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Abstract

In this paper, we describe an exact method for de-
tecting collision between two moving ellipsoids under
pre-specified rational motions. Our method is based
on an algebraic condition that determines the sepa-
ration status of two static ellipsoids – the condition
itself is described by the signs of roots of the char-
acteristic equation of the two ellipsoids. To deal with
moving ellipsoids, we derive a bivariate function whose
zero-set possesses a special topological structure. By
analyzing the zero-set of this function, we are able to
tell whether or not two moving ellipsoids under pre-
specified rational motions are collision-free; and if not,
we can determine the intervals in which they overlap.

1 Introduction

Designing and analyzing motions of objects in 3D
space are of importance to robotics, computer graph-
ics, 3D computer games [4] and CAD applications. To
simulate a dynamic environment, it is critical to en-
sure that rigid objects do not penetrate each other and
impulsive response is properly handled when objects
collide. Collision detection is to determine whether
two moving objects come into contact with each other.

To perform direct collision detection for general
objects is computationally complicated. The use
of bounding volumes to enclose complex shaped ob-
jects reduces the computational cost by first detect-
ing collision on the bounding volumes. Ellipsoids
are often chosen as bounding volumes for robotic
arms in collision detection because of its flexibility in
shape [8, 13, 19]. Enclosing and enclosed ellipsoids are
studied for collision avoidance between convex polyhe-
dra in [8, 15] which provides a heuristic solution. Ri-
mon and Boyd [13] present an efficient numerical tech-
nique for computing the quasi-distance, called margin,

between two separate ellipsoids using an incremental
approach. In [16], Sohn et. al. computes the dis-
tance between two ellipsoids using line geometry. El-
lipsoids are also used to represent shapes of soil parti-
cles and the iso-potential surface of a molecule in geo-
mechanics and computational physics, respectively.
The problem of determining whether two ellipsoids
overlap is also studied in these fields [11, 12]. However,
the proposed solutions are also numerical techniques
for static ellipsoids, and cannot be applied to exact
(i.e., non-incremental) collision detection between two
moving ellipsoids following pre-specified closed-form
motion paths.

To deal with moving ellipsoids, a brute-force ap-
proach is to perform interference testing between two
static ellipsoids along the motion path at discrete time
intervals. However, errors may be incurred due to in-
adequate temporal sampling resolution. In this paper,
we present an exact collision detection method for two
ellipsoids moving under pre-specified rational motions.
We make use of an algebraic condition given in [18]
that decides whether two static ellipsoids are separate
by root characterization of the characteristic equation
of the two ellipsoids. We extend the characteristic
equation to take into account the time parameter and
then perform collision detection using the zero-set of
the bivariate characteristic equation of the two moving
ellipsoids.

We will first present in section 2 the preliminaries
for formulating the collision detection problem of two
moving ellipsoids under rational motions. Our col-
lision detection solution is then described in details
in section 3. A numerical example is provided to il-
lustrate how our method works. We then give some
experimental results in section 4 and finally the paper
is concluded in section 5 where we outline some open
problems and future research directions.
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2 Preliminaries

Throughout this paper, we assume that an ellip-
soid A is given by a quadratic equation XT AX = 0
in E

3, where X = (x, y, z, w)T are the homogeneous
coordinates of a point in 3D space. The symmetric co-
efficient matrix A is normalized such that the interior
of A is given by XT AX < 0. We also use A to denote
the closed point set comprising of the boundary points
and interior points of the ellipsoid, and use Int(A) to
denote the interior points of A. Given two ellipsoids
A : XT AX = 0 and B : XT BX = 0, they are said to
be separate or disjoint if A⋂B = ∅, and overlapping
if A⋂B �= ∅. Then A and B are said to be touching
if A⋂B �= ∅ and Int(A)

⋂
Int(B) = ∅.

In this section, we will first give the separation
condition for two ellipsoids in E

3 which is rigorously
proved in [18]. Then, we will introduce 3D rational
motions that are the assumed motions taken by two
moving ellipsoids in this study.

2.1 Algebraic condition for the separation
of two ellipsoids

For two ellipsoids A : XT AX = 0 and
B : XT BX = 0 in E

3, the quartic polynomial
f(λ) = det(λA−B) is called the characteristic polyno-
mial and f(λ) = 0 is called the characteristic equation
of A and B. Figure 1 shows two ellipsoids and their
corresponding characteristic polynomial f(λ). The

Figure 1: Two ellipsoids and their characteristic poly-
nomial f(λ).

relationship between the geometric configuration
of two ellipsoids and the roots of their character-
istic equation is studied in [18] and is stated as follows:

Theorem 1 (Separation Condition of Two Sta-
tic Ellipsoids in E

3) Let A and B be two ellipsoids
with characteristic equation f(λ) = 0. Then,

1. A and B are separate if and only if f(λ) = 0 has
two distinct negative roots;

2. A and B touch each other externally if and only
if f(λ) = 0 has a negative double root.

Remark: Note that the theorem given in [18] as-
sumes that the characteristic equation be given in
f(λ) = det(λA + B) = 0 and therefore the result
there is stated in terms of positive roots. We make
the changes here in consistency with the classic liter-
ature in linear algebra.

The above theorem enables us to determine
whether two ellipsoids are separate by considering only
the existence of distinct negative roots, without the
need of solving the quartic equation. This can be done
by using the method of Sturm’s sequence [3] that com-
putes the number of real zeros of a polynomial of any
degree in a given interval.

2.2 3D Rational Euclidean Motions

A rational Euclidean motion in E
3 is given by

M(t) =
(

R(t) V (t)
0T 1

)
, (1)

where V (t) ∈ E
3, R(t) a 3×3 orthogonal matrix, and t

can be considered as a parameter of time. The motion
is a composition of a rotation R(t) acting upon a point
Y ∈ E

3, followed by a translation V (t). All rational
motions can be represented in Eq. (1) with
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(2)

where E = e2
0 + e2

1 + e2
2 + e2

3 and v0, . . . , v3, e0, . . . , e3

are polynomials in t [10]. Note that e0, e1, e2, e3 are
the Euler parameters that describe a rotation about
a vector in E

3. We call them normalized Euler para-
meters when E = 1. Readers are referred to [14] for
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a survey on rational motion design and [6, 9, 10] for
interpolating a set of positions in E

3 using piecewise
B-spline motions.

When the entries of V (t) and R(t) are polynomials
of maximal degree k, we called M(t) a rational motion
of degree k. A moving ellipsoid A(t) undertaking a
rational motion M(t) is represented as XT A(t)X = 0,
where

A(t) = (M−1(t))T AM−1(t).

Assume that the maximal degree of the entries in R(t)
and V (t) are kR and kV , respectively. Then, M−1(t)
and A(t) is given by

M−1(t) =

(
R(t)T

∣∣∣ kR −R(t)T V (t)
∣∣∣ kR+kV

0T 1

)
,

and

A(t) =


 P (t)

∣∣∣ 2kR U(t)
∣∣∣ 2kR+kV

U(t)T
∣∣∣ 2kR+kV s(t)

∣∣∣ 2(kR+kV )


(3)

for some 3 × 3 matrix P (t), 3-vector U(t), and scalar
function s(t). Here, the subscript represents the max-
imal degree of the entries of the associated entity.

3 Collision Detection of Two Moving
Ellipsoids

In this section, we present a collision detection
scheme for determining whether two moving ellipsoids
under rational motions are collision-free.

Given two moving ellipsoids A(t) : XT A(t)X =
0 and B(t) : XT B(t)X = 0 under rational motions
MA(t) and MB(t), t ∈ [0, 1], respectively, A(t) and
B(t) are said to be collision-free if A(t) and B(t) are
separate for all t ∈ [0, 1]; otherwise, A(t) and B(t)
collide.

The characteristic equation of A(t) and B(t), t ∈
[0, 1] is then given by

f(λ; t) = det(λA(t) − B(t)) = 0.

At any time t0 ∈ [0, 1], if A(t0) and B(t0) are separate,
then f(λ; t0) = 0 has two distinct negative roots; oth-
erwise, A(t0) and B(t0) are either touching externally
or overlapping, and f(λ; t0) = 0 has a double nega-
tive root or no negative root, respectively. Hence, we
need to generate the zero-set of f(λ; t) = 0, i.e., all
the points (λ, t) that satisfy the equation f(λ; t) = 0.
Write

f(λ; t) = g4(t)λ4 + g3(t)λ3 + g2(t)λ2 + g1(t)λ + g0(t).

Suppose the maximum degree of entries in R(t) and
V (t) of the motions A(t) and B(t) are kR and kV ,
respectively, then each entry in λA(t)−B(t) will have
the same degree as the corresponding entry in A(t)
given by Eq. (3), and the degree of the coefficients
gi(t), i = 0, . . . , 4, is therefore

kf = 3(2kR) + 2(kR + kV ) = 8kR + 2kV .

Notice that the gi(t), i = 0, . . . , 4, are continuous
functions in t and as described in [1], the four roots of
f(λ; t) = 0 are also continuous functions in t. There-
fore, the zero-set of f(λ; t) = 0 is a collection of curve
segments or loops in the λ-t plane. Let Z denote such
a collection containing only segments or loops with
negative λ .

Since f(λ; t) = 0 has special root patterns, Z has
special topological structure, i.e., there can only be
either 2 distinct, 1 double or no negative λ for any
t. Figure 2 shows four typical layout of the curve
Z, assuming that the two ellipsoids are separate ini-
tially. Now the curve Z always starts with two sep-
arate branches at t = 0. These two branches remain
separate if the two moving ellipsoids are collision-free,
as shown in Figure 2(a). These two branches merge
into one point at some t = t0, i.e., there is a dou-
ble negative root for f(λ; t0) = 0 (see Figure 2(c)), if
the two moving ellipsoids make contact only at time
t = t0. Finally, if there is no curve segment in the strip
(−∞, 0)×(t0, t1), then there is no negative root within
the interval (t0, t1), so A(t) and B(t) are overlapping
in the time interval (t0, t1) (see Figure 2(b) & (d)).
Hence, we can determine whether two given moving
ellipsoids are collision-free or not and report all colli-
sion intervals if they are not collision-free through an
analysis of the topology of the zero-set Z.

In order to extract the zero-set of f(λ; t) = 0 in
a robust manner, we first convert f(λ; t) = 0 into a
Bernstein representation by the variable substitution

λ =
−u

1 − u
, and t =

v

1 − v
,

which maps the domain (λ, t) ∈ (−∞, 0] × [0, 1] to
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Figure 2: Typical topologies of the zero sets for two
moving ellipsoids that are (a) separate because there
are two distinct negative roots for all t; (b) overlapping
when t ∈ [t0, t1] indicated by the absence of negative
roots; (c) separate until t = t0 when they touch each
other and then separate again; (d) overlapping when
t ∈ [t0, t1] and [t2, t3].

(u, v) ∈ [0, 1]× [0, 1
2 ], and accordingly,

f(λ; t) =
4∑

i=0

kf∑
j=0

aijλ
itj

=
4∑

i=0

kf∑
j=0

aij(
−u

1 − u
)i(

v

1 − v
)j

=
1
d

4∑
i=0

kf∑
j=0

aij(−1)iui(1 − u)4−ivj(1 − v)kf−j

=
1
d

4∑
i=0

kf∑
j=0

bijB4,i(u)Bkf ,j(v)

≡ 1
d
S(u, v),

where

aij ∈ R, bij =
(−1)i(
4
i

)(
kj

j

)aij , d = (1 − u)4(1 − v)kf

and Bm,n(u) =
(

m

n

)
un(1 − u)m−n

is the Bernstein basis function, and kf is the degree of
the coefficients of f(λ; t) in t.

Let S denote the zero-set of S(u, v). Clearly, the
zero-set of f(λ; t) and the zero-set of S(u, v) have the

same topology. So we use IRIT [5], a geometric mod-
eling package, to extract the zero-set of S(u, v). The
zero-set S output by IRIT can easily be organized into
connected components from which we can determine
all the intervals of t, if any, over which S does not
have a curve segment. This enables us to determine
whether the two ellipsoids are collision-free, and report
all the collision intervals when they are not.

A Numerical Example

Consider two ellipsoids A : x2

5 + y2

8 + z2

10 = 1 and
B : x2

10 + y2

5 + z2

4 = 1 moving under rational motions
(Figure 3(a)) given by

(a)

λ

t

(b)

Figure 3: Two ellipsoids moving under quartic rational
motions.

MA(t) =
(

RA(t) VA(t)
0T 1

)
and

MB(t) =
(

RB(t) VB(t)
0T 1

)
,

with

VA(t) =
(

17t2 + 66t − 63
−138t2 + 150t − 35
−43t2 + 34t − 5

)
, VB(t) =

(
8t2 + 80t − 70

126t2 − 120t + 10
−32t2 + 54t − 20

)
.
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The rotational matrices RA(t) and RB(t) take
the form as in Eq. (2) with Euler parameters
{e(A)

0 , e
(A)
1 , e

(A)
2 , e

(A)
3 } and {e(B)

0 , e
(B)
1 , e

(B)
2 , e

(B)
3 }, re-

spectively, where{
e
(A)
0 = 0 e

(A)
1 = 1.8t2 − 2.4t + 0.6

e
(A)
2 = −1.6t + 0.8 e

(A)
3 = −t2 + 1.6t

and{
e
(B)
0 = 0 e

(B)
1 = 1.6t2 − 1.6t

e
(B)
2 = 0.4t2 + 0.6 e

(B)
3 = 0.8t2 − 1.6t + 0.8

.

Since the zero-set of their characteristic equation
f(λ; t) = 0 (as shown in Figure 3(b)) contains curve
segments in the intervals [0, 0.1699], [0.3465, 0.7055]
and [0.8544, 1] (corr. to 4 sig. digits), we conclude
that the two moving ellipsoids collide and, in particu-
lar, they are overlapping or touching within the time
intervals [0.1699, 0.3465] and [0.7055, 0.8544].

4 Experimental Results

We have tested our collision detection method on
ellipsoids moving under rational motions of different
degrees. The computations are carried out in double
precision on a Pentium 4 2GHz CPU. The results are
shown in Table 1. Higher order motion leads to an
increase in the degree in t of the coefficients of the
characteristic polynomial f(λ; t), which in turn results
in a longer execution time. For quartic motions, a
single collision detection takes about 4 seconds. It is
worth-noting that a considerable amount of time has
been spent on the zero-set extraction module which
computes the intersection of a Bézier surface and a
plane, as compared to the time used in obtaining the
characteristic polynomial. Therefore the use of an ef-
ficient geometric intersection scheme is critical to the
overall performance of our collision detection method.
It is also found that the time taken for computing
the zero-set for collision-free cases is in general longer
than that for colliding cases, because of the existence
of longer intersection curves in the zero-set when two
moving ellipsoids do not collide.

As have been mentioned before, the degree of the
coefficients of f(λ; t) can be up to kf = 8kR + 2kV

in t. In fact, when we apply our collision detection
method to ellipsoids moving under degree 6 rational
motions, numerical instability becomes a major prob-
lem for obtaining an accurate answer. Errors come
from both the evaluation of the high degree character-
istic polynomial and in the extraction of the zero-set.

Degree in t Average CPU time (sec)

R(t) V (t) M(t) f(λ; t) (i) (ii) overall

0 1 1 2 0.005 0.415 0.420
2 1 2 18 0.008 1.104 1.113
4 2 4 36 0.009 4.739 4.748

Table 1: Average CPU time taken against rational
motions of various degrees. The rational motion M(t)
composes of R(t) and V (t) given by Eq. (1). The
columns (i) and (ii) show the time taken in polynomial
evaluation and zero-set extraction, respectively.

The possibility of tackling this limitation for high de-
gree motions by using multi-precision computations
remains to be explored.

5 Conclusion

We have presented a novel collision detection
method for two ellipsoids moving under rational mo-
tions. The method is based on an algebraic separation
condition for two static ellipsoids. Although the sep-
aration condition involves the characterization of the
roots of the characteristic equation of two ellipsoids,
there is in fact no need to solve for the roots of the
quartic equation. Our collision detection method is
based on this algebraic condition and uses the charac-
teristic equation f(λ; t) = 0 of two moving ellipsoids.
By extracting the zero-set of this bivariate function,
we can easily determine whether two moving ellipsoids
are collision-free or not during their motions.

Although we consider only Euclidean rational mo-
tions in this study, our collision detection method can
in fact be applied without any modifications to ellip-
soids moving with affine rational motions [7]. These
ellipsoids may also change their shapes during motion
and therefore are very suitable for applications such
as computer animations and morphing.

In some applications, e.g. collision avoidance,
apart from knowing whether two moving ellipsoids are
collision-free, we may also want to tell the minimum
separating distance between the two moving ellipsoids
and the moment at which this distance is realized.
We notice that for two separate ellipsoids approach-
ing each other, the difference between the two distinct
negative roots in f(λ) = 0 becomes smaller and smaller
until the two roots merge into a double negative root
when the two ellipsoids touch each other externally.
In light of this, we believe that there is a strong re-
lationship between the separating distance of the two
ellipsoids and the difference between the two distinct
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negative roots of the characteristic equation. Hence
another problem is to determine the minimum sepa-
rating distance of two collision-free moving ellipsoids,
as well as the maximum penetrating distance for two
colliding ellipsoids.
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