺ a1 ≺ {vla,1,1, . . . , vla,1,(L−2)(20(3� D
K
�+15)+4)} ≺ vla,1,p ≺

{vla,1,(L−2)(20(3� D
K
�+15)+4)+1, . . . , vla,1,2(L−2)(20(3� D

K
�+15)+4)} ≺ a2

Note that vla,1,p is the “middle” element in A′ if we only consider the lath layer in
A′. Also, note that there may be some vla,1,f ’s not belonged to {vla,1,f |f ∈ [1, 2(L −
2)(20(3�DK � + 15) + 4) + 1]} but in A′.

Consider vl,2,p. L(vl,2,p, vl,1,p) should contain vla,1,p and vlb,1,p; otherwise the
routing path from vl,2,p to vla,1,p or to vlb,1,p is 2D − 3. Hence, L(vl,2,p, vl,1,p) should
contain some elements of A and bi, where i = 1 or 2 (interval H in figure 11).
Without loss of generality, assume that vla,1,1, vla,1,2, . . . , vla,1,(L−2)(20(3� D

K
�+15)+4) ∈

L(vl,2,p, vl,1,p).

v al  ,1,p

b1

b2

vl  ,1,pb

H

B’A’

Figure 11: The structure of A′, B′ and H .

Claim 3 The routing from vl,2,p to any element in {vla,1,1, vla,1,2, . . . , vla,1,(L−2)(20(3� D
K
�+15)+4)}

cannot pass through vl′,1,p.
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Reason: Assume a routing path from vl,2,p to vla,1,i passing through vl′,1,p, i ∈
[1, (L−2)(20(3�DK �+15)+4)]. Then, L(wl′ , vl′,C,i) will contain vla,1,i; otherwise, the
path from vl,2,p to vla,1,i will have length 2D + 1. Recall that L(wl′ , vl′,C,i) contains
vlb,1,i. Then, L(wl′ , vl′,C,i) contains vla,1,i and vlb,1,i, implying that L(wl′ , vl′,C,i) will
either contain b1 or b2, say b1 (Figure 11). Recall that b1 = vlb,1,f ∈ L(wl′ , vl′,C,f ),
where f = 2(L− 2)(20(3�DK �+ 15) + 4) + 2. Hence, Property 2 on wl′ is violated. ♠

By Claim 3, the routing from vl,2,p to any element in {vla,1,f |f ∈ [1, (L−2)(20(3�DK �+
15) + 4)]} should pass through other layers. Other than lth and l ′th layers, we
have L− 2 remaining layers. By the Pigeon hole Principle, ∃ a layer, say l′′th layer,
through which the routing from vl,2,p to at least 20(3�DK � + 15) + 4 elements in
{vla,1,f |f ∈ [1, (L− 2)(20(3�DK �+15)+4)]} will pass. Without loss of generality, we
assume that the routing from vl,2,p to {vla,1,f |f ∈ [1, 20(3�DK � + 15) + 4]} will pass
through the l′′th layer. Assume a1 ≺ vla,1,20(3� D

K
�+15)+4 ≺ vla,1,1 ≺ vla,1,2 ≺ · · · ≺

vla,1,20(3� D
K
�+15)+2 ≺ vla,1,20(3� D

K
�+15)+3 ≺ a2 ≺ B ≺ a1. Hence, we have

∀x, vla,1,20(3�D
K
�+15)+4 ≺ x ≺ vla,1,20(3� D

K
�+15)+3 ⇒ x ∈ L(up, vl′′,1,p). (3)

Obviously, under the assumption of longest path (2D −K),

∀f ∈ [1, 20(3�D
K

� + 15) + 2], vla,1,f ∈ L(wl′′ , vl′′,C,f ); (4)

otherwise, the routing path from up to vla,1,f , f ∈ [1, 20(3�DK � + 15) + 8], will be
longer than 2D − 3. By Property 2 on wl′′ , we have

a1 ≺ vla,1,20(3� D
K
�+15)+4 ≺ L(wl′′ , vl′′,C,1) ≺ L(wl′′ , vl′′,C,2) ≺ · · · ≺

L(wl′′ , vl′′,C,20(3� D
K
�+15)+2) ≺ vla,1,20(3� D

K
�+15)+3 ≺ a2 ≺ B ≺ a1.

(5)

Hence, ∀f ∈ [1, 20(3�DK �+15)+2], L(wl′′ , vl′′,C,f ) ⊂ L(up, vl′′,1.p). Therefore, all rout-
ing paths fromwl′′ pass through vl′′,C,f , which is belonged to 〈vl′′,C,1, vl′′,C,20(3�D

K
�+15)+2〉,

are shorter than 3
2D − 1; otherwise at least one routing path from up through

wl′′ will be longer than 2D − 3. Also, since L(wl′′ , vl′′,C,f ) contains vl′′,C,f , ∀f ∈
[1, 20(3�DK � + 15) + 2], by (5), we have

a1 ≺ vla,1,20(3� D
K
�+15)+4 ≺ {vl′′,C,1, vla,1,1} ≺ {vl′′,C,2, vla,1,2} ≺ · · · ≺

{vl′′,C,20(3�D
K
�+15)+2, vla,1,20(3� D

K
�+15)+2} ≺ vla,1,20(3�D

K
�+15)+3 ≺ a2 ≺ B ≺ a1.

(6)

Claim 4 The routing path fromwl′′ to any element in 〈vl′′,C,1, vl′′,C,20(3� D
K
�+15)+2〉 should

be shorter than 3
2D − 1.

Reason: Similar technique as the reason of Claim 1. ♠
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Now we are going to focus on the lath, lth, l′th and the l′′th layer in A. (Note that
we allow A to contain some flaps of the l′th layer. Of course, some are in B).

Ignore the 1st and the 20(3�DK � + 15) + 2th flaps, (as ignored by Lemma 4.6
and 4.9), we have 20(3�DK � + 15) flaps left. By Lemma 4.2, the lth, l′th and the l′′th
layers totally have at most 3�DK �+6 abnormal chains. Among those normal chains,
by Lemma 4.6, there are at most 4 chains, 2 from the lth and 2 from the l ′′ layer, hav-
ing exactly 2 interval sets, which is not totally included in 〈vl′′,C,1, vl′′,C,20(3�D

K
�+15)+2〉,

the routing from wl or wl′′ to these chains will need at least 3
2D − 1. Also, among

those normal chains, by Lemma 4.9, there are at most 4 chains, 2 from the lth and 2
from the l′′ layer, having exactly 3 interval sets.

Summing up, there are 3�DK � + 14 chains which are not of our interest. By
the Pigeon Hole Principle, we can find an interval A′′, which is a subinterval of
〈vl′′,C,1, vl′′,C,20(3� D

K
�+15)+2〉, containing no elements vl,C,f , vl′,C,f , vl′′,C,f from abnor-

mal chains from the lth, l′th, l′′th layers, respectively; no elements vl,C,f , vl′′,C,f
of normal chains from the lth and l′′th layer, respectively, having exactly 3 inter-
val sets; no elements vl,C,f , vl′′,C,f of normal chains from the lth and l′′th layer,
respectively, having exactly 2 interval sets with some elements in the chains not in
〈vl′′,C,1, vl′′,C,20(3� D

K
�+15)+2〉, f ∈ [1, F ].

The interval A′′ contains elements of the lth, l′th and the l′′th layers from 19
flaps out of the said 20(3�DK � + 15) flaps. Let these 19 flaps be the fith flaps (Here,
we redefine fi), i = 1, . . . , 19. Without loss of generality, we assume

a1 ≺ vla,1,f1 ≺ vla,1,f2 ≺ · · · ≺ vla,1,f19 ≺ a2 ≺ B ≺ a1.

By (1) and Property 2 on wl, we have

a1 ≺ L(wl, vl,C,f1) ≺ L(wl, vl,C,f2) ≺ · · · ≺ L(wl, vl,C,f19) ≺ a2 ≺ B ≺ a1. (7)

Combining (7) with (5) and (6), we have

a1 ≺ L(wl, vl,C,f1) ∩ L(wl′′ , vl′′,C,f1) ≺ L(wl, vl,C,f2) ∩ L(wl′′ , vl′′,C,f2)
≺ · · · ≺ L(wl, vl,C,f19) ∩ L(wl′′ , vl′′,C,f19) ≺ a2 ≺ B ≺ a1.

(8)

Claim 5 For i = 1, . . . , 19, {vl,1,fi
, vl′′,1,fi

} ⊂ L(wl, vl,C,fi
) ∩ L(wl′′ , vl′′,C,fi

).

Reason: From our choice of these 19 flaps, vl,1,fi
, vl′′,1,fi

∈ 〈vl′′,C,1, vl′′,C,20(3� D
K
�+15)+2〉,

∀i ∈ [1, 19]. By Claim 1 and 4, the routing path from any one of wl, wl′′ to any one
of vl,1,fi

, vl′′,1,fi
should be shorter than 3

2D − 1. Hence, the Claim statement should
hold, otherwise, the routing path should be at least 3

2D + 1. ♠

By Claim 5 and (8),

a1 ≺ {vl,1,f1, vla,1,f1, vl′′,1,f1} ≺ · · · ≺ {vl,1,f19 , vla,1,f19 , vl′′,1,f19} ≺ a2 ≺ B ≺ a1 (9)
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On the other hand, the cyclic structure inside B is

b1 ≺ vlb,1,σ1 ≺ · · · ≺ vlb,1,σ19 ≺ b2

where σ1σ2 . . . σ19 is a certain permutation of f1f2 . . . f19. Without loss of generality,
we assume {f1, . . . , f17} ∩ {σ1, σ19} = ∅. (Otherwise, instead of using fi’s, we can
use another subscript gi’s such that {g1, . . . , g17} ∩ {σ1, σ19} = ∅).

Claim 6 The routing from wl′ to any element of {vl′′,1,f1, vl′′,1,f2, . . . , vl′′,1,f17}, cannot

pass through any edges among (wl′ , vl′,C,f1), (wl′ , vl′,C,f2), . . . , (wl′ , vl′,C,f17).

Reason: For i = 1, . . . , 17, if L(wl′ , vl′,C,fi
) contains vl′′,1,fi

, L(wl′ , vl′,C,fi
) will con-

tain at least one of vlb,1,σ1 , vlb,1,σ19 , where fi �= σ1, σ19 (Figure 12). By (2), for

2

a 1

vl’’,1,fi

v
bl  ,1,fi

v
bl  ,1,σ1

v
bl  ,1, 19σ

a

B

Figure 12: At least one of vlb,1,σ1 , vlb,1,σ11 is in L(wl′ , vl′,C,fi
).

j = 1, 19, vlb,1,σj
∈ L(wl′ , vl′,C,σj

). In other words, ∃i ∈ {1, . . . , 17}, j ∈ {1, 19},
L(wl′ , vl′,C,fi

) ∩ L(wl′ , vl′,C,σj
) �= ∅, where fi �= σj . Contradiction to Property 2 on

wl′ . ♠

Claim 7 The routing from wl′ to any 5 elements of {vl′′,1,f1, . . . , vl′′,1,f17}, cannot pass
through only an edge (wl′ , vl′,C,α), α �= f1, . . . , f17.

Reason: Assume L(wl′ , vl′,C,α) contains 5 elements of {vl′′,1,f1 , . . . , vl′′,1,f17}, say
vl′′,1,f1 , vl′′,1,f2, . . . , vl′′,1,f5 . Since, by Property 2 on wl′ , L(wl′ , vl′,C,α) cannot contain
any element in {vlb,1,σ1 , vlb,1,σ19}, L(wl′ , vl′,C,α) contains 〈vl′′,1,f1, vl′′,1,f5〉. By (8), we
have

vl′′,1,f1 ≺ vl′′,C,f2 ≺ vl′′,C,f3 ≺ vl′′,C,f4 ≺ vl′′,1,f5

and
vl′′,1,f1 ≺ vl,C,f2 ≺ vl,C,f3 ≺ vl,C,f4 ≺ vl′′,1,f5

Then, at least one of the following is true.
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• vl′′,C,f2 ≺ {vl′′,C,f3, vl,C,fi
} ≺ vl′′,C,f4

• vl,C,f2 ≺ {vl,C,f3 , vl′′,C,fi
} ≺ vl,C,f4 ,

where i = 2 or 4.
Without loss of generality, we assume the first case. Consider the routing from

wl′ to vl′′,C,f2 , vl′′,C,f3 and vl′′,C,f4 . The routing path will be wl′ , uα, wl′′ , vl′′,C,fi
,

i = 2, 3, 4. Then, 〈vl′′,C,f2, vl′′,C,f4〉 ⊂ L(uα, vl′′,1,α); otherwise, B ⊂ L(uα, vl′′,1,α)
(Figure 13), which implies a routing path—uα, wl′′ , u�=σ1 , wlb , vlb,1,σ1 of length 2D−1

L( , )vu l’’,1,α α
vl’’,1,f4

vl’’,1,f2

vl’’,1,f3 B

Figure 13: The case 〈vl′′,C,f2, vl′′,C,f4〉 �⊂ L(uα, vl′′,1,α).

from uα to vlb,1,σ1 (∈ B) becauseL(wl′′ , vl′′,C,σ1)∩B = ∅. However, 〈vl′′,C,f2, vl′′,C,f4〉 ⊂
L(uα, vl′′,1,α) implies vl,C,fi

∈ L(uα, vl′′,1,α), i ∈ {2, 4}. The routing path from wl′ to
vl,C,fi

will be wl′ , uα, wl′′ , vl,C,fi
, which length is not less than 2D− 1. Contradiction

to our assumption on longest path. ♠

Claim 8 The routing from wl′ to any 5 elements of {vl,1,f1, . . . , vl,1,f17}, cannot pass

through only an edge (wl′ , vl′,C,α) only, α �= f1, . . . , f17.

Reason: Similar to the proof of Claim 7. ♠

From Claim 6 and 7, the routing from wl′ to {vl′′,1,f1, . . . , vl′′,1,f17} will pass at
least 5 (at most 17) edges of wl′ which are not any of (wl′ , vl′,1,f1),. . . , (wl′ , vl′,1,f17).
Some cases using 5 edges of wl′ are shown in figure 14. No mather how many
edges of wl′ used for these routing, the routing from w l′ to vl′′,1,f1 , vl′′,1,f5 , vl′′,1,f9 ,
vl′′,1,f13 and vl′′,1,f17 will use different edges ofwl′ . Let the routing from wl′ to vl′′,1,f9
pass through the edge (wl′ , vl′,C,α), hence, by Property 2 on wl′ , L(wl′ , vl′,C,α) is
“bounded” by wl′ ’s 2 interval labels containing vl′′,1,f5 and vl′′,1,f13 , respectively. In

22



vl’’,1,f13

vl’’,1,f5

vl’’,1,f9

vl’’,1,f17

vl’’,1,f1

Figure 14: Some cases of using 5 edges of wl′ .

A

B

l’wL( ,vl’,C,α )

vl’’,1,f13

vl’’,1,f9

vl’’,1,f5

Figure 15: L(wl′ , vl′,C,α) is bounded by vl′′,1,f5 and vl′′,1,f13 .
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other words, L(wl′ , vl′,C,α) is “bounded” by vl′′,1,f5 and vl′′,1,f13 (Figure 15). Since
vl′,C,α ∈ L(wl′ , vl′,C,α), vl′,C,α is bounded by vl′′,1,f5 and vl′′,1,f13 . We are now looking
for a position for vl′,1,α.

Recall that if vl,C,f , vl′,C,f and vl′′,C,f are in A′′, the lf -, l′f - and l′′f -chains here
are normal, respectively, where f ∈ [1, F ]. Hence, l ′α-chain is normal. If vl′,1,α �∈
〈vl′′,1,f5, vl′′,1,f13〉 (Figure 16), L(uα, vl′,1,α) will contain either vl′′,1,f5 or vl′′,1,f13 , say

l’wL( ,vl’,C,α )

vl’,1,α

vl’,1,αL( ,u α )

vl’’,1,f13

vl’’,1,f9

vl’’,1,f5

B

Figure 16: L(wl′ , vl′,C,α) ∪ L(uα, vl′,1,α) is an interval.

vl′′,1,f13 as Figure 16. So, the routing path from uα to vl′′,1,f13 is no shorter than
2D − 1 since vl′′,1,f13 �∈ L(wl′ , vl′,C,f13) by Claim 6. Hence, vl′,1,α ∈ 〈vl′′,1,f5, vl′′,1,f13〉,
ie. “bounded” by vl,1,f5 and vl,1,f13 . So, there are 2 choices for the position of vl′,1,α.
One is 〈vl′′,1,f5 , vl′′,1,f9〉 and the other is 〈vl′′,1,f9, vl′′,1,f13〉. Without loss of generality,
we assume the former—“bounded” by vl,1,f5 and vl,1,f9 . Now we will consider the
routing from wl, wl′′ to vl′,1,α.

Since a1 ≺ vl′,1,α ≺ a2 ≺ B ≺ a1, by Claim 1, vl′,1,α ∈ L(wl, vl,C,α). Since
vl′,1,α ∈ 〈vl′′,C,1, vl′′,C,20(3�D

K
�+15)+2〉, by Claim 4, vl′,1,α ∈ L(wl′′ , vl′′,C,α). Hence,

vl′,1,α ∈ L(wl, vl,C,α) ∩ L(wl′′ , vl′′,C,α). Also, by Property 2 on wl and wl′′ , we have

vl′′,1,f5 ≺ L(wl, vl,C,α) ∩ L(wl′′ , vl′′,C,α) ≺ vl′′,1,f9 (10)

because vl′′,1,f5 ∈ L(wl, vl,C,f5)∩L(wl′′ , vl′′,C,f5) and vl′′,1,f9 ∈ L(wl, vl,C,f9)∩L(wl′′ , vl′′,C,f9).
By Lemma 4.6, vl,1,α and vl′′,1,α are in A′′. By Claim 1 and Claim 4, vl,1,α ∈

L(wl, vl,C,α) and vl′′,1,α ∈ L(wl′′ , vl′′,C,α). Again, by Claim 1 and Claim 4, vl,1,α ∈
L(wl′′ , vl′′,C,α) and vl′′,1,α ∈ L(wl, vl,C,α), because a1 ≺ {vl,1,α, vl′′,1,α} ≺ a2 ≺ B ≺ a1

and {vl,1,α, vl′′,1,α} ⊂ 〈vl′′,C,1, vl′′,C,20(3�D
K
�+15)+2〉. Therefore,

{vl,1,α, vl′,1,α, vl′′,1,α} ⊂ L(wl, vl,C,α) ∩ L(wl′′ , vl′′,C,α)
vl′′,1,f5 ≺ {vl,1,α, vl′,1,α, vl′′,1,α} ≺ vl′′,1,f9

(11)
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Claim 9 The cyclic structure in (11) is either

vl′′,1,f5 ≺ vl,1,α ≺ vl′,1,α ≺ vl′′,1,α ≺ vl′′,1,f9 or vl′′,1,f5 ≺ vl′′,1,α ≺ vl′,1,α ≺ vl,1,α ≺ vl′′,1,f9.

Reason: Assume the contrary, then we have 2 cases.

1 vl′′,1,f5 ≺ {vl,1,α, vl′′,1,α} ≺ vl′,1,α ≺ vl′′,1,f9 .
Again, we have 2 further symmetric cases.

1.1 vl′′,1,f5 ≺ vl,1,α ≺ vl′′,1,α ≺ vl′,1,α ≺ vl′′,1,f9 .
Here, we have 2 different cases.

1.1.1 l′′α-chain has exactly one interval set.
Consider the l′′α-chain. Then, we have either vl′′,1,f5 ≺ vl,1,α ≺
vl′′,C,α ≺ vl′′,1,α ≺ vl′,1,α ≺ vl′′,1,f9 or vl′′,1,f5 ≺ vl,1,α ≺ vl′′,1,α ≺
vl′′,C,α ≺ vl′,1,α ≺ vl′′,1,f9 . By Lemma 4.4, in the former case, L(wl′′ , vl′′,C,α)
will contain vl′,1,α, but not vl,1,α; in the latter case, L(wl′′ , vl′′,C,α) will
contain vl,1,α, but not vl′,1,α. Contradiction to (11).

1.1.2 l′′α-chain has exactly two interval sets—Xl′′,α, Yl′′,α.
Consider the l′′α-chain. Assume vl′′,1,α ∈ Xl′′,α, we have vl′′,1,f5 ≺
vl,1,α ≺ Xl′′,α ≺ vl′,1,α ≺ vl′′,1,f9 . Then, by Lemma 4.5, we have
vl′′,1,f5 ≺ vl,1,α ≺ Xl′′,α∪Yl′′,α ≺ vl′,1,α ≺ vl′′,1,f9 , becauseL(wl′′ , vl′′,C,α)
cannot contain both vl,1,α and vl′,1,α if Yl′′,α is in another place in the
cyclic structure.
However, if L(wl′′ , vl′′,C,α) contains vl,1,α and vl′,1,α and vl′′,1,α (Fig-
ure 17), it will contain vl′′,1,f9 which is belonged to L(wl′′ , vl′′,C,f9).

wl’’L( ,vl’’,C, )α

vl’’,1,f5

vl,1, α

vl’’,1,f9

vl’,1,α

αYl’’, subinterval of

αXl’’,

B

Figure 17: False example of cyclic structure.

Contradiction to Property 2 on wl′′ .

1.2 vl′′,1,f5 ≺ vl′′,1,α ≺ vl,1,α ≺ vl′,1,α ≺ vl′′,1,f9 .
This case is symmetric to the case 1.1.
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2 vl′′,1,f5 ≺ vl′,1,α ≺ {vl,1,α, vl′′,1,α} ≺ vl′′,1,f9 .
The case is symmetric to the case 1.

♠

By Claim 9, without loss of generality, we assume

vl′′,1,f5 ≺ vl,1,α ≺ vl′,1,α ≺ vl′′,1,α ≺ vl′′,1,f9 (12)

and consider the routing from wl′ to vl,1,α.

Claim 10 The routing from wl′ to vl,1,α cannot pass through (wl′ , vl′,C,α).

Reason: We have three cases as follows.

• l′α-chain has exactly one interval set.
Consider the position of vl′,C,α. Since vl′′,1,f9 ∈ L(wl′ , vl′,C,α), by Lemma 4.4,
we have the cyclic structure vl′′,1,f5 ≺ vl,1,α ≺ vl′,C,α ≺ vl′,1,α ≺ vl′′,1,α ≺
vl′′,1,f9 ≺ vl′′,1,f13 . Again, by Lemma 4.4, L(wl′ , vl′,C,α) cannot contain vl,1,α.

• l′α-chain has exactly two interval sets—Xl′,α, Yl′,α.
Assume vl′,1,α ∈ Xl′,α. Consider the position of Yl′,α. Since L(wl′ , vl′,C,α)
contains vl′′,1,f9 but not vl′′,1,f5, vl′′,1,f13 , we have the cyclic structure vl′′,1,f5 ≺
vl,1,α ≺ Xl′,α ≺ vl′′,1,α ≺ vl′′,1,f9 ≺ Yl′,α ≺ vl′′,1,f13 by Lemma 4.5. Again, by
Lemma 4.5, L(wl′ , vl′,C,α) cannot contain vl,1,α.

• l′α-chain has exactly 3 interval sets—Xl′,α, Yl′,α, Zl′,α.
Assume vl,1,α ∈ L(wl′ , vl′,C,α). Recall that L(wl′ , vl′,C,α) contains vl,1,α, vl′,1,α,
vl′′,1,α, vl′′,1,f9 , and vl′,1,α ∈ L(uα, vl′,1,α), and that the meaning ofXl,f , Yl,f , Zl,f

stated in Page 14. Then, we have vl′,1,α ∈ Yl′,α. Since vl′′,1,f5, vl′′,1,f13 �∈
L(wl′ , vl′,C,α), in other words, ∃x1, x2 ∈ L(wl′ , vl′,C,α) and ∃y1, y2 �∈ L(wl′ , vl′,C,α)
such that y1 ≺ x1 ≺ Yl′,α ≺ x2 ≺ y2, which is a contradiction to Lemma 4.8,
no matter where the position of Xl′,α and Zl′,α are.

♠

Consider the routing from wl′ to vl,1,α. By Claim 10, the routing cannot start
with the edge (wl′ , vl′,C,α). Also, it cannot start with the edges (wl′ , vl′,C,fi

), ∀i ∈
[1, 17], because of the similar reason in Claim 6. Let the routing starts with the edge
(wl′ , vl′,C,β) where β �= α, f1, . . . , f17. i.e. vl,1,α ∈ L(wl′ , vl′,C,β). We are going to find
out the possible position of vl′,1,β .

Claim 11 vl′,1,β ∈ 〈vl′′,1,f1, vl′′,1,f9〉.
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Reason: Assume vl′,1,β �∈ 〈vl′′,1,f1, vl′′,1,f9〉. Recall vl,1,α ∈ L(wl′ , vl′,C,β) and vl′,1,β ∈
L(uβ, vl′,1,β). Since this l′β-chain is normal, L(wl′ , vl′,C,β) ∪ L(uβ , vl′,1,β) is an inter-
val. Then, vl′,1,β �∈ 〈vl′′,1,f1, vl′′,1,f9〉 implies that L(wl′ , vl′,C,β)∪L(uβ, vl′,1,β) contains

vl,1,α

vl’’,1,f5

vl’’,1,f1

vl’’,1,f9

vl’,1,β

vl’,1,β

L( ,u vl’,1,β β )

L( ,vl’,C,l’w β )
and

Either position
for the Union of

B

either

Figure 18: Two cases of L(wl′ , vl′,C,β) ∪ L(uβ , vl′,1,β).

either {vl′′,1,f1, vl′′,1,f5} or vl′′,1,f9 (Figure 18).

• {vl′′,1,f1, vl′′,1,f5} ⊂ L(wl′ , vl′,C,β) ∪ L(uβ, vl′,1,β).
vl′′,1,f1, vl′′,1,f5 �∈ L(uβ, vl′,1,β); otherwise, the routing path from uβ to vl′′,1,f1
(to vl′′,1,f5 , too) will be no shorter than 2D − 1. Hence, vl′′,1,f1 , vl′′,1,f5 ∈
L(wl′ , vl′,C,β). However, it is a contradiction to Claim 7 since L(wl′ , vl′,C,β)
will include vl′′,1,f1 , . . . , vl′′,1,f5 .

• vl′′,1,f9 ∈ L(wl′ , vl′,C,β) ∪ L(uβ, vl′,1,β).
vl′′,1,f9 �∈ L(uβ, vl′,1,β); otherwise, the routing path from uβ to vl′,1,f9 will be
no shorter than 2D − 1. However, vl′′,1,f9 �∈ L(wl′ , vl′,C,β), because vl′′,1,f9 ∈
L(wl′ , vl′,C,α) and by Property 2, L(wl′ , vl′,C,β)∩L(wl′ , vl′,C,α) = ∅. Contradic-
tion.

♠

Claim 12 vl′,1,β ∈ 〈vl′′,1,f1 , vl,1,α〉 ∪ 〈vl′′,1,α, vl′′,1,f9〉.

Reason: vl′,1,β �∈ 〈vl,1,α, vl′′,1,α〉; otherwise vl′,1,β ∈ L(wl, vl,C,α), implying a routing
path from wl to vl′,1,β no shorter than 3

2D − 1, contradicting Claim 1. Combining
with the Claim 11, result follows. ♠

Combining (12) with Claim 12, we have two cases:

1. vl′′,1,f1 ≺ vl′,1,β ≺ vl,1,α ≺ vl′,1,α ≺ vl′′,1,α ≺ vl′′,1,f9 ,
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2. vl′′,1,f1 ≺ vl,1,α ≺ vl′,1,α ≺ vl′′,1,α ≺ vl′,1,β ≺ vl′′,1,f9 .

Considering the routing from wl, wl′′ to vl′,1,β, like (11), the above two cases become

1. vl′′,1,f1 ≺ {vl,1,β, vl′,1,β, vl′′,1,β} ≺ vl,1,α ≺ vl′,1,α ≺ vl′′,1,α ≺ vl′′,1,f9

2. vl′′,1,f1 ≺ vl,1,α ≺ vl′,1,α ≺ vl′′,1,α ≺ {vl,1,β, vl′,1,β, vl′′,1,β} ≺ vl′′,1,f9

By similar technique using in Claim 9, the cyclic structure inside {vl,1,β, vl′,1,β, vl′′,1,β}
is either vl,1,β ≺ vl′,1,β ≺ vl′′,1,β or vl′′,1,β ≺ vl′,1,β ≺ vl,1,β .

Claim 13 vl′,1,β ∈ 〈vl′′,1,f1 , vl,1,α〉.

Reason: From Claim 12, we have either vl′,1,β ∈ 〈vl′′,1,f1, vl,1,α〉 or vl′,1,β ∈ 〈vl′′,1,α, vl′′,1,f9〉.
Assume vl′,1,β ∈ 〈vl′′,1,α, vl′′,1,f9〉. By (12), we have

vl′′,1,f5 ≺ vl,1,α ≺ vl′,1,α ≺ vl′′,1,α ≺ vl′,1,β ≺ vl′′,1,f9

and hence,

vl′′,1,f5 ≺ vl,1,α ≺ vl′,1,α ≺ vl′′,1,α ≺ vl,1,β ≺ vl′,1,β ≺ vl′′,1,β ≺ vl′′,1,f9,

where the position of vl,1,β and vl′′,1,β can be exchanged; this case is left to the
reader.

Recall that vl,1,α ∈ L(wl′ , vl′,C,β) and vl′,1,β ∈ L(uβ, vl′,1,β), and l′β-chain is nor-
mal. Then, vl,1,β ∈ L(uβ , vl′,1,β) ∪ L(wl′ , vl′,C,β) (Figure 19).

l,1,α

vl’’,1,f9

vl’’,1,f5

vl’,1,α

vl’’,1, α

vl’,1,β

L( ,u vl’,1,β β )

L( ,vl’,C,l’

v

w

B

β )
and

Union of

vl,1, β

Figure 19: vl,1,β ∈ L(wl′ , vl′,C,β) ∪ L(uβ, vl′,1,β).

vl,1,β �∈ L(uβ, vl′,1,β), since vl,1,β ∈ L(uβ, vl,1,β) by the longest path assumption
(2D-K). Hence, vl,1,β ∈ L(wl′ , vl′,C,β). However, the interval L(wl′ , vl′,C,β) contain-
ing vl,1,β and vl,1,α will contain vl′,1,α or vl′′,1,f5, vl′′,1,f9 . Contradiction to Property 2
on wl′ for both cases. ♠
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By Claim 13,

vl′′,1,f1 ≺ vl,1,β ≺ vl′,1,β ≺ vl′′,1,β ≺ vl,1,α ≺ vl′,1,α ≺ vl′′,1,α ≺ vl′′,1,f9 or
vl′′,1,f1 ≺ vl′′,1,β ≺ vl′,1,β ≺ vl,1,β ≺ vl,1,α ≺ vl′,1,α ≺ vl′′,1,α ≺ vl′′,1,f9

Without loss of generality, we assume the former case and we have

vl′′,1,f1
︸ ︷︷ ︸

∈L(wl,vl,C,f1
)

≺ vl,1,β ≺ vl′,1,β ≺ vl′′,1,β
︸ ︷︷ ︸

∈L(wl,vl,C,β)

≺ vl,1,α ≺ vl′,1,α ≺ vl′′,1,α
︸ ︷︷ ︸

∈L(wl,vl,C,α)

≺ vl′′,1,f9
︸ ︷︷ ︸

∈L(wl,vl,C,f9
)

.

Now we are going to find the position of L(wl′′ , vl′′,C,f5).

Claim 14 vl′′,1,f1 ≺ L(wl, vl,C,f5) ≺ vl,1,β ≺ vl′,1,β ≺ vl′′,1,β ≺ vl,1,α ≺ vl′,1,α ≺
vl′′,1,α ≺ vl′′,1,f9

Reason: Assume the contrary,

vl′′,1,f1 ≺ vl,1,β ≺ vl′,1,β ≺ vl′′,1,β
︸ ︷︷ ︸

∈L(wl,vl,C,β)

≺ L(wl, vl,C,f5) ≺ vl,1,α ≺ vl′,1,α ≺ vl′′,1,α
︸ ︷︷ ︸

∈L(wl,vl,C,α)

≺ vl′′,1,f9.

Recall that vl,C,f5 ∈ L(wl, vl,C,f5), vl′,1,β ∈ L(uβ, vl′,1,β) and vl,1,α ∈ L(wl′ , vl′,C,β).
Since l′β-chain is normal, L(wl′ , vl′,C,β) ∪ L(uβ, vl′,1,β) is an interval. Since, under
the assumption of longest path (2D−1), L(wl′ , vl′,C,β) and L(uβ, vl′,1,β) cannot both
contain vl′′,1,f1 and vl′′,1,f9 , L(wl′ , vl′,C,β) ∪ L(uβ, vl′,1,β) must contain 〈vl′,1,β, vl,1,α〉.
Then,

vl′′,1,f1 ≺ vl,1,β ≺ vl′,1,β ≺ vl′′,1,β ≺ vl,C,f5 ≺ vl,1,α
︸ ︷︷ ︸

∈L(wl′ ,vl′,C,β)∪L(uβ ,vl′,1,β)

≺ vl′,1,α ≺ vl′′,1,α ≺ vl′′,1,f9.

vl,C,f5 �∈ L(uβ, vl′,1,β); otherwise, vl′′,1,β ∈ L(uβ, vl′,1,β), which implies a routing
path from uβ to vl′′,1,β no shorter than 2D − 1. Hence, vl,C,f5 ∈ L(wl′ , vl′,C,β).

Consider the routing from wl′ to vl,C,f5. In order to avoid a path longer than
2D − 1, the routing path must be wl′ , uβ , wl, vl,C,f5 . Hence, vl,C,f5 ∈ L(uβ, vl,1,β).

Obviously, vl,1,β ∈ L(uβ, vl,1,β). vl′,1,β, vl′′,1,β �∈ L(uβ, vl,1,β) and vl,1,β, vl,C,f5 ∈
L(uβ, vl,1,β) imply that L(uβ, vl,1,β) will contain B. i.e.

a1 ≺ vl′′,1,f1 ≺ vl,1,β
︸ ︷︷ ︸

∈L(uβ ,vl,1,β)

≺ vl′,1,β ≺ vl′′,1,β
︸ ︷︷ ︸

�∈L(uβ ,vl,1,β)

≺

vl,C,f5 ≺ {vl,1,α, vl′,1,α, vl′′,1,α} ≺ vl′′,1,f9 ≺ a2 ≺ B ≺ a1
︸ ︷︷ ︸

∈L(uβ ,vl,1,β)

.

Pick a element in B, say vlb,1,f5 . In order to avoid a routing path longer than
2D − 1, the routing path must be uβ, wl, uf5 , vlb,1,f5 . This routing path implies that
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vlb,1,f5 ∈ L(wl,C,f5). But, vl′′,1,f5 ∈ L(wl,C,f5). Therefore, either vl′′,1,f1 or vl′′,1,f9
will be contained in L(wl,C,f5). A contradiction to Property 2 on wl exists because
vl′′,1,f1 ∈ L(wl, vl,1,f1) and vl′′,1,f9 ∈ L(wl, vl,1,f9) by Claim 5. ♠

Then, by Claim 14 and vl′′,1,f5 ∈ L(wl, vl,C,f5), we have the cyclic structure

vl′′,1,f5 ≺ {vl,1,β, vl′,1,β, vl′′,1,β}
︸ ︷︷ ︸

βth flap

≺ {vl,1,α, vl′,1,α, vl′′,1,α}
︸ ︷︷ ︸

αth flap

≺ vl′′,1,f9. (13)

For convenience, we use a short-hand notation Si for {vl,1,i, vl′,1,i, vl′′,1,i}. Like the
steps from (11) to (13), if we consider the routing from wl′ to vl,C,β or to vl′′,C,β

whichever nearer to vl′′,1,f5 , we will have another γ such that

vl′′,1,f5 ≺ Sγ
︸︷︷︸

γth flap

≺ Sβ
︸︷︷︸

βth flap

≺ Sα
︸︷︷︸

αth flap

≺ vl′′,1,f9.

Inductively, we must have infinite many number of Sλi
, i ∈ [1,F ], F < F , such

that
vl′′,1,f5 ≺ · · · · · · ≺ Sλ2 ≺ Sλ1 ≺ Sγ ≺ Sβ ≺ Sα ≺ vl′′,1,f9

However, we have only F flaps. It is a contradiction to the graph structure. Then,
the proof of Main Lemma 5.1 is completed.

6 The 2D − K Lower Bound, K ≥ 3

Theorem 6.1 ∀GL,C,F , where L ≥ 15, C ≥ 3 and F ≥ {[(2(L − 2)(20(3�DK � + 15) +
4) + 3)(L− 1) + 1](L− 1) + (�DK �+ 2)L+ 4}L, there is no labeling scheme in which the

longest path is shorter than 2D −K, K ≥ 3.

Proof: Assume there exists a labeling scheme such that the longest path is shorter
than 2D −K.

By the definition of GL,C,F , we have L layers and F flaps. There are LF ele-
ments in the set {vl,1,f |l ∈ [1, L], f ∈ [1, F ]}, referred to as R. Consider the routing
from uF . By Property 1, ∪l=L

l=1L(uF , vl,1,F ) will contain R. Since R is distributed in
the L edges’ interval labels from uF and |R| = LF , by the Pigeon Hole Principle,
there exists an edge, say (uF , vL,1,F ), such that L(uF , vL,1,F ) will contain at least F
elements of R. LetQ be the set of these elements, and therefore (uF , vL,1,F ) contain
Q, Q ⊂ R. Then, |Q| ≥ F ≥ {[(2(L − 2)(20(3�DK � + 15) + 4) + 3)(L − 1) + 1](L −
1) + (�DK � + 2)L+ 4}L by the choice of F in the theorem statement.

Partition Q into R1 ∪R2 ∪ . . .∪RL whereRl = {vl,1,f | for some f ∈ [1, F ]} ⊂ Q.
Again by the Pigeon Hole Principle, there exists an la such that |Rla | ≥ {[(2(L −
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2)(20(3�DK �+15)+4)+3)(L−1)+1](L−1)+(�DK �+2)L+4}. Let Sla = Rla−{vla,1,F }
and certainly, L(uF , vL,1,F ) contains Sla . Let p = |Sla | ≥ {[(2(L−2)(20(3�DK �+15)+
4) + 3)(L − 1) + 1](L − 1) + (�DK � + 2)L + 3}. Without loss of generality, assume
Sla = {vla,1,f |f ∈ [1, p]} and vla,1,p ≺ vla,1,1 ≺ vla,1,2 ≺ · · · ≺ vla,1,p−2 ≺ vla,1,p−1.
Under the assumption on the longest path, the routing from uF to the elements of
Sla should pass through an Lth layer, where L can be, but not necessarily, equal to
la. So, we have vla,1,i ∈ L(wL, vL,C,i), ∀i ∈ [1, p]; otherwise, the routing path from
uF to vla,1,i, i ∈ [1, p], is no shorter than 2D−1. Then, by Property 2 onwL, we have

vla,1,p ≺ L(wL, vL,C,1) ≺ L(wL, vL,C,2) ≺ · · · ≺ L(wL, vL,C,p−2) ≺ vla,1,p−1.

Hence, L(uF , vL,1,F ) contains L(wL, vL,C,1), . . . ,L(wL, vL,C,p−2), and in other
words, L(uF , vL,1,F ) contains vL,C,1, . . . , vL,C,p−2. The length of routing paths from
wL through vL,C,f ∈ 〈vla,1,p, vla,1,p−1〉 must be less than 3

2D − 3, where f is not
necessarily in [1, p]; otherwise, the length of a routing path from uF through that
edge (wL, vL,C,f ) will be greater than 2D − 3.

Consider the main Lemma 5.1. Define interval

A = 〈vla,1,p, vla,1,p−1〉 − {vla,1,p, vla,1,p−1},

which is a subinterval of L(uF , vL,1,F ). For each lb ∈ [1, L], lb �= L, lb �= la, if
there are (2(L − 2)(20(3�DK � + 15) + 4) + 3)(L − 1) + 2 elements out of the set
{vlb,1,f |f ∈ [1, p−2]} which is not in A, then we can make B the interval containing
the (2(L−2)(20(3�DK �+15)+4)+3)(L−1)+2 elements of the set {vlb,1,f |f ∈ [1, p−2]}
and by Lemma 5.1, ∃ a routing path from (wL, vL,C,f ), vL,C,f ∈ A, which is no
shorter than 3

2D − 1.
Therefore, there are at most (2(L−2)(20(3�DK �+15)+4)+3)(L−1)+1 elements

of the set {vlb,1,f |f ∈ [1, p− 2]} which are not in A. Hence, there are at most [(2(L−
2)(20(3�DK �+15)+4)+3)(L−1)+1](L−1) elements in the set {vlb,1,f |lb ∈ [1, L], lb �=
L, lb �= la, f ∈ [1, p − 2]} which are not in A. These elements belong to at most
[(2(L − 2)(20(3�DK � + 15) + 4) + 3)(L − 1) + 1](L − 1) flaps. In other words, there
are (�DK �+ 2)L+ 1 flaps, say, 1st, . . . , (�DK �+ 2)L+ 1th flaps, such that the elements
in {vl,1,f |l ∈ [1, L], f ∈ [1, (�DK �+ 2)L+ 1]} belong to A and belong to L(uF , vL,1,F ).

Among the chains in the first (�DK � + 2)L + 1 flaps, by Lemma 4.2, there are at
most �DK �+2 abnormal chains in a layer. There are L layers and at most (�DK �+2)L
flaps containing these abnormal chains. Hence, we have one flap, say the 1st flap,
whose elements, (ie. vl,1,1|l ∈ [1, L]) belong to A, such that ∀l ∈ [1, L], l1-chain is
normal.

Consider the 1st flap. Referring to the routing from uF to any element in
{vl,1,1|l ∈ [1, L]}, {vl,1,1|l ∈ [1, L]} ⊂ L(wL, vL,C,1); otherwise, one of the routing
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paths from uF will be no shorter than 2D − 1.
If no interval containing {vl,1,1|l ∈ [1, L]} is disjoint with {vl,1,f |l ∈ [1, L], f ∈

[2, F ]} − {vL,1,F }, then say L(wL, vL,C,1) contains a vl′,1,f , f �= 1. The routing path
from uF to vl′,1,f is uF , wL, u1, wl′′ , vl′,1,f , l′′ �= L, which is no shorter than 2D − 1.
Hence, there exists an interval T containing {vl,1,1|l ∈ [1, L]}, but not any elements
in {vl,1,f |l ∈ [1, L], f ∈ [2, F ]} − {vL,1,F } and T ⊆ L(wL, vL,C,1). We call this as
disjoint property of T .

Consider T . There are two marginal elements, say t1, t2 in {vl,1,1|l ∈ [1, L]}.
Without loss of generality, assume that no marginal elements of T are in the first
L− 2 flaps and assume

t1 ≺ {vl,1,1|l ∈ [1, L− 2]} ≺ t2 ≺ t1.

Moreover, by Lemma 4.11, there are at most two elements in {vl,C,1|l ∈ [1, L−2]}
which are not in 〈t1, t2〉. Without loss of generality, assume that these two ele-
ments are in the L − 3th and L − 2th flaps. So, our scope is restricted on the set
{vl,1,1, vl,C,1|l ∈ [1, L − 4]} ⊂ 〈t1, t2〉. Let us look into the interval 〈t1, t2〉. Without
loss of generality, assume

t1 ≺ v1,1,1 ≺ v2,1,1 ≺ · · · ≺ vL−4,1,1 ≺ t2. (14)

By Property 2 on u1, and recall t1, t2 ∈ {vL−1,1,1, vL,1,1}, we have

t1 ≺ L(u1, v1,1,1) ≺ L(u1, v2,1,1) ≺ · · · ≺ L(u1, vL−4,1,1) ≺ t2. (15)

For l ∈ [1, L − 4], vl,C,1 ∈ 〈t1, t2〉 ⊂ T ⊂ L(wL, vL,C,1) ⊂ L(uF , vL,1,F ). If vl,C,1 �∈
L(u1, vl,1,1), the routing path from uF to vl,C,1 will be uF , wL, u1, wl′ , uf , wl, vl,C,1,
which is no shorter than 2D − 1. Therefore, vl,C,1 ∈ L(u1, vl,1,1). By (15),

t1 ≺ {v1,1,1, v1,C,1} ≺ {v2,1,1, v2,C,1} ≺ · · · ≺ {vL−4,1,1, vL−4,C,1} ≺ t2. (16)

For l ∈ [1, L − 4], if vl,C,f ∈ 〈t1, t2〉, f �= 1, then vl,C,f ∈ L(u1, vl,1,1); otherwise,
by similar argument as above, the routing path from uF to vl,C,f is no shorter than
2D − 1.

If ∀f ∈ [2, F ], v6,C,f ∈ 〈t1, t2〉, then ∀f ∈ [1, F ], v6,C,f ∈ L(u1, v6,1,1). By
Lemma 4.2, there are F − �DK � − 2 v6,C,f ’s belonging to L(u1, v6,1,1), and each v6,C,f
belongs to a normal chain. By Lemma 4.6 and 4.10, there are F − �DK � − 6 pairs of
v6,1,f , v6,C,f ∈ L(u1, v6,1,1) ⊂ T , contradicting the disjoint property of T . Therefore,
there exists at least one f ′ ∈ [2, F ] such that v6,C,f ′ �∈ 〈t1, t2〉.

Consider the routing from v6,C−1,1. L(v6,C−1,1, v6,C,1) will contain v6,C,f , ∀f ∈
[1, F ]; otherwise, the routing path from v6,C−1,1 to v6,C,f , for some f ∈ [1, F ], will
be no shorter than 2D − 3.
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Figure 20: Two choices for L(v6,C−1,1, v6,C,1).

As shown in Figure 20, L(v6,C−1,1, v6,C,1) will contain v1,C,1, v2,C,1, v3,C,1, v4,C,1, v5,C,1
or v7,C,1, v8,C,1, . . . , vL−4,C,1. Since L ≥ 15, each choice (Figure 20) has at least five
elements.

We assume that L(v6,C−1,1, v6,C,1) contains v1,C,1, v2,C,1, . . . , v5,C,1 and the other
case is just similar. The routing path from v6,C−1,1 to v5,C,1 should be v6,C−1,1, w6, uf ,

w5, v5,C,1, (f �= 1); otherwise, the path will be no shorter than 2D. Hence,L(w6, v6,C,f )
and L(uf , v5,1,f ) contain v5,C,1. Consider the routing from v6,C−1,1 to v3,C,1. Then,
∃f ′′ �= 1 such that L(w6, v6,C,f ′′) and L(uf ′′ , v3,1,f ′′) contain v3,C,1.

We have two cases.

• f = f ′′.
That means v3,C,1, v5,C,1 ∈ L(w6, v6,C,f ).

If v4,C,1 �∈ L(w6, v6,C,f ), v4,C,1 ∈ L(w6, v6,C,fo), f o �= f . Then, by (16),

t1 ≺ v3,C,1
︸ ︷︷ ︸

∈L(w6,v6,C,f )

≺ v4,C,1
︸ ︷︷ ︸

∈L(w6,v6,C,fo)

≺ v5,C,1
︸ ︷︷ ︸

∈L(w6,v6,C,f )

≺ {v6,1,1, v6,C,1} ≺ t2.

Then,

t1 ≺ v3,C,1
︸ ︷︷ ︸

∈L(u1,v3,1,1)

≺ {v4,C,1, v6,C,fo} ≺ v5,C,1
︸ ︷︷ ︸

∈L(u1,v5,1,1)

≺ {v6,1,1, v6,C,1}
︸ ︷︷ ︸

∈L(u1,v6,1,1)

≺ t2.

Contradiction to the fact v6,C,fo ∈ 〈t1, t2〉 ⇒ v6,C,fo ∈ L(u1, v6,1,1). Hence,
v4,C,1 ∈ L(w6, v6,C,f ), implying v4,C,1 ∈ L(uf , v4,1,f ). Then, we have

t1 ≺ v3,C,1
︸ ︷︷ ︸

∈L(uf ,v3,1,f )

≺ v4,C,1
︸ ︷︷ ︸

∈L(uf ,v4,1,f )

≺ v5,C,1
︸ ︷︷ ︸

∈L(uf ,v5,1,f )

≺ t2.

In other words,

t1 ≺ v3,C,1 ≺ {v4,C,1, v4,1,f} ≺ v5,C,1 ≺ t2.
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Therefore, v4,1,f ∈ 〈t1, t2〉 ⊂ T , contradicting to the disjoint property of T .

• f �= f ′′.
We have two subcases. Firstly, v6,C,f ′′ ∈ 〈t1, t2〉, which implies that v6,C,f ′′ is
“around” v6,C,1 because v6,C,f ′′ , v6,C,1 ∈ L(u1, v6,1,1). We show the possible in-
terval for L(w6, v6,C,f ′′) in Figure 21(a). Second, v6,C,f ′′ �∈ 〈t1, t2〉, the possible

v5,C,1

1tv3,C,1

,v )6,C,fL(w6

v1,C,1
v2,C,1

t 2

L(w6 ,v )6,C,f’’

,v )6,C,fL(w6
v5,C,1

1t

v6,C,1

v3,C,1

v2,C,1

v1,C,1

t 2v6,C,f ’’

v6,C,f ’’

(a) (b)

Figure 21: Two possible cases for L(w6, v6,C,f ′′).

interval for L(w6, v6,C,f ′′) is as shown in Figure 21(b).

Referring to Figure 21, the choice is limited because the existence ofL(w6, v6,C,f )
which is disjoint with L(w6, v6,C,f ′′). In both cases,

v1,C,1, v2,C,1, v3,C,1 ∈ L(w6, v6,C,f ′′),

implying that v1,C,1 ∈ L(uf ′′ , v1,1,f ′′), v2,C,1 ∈ L(uf ′′ , v2,1,f ′′) and v3,C,1 ∈
L(uf ′′ , v3,1,f ′′). Then,

t1 ≺ v1,C,1
︸ ︷︷ ︸

∈L(uf ′′ ,v1,1,f ′′ )

≺ v2,C,1
︸ ︷︷ ︸

∈L(uf ′′ ,v2,1,f ′′ )

≺ v3,C,1
︸ ︷︷ ︸

∈L(uf ′′ ,v3,1,f ′′ )

≺ t2,

implying
t1 ≺ v1,C,1 ≺ {v2,C,1, v2,1,f ′′} ≺ v3,C,1 ≺ t2.

Therefore, v2,1,f ′′ ∈ 〈t1, t2〉 ⊂ T , contradicting the disjoint property of T .

Both cases are not valid, and this completes the proof of Theorem 6.1. ♦

7 Main Results

Theorem 7.1 There exists a graph such that no labeling scheme can have the longest path
shorter than 2D − o(D), where D = O(n).
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Proof: By Theorem 6.1, 2D−K is the lower bound. If 2D−Ω(D) is an upper bound
on the longest path for GL,C,F , by the definition of Ω, ∃δ > 0 such that (2 − δ)D is
the upper bound. However, by substitutingK = δ

2D into Theorem 6.1, (2 − δ
2)D is

a lower bound. Contradiction follows. ♦

Theorem 7.2 There exists a graph such that no labeling scheme can have the longest path

shorter than 2D − 3 where D = O(
√
n).

Proof: By substitutingK = 3 into Theorem 6.1, the result follows. ♦

8 Open Problems

• Is there a better lower bound for 1-label interval routing?

• Are there algorithms for an upper bound of smaller than 2D?

• Are there any other types of graphs yielding a lower bound of 2D −O(1)?

• The lower bound 2D−3 is deduced from a graph with n not less than 1, 491, 345, 315.
Are there any graphs with a smaller order yielding a lower bound of 2D −
O(1)?
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