
Upper Bound Results for Multi-Label Interval Routing

on Planar Graphs ∗

Savio S.H. Tse and Francis C.M. Lau†

Department of Computer Science and Information Systems
The University of Hong Kong

{sshtse,fcmlau}@csis.hku.hk

December 10, 2002

Abstract

Interval routing is a space-efficient routing method for computer networks. In this pa-
per, all graphs are assumed to be planar graphs, unless specified otherwise. We have
four upper bound results in this paper. First, for D ≥ 3, we prove the existence of
an O(D4)-IRS on arbitrary graphs whose longest path is bounded by D, where D is
the diameter not less than three. With a little modification, we can reduce the number
of labels used to O(D3) with the length of longest path being increased to (1 + α)D,
where α is any constant in (0, 1). Together with the result in Theorem 4 of [14], this
result implies an O(n

3
4)-IRS on arbitrary graphs whose longest path is bounded by

(1 + α)D, where n is the number of nodes in the graph. It was proved in [3] that for
some non-planar graphs, there is a lower bound of 3

2D − 1 on the longest path for
any M -IRS, M = O(n

D log n
D

). Comparing these two results, we conclude that interval

routing can perform strictly better in planar graphs with D = O(
4√n

log n). For larger di-
ameters, the difference between planar and non-planar graphs has yet to be explored.
For completeness, we also construct a 6-IRS for arbitrary graphs with D = 2.

Keywords: Distributed systems, graph theory, interval routing, network protocols, pla-
nar graphs, complexity tradeoffs.

∗A preliminary version of this paper appeared in Proc. SIROCCO 2002, June 2002, pp. 293-308. This work
is supported by an RGC CERG grant.

†Correspondence: F.C.M. Lau, Department of Computer Science and Information Systems, The University
of Hong Kong, Hong Kong / Email: fcmlau@csis.hku.hk / Fax: (+852) 2858 4141.

1

Administrator
HKU CSIS Tech Report TR-2002-17

1 Introduction

Interval routing is a space-efficient routing method for computer networks [10, 8]. The
idea is to assign a unique node number (from a cyclicly-ordered set) to every node and
then attach a range of node numbers—called an interval label—to every outgoing link. To
route a message, the destination node number is compared against the interval labels at a
node to decide on the link to traverse next. Figure 1 gives a simple example. The figure
shows the routing path of a message that travels from Node 2 to Node 0. An interval label
of the form 〈p, q〉 corresponds to the range of node numbers from p to q; intervals of the
form 〈r〉 contain the single node number r. The message first takes the edge to Node 3
because 0 is contained in the interval 〈3, 0〉, and then takes the edge to Node 4 because 0
is contained in 〈4, 0〉, and so on. Note that the label 〈3, 0〉 represents the interval spanning
{3, 4, 0}. It is obvious that O(d log n) space is sufficient at a node, where d is the node’s
degree, and n the number of nodes. Whereas using the traditional approach, the routing
table at a node could be as large as O(n log n). Interval routing clearly has an advantage in
terms of space, especially for networks with a relatively small degree.

The above labeling of nodes and links and the subsequent routing of messages based
on these node numbers and labels is referred to as an interval routing scheme (IRS). A valid
IRS is one that can route a message from any node to any other node.

a message destined for Node 0

210

34

<1,2> <2>

<4,0>

<3>
<3,0>

<1>
<3,4>

<2><1>

<4,0>

<2,3>

<0,1>

Figure 1: Example of interval routing

Interval routing is indeed a practical method. It has been adopted as the routing
method in a commercial routing chip [11], and has thus attracted a fair amount of attention
in recent years.

This paper addresses an important question concerning interval routing: given a graph
and the best IRS for the graph, what is the quality of the routing paths thus generated?
Optimal 1-label IRS’s, or simply 1-IRS’s, are known to exist for a number of well-known
graphs including the tree, the ring, and the two-dimensional mesh [10, 8, 2]. But there

2

are also graphs that are known to admit no optimal 1-IRS, which include the globe graph
[9]. For the class of all the graphs that do not admit an optimal 1-IRS, it is meaningful
to use more interval labels on each edge. Figure 2 shows a graph which has no optimal
1-label interval routing as proved by Fraigniaud and Gavoille in [2], but has optimal 2-
label interval routing. It is believed that the routing path will be shorter if we allow more

0

1 2

3

45

6

<1>
<6>

<6>

<6>
<1>

<3,4>

<3,4>

<1>

<0
>

<0
>

<0> <5
>

<5
>

<6,0>

<4,5> <4
,5

>

<1
,2

> <1,2>

<2
>

<2
>

<3><3>
<0>

<4>

<4>

<2,3>

<2
,3

>

<5,6>

<5
,6

>
<0,1>

Figure 2: A circular-arc graph with 2 labels in each edges.

routing information in the nodes. The study of multi-label interval routing is to find a
good trade-off between routing information storage and the path lengths. However, some
lower bound results show that we need Ω(

√
n) labels for optimal IRS [12]. This Ω(

√
n)

lower bound applies even if only a necessary condition of optimality—optimal longest
paths—is considered.

Longest path analysis is another way of measuring performance. The first result on
longest path analysis is by Ružička [9, 13]. His result—3

2D −O(1)—still stands as the best
lower bound for 1-IRS after more than ten years. The length of an optimal longest path is
obviously the diameter D and so we will use it as an important parameter. Tse and Lau
extended the result to multi-label IRS, or M -IRS, and proved a lower bound of 2M+1

2M D− 1
for M = O(3

√
n), and a lower bound of 2(1+δ)M+1

2(1+δ)M D for M = O(
√
n), for any constant

δ ∈ (0, 1]. The latter result directly implies the lower bound of Ω(
√
n).

Having studied many lower bound results, one may want to turn to upper bound
results. In this paper, we first present an O(D4)-IRS for graphs of D ≥ 3, whose longest
path is bounded by D. This result implies that for all constant-diameter graphs, there
exists an O(1)-IRS with longest path bounded by D. However, we cannot generalize it to
non-planar graphs. A counter example is in [3]. With a little modification, we can reduce
the number of labels used to O(D3)-IRS with the length of the longest path increased to
(1+α)D, where α is any constant in (0, 1) (Section 5). Together with the result in [14] which
says that there exists an (
 2n

αD �+ 1)-IRS such that the longest path is bounded by (1 +α)D,

3

we can directly deduce an O(n
3
4)-IRS whose longest path is bounded by (1 +α)D. Putting

the small α aside, there is an observable gap between the lower bound Ω(
√
n) and the

upper bound O(n
3
4). Further research is needed to narrow this gap. This paper does not

touch on the efficiency of any labeling algorithm. Further research on this issue is needed.
For completeness, we also construct a 6-IRS for arbitrary graphs with D = 2 in Section 6.

2 Definitions and Properties

A graph we consider for interval routing is a connected simple graph, G = (V,E), where
V is the set of nodes and E is the set of directed edges such that (u, v) ∈ E ⇔ (v, u) ∈ E. In
other words, G is an undirected graph. There are n nodes in V and each node has a unique
label from the set {0, 1, . . . , n − 1} denoted as ΓV . The node labels are cyclicly ordered,
denoted as 0 ≺ 1 ≺ · · · ≺ n− 1 ≺ 0. We now define interval routing scheme (IRS) formally.

Definition 1 Let k ∈ [2, n]. For any distinct v1, v2, . . . , vk ∈ {0, 1, . . . , n− 1}, v1 ≺ v2 ≺ · · · ≺
vk if ∃p1, p2, . . . , pk−1 such that

∑i=k−1
i=1 pi < n and vi+1 ≡ vi + pi (mod n) for i = 1 to k − 1.

We further define the expression u ≺ {v,w} ≺ x to be two simultaneous relations based
on the cyclic order: u ≺ v ≺ x and u ≺ w ≺ x.

Definition 2 An interval 〈a, b〉 is the set {a, a+1, . . . , b (mod n)}. The elements a, b are called
the marginal elements of the interval. In particular, 〈a, a〉 = 〈a〉 = {a}, and ∅ is an empty interval.

We refer to such a set as an interval set. A set A ⊂ ΓV is not an interval if and only if A is a
proper subset of every interval set containing it.

Definition 3 Given B is an interval. A set is a sub-interval of an interval B if it is an interval

and is a subset of B. A is a proper sub-interval of B if A is a sub-interval of B and the marginal
elements of A are non-marginal elements of B.

Definition 4 Two intervals A and B are non-overlapping if A ∩B = ∅.

Definition 5 Two intervals A and B are disjoint if A ∪B are not an interval.

Any two disjoint intervals are non-overlapping.

Definition 6 Let I be the set containing every possible interval subset of ΓV .

Example:

ΓV = {0, 1, 2, 3, 4},
I = {∅, 〈0〉, 〈1〉, 〈2〉, 〈3〉, 〈4〉, 〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 4〉, 〈4, 0〉,

〈0, 2〉, 〈1, 3〉, 〈2, 4〉, 〈3, 0〉, 〈4, 1〉, 〈0, 3〉, 〈1, 4〉, 〈2, 0〉, 〈3, 1〉, 〈4, 2〉, 〈0, 4〉}.

4

Definition 7 For M ≥ 2, let IM be the set containing every union of M elements of I .

Referring to the previous example,

I2 = I ∪ {〈0〉 ∪ 〈2〉, 〈0〉 ∪ 〈3〉, 〈1〉 ∪ 〈3〉, 〈1〉 ∪ 〈4〉, 〈2〉 ∪ 〈4〉,
〈0, 1〉 ∪ 〈3〉, 〈1, 2〉 ∪ 〈4〉, 〈2, 3〉 ∪ 〈0〉, 〈3, 4〉 ∪ 〈1〉, 〈4, 0〉 ∪ 〈2〉}.

Some unions of intervals are intervals. E.g. 〈0〉 ∪ 〈1〉 = 〈0, 1〉, 〈0, 1〉 ∪ 〈4〉 = 〈4, 1〉.

Definition 8 For any V , an node labeling function L is an one-one mapping L : V → ΓV .

Definition 9 Let M ≥ 2. An M -label edge labeling function L∗ is a mapping L∗ : E → IM .

For each (u, v) ∈ E, L∗(u, v) is a union of M intervals. We refer to each of these M intervals
as M interval labels of u on (u, v). Since the union of two non-disjoint intervals is an
interval, in other words, L∗(u, v) is a union of at most M disjoint intervals.

Definition 10 An M -interval routing scheme, or M -IRS, on a graph G = (V,E) is an order pair

(L,L∗) where L is a node labeling function and L∗ is an M -label edge labeling function such that
the following are satisfied.

• ∀u, v ∈ V , u �= v, ∃ a simple path u, x1, x2, . . . , xk, v in G such that L(v) ∈ L∗(u, x1) ∩
L∗(x1, x2) ∩ . . . ∩ L∗(xk, v), and

• ∀u ∈ V , if (u, v1), (u, v2) ∈ E, and v1 �= v2, then L∗(u, v1) ∩ L∗(u, v2) = ∅.

Directly from Definition 10, we have the following properties.

Property 1 (Complete) The set of interval labels for edges directed from a node u is complete. That
is, ∀u ∈ V , ΓV − {L(u)} ⊂ ∪(u,v)∈EL∗(u, v).

Property 2 (Deterministic) The interval labels for edges directed from a node u are disjoint. That

is, for u �= v, L(v) is contained in exactly one of these interval labels.

Property 3 (No bouncing) ∀(u, v) ∈ E, L∗(u, v) ∩ L∗(v, u) = ∅.

It should be noted that these two properties are necessary but not sufficient for a valid
IRS for general graphs.

5

b

a

c

d

ef

g

Figure 3: Only nodes a and c are surrounded.

3 An O(D4)-IRS, for graphs of D ≥ 3

By definition, every planar graph has a geometric representation which can be drawn on a
plane such that no two of its edges intersect [1].

Given a graph G = (V,E), |V | = n, we choose an arbitrary geometric planar represen-
tation and use it for the discussion in this paper. We choose an arbitrary node R such that
R is not “surrounded” (Figure 3). Using BFS, we construct a spanning tree T rooted at R.
Assume that T has d + 1 levels, and its depths is d. Obviously, d ≤ D.

Based on T , we are now going to label the nodes. We label the graph level by level,
anticlockwisely, using integers from 0 to n − 1. R is labeled 0. A node in level i + 1 will
be labeled with a number greater than any node in level i, where i ∈ [0, d]. For each level,
a node visited earlier will be labeled with a smaller integer. So, the values of labels are
increasing anticlockwisely in a level. Figure 4 is an example. For simplicity, we use a node

1

4 5

10 11

12 17 1813

R=0

32

987

212019

6

Figure 4: Labels of the nodes. Dotted lines are fronts.

label as its identity. We modify the definitions of ancestor and descendant.

Definition 11 Given an ith-level node x, a jth-level node y, and j > i. If their distance is j − i

and all the edges accountable for the distance are geometrically within the i-th and j-th levels, y is

called an ancestor of x, and x a descendant of y.

This definition says that the ancestor-descendant relationship depends on the chosen geo-

6

metrical representation. Some examples are in Figure 4. Nodes 0, 1 and 3 are ancestors of
nodes 6, 17 and 18, and node 5 is an ancestor of nodes 13–16 only; however, node 3 is not
an ancestor of nodes 4, 10–12 since the path is not within their levels. The edges not in the
spanning tree are called fronds.

We are now going to label the edges. For any node u, let Au be the set of u’s descen-
dants, and Bu be the set containing node R and the nodes in the tree path (without fronds)
from R to u.

Let Cu be the set V −Au−Bu. Consider the routing from u to the nodes in Au. Assume
that u is at the ith level, then we need at most d− i interval labels in each down edge of u
for Au. The reason is that for each down edge (u, v) of u, {v} ∪ Av falls into no more than
d− i− 1 intervals. An example is shown in Figure 5. For Bu, we need i− 1 interval labels

u

v

vA

dth level

i+1 th level

Figure 5: {v} ∪Av falls into ≤ d− i− 1 intervals.

in the up edge of u. Therefore, for routing to Au∪Bu, we need at most O(D) labels in every
edge. Obviously, these routing paths are shortest paths.

Consider the last kind of routing which is from u to Cu. First, we put aside the limi-
tation on the number of labels. We label the edges to use the shortest paths from u to x,
∀x ∈ Cu, ∀u ∈ V .

Definition 12 Let S(a, b) be the original shortest routing path from a to b.

If there are more than one shortest paths for S(u, x), we will apply the following rules:

R1 ∀v ∈ V , v �= u, S(u, v) can form a tree rooted at u.

R2 The path must pass through the highest possible ancestor of x, if any.

R3 S(x, u) should reversely follow as many edges as possible in S(u, x), as long as R2
applies to both paths.

7

Note that conflict may only arise between R2 and R3, and R2 will have higher priority.
Figure 6 shows an example. In the example, |S(u, x)| = |S(x, u)| and they use totally
different edges. S(u, x) passes through an ancestor of x, but none of u. Similarly for S(x, u).

x u

R

Figure 6: R2 overrides R3.

According to these shortest paths, we now label the edges of all nodes. We set these
interval labels in a way that no interval label contains nodes from different levels, and no
interval label contains nodes from Cu as well as Au ∪ Bu. It can be done by splitting one
interval label into two. Obviously, the routing paths are no longer than D. However, the
number of labels in each edge of T may exceed O(D4). We then show how to reduce the
number of labels needed in each edge by relaxing some routing paths.

We divide the nodes in Cu into the left and the right part of {u}∪Au ∪Bu. We consider

Au

uB

u

uC1,left uC1,right

uC2,left
uC2,right

Figure 7: Cu’s nodes are divided into left and right parts.

the lth level of the right part. Let C l,right
u be the set of nodes in the lth level of the right part

of Cu, l ∈ [0, d]. Similarly for Cl,left
u . Each C l,right

u forms an interval according to the node
labeling method. Figure 7 is an example. Before relaxing any routing paths, they are all
shortest paths such that all routings starting from each node form a shortest path tree, i.e.,
no two routing paths starting from a node will cross each other or touch each other at any
middle point. During (and after) path relaxation, part of this property will be conserved
as stated in the conditions in Section 4.

8

Theorem 1 For each u ∈ V , and for each l ∈ [1, d], the nodes in Cl,right
u will fall into at most

O(D3) interval labels in each edge of u such that all routing paths are no longer than D.

We prove Theorem 1 in Section 4. We can then apply similar arguments to C i,left
u and

deduce Theorem 2 easily.

Theorem 2 For all graphs of D ≥ 3, there exists an O(D4)-IRS with all routing paths no longer
than D. ✷

4 Proof of Theorem 1

Let X = C l,right
u . Recall that we set the initial routing paths from u to be all shortest paths.

Hence, their lengths are all bounded by D. If a routing path has never been relaxed, it is
still the original shortest path. In order to bound the interval labels, we need to relax some
of the routing paths having a length less than D. We call such a process path relaxation.

We embed the planar representation of G into a Cartesian plane. A region in the Carte-
sian plane is a set of points surrounded by a set of edges in E. Two points are in the same
region surrounded by E ′ ⊂ E if and only if they can be connected by a line or curve which
does not touch or cross any edges in E ′. If Y is a region, then Y is the complement of Y ,
i.e., any point x ∈ Y if and only if x �∈ Y .

Definition 13 Let R(a, b) be the routing path from a to b.

For all s ∈ V , we impose a set of invariant conditions C1 to C4 as follows:

C1 (Path format) ∀t ∈ X, t �= s, if R(s, t) has never been relaxed, R(s, t) = S(s, t). If
R(s, t) has been relaxed, it will have a recursive format S(s, x)R(x, t), where S(s, x)
is a subpath of S(s, y) and y is an ancestor of t.

Hereafter, the expression R(s, t) = S(s, t) will refer to the first case that the routing path
has never been relaxed. Shortest routing path also refers to the same. The expression
R(s, t) = S(s, x)R(x, t) refers to the second case of C1. In this case, S(s, y)S(y, t) is called
the pseudo-path of R(s, t).

C2 (Representative) Each interval label from s to X contains a representative y ∈ X

such that R(s, y) = S(s, y). After relaxing R(s, x), for some x ∈ X, the interval
label of s that contains x has a representative z ∈ X such that R(s, z) = S(s, z) =
S(s,w)S(w, z), where w is an ancestor of x. We say R(s, x) relies on z. R(s, z) also
passes through one ancestor of each node between x and z. For each node x ′ ∈ X if
x′ is between x and z, R(s, x′) is a relaxed path relying on z.

9

In particular, if R(s, y) = S(s, y), R(s, y) relies on y.

Definition 14 Let R(s, x) be a path where x ∈ X. Define G(s, x) to be the maximal interval
containing x such that ∀x′ ∈ G(s, x), x′ ∈ X, either x′ is one of the nodes in R(s, x), or one

ancestor of x′ is passed through by R(s, x).

C3 If R(s, t) relies on z, G(s, t) of the un-relaxed path S(s, t) is a subset of G(s, z).

Definition 15 ∀x ∈ X, let ‖R(s, x)‖ be the pseudo-distance of R(s, x) such that

‖R(s, x)‖ =

{
|S(s, x)|, if R(s, x) = S(s, x);
|S(s, z)|, if R(s, x) is a relaxed path relying on z.

C4 The number of interval labels of all edges of s does not increase.

C1, C2 and C3 govern the format of relaxed paths. Figure 8 shows two cases. For the case

s

t z z’

s’ s

t

s’

z’ z

(a) (b)

Figure 8: Impossible cases: R(s, t) = S(s, s′)R(s′, t) relies on z and R(s′, t) relies on z′.

(a), R(s′, t) relies on z′, implying that R(s′, z′) = S(s′, z′) and R(s′, z) relies on z′. Then,
R(s′, z) �= S(s′, z), implying R(s, z) �= S(s, z). A contradiction to C1. For the case (b), C2
implies that R(s′, z) is a relaxed path relying on z′. However, R(s′, z) �= S(s′, z) implies
R(s, z) �= S(s, z), which is a contradition to C1. The importance of C4 is to guarantee that
we will not increase the number of labels in any node.

For all s ∈ V , these four conditions must be true during path relaxation. Initially, the
above conditions hold. It should be noted that if R(u, x) = u, u′, . . . , x, relaxing R(u, x)
does not always imply the relaxation of R(u′, x). Each routing path can be relaxed many
times, as long as the above four conditions conserve.

We show how the number of interval labels for X in any edges of u is bounded by
12D2(D + 2). For any v �= u, the number of interval labels for X in any edges of v is
not increased but the content of interval labels may change. However, it is guaranteed
that any changes will not produce a routing path longer than D and will not add extra

10

interval labels to any edges. Intuitively, our aim is to settle the interval labels in u’s edges
for routing to X without adversely affecting the others.

Assume that (u, v) has γ interval labels which are subsets of X, where γ > 12D2(D+2).
Let the nodes x1, x2, . . . , xγ be the representatives of these γ interval labels from left to
right, respectively. Their existence is guaranteed by C2.

In each round of relaxation of routing paths, we repeat the arguments in Section 4.1
until the number of interval labels in the edge (u, v) is bounded by 12D2(D + 2).

4.1 Path Relaxation

The pre-requisite for each round of path relaxation is that ∃j, k ∈ {1, . . . , α}, j �= k, such
that R(u, xj) = S(u, xj), R(u, xk) = S(u, xk), |S(u, xj)| = |S(u, xk)| and S(u, xj) contains a
common ancestor of xk and xj , x. The way to achieve this pre-requisite will be discussed
in Section 4.2.

The subpath S(u, x) is a common prefix of S(u, xj) and S(u, xk); otherwise, rule R1 will
be violated. Let the elements between xk and xj be a1, a2, . . . , ap from left to right, respec-
tively. We also let a0 = xk and ap+1 = xj . x is also their common ancestor. Ultimately,
we will relax R(u, aq), and make it follow S(u, x)S(x, aq), ∀q ∈ [1, p]. We will do the path
relaxation of R(u, aq), ∀q ∈ [1, p], round by round. At the beginning of a round, we walk
through the nodes from x to u, exclusively and reversely along S(u, x). Suppose b0 is the

(a) (b)

aa aq−1 q

0x x

q+1

b0 b
u v v’

a0 ap+1

u v

a0 ap+1

Figure 9: (a) Possible paths of R(b0, aq). (b) Groups of b0 on {a1, a2, . . . , ap}.

first node such that the path R(b0, aq) does not pass through x, q ∈ [1, p]. It implies that if
a node v′ lies between x and b0, excluding b0, R(v′, aq) will pass through x, ∀q ∈ [1, p]. If
no such b0 exists, path relaxation has been done already.

Let us investigate the path structure of R(b0, aq), ∀q ∈ [1, p]. If a relaxed path R(b0, aq)
relies on aβ , β must fall in [1, p]. The reason is that according to the choice of b0, β cannot be

11

0 or p, and if β �∈ [1, p], according to C2, S(b0, a0) or S(b0, ap+1) will be a relaxed path relying
on aβ . It is then followed by a contradiction to the pre-requisite R(b0, a0) = S(b0, a0) and
R(b0, ap+1) = S(b0, ap+1). Consider an arbitrary q ∈ [1, p] such that R(b0, aq) = S(b0, aq).
S(b0, aq) will not touch S(x, a0) and S(x, ap+1) (Figure 9a), otherwise, rule R1 will be vio-
lated. Among all shortest routing paths from b0 to aq, q ∈ [1, p], suppose there are exactly
p′ shortest routing paths. According to C2, if R(b0, aq′), q′ ∈ [1, p], is a relaxed path, it will
rely on a node aq′′ , q′′ ∈ [0, p + 1], which is the nearest on the left or right side of aq′ , where
R(b0, aq′′) = S(b0, aq′′). In other words, the set {a1, a2, . . . , ap} is partitioned into p′ groups
which are also disjoint intervals (Figure 9b). We say they are groups of b0 on {a1, . . . , ap}.
For each group member in a group, the routing path from b0 to it relies on its group leader.

aa aq−1 q+1q

b1

b1

x0b

p+1

u v

a0 a

Figure 10: (a)Two possible locations of b1. (b) A pseudo-path for R(b1, aq).

If we relax S(b0, aq) to follow the path S(b0, x), the new |R(b0, aq)| is the same as the
new ‖R(b0, aq)‖, which is |S(b0, xj)| ≤ D. However, we could not only relax S(b0, aq) for
two reasons. First, there may exist a node b1 (Figure 10) such that the new R(b1, aq) is
not in a valid format, violating C1 or C2. It should be noted that the four conditions are
conserved everywhere except at b1. We say b1 objects to the relaxation of S(b0, aq). For such
cases, before we change the route for R(b0, aq), we need to find another route for R(b1, aq)
without passing through b0. Then, we relax R(b1, aq). During this relaxation, we may need
to relax some other node aq′ (aq+1 in Figure 10) in order to keep C4. However, there may
exist a node b2 objecting to this relaxation.

We extend this idea to bλ, λ ∈ Z+. The path relaxation will be presented as a recursive
function Relax(bλ, aρλ

, alλ , arλ
). The function is to relax the paths R(bλ, aρλ+1

) to follow
the first edge of R(bλ, aρλ

), ∀ρλ+1 ∈ [lλ, rλ], where ρλ �∈ [lλ, rλ]. Before calling the func-
tion, we should guarantee the existence of R(bλ, aρλ

) which passes through the ancestors
of aρλ+1

, ∀ρλ+1 ∈ [lλ, rλ] (Theorem 3). In implementing Relax(bλ, aρλ
, alλ , arλ

), the first

12

thing is to extract groups of bλ on {alλ , . . . , arλ
}. For each group, we will find out those

bλ+1’s objecting to the relaxation of any paths. We will store bλ+1 in a set B in the form of
(bλ+1, f, aη), where f, aη ∈ X. We let F be a subset of X that contains f . Then, B implic-
itly stores the information that R(bλ+1, f) relies on aη, and bλ+1 objects to the relaxation of
R(bλ, f). Hence, in particular, f = aη implies R(bλ+1, f) = S(bλ+1, f). We partition B ac-
cording to the values of aη—the last attribute of each element. For a particular aη, consider
a bλ+1 such that the path bλ+1, . . . , bλ is the longest. Among all values of f in (bλ+1, f, aη)’s,
choose the ones that are farthest from aη in both the left and the right direction. For sim-
plicity, we let the nodes between all f ’s and aη be fλ+1

min , . . . , fλ+1
max , respectively. By C2, all

nodes inside [f λ+1
min , fλ+1

max] are relaxed paths from bλ+1. Indeed, [f λ+1
min , fλ+1

max] is a group of
bλ+1 on {alλ , . . . , arλ

} with group leader aη. We will find a path S(bλ+1, aρλ+1
) such that

G(bλ+1, aρλ+1
) will contain [fλ+1

min , fλ+1
max]. Intuitively, the path will pass through the ances-

tors of fλ
min, . . . , f

λ
max, and the nodes in the gap, if any, between them and aρλ+1

. The first
call in the root of the recursion tree is Relax(b0, ap+1, a1, ap).

Function: Relax(bλ, aρλ
, alλ , arλ

), where ρλ, lλ, rλ ∈ [1, p], lλ < rλ.
1. B := ∅;
2. For all ∆ ∈ [lλ, rλ]
2.1 Find all pairs (bλ+1|a∆) such that each R(bλ+1, a∆) passes

through bλ and the new R(bλ+1, a∆) violates C1 or C2;
2.2 Find all pairs (bλ+1|a∆) such that each R(bλ+1, a∆) contains

(bλ+1, bλ) ∈ E and R(bλ, aρλ
) contains (bλ, bλ+1) ∈ E;

2.3 Put all pairs (bλ+1|a∆) into STACK .
3 While STACK �= ∅
3.1 Take out one (bλ+1|a∆);
3.2 If R(bλ+1, a∆) = S(bλ+1, a∆)

Store (bλ+1, a∆, a∆) into B;
3.3 If R(bλ+1, a∆) �= S(bλ+1, a∆)
3.3.1 Let S(y, bλ) be the longest subpath of R(bλ+1, a∆)

such that R(y, a∆) = S(y, bλ)R(bλ, a∆);
3.3.2 bλ+1 := y;
3.3.3 Let R(bλ+1, a∆) relies on aη;
3.3.4 Store (bλ+1, a∆, aη) into B;
4. Partition B according to the last attributes;

Lemma 1 In Step 3.3.3, aη ∈ {alλ , . . . , arλ
} for λ = 0.

Proof: By C1, S(bλ+1, aη) pass through bλ. By Step 2, a∆ ∈ {a1, . . . , ap}. For λ = 0, if aη is
outside {a1, . . . , ap}, by C2, one of R(bλ, a1) and R(bλ, ap) must rely on aη and it violates

13

the pre-requisite that both of them are shortest path. ✷

Lemma 2 In Step 3.3.3, assume that aη ∈ {alλ , . . . , arλ
} and we can find a path S(bλ+1, aρλ+1

)
for step 5.1.6, for λ = ζ − 1, ∀ζ ≥ 1. Then, aη ∈ {alλ , . . . , arλ

} for the case λ = ζ .

Proof: We denote aη as aηζ+1
during the execution of Relax(bζ , aρζ

, alζ , arζ
) and aηζ

as
the ones in its caller Relax(bζ−1, aρζ−1

, alζ−1
, arζ−1

). By the algorithm, {alζ , . . . , arζ
} is be-

tween aρζ
and the range [f ζ

min, f
ζ
max]. In other words, a∆ is between aρζ

and aηζ−1
since

aηζ−1
∈ [f ζ

min, f
ζ
max]. If aηζ+1

is outside the range, S(bζ , aηζ
) or S(bζ , x), for some node

x ∈ [f ζ
min, f

ζ
max], will rely on aηζ+1

. By assumption in the lemma statement, both shortest
paths exist. Then, it violates C2. ✷

5. For each partition B′

5.1 While B′ �= ∅
5.1.1 Take out a (bλ+1, ∗, aη) ∈ B′ such that the subpath

bλ+1, . . . , bλ is the longest, where ∗ means any value;
5.1.2 B′′ := {(bλ+1, f, aη) ∈ B′|f ∈ F};
5.1.3 B′ := B′ −B′′;
5.1.4 F ′ := {f |(bλ+1, f, aη) ∈ B′′} ∪ {aη};
5.1.5 fλ+1

max := max(F ′); fλ+1
min := min(F ′);

5.1.6 Find S(bλ+1, aρλ+1
) such that aρλ+1

is the nearest to
the range [fλ+1

min , fλ+1
max] ⊂ G(bλ+1, aρλ+1

);
5.1.7 If a gap exists between [f λ+1

min , fλ+1
max] and aρλ+1

5.1.7.1 Let alλ+1
, . . . , arλ+1

, where lλ+1 < rλ+1, be the nodes in
the gap which have not relied on aρλ+1

;
5.1.7.2 Relax(bλ+1, aρλ+1

, alλ+1
, arλ+1

);
5.1.8 Force R(bλ, a∆),∀a∆ ∈ [fλ+1

min , fλ+1
max], to the first edge

of S(bλ+1, aρλ+1
);

6. Force R(bλ, a∆),∀∆ ∈ [lλ, rλ], to the first edge of S(bλ, aρλ
);

Steps 2, 3 and 4 are to find a set B containing bλ+1’s objecting to the relaxation of R(bλ, a∆),
∆ ∈ [lλ, rλ]. Directly from the algorithm, we have the following two observations.

Fact 1 For all ζ ∈ [1, λ + 1], aρζ
�∈ {alζ , . . . , arζ

} ∪ [f ζ
min, f

ζ
max]. ✷

Fact 2 For all ζ ∈ [1, λ + 1], there is no increase of number of interval labels in the first edge of
S(bζ , aρζ

).

Proof: In order to keep the number of interval labels unchanged, we group two kinds of
nodes in X into the interval containing aρζ

. One is inside [f ζ
min, f

ζ
max]. Relaxation of this

14

kind of nodes will not be objected to by others since we choose the bζ such that S(bζ , bζ−1)
is longest. The other kind is the nodes in the gap between [f ζ

min, f
ζ
max] and aρζ

, which have
not yet relied on aρζ

. The relaxation of nodes of this kind, ranging from {alζ to arζ
)}, will

be done after the return of the recursive call Relax(bζ , aρζ
, alζ , arζ

). For those inside the
gap and have already relied on aρζ

, we need not handle them. Hence, the result follows. ✷

Lemma 3 Consider a destination a∆ and the set B created just after step 3. For all ζ ∈ [1, λ + 1],
if R(bζ , a∆) is changed to another path without passing through bζ−1 for all bζ in B such that C1

to C4 are conserved, then no nodes in V will object the relaxation of R(bζ−1, a∆).

Proof: For all bζ in B, if R(bζ , a∆) is changed to another path without passing through bζ−1

such that C1 to C4 are conserved, then bζ will not object to the relaxation of R(bζ−1, a∆).
Now, we consider bζ which is not in B, but objects to the relaxation of R(bζ−1, a∆).

If R(bζ , a∆) = S(bζ , a∆), according to Step 3.1, bζ must be in B. So, we assume
R(bζ , a∆) �= S(bζ , a∆).

Let S(y, bζ−1) be the longest subpath of R(bζ , a∆) ending at bζ−1. Then, R(y, a∆) is a
subpath of R(bζ , a∆). If there exists another path for R(y, a∆) without passing through
bζ−1 such that C1 to C4 are conserved, then by the property of interval routing, there exists
another path for R(bζ , a∆) without passing through bζ−1, either. ✷

Step 4 divides the set B into partitions in the way that the last attributes of all elements
in each partition are the same. In Step 5, the algorithm will work on all elements in all
partitions. Step 5.1.1 takes out the farthest bλ+1 from B′. That means, in each iteration
of the while-loop, R(bλ+1, a∆) will not be a proper subpath of R(b′λ+1, a∆), for all b′λ+1

in B′, and a∆ in [fλ+1
min , fλ+1

max]. Steps 5.1.2 to 5.1.5 provide a range [f λ+1
min , fλ+1

max] such that
a particular bλ+1 objects to the relaxation of R(bλ, a∆), ∀a∆ ∈ [fλ+1

min , fλ+1
max]. The purpose

of Step 5.1.6 is to find the other paths for R(bλ+1, a∆), ∀a∆ ∈ [fλ+1
min , fλ+1

max]. We need the
condition [fλ+1

min , fλ+1
max] ⊂ G(bλ+1, aρλ+1

) in order to prove the invariance of C1 and C2 (The-
orem 5). The requirement that the position of aρλ+1

is the nearest or inside [f λ+1
min , fλ+1

max]
will be useful in proving the existence of S(bλ+1, aρλ+1

) (Theorem 3). Then, we will force
R(bλ+1, a∆)’s to follow the first edge of S(bλ+1, aρλ+1

). We are going to give a formal proof
on the correctness of algorithm.

Consider a particular (b1, f, aη1) ∈ B in the implementation of Relax(b0, ap+1, a1, ap).
There is a path R(b1, aη1) = S(b1, aη1) passing through b0. Similarly, for a particular
λ > 0, there is a path R(bλ+1, aηλ+1

) = S(bλ+1, aηλ+1
) passing through bλ in the imple-

mentation of Relax(bλ, aρλ
, alλ , arλ

), ρλ, lλ, rλ ∈ [1, p], lλ < rλ, Let S(bλ, aηλ
), λ ≥ 1, be

these paths. By the rules R1 and R3, the paths S(bλ+1, aηλ+1
) and S(bλ, aηλ

) have either
exactly one common subpath containing bλ, or exactly one common node at bλ. Accord-
ing to the algorithm, bλ+1 and bλ are connected by a shortest path which is a subpath of

15

S(bλ+1, aηλ+1
). Then, there is a path S(bλ+1, bλ)S(bλ, bλ−1) · · · S(b1, b0) which connects bζ

together, ∀ζ ∈ [0, λ + 1]. The path guarantees the existence of a touching point between
S(bζ , aηζ

) and S(bζ−1, aηζ−1
), ∀ζ ∈ [2, λ + 1]. These touching points guarantee the validity

of the following definition.

Definition 16 Define P0 to be an empty path (∅). Define P1 to be the path S(b1, b0), and c1 = b0.

For all ζ ∈ [2, λ + 1], define Pζ to be the union of the subpath S(bζ , cζ) of S(bζ , aηζ
) and the suffix

of Pζ−1 starting at cζ , where cζ is defined as the chosen touching point of S(bζ , aηζ
) and Pζ−1 such

that the suffix is shortest.

Figure 11 shows two examples.

ζ+1η aηζ

bζ+1

bζcζ

ζ+1P

P

a
ζρa

ζ

(a)

x

b0Pζ bζ+1

aηζ
a

ζ+1η a
ζρ

bζ
cζ+1

cζ

ζ+1c

0b

x

(b)

ζ+1P

Figure 11: Relationship between Pζ and Pζ+1, ∀ζ ∈ [1, λ + 1].

Lemma 4 (Step 5.1.6) There exists S(b1, aρ1) such that (1) aρ1 and b1 are in different regions sepa-
rated by S(b0, x), S(x, aη1), and S(b0, aη1); (2) [f1

min, f
1
max] ⊂ G(b1, aρ1); and (3) {al1 , . . . , ar1} ⊂

{a1, . . . , ap}.

Proof: Consider the function call Relax(b0, ap+1, a1, ap). The nodes in [f 1
min, f

1
max] form a

group of b1, whose leader is aη1 . Let X and Y be the two disjoint regions, and b1 be in X .
Since the boundary paths are all shortest paths and they cannot touch any of S(b0, a0) and
S(b0, ap+1). Hence, a0 and ap+1 are in different regions. We assume that a0 is in X , and
then ap+1 is in Y . We leave the other similar case that a0 is in Y to the reader.

Consider R(b1, ap+1). It is done if it touches S(b0, x), i.e., we can use ap+1 as aρ1 . We
now consider the un-relaxed S(b1, ap+1). By R1, it cannot touch S(b0, aη1). Obviously,

16

it cuts S(x, aη1) and passes through the ancestors of G(b0, aη1). It must pass through the
ancestors of the nodes in [f 1

min, f
1
max].

• Consider the case that [f 1
min, f

1
max] ⊂ G(b1, ap+1). If R(b1, ap+1) = S(b1, ap+1), it is

done by letting aρ1 = ap+1; otherwise, we let R(b1, ap+1) rely on a. Then, it is done
by letting aρ1 = a. In both cases, al1 , . . . , ar1 , the nodes that need to rely on aρ1 , will
reside between aη1 and ap+1, exclusively. It is because we need not relax the nodes
between ap+1 and a, inclusively.

• Consider the case that [f 1
min, f

1
max] �⊂ G(b1, ap+1). There exists a node aρ between aη1

and ap+1 such that aρ �∈ G(b1, aη1) and R(b1, aρ) = S(b1, aρ) ⇒ [f1
min, f

1
max] ⊂ G(b1, aρ)

η1

b1

x

aρ

b

a

0

ap+1

Figure 12: The node aρ is a candidate for aρ1 if R(b1, aρ) = S(b1, aρ).

(Figure 12). If R(b1, aρ) = S(b1, aρ), it is done by letting aρ1 = aρ; otherwise, we let
aρ1 = a where R(b1, aρ) relies on a. Obviously, al1 , . . . , ar1 are between aη1 and ap+1,
exclusively.

Note that all candidates for aρ1 is outside X , i.e., b1 and aρ1 are in different regions. ✷

Lemma 5 If c2 is a node on S(b1, aη1), and c2 �= b0, then G(b2, aη2) ⊂ G(c2, aη1) and aη1 �∈
G(b2, aη2).

Proof: The node c2 is on the path S(b1, b0). By R1, S(c2, aη1) cannot touch S(c2, aη2),
except at c2. Consider two regions X and Y separated by paths S(b0, x), S(x, aη1), and
S(b0, aη1). The node aη2 must reside in the same region as b1, b2 and c2. Assuming the
contrary, and S(b2, aη2) will touch S(b0, x) or S(x, aη1). If S(b2, aη2) touches S(b0, x), its
subpath S(b1, aη2) can be a better choice for Step 5.1.6, which is a contradiction because by
Fact 1, aρ1 �∈ [f1

min, f
1
max]. If S(b2, aη2) touches S(x, aη1), then S(b2, aη2) passes through

the ancestors of G(b1, aη1). If G(b1, aη1) ⊂ G(b1, aη2), we can use S(b1, aη2) as a better
choice for Step 5.1.6. If G(b1, aη1) �⊂ G(b1, aη2), then there exists a node aη′ between aη2

and G(b1, aη1) such that aη′ �∈ G(b2, aη2). Choose an aη′ such that it is closest (next) to

17

x

aη1
aη2

aη’

b1

a

Figure 13: G(b1, aη1) ⊂ G(b1, aη′) and aη2 cannot lie between aη′ and a.

G(b1, aη1). Then, R(b1, aη′) = S(b1, aη′) ⇒ G(b1, aη1) ⊂ G(b1, aη′) (Figure 13). Therefore, if
R(b1, aη′) = S(b1, aη′), S(b1, aη′) is a better choice for Step 5.1.6, contradicting the choice of
aρ1 . Consider the case R(b1, aη′) �= S(b1, aη′). Let R(b1, aη′) rely on a. a must reside be-
tween aη1 and aη2 ; otherwise by C2, either R(b1, aη1) �= S(b1, aη1) or R(b1, aη2) �= S(b1, aη2).
Now, R(b1, a) = S(b1, a) implies S(b1, a) is a better choice for Step 5.1.6. A contradiction.
Hence, b1, b2, c2 and aη2 are in the same region.

By Lemma 4, aρ1 is in the opposite region as b1. Hence, aη2 and aρ1 are also in opposite
regions. Since aη2 is between aη1 and aρ1 , there are two cases, aη1 < aη2 < aρ1 and aρ1 <

aη2 < aη1 . Consider aη1 < aη2 < aρ1 . By Lemma 4, aη1 ∈ [f1
min, f

1
max] ⊂ G(b1, aρ1). From

the Definition 14, aη2 ∈ G(b1, aρ1). By R1, S(b1, aρ1) and S(b1, aη1) has only one segment
of contact at b1. Hence, S(b1, aη1) cannot pass through aρ1 , nor any of its ancestors. It
must pass through aη2 or one of its ancestors in order to separate aη2 and aρ1 in different
regions (Figure 14). If aη2 �∈ G(b1, aη1), there exists some node a′ between aη1 and aη2 ,
which can take up the role of aρ1 but nearer to aη1 (Figure 14). A contradiction. Hence,
aη2 ∈ G(b1, aη1), which implies G(b2, aη2) ⊂ G(c2, aη1).

Since, by R1, S(b2, aη2) does not touch S(b1, aη1), except at b1. Hence, aη2 ∈ G(b1, aη1)
implies aη1 �∈ G(b2, aη2). ✷

η1

b1

aηa

b0

x

2 ρa
1

a’

Figure 14: Separation of aη2 and aρ1 makes S(b1, aη1) pass aη2 or one of its ancestor.

18

Theorem 3 (Step 5.1.6) For all ζ ∈ [1, λ + 1], there exists S(bζ , aρζ
) such that (1) aρζ

and bζ

are in different regions separated by S(b0, x), S(x, aηζ
), S(cζ , aηζ

) and the suffix of Pζ starting at
cζ ; (2) [f ζmin, f

ζ
max] ⊂ G(bζ , aρζ

); (3) {alζ , . . . , arζ
} ⊂ {a1, . . . , ap}; and (4) if cζ+1 �= b0, then

∃ζ ′ ≤ ζ such that cζ+1 is a node on S(bζ′ , aηζ′), G(bζ+1, aηζ+1
) ⊂ G(cζ+1, aηζ′), and aηζ′ �= aηζ+1

.

Proof: We will prove cases (1) to (4) by induction on ζ . The base cases of (1), (2) and (3) are
done in Lemma 4. The base case of (4) is done in Lemma 5. Assume the theorem is true
for cases ζ < λ+ 1. By induction assumption (2), [f ζ

min, f
ζ
max] ⊂ G(bζ , aρζ

), for all ζ < λ+ 1.
Hence, G(b1, aη1), G(b2, aη2),. . ., G(bλ+1, aηλ+1

) are defined. Consider a particular π ∈ [3, λ].
Now we prove that the theorem is true for the case ζ = π + 1.

According to Step 5.1.6 of the algorithm, aηπ ∈ G(bπ, aρπ), and aηπ+1 is between aηπ and
aρπ . Consider the path S(bπ+1, aηπ+1). It cannot touch S(bπ, aηπ) due to R1. It cannot touch
S(x, aηπ) because it will imply another better choice of S(bπ, aρπ) (as the dotted S(b1, a

′)
in Figure 14). It cannot touch S(b0, x) because it will violate R1 by cutting S(bπ, aρπ) (as
S(bζ , aρζ

) cuts the dotted path S(x, aηζ+1
) in Figure 11). Hence, if aηπ+1 is in different re-

gions with bπ+1, S(bπ+1, aηπ+1) must pass through a node cπ+1 in Pπ , where cπ+1 �= bπ

(Figure 11). In the case when cπ+1 = bπ, aηπ+1 and bπ+1 are in the same region. The path
S(bπ+1, cπ+1) is a subpath of Pπ+1.

We define σµ to be some integer within the range [1, λ + 1], ∀µ ∈ [1, λ + 1], and σµ1 >

σµ2 ⇔ µ1 > µ2. If cπ+1 �= b0, directly from Definition 16, we have a sequential view of
Pπ+1,

S(bπ+1, cσν)S(cσν , cσν−1)S(cσν−1 , cσν−2) · · · S(cσ1 , cσ0),

where 0 ≤ ν ≤ π + 1, cσ0 = b0, and σν = π + 1. Pπ+1 is composed of ν + 1 shortest
paths. The value of ν depends on the initial choice of all (shortest) routing paths. Note that
∀µ ∈ [1, ν], S(cσµ , cσµ−1) is a subpath of S(bσµ−1 , aησµ−1

), and S(bπ+1, cσν) is a subpath of
S(bπ+1, aησν

).
By induction assumption (4) and R1, we can easily show that the paths S(cσν , aησν

),
S(cσν−1 , aησν−1

) · · · S(cσ1 , aησ1
) are structured in layers and that the path S(cσµ , aησµ

) does
not touch the path S(cσµ′ , aησ

µ′) (Figure 15), if µ, µ′ ∈ [1, ν] and µ �= µ′.
We define X to be a minimal region that contains the paths S(b0, aη1), S(cσ1 , aησ1

),. . . ,
S(cσν , aησν

), the suffix ofPπ starting from cσν , and the shortest line joining aη1 , aησ1
, . . . , aησν

,
but does not contain the paths S(x, a0), S(x, ap+1), and S(b0, x) excluding b0. Considering
all possible positions of bπ+1, we have the following two cases.

1. bπ+1 is not in X . Figure 16 and 17 show some examples.

Consider a node a′ which is outside X , and in a different region with bπ+1, where
the region is bounded by the paths S(b0, x), S(x, aησµ

), S(cσµ , aησµ
), and the suffix

of Pπ starting from cσµ . Obviously, a′ ∈ {a0, . . . , ap+1}. Consider the un-relaxed

19

1

σ a0
ap+1

x

aησ

c
1σ

aησπ+1

c

a
σ2

aη1

π+1

2σc
0

η

b

Figure 15: The paths are organized in distinct layers.

ν

2
aησν

a0

ap+1

cσ

x

b0

c
1

σ

σ

σ2 aη1
aη

1σ
aησ2

aησν
a

c

a

p+1

x

bπ+1 ν
cσ

ηa
1ηa

σ1
ηa

2σc
σ1

c0b
π+1b

0

a’

a’

Figure 16: bπ+1 is not in X .

bπ+1

ap+1aησ

σ

η
1σ
aη1

a
2

c
ν

x

0a

ν
a’σ

0 0 c
1σ

cσ2

a0ν
cσ

x

bπ+1

ap+1
aησν

aη1
aη

1σ
aησ2

ηa2σc

σ1
c

b b

a’

Figure 17: bπ+1 is not in X .

20

(shortest) path from bπ+1 to a′. If it passes through b0, take a′′ ∈ {a0, ap+1} such
that a′′ and bπ+1 are in different regions. We will consider the node between a ′

and a′′, including a′′ but excluding a′, and set a′ to be that node. Iteratively, we
must be able to find an a′ such that the path does not pass through b0. If it touches
S(b0, x), it is done because it passes through x which is the ancestor of every node in
{a1, . . . , ap}. Because of R1, it cannot touch S(cπ+1, aηπ+1) if the last overlapping node
is before cπ+1. If it touches S(cσµ , cσµ−1), µ ∈ [1, ν], then it cannot touch S(cσµ , aησµ

)
because of R1. Then, it is “captured” by S(cσµ , aησµ

) and cannot reach a′ without
passing through S(x, aησπ+1

). Therefore, if it does not touch S(b0, x), it must pass
through S(x, aηπ+1). If R(bπ+1, a

′) = S(bπ+1, a
′), it satisfies (1) and (2) in the theorem

statement. Otherwise, we can choose S(bπ+1, a
′′), where R(bπ+1, a

′) relies on a′′. In
both cases, a′ and aησπ+1

are in {a0, . . . , ap+1}, which implies that alπ+1, . . . , arπ+1 are
within {a0, . . . , ap+1}, if they exist. Hence, (3) is proved.

2. bπ+1 is in X . Figure 18 shows an example.

1
aησ2

aη
1σ

bπ+1cσνν−1
cσν−2

cσ

ν−3
cσ

aησν−2
aησν−1

ηa
σν

aησν−3

c
1σ

a p+1a

0a

x

2σc

0

η

b

Figure 18: The case for µ = ν − 3, i.e., aησν−3
and bπ+1 are in different regions.

We define Xµ, µ ∈ [1, ν], to be a minimal region that contains the paths S(cσµ , aησµ
),

S(cσµ+1 , aησµ+1
),. . . , S(cσν , aησν

), the subpath of Pπ starting from cσν , and ending at
cσµ , and the shortest line joining aησµ

, aησµ+1
, . . . , aησν

, but does not contain the paths
S(x, a0), S(x, ap+1), S(b0, x) (excluding b0), S(cσ1 , aησ1

),. . . , S(cσµ−1 , aησµ−1
), and the

suffix of Pπ starting from cσµ−1 . Obviously, ∀µ ∈ [1, ν], Xµ ⊂ X .

We choose the greatest µ such that bπ+1 is inside Xµ. Note that aησµ
and bπ+1 are in

different regions which are surrounded by S(b0, x), S(x, aησν
), S(cσν , aησν

) and the
suffix of Pπ starting at cσν .

Consider S(bπ+1, aησµ
). If it touches S(cσµ , aησµ

), it is done. If it touches neither

21

S(cσµ , aησµ
) nor S(x, aηπ+1), it will then either cut S(cσν , aησν

) or S(cσµ′ , cσµ′−1
), ν ≤

µ′ ≤ µ. The former violates R1, and the latter implies that it cannot cut S(cσµ′−1
, aησν−1

),
due to R1 again. Then, S(bπ+1, aησµ

) will cut S(x, aηπ+1) twice and violate R3. A con-
tradiction.

Therefore, S(bπ+1, aησµ
) must pass through one ancestor of every node in [f π+1

min , fπ+1
max].

Cases (1) and (2) are proved if we set aρπ+1 to be aησµ
. The positions of aησπ+1

and
aηπ+1 imply that alπ+1 , . . . , arπ+1 are within {a0, . . . , ap+1}, if they exist. Then, case (3)
is true.

Note that we have just shown the existence of a path for case (2). Actually, we will choose
the path with minimum gap size in the algorithm.

Now, we prove Case (4) of the theorem statement. We have just proved Case (3), which
is {alπ+1 , . . . , arπ+1} ⊂ {a1, . . . , ap}. Hence, since the paths, S(cσν , aησν

), S(cσν−1 , aησν−1
) · · ·

S(cσ1 , aησ1
), will not touch each other, they divide the set {alπ+1 , . . . , arπ+1} into at most

ν + 1 partitions which are not in the same region as bπ+1, where the region concerned here
is bounded by S(b0, x), S(x, aησν

), S(cσν , aησν
), and the suffix of Pπ+1 starting at cσν . There

is at most one partition which is in the same region as bπ+1. For this kind of nodes, we
can find a leader aηπ+2 and the path S(bπ+1, aηπ+2) is in the same region as bπ+1. Hence,
G(bπ+1, aηπ+2) ⊂ G(cσν , aησν

). By R1, aησν
�= aηπ+2 . Case (4) is done.

Consider a partition which is not in the same region as bπ+1 and is bounded by S(cσν , aησν
),

S(x, a0) and S(x, ap+1). The shortest path from bπ+1 to any leader element aηπ+2 in the par-
tition will pass through b0 because of R1. Then, it is out of the scope of Case (4).

Consider a partition which is not in the same region as bπ+1 and is bounded by S(cσµ , aησµ
)

and S(cσµ−1 , aησµ−1
), where 1 < µ ≤ ν. The shortest path from bπ+1 to any leader ele-

ment aηπ+2 in the partition will cut S(cσµ , cσµ−1) at cπ+2, because of R1. Again, due to R1,
G(cπ+2, aηπ+2) ⊂ G(cσµ−1 , aησµ−1

). We need to prove that aησµ−1
�= aηπ+2). Assume the con-

trary. By R1, S(cπ+2, aηπ+2) is a subpath of S(cσµ−1 , aησµ−1
). If aησµ−1

is in the same region
as bπ+1, then it is a contradiction because the partition (of {alπ+1 , . . . , arπ+1}) is not in the
same region of bπ+1. If aησµ−1

is not in the same region as bπ+1, by the way that we choose
aρπ+1 , the partition cannot include aησµ−1

if aρπ+1 = aησµ−1
. If aρπ+1 �= aησµ−1

, aρπ+1 must
reside between aησµ−1

and aησν
, exclusively, and therefore, the partition cannot include

aησµ−1
, either. Hence, aησµ−1

�= aηπ+2). Case (4) is done.
If cπ+1 = b0, by induction assumption (3), {alπ , . . . , arπ} ⊂ {a1, . . . , ap}. Accord-

ing to the algorithm, we need to divide {alπ , . . . , arπ} into groups, and each group has
a group leader. If a group leader aηπ+1 is outside the set {a1, . . . , ap}, by C2, R(b0, a0)
or R(b0, ap+1) will rely on aηπ+1 . This is a contradiction because R(b0, a0) = S(b0, a0)
and R(b0, ap+1) = R(b0, ap+1). Hence, aηπ+1 is inside the set {a1, . . . , ap}, implying that
G(cπ+1, aηπ+1) ⊂ {a1, . . . , ap}. We then borrow the proof of Lemmas 4 and 5, and replace

22

b1 by bπ+1, η1 by ηπ+1, ρ1 by ρπ+1, l1 by lπ+1, r1 by rπ+1, b2 by bπ+2, c2 by cπ+2, [f 1
min, f

1
max]

by [fπ+1
min , fπ+1

max]. Hence, the theorem is proved. ✷

Theorem 4 The function call Relax(b0, ap+1, a1, ap) will terminate.

Proof: Recall that Definition 16 gives a definition for Pζ and cζ , ∀ζ ∈ [1, λ+1]. We construct
a tree T rooted at 0. The internal nodes and leaves of T are from [1, λ + 1]. There are three
types of edges. The first type has only one instance (0, 1). The second type has (ζ ′, ζ),
ζ ∈ [2, λ + 1], where ζ ′ is the greatest number such that 1 ≤ ζ ′ < ζ , cζ′ is a node on Pζ−1,
and G(cζ , aηζ

) ⊂ G(cζ′ , aηζ′). The third type has (0, ζ), ζ ∈ [1, λ + 1], where cζ = b0, and
∀ζ ′ < ζ , [cζ′ is a node on Pζ−1] ⇒ [G(cζ , aηζ

) �⊂ G(cζ′ , aηζ′)].
The tree T , indeed, records the recursion call chain from the call Relax(b0, ap+1, a1, ap)

to Relax(bλ, aρλ
, alλ , arλ

). If ζ is a leave, ζ ∈ [1, λ], then the simple path from 0 to ζ records
Pζ . That means, any µ �= 0 on the path will imply cµ on Pζ . We called this simple path
SP . By the definition of cζ , ζ ∈ [1, λ + 1], in Definition 16 and Case (4) of Theorem 3, for
any µ, µ′ on SP, excluding 0, such that µ < µ′, G(cµ′ , aηµ′) is a proper subset of G(cµ, aηµ)
because aηµ �∈ G(cµ′ , aηµ′). Hence, the length of SP is no more than the number of nodes
in {a1, . . . , ap}. In other words, the depth of T is bounded by O(n).

We now want to find the bound for the degrees of each internal node. We want to prove
that for every two distinct children of a parent, ζ ′ and ζ , if cζ′ = cζ , then aηζ′ �= aηζ

.

Assumption 1 (For contradiction) There exists a parent in T with two distinct children ζ and ζ′

where ζ ′ is the smallest child of its parent and ζ is the smallest sibling of ζ′ such that ζ′ < ζ and
cζ = cζ′ , but aηζ′ = aηζ

.

Without loss of generality, we choose a topmost parent satisfying Assumption 1. In other
words, cζ′ is firstly added to Pζ′ by S(bζ′ , aηζ′), and perhaps it is re-visited many times, but
the first re-visit is by S(bζ , aηζ

) where aηζ
= aηζ′ .

Consider the nodes ζ ′, ζ ′ + 1, . . . , ζ in T . ∀µ ∈ [ζ ′, ζ], if cµ = cζ′ , then aηµ �= aηζ′ .
∀µ ∈ [ζ ′, ζ], Pµ contains cζ′ . Assume for contradiction that ∃µ ∈ [ζ ′, ζ] such that Pµ does
not contain cζ′ . When cζ′ = cζ appears in Pζ , ζ will have a greater parent than ζ ′. A
contradiction. Therefore, if cµ �= cζ′ , cµ cannot be a point on Pζ′ ; otherwise, Pµ will not
contain cζ′ . In other words, µ is a descendant of ζ ′, or some µ′ ∈ [ζ ′ + 1, µ − 1], where
cµ′ = cζ′ .

Claim: ζ′ < ζ − 1. Reason: Since ζ ′ < ζ , we assume that ζ ′ = ζ − 1. Contradiction
will be easily reached by considering that aηζ

must be located between aηζ−1
and aρζ−1

,
exclusively. ♦

Claim: ζ − 1 is not a descendant of ζ ′. Reason: Assume the contrary that ζ − 1 is a de-
scendant of ζ ′. Recall that the node cζ′ is on Pζ−1 and aηζ−1

�= aηζ′ . By Theorem 3, bζ−1 and

23

aρζ−1
are in different regions which are separated by S(b0, x), S(x, aηζ−1

), S(cζ−1, aηζ−1
),

and the suffix of Pζ−1 starting from cζ−1. The node aηζ′ (= aηζ
) is in different region from

bζ−1. The node aηζ′ is in the gap between aηζ−1
and aρζ−1

, exclusively. Consider the path
S(bζ , aηζ

) (= S(bζ , aη′
ζ
)). It passes through bζ−1 and then cζ (= cζ′). Then, G(bζ−1, aηζ′)

contains aηζ−1
because G(cζ−1, aηζ−1

) ⊂ G(cζ′ , aηζ′), by the construction of T . Hence, aηζ′ is
a better choice than aρζ−1

. Figure 19 shows an example. A contradiction. ♦

a
ζ−1η aηζ

a
ζ−1

ζ−1c
aηζ ’

ζ
ρ

ζ

c

’

bζ−1 bζ

x

0b

c

()
()

Figure 19: Interaction of two shortest paths violates R3.

Therefore, either cζ−1 = cζ′ or ζ−1 is a descendant of µ ∈ [ζ ′+1, ζ−1] such that cµ = cζ′ .
Hence, we have some groups of cζ′ on the minimal range on X that contains G(cζ′ , aηζ′),
G(cζ′+1, aηζ′+1

),. . . , G(cζ , aηζ
). Without loss of generality, we assume there is a group at the

left of G(cζ′ , aηζ′). We choose the leftmost one. Suppose it is a group that contains aηµ and
cµ = cζ′ , where µ ∈ [ζ ′ + 1, ζ − 1]. Let κ and τ be the smallest and largest number in
[ζ ′+1, ζ−1], respectively, such that ∀ι ∈ [κ, τ], G(cι, aηι) ⊂ G(cµ, aηµ). Obviously, µ ∈ [κ, τ].

Since G(cκ−1, aηκ−1) �⊂ G(cµ, aηµ) but G(cκ, aηκ) ⊂ G(cµ, aηµ) and G(cµ, aηµ) is the left-
most group, bκ−1 is outside the region which contains G(cµ, aηµ) and aηκ , where the region
boundary is S(b0, x), S(x, aηκ−1), S(cκ−1, aηκ−1), and the suffix of Pκ−1 starting from cκ−1.
Applying similar argument to bτ , bτ and bκ−1 must be in different regions. Like the ar-
gument for Pτ , there is a (not necessarily simple) path from bκ−1 to bτ . Suppose κ < τ .
There exists a τ ′ ∈ [κ, τ − 1] such that bτ ′ and bτ ′+1 are in different regions. The path
S(bτ ′+1, aητ ′+1

) cannot cut any point in Pµ, excluding cµ; otherwise, it will violate the fact
that τ ′ + 1 is a descendant of µ. Therefore, the path S(bτ ′+1, aητ ′+1

) has two cutting points
with either S(cµ′ , aηµ′) or S(cκ−1, aηκ−1). Then, R3 is violated. Therefore, Assumption 1 is
false.

Suppose κ = τ = µ. We simply replace the value τ ′ by µ− 1 and τ ′ + 1 by µ. The above
argument will lead to the same conclusion that Assumption 1 is false.

Hence, a parent has at most O(np) = O(n2) children. It is because, firstly, for any two
of them ζ and ζ ′ that are distinct and such that ζ ′ < ζ , we have [cζ = cζ′] ⇒ [aηζ

�= aηζ′].

24

κ−1

ζc ζ’= c ’= cµ

aηaητ’

bτ ’

bτ ’ -1
τ ηa

µ
aηκ-1

cκ−1

b

τb

x

0b

’
aηµ

Figure 20: Interaction of two shortest paths violates R3.

Second, there are at most O(n) different children for each parent.
Therefore, the size of T is bounded by O(n2n) and the recursion call Relax(b0, ap+1, a1, ap)

will terminate. ✷

Theorem 5 After each implementation of Step 5.1.8, all conditions C1 to C4 are true.

Proof: We assume that the conditions are true before the execution of Step 5.1.8. Consider
the situation after the execution. Consider C1. We force some routing from bλ to follow the
first edge of a shortest path. Hence, the first part of a relaxed path is a shortest one. The
second part of a relaxed path is also a relaxed path because C1 is true before this step.

Consider C2. The relaxed path will then rely on aρλ+1
if it is a representative; otherwise,

it can rely on the representative which the S(bλ+1, aρλ+1
) is relying on. Hence, a represen-

tative exists. Suppose aρλ+1
is the representative. We deal with all nodes in [f λ+1

min , fλ+1
max]

in Step 5.1.8 and all nodes in {alλ+1
, . . . , arλ+1

} in Step 5.1.7.2, and hence, for all node x

in between a∆ and aρλ+1
, R(bλ, x) will rely on aρλ+1

. Suppose aρλ+1
is not the representa-

tive. Let aρ be the representative. By similar argument, we have for all node x in between
a∆ and aρλ+1

, R(bλ, x) will rely on aρ. For all node x between aρλ+1
and aρ, R(bλ, x) has

already relied on aρ, because C2 is true before this step 5.1.8.
Consider C3. By the way to choose S(bλ+1, aρλ+1

), it is true.
Consider C4. The interval label does not change until the step. After the step, the labels

on the edge for S(bλ+1, aρλ+1
will not increase because the new routing follows the labels

of the representative. For the other edges, if a routing is taken out, it will happen to a
representative and all its followers. That means, the whole label is taken out completely.
In that case, the number of labels decreases. ✷

Now, Relax(b0, ap+1, a1, ap) has been done already. In the second round, we will re-
walk through the nodes from x to u, exclusively, along S(u, x) reversely. If another b0

25

exists, we repeat relaxation of other routing paths, until all are done. Finally the elements
in {x ∈ X|xk ≤ x ≤ xj} can be grouped into one interval label in the edge (u, v). It means
that we can reduce the number of interval labels of (u, v) by at least one.

4.2 Setup for Path Relaxation

This section provides the pre-requisite for path relaxation discussed in Section 4.1.
Let w be any common ancestor of x1, x2, . . . , xγ . Since w can be R, its existence is

guaranteed. By the definition of X, u cannot be any descendant of w, and hence, it cannot
be inside the “triangle” formed by the shortest paths from w to x1, to xγ , and the virtual
horizontal bar linking all elements on that level. We call them the left boundary, right
boundary, and the bottom, respectively. Figure 21 shows an example.

bottom

left boundary right boundary

x2 x4

x1

u

3

γ

x5

w

x

x

v

x6

Figure 21: Many ways to reach xi’s.

Definition 17 Given that a, b ∈ [x1, xγ], where a ≺ b. (That means, a is on the left and b is on the

right.) The left boundary LB(a, b) is the shortest path from w to a. The right boundary RB(a, b)
is the shortest path from w to b. The bottom B(a, b) is the virtual line linking a, b and all nodes in

between.

∀i ∈ [1, γ], since xi ∈ L∗(u, v), we consider S(v, xi) instead of S(u, xi). Between adjacent
xi and xi+1, i ∈ [1, γ − 1], there should be an interval which does not belong to L∗(u, v).
Let zi be the representative of this interval (C2). The ordering of the nodes in the B(x1, xγ)
is x1, z1, x2, z2, . . . , xγ , from left to right. Note that ∀i ∈ [1, γ], j ∈ [1, γ − 1], S(v, xi) cannot
pass through zj because of rule R1.

Definition 18 Given a, b ∈ [x1, xγ], and a ≺ b. A routing path S(v, xi), i ∈ [1, γ], is r-ripple in
B(a, b) if it crosses or touches B(a, b) r times and each time it passes through the ancestor of xj or

26

zk, or it touches xj , for some xj, zk ∈ [a, b], where j �= i, before arriving at its destination xi which
is also in B(a, b).

Similar definition applies to S(u, zi), i ∈ [1, γ − 1]. The paths S(v, x4) and S(v, x6) in
Figure 21 are 1-ripple in B(x1, xγ) because they both cross or touch the bottom and S(v, x4)
passes through the ancestor of z4, S(v, x6) touches x5 before arriving at their destinations.
S(v, x1) and S(v, xγ) are 0-ripple in B(x1, xγ) because they never cross or touch the bottom
until the end. S(v, x2) is also 0-ripple because it never passes through xj or any ancestors
of xj and zk, where j �= 2. Similar to S(v, x3). Obviously, ∀ r-ripple paths, r ≤ D − 1.
Intuitively, every routing path cannot have more than D − 1 ripples. Note that for the
convenience of discussion, we focus the ripples on xi’s and zj ’s, which is different from
the common sense that all nodes should be concerned.

Definition 19 Given the nodes at B(a, b) and their ordering as x1, z1, x2, z2, . . . , xγ from left to

right. A node xi, i ∈ [2, γ − 1] is covered above if the only way for S(u, xi) to reach xi is from
B(zi−1, zi). It is covered below if the only way for S(u, xi) to reach xi is from LB(zi−1, zi) or

RB(zi−1, zi).

Similar definitions apply to zi’s, i ∈ [1, γ − 1].

Lemma 6 There are no more than five contiguous nodes at B(z1, zγ−1) being covered above.

Proof: Assume the contrary that there are five contiguous nodes being covered above.
Without loss of generality, let the nodes be xi, zi, xi+1, zi+1, xi+2, and zi+2 where i ∈ [2, γ −
3]. By rule R1, S(v, xi), S(u, zi), S(v, xi+1), S(u, zi+1), S(v, xi+2), and S(u, zi+2) do not
cut/touch one another.

There are three faces. One is formed by B(xi, zi+2), S(v, xi) and S(v, xi+1); another one
is by B(xi, zi+2), S(v, xi+1) and S(v, xi+2); and the last one is by B(xi, zi+2), S(v, xi+2) and
S(v, xi).

Consider the case that two of zi, zi+1 and zi+2 are in different faces. Without loss of
generality, we choose zi and zi+1. If u resides in the face with zi, S(u, zi+1) can reach
zi+1 from the top of B(xi+1, xi+2) and passes through LB(xi+1, xi+2) or RB(xi+1, xi+2). It
implies that zi+1 cannot be covered above (Figure 22). Similar to the case that u resides in
other positions. Hence, all of zi, zi+1 and zi+2 must be in the same face.

Let F be the face that contains zi, zi+1 and zi+2. F is formed by the B(xi, zi+2), and
some of S(v, xi), S(v, xi+1), and S(v, xi+2). None of the paths S(v, xi), S(v, xi+1), and
S(v, xi+2) can divide F such that zi, zi+1 and zi+2 are not in the same partition.

S(v, xi) must have ripple(s) in B(xi, zi+2). Consider the contrary that S(v, xi) is 0-ripple
in B(xi, zi+2) (Figure 23). No matter whether S(v, xi+1) has ripple(s), it will partition F

27

z xi+2xi+1 i+1i zi+2xi z

u

w

v

Figure 22: zi and zi+1 are in different faces. A contradiction.

1−ripple0−ripple

i+1zi zi+2xi

v

x i+2xzi+1

w

Figure 23: S(v, xi) is 0-ripple. A contradiction.

28

such that zi will be in different faces with zi+1. A contradiction. Hence, S(v, xi) must have
ripple(s) in B(xi, zi+2). Recall that S(v, x1) cannot divide F which contains zi, zi+1 and
zi+2.

Similar argument will apply to S(u, zi+2) that this path cannot divide the face F ′ which
contains xi, xi+1 and xi+2. Figure 24 shows an example. However, the two paths S(v, x1)
and S(u, zi+2) will cut each other and violating rule R1. ✷

??

xi+1zi zi+2xi

vu

i+2xzi+1

Figure 24: S(v, x1) and S(u, zi+2) cut each other. A contradiction.

By similar techniques, we can derive Lemma 7.

Lemma 7 There are no more than five contiguous nodes at B(z1, zγ−1) being covered below.

Lemma 8 Every node in {z1, x2, z2, . . . , zγ−1} is either bounded above or below.

Proof: Assume the contrary that ∃xi, i ∈ [2, γ − 1], such that there are two choices for
S(v, xi) (Figure 25). Consider the routing path S(u, zi−1), u should reside in the face

xizi−1

v

zi

u

Figure 25: There are two choices for S(v, xi). A contradiction.

bounded by B(zi−1, zi), and the two possible S(v, xi)’s. Then, zi is un-reachable by u

unless rule R1 is violated. A contradiction. Hence, xi is either covered above or below. ✷

Since γ > 12D2(D + 2), by Lemmas 6, 7 and 8, we have at least 2D2(D + 2) pairs of
xi, zi assumed being covered above and below, respectively, where i ∈ [2, γ − 1], without
loss of generality. For each zi belonging to these pairs, S(u, zi) can cut the S(w, xi+1) (i.e.

from right) or S(w, xi) (i.e. from left). We further narrow our scope to the pairs such that all
S(u, zi)’s are from one side, say the left, and of the same length. Then, there are D(D + 2)

29

pairs such that each S(u, zi) cuts S(w, xi), and all S(u, zi)’s are of the same length, where
i ∈ [2, γ − 1]. Let Z be the set containing the zi’s of these pairs, i ∈ [1, γ − 1]. If ∃zi, zj ∈ Z ,
i �= j, such that S(u, zi) and S(u, zj) pass through a common ancestor of zi, zj , then it is
done. We are now going to assume the contrary.

Assumption 2 (for contradiction) ∀zi, zj ∈ Z , where i, j ∈ [1, γ−1], i �= j, S(u, zi) and S(u, zj)
do not pass through any common ancestor of zi, zj .

Consider the case that ∃zi ∈ Z such that S(u, zi) pass through the ancestors of zσ1 ,
zσ2 , . . . , zσD

, where zσj ∈ Z , σj ∈ [1, γ − 1], σj �= i, ∀j ∈ [1,D]. |S(u, zi)| is bounded
by D obviously. Excluding u and zi, it can pass through at most D − 1 distinct ancestors
of zσ1 , zσ2 , . . . , zσD

. Then, there is at least two nodes zσj , zσk
having a common ancestor

zσ which is passed through by S(u, zi). According to the initial choice of S(u, zσj) and
S(u, zσk

), they must both have a prefix S(u, zσ); otherwise, rule R1 will be violated. Then,
it is a contradiction to our Assumption 2 by considering S(u, zσj) and S(u, zσk

). Therefore,
∀zi ∈ Z , where i ∈ [1, γ− 1], S(u, zi) can pass through the ancestors of at most D− 1 nodes
of Z .

Partition Z into disjoint subsets. If a subset contains exactly a node zk, first, ∀zi ∈ Z ,
i �= k, S(u, zi) does not pass through any ancestor of zk; and second, S(u, zk) does not pass
through any ancestor of zi, ∀zi ∈ Z , i �= k. If a subset Z ′ contains more than one node,
first there exists one zi ∈ Z ′, such that S(u, zi) passes through the ancestors of all nodes
in Z ′ − {zi}; second, ∀zi ∈ Z ′, S(u, zi) does not pass through the ancestors of all nodes in
Z − Z ′; third, ∀zi ∈ Z − Z ′, S(u, zi) does not pass through the ancestors of all nodes in Z ′.
The size of each subset is bounded by D and there are at least D + 2 disjoint subsets of Z .

Choose a node from each subset. So, we have at least D+2 nodes, which are denoted as
zλ1 , zλ2 , . . . , zλD+2

. We consider the routing from v to their adjacent nodes xλ1 , xλ2 , . . . , xλD+2
.

Recall that zλ1 , zλ2 , . . . , zλD+2
are covered below, and their routing paths from u must cut

S(w, xλ1),S(w, xλ2), . . . ,S(w, xλD+2
), respectively. They also belong to different subsets,

and therefore, S(u, zλi
) does not pass through the ancestors of zλj

, ∀j ∈ [1,D + 2], j �= i.
Then, the routing paths S(v, xλ1),S(v, xλ2), . . . ,S(v, xλD+1

) must come by cutting the right
boundary—S(u, zλD+2

) (Figure 26). There exist two paths S(v, xλi
),S(v, xλj

) such that
they are of the same length, and S(v, xλi

) passes through the ancestor of xλj
, xλj

, where
i, j ∈ [1,D + 1]. S(xλj

, xλj
) follows the tree edges down to xλj

. So, S(v, xλj
) cannot pass

through it because xλj
is covered above. S(xλj

, xλj
) is also no longer than S(xλj

, xλi
) be-

cause |S(xλj
, xλi

)| is the minimum distance from xλj
to any nodes in X. Hence,

|S(v, xλj
)| = |S(v, xλi

)|
= |S(v, xλj

| + |S(xλj
, xλi

)|
≥ |S(v, xλj

| + |S(xλj
, xλj

)|.

30

D+1 routing pathsright boundary

v

xλ1 xλ2 λ (D+2)

u

x

(D+2)λzλ2zλ1z

w

Figure 26: ∀i ∈ [1,D + 1], S(v, xλi
) cuts the right boundary.

This is a contradiction to rule R2 on S(v, xλj
) that the highest ancestor xλj

should be passed
through. Hence, Assumption 2 is false and we have already proved the following theorem.

Theorem 6 ∃zi, zj ∈ Z , i �= j, such that S(u, zi) and S(u, zj) pass through a common ancestor
of zi, zj . ✷

4.3 Main Result—Combining Path Relaxation and its Setup

Theorem 7 If there exists an edge (u, v) of u containing more than 12D2(D + 2) interval labels

for routing to X, we can reduce the number of interval labels by one in each iteration such that the
four conditions are kept true.

Proof: If we assume that at least 2D2(D + 2) pairs of xi and zi are covered above and
below, respectively, where i ∈ [2, γ − 1] (on page 29), Theorem 6 guarantees the existence
of S(u, zi) and S(u, zj) such that they pass through a common ancestor of zi and zj , where
i �= j. They must go from the same edge of u, say (u, v̂), v̂ �= v; otherwise rule R1 will
be violated. Using the procedures of path relaxation, we can combine zi, zj and all nodes
between them into one interval label of (u, v̂) such that the four conditions are kept true.
Note that although these two routing paths are not going through (u, v), there is at least
one interval between zi and zj which belongs to (u, v) and is then taken out from (u, v)
after path relaxation. The number of interval labels in (u, v) is then reduced by one.

On the other hand, if we assume that at least 2D2(D + 2) pairs of xi and zi are covered
below and above, respectively, where i ∈ [2, γ − 1], we will have two paths S(u, xi) and
S(u, xj) such that they go through the edge (u, v) and pass through a common ancestor of
xi and xj , where i �= j. Path relaxation will certainly reduce the number of interval labels
in (u, v) by one. ✷

31

5 An O(D3)-IRS, for Graphs of D ≥ 3

Theorem 8 For all graphs of D ≥ 3, for any constant α ∈ (0, 1), there exists an O(D3)-IRS with
all routing paths no longer than (1 + α)D.

Proof: (Outline) Consider the BFS tree. We divide the D levels into & 1
α' layers and each

layer contains
αD� levels. The top level of each layer is considered the anchor level. For
each node in the anchor levels, we consider it a root of a subtree of the BFS tree. The subtree
is formed by its descendents in its layers. If a node has more than one ancestor, choose the
one connected by tree edges (not by fronds).

We label the nodes in the way that the nodes inside a subtree will form a contiguous
interval. Like the previous labeling, we label the whole BFS tree layer by layer from top to
bottom, and subtree by subtree from left to right in each layer.

Consider the labeling for the edges. We use the idea of shortest path from each node
to the nodes in the anchor levels. It then follows by path relaxation and guarantee that
the path lengths to all nodes in anchor levels are bounded by D. Inside each subtree, we
follow the tree edges and use DFS labeling technique [8]. The last step is to replace an
anchor node by the nodes of its subtree in all interval labels, except the ones for routings
inside a subtree.

Each routing to a node at an anchor level takes at least D steps. Each routing to a node
at a non-anchor level will pass through the root of the corresponding subtree at an anchor
level of its layer, and takes (1 + α)D steps in total.

Each layer needs O(D3) interval labels. Totally, we need O(D
3

α) = O(D3) interval
labels. ✷

6 A 6-IRS for Graphs of D = 2

We follow the procedures discussed in Section 3 to find the planar representation, and label
the nodes by BFS (Figure 4), and initialize the edge labels by choosing the shortest paths.
Recall that if more than one shortest path for a routing, we will choose the one that passes
through the highest ancestor of the destination. For routing from R, two labels for each
down edge are sufficient because there are only two levels. We now consider the routing
paths from a node u �= R to each level. First, u’s up edge should have a label for routing to
R.

For each i ∈ [1, 2], we consider the routing to the nodes in i-th level. ∀u ∈ V − {R},
from u, there are three types of routing paths of length two.

1. The routing path passes through a node v at the i-th level.
The node v will take one label. It is because shortest path should be chosen initially.

32

R

u

Figure 27: u is in the second level.

The node v divides the level into left and right parts. Consider the right part. We
want to show that at most one more label will be needed in the edge (u, v).

Suppose two labels are needed. There are two nodes x1 and x2 belonging to the
two labels, respectively. Between these two labels, there is at least one node y which
disallows the two labels to combine. Figure 28 shows an example. Note that y is

xx1

u
2

v

y

y

Figure 28: y is between x1 and x2.

covered below. The only way for S(u, y) is from y’s parent y. The restriction D = 2
implies the existence of an edge (u, y). The edge (u, y) implies that y is also the parent
of one of x1 and x2. Contradiction to rule R2 on S(u, x1) or S(u, x2) follows.

Hence, one more label is enough for the right part, and one more label will be ex-
pected for the left. Totally, three labels for (u, v) are sufficient.

2. The routing path passes through a node v at the i + 1-th level, if any.
The argument for this kind of routing path is similar to the above one, except that
the node v will not be individually considered. Hence, two labels are sufficient.

3. The routing path passes through a node v at the i− 1-level.
We are going to show that one label is enough. Assume two labels in the edge (u, v)
are necessary. Let x1 and x2 be the nodes chosen from the two labels, respectively.
Let y be the node between x1 and x2 and the routing to y is not through (u, v). Ac-
cording to rule R2, the choice of the S(u, y) implies that it needs only one step from

33

u to y. Figure 29 shows an example. We apply the technique of path relaxation and

v

uu’

1xu’ x2y

Figure 29: The routing to from u′ to x1 will be a contradiction.

force R(u, y) to use the edge (u, v). The length of R(u, y) is still bounded by |S(u, x1)|
or |S(u, x2)|. Suppose there is a node u′ such that |R(u′, y)| > D = 2 after relaxation.
When u′ and x1 are in different faces, contradiction follows if we consider the rout-
ing from u′ to x1. When u′ and x2 are in the same face, contradiction follows if we
consider the routing from u′ to x2. Hence, one label is enough.

Theorem 9 For all graphs of D = 2, there exists a 6-IRS with all routing paths no longer than D.

Proof: Consider the routing paths of length two. Sum up the number of labels used in the
cases for each i ∈ [1, 2]. Item 1 implies that each of u’s outgoing edges have at least three
labels. Item 2 implies that u’s fronds and down edges have two more labels. Item 3 implies
that u’s fronds and up edges have one more label. For routing to the root, all up edges have
one more label. Totally, we need six labels. Consider the routing paths of length one. If it
is not a proper subpath of any other paths, the edge will contain one label only; otherwise,
it is discussed already in the above case. ✷

References

[1] N. Deo, Graph Theory, Prentice Hall, 1974.

[2] P. Fraigniaud and C. Gavoille, Interval Routing Schemes, Algorithmica, vol 21, pp.155–
182, 1998.

[3] C. Gavoille, “On Dilation of Interval Routing”, The Computer Journal, 43(1), 1–7, 2000.

[4] C. Gavoille, “A Survey on Interval Routing”, Theoretic Computer Science, 245(2):217–
253, 2000.

[5] C. Gavoille and E. Guévremont, “Worst Case Bounds for Shortest Path Interval Rout-
ing,” Journal of Algorithms, 27:1–25, 1998.

34

[6] R. Kráľovič, P. Ružička, D. Štefankovič, The Complexity of Shortest Path and Dilation
Bounded Interval Routing, in: 3rd International Euro-Par Conference, C. Lengaur,
M. Griebl, and S. Gorlatch, eds., vol. 1300 of Lectures Notes in Computer Science,
Springer-Verlag, August 1997, 258–265.

[7] Kranakis, E., Krizanc, D. and Ravi, S.S. On Multi-Label Linear Interval Routing
Schemes. The Computer Journal, 39, 133–139.

[8] J. van Leeuwen and R.B. Tan, “Interval Routing”, The Computer Journal, 30:298–307,
1987.

[9] P. Ružička, “A Note on the Efficiency of an Interval Routing Algorithm”, The Computer
Journal, 34:475–476, 1991.

[10] N. Santoro and R. Khatib, “Labelling and Implicit Routing in Networks”, The Com-

puter Journal, 28:5–8, 1985.

[11] M.D. May, P.W. Thompson, and P.H. Welch (eds.), Networks, Routers and Transputers,
IOS Press, Amsterdam, 1993.

[12] S.S.H. Tse and F.C.M. Lau, “Lower Bounds for Multi-label Interval Routing”, Proc.
2nd International Colloquium on Structural Information & Communication Complexity

(SIROCCO’95), 123–134, 1995.

[13] S.S.H. Tse and F.C.M. Lau, “More on the Efficiency of Interval Routing”, The Computer
Journal, Vol. 41, No. 4, 1998, 238–242.

[14] S.S.H. Tse and F.C.M. Lau, “Some Results on the Space Requirement of Interval Rout-
ing” Proc. of 6th International Colloquium on Structural Information and Communication

Complexity (SIROCCO 6), 264–279, 1999.

35

