
Mining Emerging Substrings∗

Sarah Chan Ben Kao C.L. Yip Michael Tang

Department of Computer Science and Information Systems
The University of Hong Kong

{wyschan, kao, clyip, fmtang}@csis.hku.hk

Abstract. We introduce a new type of KDD patterns called emerging sub-
strings. In a sequence database, an emerging substring (ES) of a data class is a
substring which occurs more frequently in that class rather than in other classes.
ESs are important to sequence classification as they capture significant contrasts
between data classes and provide insights for the construction of sequence clas-
sifiers. We propose a suffix tree-based framework for mining ESs, and study the
effectiveness of applying one or more pruning techniques in different stages of
our ES mining algorithm. Experimental results show that if the target class is
of a small population with respect to the whole database, which is the normal
scenario in single-class ES mining, most of the pruning techniques would achieve
considerable performance gain.

Keywords: emerging substring, sequence mining, merged suffix tree, pruning

1 Introduction

More and more companies do business on a global sense in a multitude of languages. They would
like to quickly identify the language of foreign callers and route their calls to operators who can
speak the language. They are also interested in efficiently directing potential customers’ e-mails to
members of staff who are literate on the language.

In the above example, a spoken word can be regarded as a sequence of phonetic sounds while
a written word can be viewed as a sequence of characters. Due to the different building blocks
and rules used by the languages, some consecutive sub-elements, or substrings, of these sequences
may only be present in one particular language, or they may tend to be more easily found in one
language rather than in any others. Identifying frequent substrings specific to a particular language
is of great advantage since it does not only allow us to distinguish one language from another, but
also provides a good indicator of the language, or class, to which a given word belongs [17, 6].

In this paper we discuss the idea of emerging substrings for Knowledge Discovery in Databases
(KDD) [10] and propose efficient algorithms for extracting them. Given a sequence database that is
partitioned into a number of data classes, an emerging substring (ES) of a target class is a substring
∗This work is supported by HK RGC under the grant HKU 7040/02E.

1

sin
HKU CSIS Tech Report TR-2002-11

which occurs more frequently in that class rather than in the others. This requires that the ratio
of an ES’s support (or occurrence frequency) in that class and its support in other classes, or the
growth rate, be at least equal to a certain value. To be a significant representative of a target
class, the support of an ES in that class must also reach a specified threshold. ESs are important
features in the field of sequence classification due to their intrinsic ability to capture significant
contrasts between classes of sequences, and their potential usefulness for providing knowledge for
the construction of sequence classifiers.

Jumping emerging substrings (JESs) is a specialization of emerging substrings — JESs are ESs
having infinity growth rate. That is, they are substrings which can only be found in one class but
not in any others. JESs capture sharper changes between data classes, however, they are more
sensitive to noise than ESs having finite growth rate.

Besides language identification, the idea of emerging substrings can also be applied to many every-
day life applications. For example, the order of products or services purchased by customers helps
marketing executives identify customer needs, classify customers according to their buying behav-
iors, and set up marketing strategies [5]. Discovering specific orders of movements in stock prices
provides knowledge for financial analysts to forecast stock performance [19]. Identifying frequent
sequences of note duration [25] in MIDI [16] tracks helps distinguish melody tracks from non-melody
ones [22, 24]. Knowing the associations between illnesses and repeated occurrences of certain genes
eases the discovery of the origins of illnesses and early discovery of them [21]. Besides these, the
mining of ESs is also potentially useful for protein classification, gene-coding region identification,
web-log mining, content-based e-mail processing/forwarding systems, etc. The applications span a
wide range of industries and are virtually endless.

The most straightforward approach of mining ESs is to enumerate all possible substrings existing
in the database and count their occurrences in each class. However, a huge sequence database
could contain millions of sequences and the number of substrings included in a sequence increases
quadratically with the sequence length. For example, GenBank [4] had 15 million sequences in
2001 and a typical human genome has 3 billion characters. The mentioned approach is apparently
impractical as it is computationally too expensive both in terms of time and working memory.
This makes the mining of ESs a difficult task. Cleverer algorithms which can generate distinct ES
candidates and filter out some of them efficiently are therefore needed.

We propose to use a suffix tree-based framework for mining ESs. In the suffix tree representation
of a sequence, each suffix of the sequence can be viewed as a path from the root node to a terminal
node in the tree, and the size of the tree in terms of the number of nodes in it is linear to the
length of the sequence. Merging the suffix trees of all the sequences leads to a data structure that
can effectively store all distinct substrings contained within a class of sequences in space linear to
the sum of the sequence lengths. This merged suffix tree-based candidate generation approach is
capable of maintaining the support count of each substring in each class, and eliminating the work
of counting the occurrences of substrings which are not present in any sequence.

A sequence database often contains two or more data classes. In this paper we place our emphasis
on the problem of single-class ES mining, i.e., to mine ESs belonging to one distinct class of the
database. Our strategy goes like this. First, we construct a merged suffix tree from the sequences
belonging to the class we target at, marking the number of occurrences of the substrings (repeated
occurrences within a sequence are only counted once) in that class by associating each node with
a counter. Next, we update the tree using sequences of all other classes, recording the number
of occurrences of substrings using another set of counters. Then, we perform a tree traversal to
extract all ESs of the target class based on the values of the support threshold, the growth rate

2

threshold and the support counters.

Besides recommending an ES mining model, this paper also aims at studying the effectiveness of
applying various pruning techniques in different stages of our ES mining algorithm. We consider
three basic techniques, which are namely pruning with the support threshold, pruning with the
growth rate threshold, and pruning with the length threshold. The combined effects of these pruning
methods are also covered. Experimental results show that if the target class is of a small population
with respect to the whole database, which is the normal scenario in single-class ES mining, most
of the pruning techniques would achieve considerable performance gain. On the other hand, if the
size of the target class is close to that of the whole database, the performance gain brought about
by some pruning methods may become less significant.

The scope of this work is limited to frequently occurring substrings (consecutively ordered events)
within sequences. Frequently occurring sub-sequences (non-consecutively ordered events) may pro-
vide valuable insights in certain application domains (e.g., in the analysis of customers’ purchase
behavior [5] and web-logs [18], non-consecutive purchases or pages viewed could be useful) but these
features often do not carry much sense otherwise (e.g., separate characters in a word no longer de-
note a word; discrete notes are no longer representative for a musical track). Moreover, mining
these features would involve many more candidate sequences resulting in higher complexity as well
as computational cost. Dedicated solutions have yet to be developed.

The rest of this paper is organized as follows. In Section 2, we introduce ESs, explain some basic
terminologies and state a formal definition of the ES mining problem. In Section 3, we review some
related work. In Section 4, we introduce the ideas of suffix trees and their merged variants, and
explain their roles in our ES mining algorithms. In Section 5, we describe our ES mining algorithms
and pruning techniques in details. In Section 6, we present our experimental setup, results and
evaluation. Finally, we give some concluding remarks in Section 7.

2 Problem Definition

In this section we will first explain some notations used throughout this paper. Then we will define
emerging substrings and jumping emerging substrings. Finally, a formal statement of the emerging
substring mining problem will be given.

2.1 Basic definitions

Let Σ = {a1, a2, . . . , am} be the set of all symbols, or the alphabet. A sequence is a non-empty
string (or ordered list of symbols) with finite length over Σ. The length of a sequence is the number
of symbols contained in it. For example, T = 〈t1, t2, . . . , tl〉 where ti ∈ Σ ∀i ∈ 1 . . . l, is a sequence
of length l.

Given a length-k string s = 〈s1, s2, . . . , sk〉 and a length-l sequence T = 〈t1, t2, . . . , tl〉. We say
that s is a substring of T , denoted as s v T , if ∃i ∈ 1 . . . (l − k + 1) such that 〈s1, s2, . . . , sk〉 =
〈ti, ti+1, . . . , ti+k−1〉. If s 6= T , s is a proper substring of T , indicated as s @ T . Furthermore, if the
equality holds when i = 1, s is a prefix of T . We denote this as s ≺ T . If the equality holds when
i = l − k + 1, s is a suffix of T . We denote this as s � T .

In a training sequence database D, each sequence Ti has exactly one class label CTi . Let C = {Cj :
j = 1 . . .m} be the set of all class labels. For any sequence T not belonging to class Ck, we say T

3

belongs to Ck, the complementary class of Ck. A database D with m distinct class labels can be
partitioned into m disjoint datasets, such that each dataset contains sequences sharing the same
class label. These datasets are represented as D1,D2, . . . ,Dm, where Dk = {Ti : CTi = Ck}. It
follows that D = {Ti} =

⋃m
j=1Dj . For each Dk ⊂ D, its complementary dataset Dk is defined as

D −Dk, and its size |Dk| is the number of sequences in it.

The support count (or simply count) and support of a non-empty string s in a dataset Dk, denoted
as countDk(s) and suppDk(s), respectively, are defined as:

countDk(s) = |{T : T ∈ Dk ∧ s v T }|

suppDk(s) =
countDk(s)
|Dk|

The growth rate of a non-empty string s from a dataset Di to a dataset Dj (where i 6= j) is a
measurement of the change in support between the datasets, which is defined as:

growthRateDi→Dj (s) =


0, if suppDi(s) = 0 and suppDj (s) = 0,
∞, if suppDi(s) = 0 and suppDj (s) > 0,
suppDj (s)

suppDi (s)
, otherwise.

2.2 ES and JES

Given a support threshold ρs ∈ [0, 1] and a growth rate threshold ρg ∈ (1,+∞), a non-empty string
s is a ρg-emerging substring (ρg-ES), or simply an emerging substring (ES) if ρg is understood, of
a class Ck if the following two conditions hold:

support condition: suppDk(s) ≥ ρs,
growth rate condition: growthRateDk→Dk(s) ≥ ρg.

An ES of Ck is also called an ES from Dk to Dk. We say that a class Ck is the favorable class of a
string s, and s favors Ck, if and only if s is an ES of Ck.

A jumping emerging substring (JES) of a class Ck is a string s that can be found in Dk but not
in Dk. That is, suppDk(s) > 0 and suppDk(s) = 0. Using our notation, a JES is an ∞-ES. An ES
with finite growth rate is a non-jumping ES.

To illustrate the idea of ESs and JESs, let us consider an example. Table 1(a) shows a database with
two classes, each having four sequences. Table 1(b) lists out all possible substrings, their supports
with respect to each class, and the growth rates of all ESs. If we set ρs = 2/4 and ρg = 1.5, there
will be six ESs: Class 1 has one non-jumping ES (a) and three JESs (abc, bcd and abcd), whereas
Class 2 has one non-jumping ES (b) and one JES (abd).

2.3 The ES mining problem

Given a sequence database D, the set C of all class labels associated with the sequences in D, a
support threshold ρs and a growth rate threshold ρg, the ES mining problem is to discover the set
of all ρg-ESs present in Dj for each class Cj ∈ C.

4

Class 1 Class 2
abcd abd

bd bc

a cd

c b

(a) Datasets

Support Growth rate of ESSubstring
Class 1 Class 2 Class 1 Class 2

a 2/4 1/4 2
b 2/4 3/4 1.5
c 2/4 2/4
d 2/4 2/4
ab 1/4 1/4
bc 1/4 1/4
bd 1/4 1/4
cd 1/4 1/4
abc 1/4 0/4 ∞
abd 0/4 1/4 ∞
bcd 1/4 0/4 ∞
abcd 1/4 0/4 ∞

(b) Discovering emerging substrings (for ρs = 2/4 and ρg = 1.5)

Table 1: Example on ESs and JESs

The focus of our study is on the single-class ES mining problem. The definition of this sub-problem
is similar to above, except that a target class Ck ∈ C has to be specified and our goal is to discover
the set of all ρg-ESs present in Dk ⊂ D. In such a case, Ck is referred to as the opponent class.

3 Related Work

Our work on emerging substrings (ESs) is motivated by the concept of emerging patterns (EPs).
EPs were proposed by Dong and Li [7] to capture useful contrasts between data classes, or emerging
trends in timestamped databases. Under their model, a structural database consists of a collection
of objects, each being a set of items (or an itemset). Each object in the database belongs to one of
the classes, and it is labeled according to its class. The database can be partitioned into datasets,
such that all objects in a dataset share the same class label. An itemset I is said to be contained in
an object O if I ⊆ O, and the support of I in a dataset is defined as the fraction of objects in the
dataset that contain I. Loosely speaking, an itemset is an EP if its support increases significantly
from one dataset to another (the change in support is defined as the growth rate). With this
property, EPs capture multi-attribute contrasts between data classes.

The EP mining problem is, for a given growth rate threshold ρ, to find all EPs with growth rate
at least equal to ρ. Dong and Li are convinced that EPs with low to medium supports, such as
1−20%, give new insights to domain experts in many applications. However, the efficient mining of
EPs with low supports is a challenging problem since (i) the Apriori property [1] no longer holds for
EPs, and (ii) there are often too many EP candidates, especially for high dimensional databases.
Naive algorithms are thus too costly. The authors illustrated this by an example: as there are over
350 itemsets in the PUMS dataset, the naive algorithm would have to find the supports of 2350

itemsets in two datasets, compute their growth rate, and determine whether they are EPs. This is
apparently an impossible task.

Borders were proposed to concisely describe frequent collections of itemsets, and they play a major
role in discovering EPs. A border is an ordered pair 〈L,R〉, where L and R are called the left-
hand bound and right-hand bound, respectively. L is defined as the set of minimal itemsets in the
collection, and R is defined as the set of maximal ones. The set interval of, or the collection of
sets represented by, 〈L,R〉, is denoted as [L,R] = {Y | ∃X ∈ L,∃Z ∈ R such that X ⊆ Y ⊆ Z}.

5

It was proved that any interval-closed collection of itemsets has a unique border. In the mining
of EPs, Bayardo’s Max-Miner [3] is used to efficiently discover the border of the collection S of all
frequent itemsets, for each dataset, with respect to any fixed support threshold δ in the dataset.
The resultant borders are then manipulated by border-based algorithms, to mine EPs, which are
in turn represented by a set of borders. The use of borders has not only eliminated the need of
enumerating the elements of S, and counting their supports in each dataset, but also provided a
compact way of representing and storing the discovered EPs.

The main algorithm for discovering EPs is called MBD-LLborder. It takes in a special pair of
borders as input, and derives a target class’s EPs satisfying a support threshold θmin in that class
but being lower than a support threshold δmin in the opponent class. The algorithm makes use of
a sub-routine called Border-Diff to derive the differential between a pair of borders. The EPs
discovered by MBD-LLborder are concisely represented as the union of up to n intervals of all
the borders derived by Border-Diff, where n is the number of itemsets in the right-hand bound
of the target class’ border.

Several variants of EPs have been introduced, with Jumping EPs (JEPs) [8] being the most im-
portant one. JEPs are EPs with infinity growth rate. Since a JEP can only be found in one
distinct class in the database, it is a good indicator of that class. MBD-LLborder can be used
to mine JEPs, using two horizontal borders derived by Horizon-Miner. Other variants of EPs
include strong EPs [11] (which are EPs with all subsets being EPs) and the Most Expressive JEPs
(MEJEPs) [13] (which are the minimal JEPs).

EPs have been used to build powerful classifiers, which are reported to outperform C4.5 [20] and
CBA [14], for many datasets. CAEP (Classification by Aggregating EPs) [9] is the first proposed
EP-based classifier. It adopts an eager learning approach and uses the combined power of a set of
EPs to make a classification decision. Given a testing instance s, it computes a score of it for each
class Ck, which is defined as1:

score(s, Ck) =
∑
e⊆s

e∈EP(Ck)

countDk(e)
countD(e)

· suppDk(e)

=
∑
e⊆s

e∈EP (Ck)

growthRateDk→Dk(e) · |Dk||Dk|
growthRateDk→Dk(e) · |Dk||Dk| + 1

· suppDk(e)

A JEP-classifier [13] is similar to a CAEP classifier except that only MEJEPs are used, which
strengthens its resistance to noise in the training set and reduces its complexity. Unlike the CAEP
and JEP classifiers, DeEPs (Decision-making by EPs) [12] is a lazy learning, instance-based classi-
fier. It classifies an unseen object by compactly summarizing the supports of the discovered patterns
in the light of maximizing the discriminating power of the patterns, and it is said to have achieved
higher accuracy and efficiency than its eager learning counterparts.

Emerging substrings (ESs) in sequence databases are analogous with EPs in itemset databases. As
in the case of EPs, the Apriori property does not hold for ESs either. However, techniques for
extracting EPs cannot be easily modified to extract ESs, since (i) there are many more unique
substrings in a sequence compared with unique subsets in an itemset, hence it is impractical to

1This definition is a modified version from the one presented in [9]. In the original definition, it is assumed that
the populations of Dk and its complement Dk are roughly the same. We modified the scoring function so as to relax
the assumption.

6

transform substrings into itemsets, and find ESs by discovering single-attribute EPs in the trans-
formed dataset, and (ii) the border approach (with modifications) can only be used to mine jumping
emerging substrings but not non-jumping ones, as there are no existing algorithms that find the
borders of frequent substrings. This makes the efficient mining of ESs a bigger challenge, and
imposes a need for algorithms dedicated to the discovery of ESs.

We propose a suffix tree-based framework for the mining of ESs. Under this model, we only
have to consider the suffixes, rather than substrings, of each sequence. A length-n sequence has
n distinct suffixes and O(n2) substrings. Manipulating suffixes has a clear computational edge
over manipulating substrings. We add the suffixes of the sequences to a merged suffix tree, which
effectively stores all the substrings of a collection of sequences. Furthermore, by associating each
node in the tree with a set of support counters and performing basic tree operations (e.g., node
insertion or deletion), we can maintain each substring’s count with respect to each class just by
completely or partially scanning all the symbols in each suffix of each sequence once.

Like EPs, emerging substrings are good representatives of a class due to their intrinsic ability to
capture distinguishing characteristics of data classes, or trends over time. ESs and Jumping ESs
(JESs) would give useful knowledge for the construction of powerful sequence classifiers. Due to
the gigantic number of substrings (many are redundant) involved in a sequence, it is infeasible to
compute the similarity of sequences at classification time. Hence the eager learning approach seems
to be a better solution than its lazy-learning counterpart. This leads us to research on the problem
of efficient mining of ESs from a given training database.

4 Merged Suffix Trees

Before presenting our ES mining algorithms, let us first describe the suffix tree and merged suffix
tree structures. As a convention, we use Greek letters (e.g., ω, α) to denote strings, lowercase
letters (e.g., a, b) in typewriter font to denote the symbols in strings, and upper case letters (e.g.,
A, B) to refer to the nodes in a suffix tree or a merged suffix tree.

4.1 Suffix Trees

A suffix tree of a string ω is a level-compressed dictionary trie of all suffixes in ω. Given a length-n
sequence, a suffix tree can be constructed using O(n) time and space with online [23] or offline [15]
algorithms. A suffix tree is a compact way of representing all the substrings of a given sequence.

To illustrate, let ω be the sequence aabaabca. Figure 1(a) shows the suffix tree of ω, denoted as
ST (ω). In the figure, node A is the root of the tree. An undirected solid edge connects a child
node to its parent, and it is associated with a substring of ω. For example, the edge connecting
nodes I and J in the figure is labeled aabca, where aabca @ ω. Each node in ST (ω) is also
associated with a substring of ω. We use the notation SX to denote the substring associated with
a node X. Given a node X, if we traverse the tree from the root to X and concatenate all the
substrings that are associated with the edges on the traversal path, we obtain SX . For example,
with respect to Figure 1(a), SH = abca, which is the concatenation of the substrings represented
by edges AB,BF and FH. The root of a suffix tree is associated with the empty string, ε.

A node X in a suffix tree is called a terminal node if SX is a suffix of ω. Otherwise, X is called
a non-terminal node. In our example, K is a terminal node as SK = bca � aabaabca = ω. A

7

J

I

K

A

HGD

B

E

C

L

F

ca

b

a

aabcaaabca

aabca

ca

ca

cab

ab

(a) Edges represented by symbols

D

J

I

K

A

HG

F

B

E

C

L

index:
string:

[123456789)
aabaabca

[7,9)

[7,9)[4,9)[7,9)

[3,4)

[3,4)

[7,9)[4,9)

[4,9)

[2,4)

[1,2)

(b) Edges represented by index ranges

Figure 1: Suffix tree of aabaabca

length-n sequence has n + 1 distinct suffixes (including ε) and hence it has n + 1 terminal nodes.
In Figure 1(a), terminal nodes and non-terminal nodes are colored black and white, respectively. It
can be shown that if a substring α is the longest common prefix of two suffixes of ω, there will be a
non-terminal node X in the tree such that SX = α [23]. To illustrate, let us consider the substring
aab which is the longest common prefix of the suffixes aabaabca and aabca. We can see from
Figure 1(a) that there is a non-terminal node, namely node C, associating with aab. In addition,
for each internal (non-leaf) node in a suffix tree, the edges linking it to its children are associated
with substrings starting with different symbols.

Each node in a suffix tree has a pointer called the suffix link. Suffix links are indicated by dotted
arrows in the figure. The suffix link of a node X points to a node Y if and only if SX = xSY for
some symbol x. For instance, the suffix link of node J points to node E. It can be easily checked
that SJ = baabca = bSE .

Any substring of a sequence ω must be a prefix of some suffix of ω.
Since each non-empty suffix of ω is represented by a terminal node in
ST (ω), any non-empty substring of ω can be extracted by a partial
traversal of the tree, starting from the root to a terminal node. For
example, the terminal node J is associated with the suffix baabca.
The string baab can be obtained by traversing the tree along edge AI
(which gives b) and then partially traversing along edge IJ (i.e., using
only aab in aabca that is associated with edge IJ). In fact, one can
imagine adding 4 nodes, namely X1, X2, X3 and X4, along edge IJ such
that each newly formed edge corresponds to a single symbol. Figure 2
illustrates this. In our discussion, it is useful to consider these extra
nodes. Since these nodes do not exist explicitly in the implementation
of a suffix tree, we call them implicit nodes. Similar to an explicit node,
each implicit node in ST (ω) is associated with a substring of ω.

I

X3

X2

X1

K

A

L

J

X4

b

a

a

c

c

a

b

c

a

a

Figure 2: Part of the suffix
tree of aabaabca with implicit
nodes shown as crosses

In Figure 1(a), each edge in ST (ω) is labeled with a substring of ω. Instead of recording the
symbols directly, we use a left-closed right-open range [istart , iend) to represent a substring of ω for
efficient use of space, as shown in Figure 1(b). Variables istart and iend are indices to ω. The first
symbol of a sequence is given the index value 1. ω[istart , iend) represents the substring in ω starting
at position istart and ending before position iend . In our example, ω[7, 9) denotes the substring ca.

8

Although a length-n sequence has O(n2) substrings, there are at most O(n) nodes in its suffix
tree. With the index range representation, the tree can be stored in O(n) space and traversed in
O(n) time. Hence, the suffix tree-based structure allows us to store and extract unique substrings
in a compact and efficient manner. There are standard algorithms for constructing suffix trees.
Interested readers are referred to [15, 23].

4.2 Merging Suffix Trees

As described above, substrings in a sequence can be uniquely represented by a suffix tree. Extending
this idea a little bit, we can uniquely store all substrings present in a dataset D by making use of
a merged suffix tree, or simply a merged tree, represented as MT (D).

Class 1 Class 2
abcd abd

bd bc

a cd

c b

(a) Datasets (same as in
Table 1(a))

(1, 0)

(1, 1)

(2, 3) (2, 2)(2, 2)(2, 1)

(1, 1)(1, 1)(1, 1)

(0, 1) (1, 0)

dcd

b c d d

d

a cb d

(b) The corresponding merged suffix tree. (x, y) in each node
denotes the number of occurrences of the associated sub-
string in Class 1 and Class 2, respectively.

Figure 3: An example of merged suffix tree

Our implementation of a merged suffix tree is similar to a suffix tree except that each node is
associated with support counters. In the simplest case where there are only two classes of sequences,
each node is associated with two counters. If a node X has the counter values (c1, c2), it means
the support count of SX with respect to the two classes are c1 and c2, respectively. For example,
Figure 3(a) shows a dataset with two classes, each comprising four sequences. Figure 3(b) shows
the result of merging the eight suffix trees formed from the eight sequences. The counter values of
the node associated with substring a are (2, 1). It means a is contained in two sequences (abcd

and a) in Class 1, and one sequence (abd) in Class 2.

If a dataset D is associated with m classes, where m > 2, we can assign m counters to each node X
in MT (D). Each counter ci is responsible for recording the number of occurrences of SX in Di. The
merged tree is therefore capable of keeping track of the support counts of each substring present
in D in each of the m classes. In single-class ES mining, we are only interested in discovering ESs
from a target class Ck. Thus, only two sets of counters will be necessary: one (i.e., c1) for the
support counts in Dk, and the other (i.e., c2) for the support counts in Dk. In fact, the suffix tree
ST (ωi) for a sequence ωi can be thought of as being a single-sequence merged tree, MT ({ωi}). If
the class label of ωi is Ck, the k-th counter at each node in MT ({ωi}) would have the value 1, and
all other counters would have the value 0.

We mentioned that each node in a suffix tree has a suffix link. As discussed in [23, 2], suffix links

9

are used to facilitate string matching, i.e., they help us to determine whether a given string is
contained in the sequence represented by the suffix tree. Since our goal is to discover all ESs in
a target class, such string matching tools are not required. This explains why suffix links are not
maintained in our implementation of merged suffix trees.

The symbols associated with an edge are denoted by a pair of indices [istart , iend) to a vector S,
which is the concatenation of all the sequences in the database, D (i.e., S = ω1ω2 . . . ω|Dk|). If the
set E of substrings associating with a node Y are found to be ESs, they are represented collectively
by three indices to S, indicated as 〈i0, istart , iend 〉, where i0 is the common starting position of these
substrings in S, and istart and iend are indices representing the incoming edge of Y . All the ESs
in E share the same support counters (those associated with Y) and growth rate. By using index
representation, all ESs can be stored concisely and retrieved conveniently.

The resultant merged tree for the |Dk| length-O(n) sequences in a dataset Dk has O(n|Dk|) nodes.
Its space complexity is therefore roughly proportional to the number of sequences and the average
length of the sequences contained in Dk. As there are O(n|Dk|) edges in the merged tree, all ESs
found can be represented in O(n|Dk|) space. There are various ways of building a merged tree.
Among them are the depth-first and breadth-first approaches of merging individual suffix trees.
A merged tree can also be constructed directly by adopting an Ukkonen-like algorithm. Our ES
mining algorithms build merged trees by appending suffixes of the sequences to the tree. We will
describe this in details in the next section.

5 ES Mining Algorithms

In this section we give several algorithms for mining emerging substrings. After presenting a
Baseline algorithm, we will describe three basic pruning techniques which aim at boosting its
performance. We will then explore the possibility of combining the power of these pruning tech-
niques.

5.1 The BASELINE algorithm

Our Baseline algorithm extracts the emerging substrings of a target class Ck from a dataset D in
three phases:

1. Construction Phase (C-Phase). In this phase, a merged tree MT (Dk) is built from all
the sequences of the target class, Ck.
Initially, MT (Dk) only contains the root node, which has counter values (c1, c2) = (0, 0).
Then, for each sequence ωi ∈ Dk, we add each of its |ωi| suffixes (excluding the empty string,
ε) to MT (Dk) by path matching — we match the symbols in a suffix sj with the symbols
represented in the edges of the tree, starting from the root until either the whole suffix is
matched [case 1], a leaf node is encountered [case 2], or a mismatch occurs [case 3]. During
the traversal, we give an increment of 1 to the c1 counter of each visited node unless it has
previously been traversed by another suffix of ωi.

In case 1 [suffix sj is fully matched], if sj is identical to the substring represented by an
implicit node I (i.e., SI = sj), we explicitize I, duplicate the counter values of I’s (explicit)
child node C for it, and then increase the value of I’s c1 counter by one.

In case 2 [suffix sj has not been fully matched and a leaf node T is met], ST is a proper prefix

10

of sj . We give T a new child node N (with counter values (1, 0)), and associate edge TN
with the unmatched part of sj .

In case 3 [a mismatch occurs], if the node (say, node Y) associated with the longest prefix of
sj being matched is implicit, we explicitize Y , duplicate the counter values of Y ’s (explicit)
child node C for it, and increase the value of Y ’s c1 counter by one. No matter Y is implicit
or explicit, we give Y a new child node N (with counter values (1, 0)), and associate edge
Y N with the unmatched part of sj .

Note that in case 1, we do not explicitize node I if its child node C has previously been
visited by another suffix of the same sequence as sj (so as to avoid repeated contribution of
a sequence to the same counter). Similarly, in case 3, we do not increase the value of node
Y ’s c1 counter if the same situation arises.

Since we only deal with Ck sequences in this phase, all the c2 counters in MT (Dk) have
the value 0. In MT (Dk), any substring represented by an explicit node has support counts
identical to those registered by the support counters of that node; any substring represented
by an implicit node I has support counts identical to those registered by the support counters
of the child of I. This suggests that each explicit node X in a merged tree can be thought of
as relating not only to the substring associated with it, but also to those substrings associated
with the implicit nodes present within the edge connecting it to its parent. We call all these
substrings the related substrings of node X. In this way, most explicit nodes in a merged
tree relate to multiple substrings. This explains why such data structure can compactly and
uniquely store all substrings present in a dataset, and support the efficient extraction of them.

MT (Dk) now contains all the unique substrings present in dataset Dk, with support counters
with respect to Dk maintained.

2. Update Phase (U-Phase). In this phase, MT (Dk) is updated with all the sequences of the
opponent class, (Ck). We denote the resultant tree by MT ′(Dk).
We define the update of a merged tree as “update the support counters of the substrings in the
merged tree”. This means we will increase (when necessary) the support counts of substrings
which are already present in MT (Dk), but not introduce any substring α which can only be
found in Dk (i.e., α ∈ Dk ∧ α 6∈ Dk) into the tree.

The way we update MT (Dk) in this phase is similar to how we construct the tree in the
C-Phase, except that this time we update the value of the c2 counter (instead of c1), and we
do not add the child node N to the tree in cases 2 and 3 described previously. Cases 2 and
3 now become:

In case 2 [suffix sj has not been fully matched and a leaf node T is met], ST is a proper prefix
of sj . No tree operation is needed.

In case 3 [a mismatch occurs], if the node (say, node Y) associated with the longest prefix of
sj being matched is implicit, we explicitize Y , duplicate the counter values of Y ’s (explicit)
child node C for it, and increase the value of Y ’s c1 counter by one. If Y is already explicit,
no tree operation is needed.

The resultant merged tree, MT ′(Dk), contains all the unique substrings present in dataset
Dk, with support counters with respect to both datasets Dk and Dk maintained.

3. eXtraction Phase (X-Phase). In this phase, all ESs of Ck are extracted by a pre-order
tree traversal on MT ′(Dk).
Recall that we stated in Subsection 2.2 that an ES of class Ck must have its support in Dk at
least equal to the support threshold (ρs) and growth rate (from Dk to Dk) at least equal to

11

the growth rate threshold (ρg). In this phase, we traverse MT ′(Dk) starting from the root in
a pre-order manner. At each node X, we check its counter values to determine whether its
related substrings can satisfy both the support condition (i.e., suppDk(SX) = (c1/|Dk|) ≥ ρs)
and the growth rate condition (i.e., (c1/|Dk|)/(c2/|Dk|) ≥ ρg).
We observe that if a sequence ωi contains a substring µ, it will also contain any prefix ν of
µ (i.e., (µ v ωi) ∧ (ν ≺ µ) ⇒ ν v ωi). Thus, the value of each support counter of a node
must be at least equal to that of the corresponding counter of any child node of it. It follows
that if the substrings related to a node X are infrequent in Dk (i.e., suppDk(SX) < ρs), all
the substrings related to any child node of X will also be infrequent in Dk. Therefore, if
we encounter a node related to substrings being infrequent in Dk, we can ignore the subtree
rooted at this node since we know we will not be able to derive any ESs from it.

With the properties of the merged tree structure, all ESs of Ck are mined in a complete or
partial tree walk on MT ′(Dk).

In short, we summarize the Baseline algorithm as comprising the C-U -X-Phases.

5.2 With support threshold pruning

We observe that in the Baseline algorithm, the c2 counter of each substring α in MT (Dk) (con-
structed in the C-Phase) would be updated in the U -Phase as long as it is contained in some
sequence in Dk. If α is infrequent with respect to Dk, it will not be qualified to be an ES of Ck
and all its descendent nodes will not even be visited in the X-Phase. This inspires us to consider
adding a ρs-Pruning Phase, in which we prune all infrequent substrings (with respect to Dk) in the
merged tree right after it has been constructed. In this way, we may save some efforts and time on
updating the counters of some nodes and explicitizing others, that are associated with substrings
infrequent in Dk.

ρs-Pruning Phase (Ps-Phase). In this phase, all substrings being infrequent in Dk are
pruned from MT (Dk) by a pre-order traversal on the tree. We denote the resultant tree by
MT s(Dk) which now becomes the input to the U -Phase.

We traverse MT (Dk) starting from the root in a pre-order manner. At each node X, we check
the value of its c1 counter to determine whether its related substrings can satisfy the support
condition (i.e., suppDk(SX) = (c1/|Dk|) ≥ ρs) of being ESs of Ck. If the condition fails, we
remove the pointer that links X’s parent node to it, and ignore all the descendent nodes of
X. The subtree rooted at X is then effectively detached from MT (Dk).

We name the algorithm that comprises the C-Ps-U -X-Phases as the s-pruning algorithm. Its
fundamental deviation from the Baseline algorithm lies on its earlier use of ρs (from the X-Phase
to the new Ps-Phase) to prune infrequent substrings in Dk.

5.3 With growth rate threshold pruning

In the U -Phase of the Baseline algorithm, as more and more sequences in Dk are added to
MT (Dk), the value of the c2 counter of a node in the tree would get larger and larger. This implies
that the support of the node’s related substrings in Dk is monotonically increasing, and thus the
ratio of the support of the substrings in Dk to that in Dk is monotonically decreasing. At some
point, this ratio may become less than the growth rate threshold, ρg. When this happens, we
know that the substrings have actually lost their candidature for being ESs in Ck. This makes us

12

consider pruning the substrings in MT (Dk) as soon as they are found to be failing the growth rate
requirement for ESs. By doing so, we may reduce the size of the tree and speed up the update of
the tree. The idea of the ρg-Update Phase is described below.

ρg-Update Phase (Ug-Phase). In this phase, MT (Dk) is updated with all the sequences of
the opponent class, Ck. Substrings which fail to satisfy the growth rate condition are pruned
from the tree. We denote the resultant tree by MT ′(Dk).
As mentioned before, an index range [istart , iend) is used to denote the symbols in an edge.
For example, consider a string ω = abcde and a node X connected by the edge ω[1, 5) to its
child node Y . We have SY = SX abcd (the substring associated with Y is the concatenation
of the substrings associated with X and edge XY). With growth rate threshold pruning, we
add one more entry to the index range, resulting in a [istart , iq, iend) representation of an
edge. iq is called the qualification point, meaning that [istart, iq) is the disqualified region and
[iq, iend) is the qualified region, of the edge. For example, consider a node X connected by
the edge ω[1, 3, 5) to its child node Y . Since substrings SX ω[1, 2) and SX ω[1, 3) end in the
disqualified region (i.e., [1, 3)) of XY , they are no longer related to Y . But since SX ω[1, 4)
and SX ω[1, 5) end in the qualified region (i.e., [3, 5)) of XY , they are the only substrings
related to Y . We say that substrings SX ω[1, 2) and SX ω[1, 3) are effectively pruned from
the tree, and they will be ignored in the X-Phase subsequently.

Initially, each iq would have the same value as the corresponding istart . When the support
count of a substring in Dk increases, we check if it can still satisfy the growth rate condition.
If not, we update the value of iq for the associated edge accordingly. If a node has no related
substrings (i.e., iq = iend in the incoming edge of X) and it has no child (i.e., it is a leaf), we
can simply remove it. If a node X has no related substrings and it has only one child node
C, X can be pruned at the cost of updating the value of istart for C and the pointer from X’s
parent node to its child.

We name the algorithm that comprises the C-Ug-X-Phases as the g-pruning algorithm. Its fun-
damental deviation from the Baseline algorithm lies on its earlier use of ρg (from the X-Phase
to the Ug-Phase) to prune substrings with low growth rate.

5.4 With length threshold pruning

We notice that in a dataset, longer substrings often have lower support than shorter ones. This
makes them less likely to fulfill the support condition for ESs. Instead of appending these longer
substrings to the tree in the U -Phase and subsequently pruning them in the Ps-Phase (in s-pruning),
an alternative way of reducing the number of ES candidates is to limit the length of the substrings
to be added to MT (Dk) during tree construction. We therefore introduce the ρl-Construction
Phase, in which we only match length-limited suffixes against the tree. If a suffix consists of more
than ρl symbols, we ignore its (ρl+1)th symbol up to its last symbol. The size of MT (Dk) built in
the Cl-Phase is therefore smaller than that built in the C-Phase.

ρl-Construction Phase (Cl-Phase). In this phase, a merged tree MT (Dk) is built from
all the length-limited suffixes of the sequences of the target class, Ck.
The way we construct MT (Dk) here is similar to what we have in the C-Phase, except that
instead of matching all the symbols of a suffix sj of a sequence ωi against the substrings in
the tree, we only consider its first min(|sj |, ρl) symbols.

We name the algorithm that comprises the Cl-U -X-Phases as the l-pruning algorithm. Its funda-
mental deviation from the Baseline algorithm lies on its addition of a pruning parameter, ρl, in
the Cl-Phase, to prune relatively long substrings existing in Dk.

13

5.5 Combining the power of the pruning techniques

We summarize the phases of our Baseline algorithm and its three variants, and the algorithms’
relationship, in Table 2.

Algorithm Construction Update Extraction
Baseline Dk →MT (Dk) MT (Dk) +Dk →MT ′(Dk) MT ′(Dk) + ρs + ρg → ESs of Ck
s-pruning Dk →MT (Dk) MT s(Dk) +Dk →MT ′(Dk) MT ′(Dk) + ρg → ESs of Ck

MT (Dk) + ρs →MT s(Dk)
g-pruning Dk →MT (Dk) MT (Dk) +Dk + ρg →MT ′(Dk) MT ′(Dk) + ρs → ESs of Ck
l-pruning Dk + ρl →MT (Dk) MT (Dk) +Dk →MT ′(Dk) MT ′(Dk) + ρs + ρg → ESs of Ck

Table 2: Summary of phases of algorithms
As described previously, the essence of the three pruning algorithms lie on their earlier use of ρs or
ρg, or introduction of ρl. In fact, the three pruning techniques can be coupled together easily, as
they are applied in different phases. Hence, four variants of pruning algorithms are resulted: the
sg-pruning algorithm combines s-pruning with g-pruning; the ls-pruning algorithm combines
l-pruning with s-pruning; the lg-pruning algorithm combines l-pruning with g-pruning; and
the lsg-pruning algorithm combines l-pruning with s-pruning and g-pruning. We will explore
the effects of all these combined techniques in the next section.

6 Performance Evaluation

We performed a number of experiments comparing the performance of our ES mining algorithms.
Our goal is to assess the effectiveness of each of the three proposed pruning techniques, as well as
the combined applications of two or all of them. In this section we present the major findings of
our experiments.

We used “CI3” [25] as our test database. Each CI3 (Coarse Interval, mapping 3 intervals to 1)
sequence consists of an ordered list of numbers denoting the interval sizes between consecutive
notes within a musical track. From 750 MIDI [16] files, we manually extracted melody and non-
melody tracks and converted the tracks into CI3 sequences for ES mining. 843 of the non-empty
CI3 sequences belong to melody tracks, and the rest (6,742 sequences) of them are from non-melody
tracks. The characteristics of the two datasets are tabulated in Table 3. In our evaluation, melody
(the minority class) was the target class and non-melody (the majority class) was the opponent
class. Our task was to efficiency discover the ESs of the target class that satisfy both the support
threshold, ρs, and the growth rate threshold, ρg.

Dataset No. of sequences Avg. sequence length Max. sequence length No. of distinct symbols
Melody 843 (11.1%) 331.0 1,085 29

Non-melody 6,742 (88.9%) 274.9 2,891 61

Table 3: Datasets

In our experiments, we used different values of ρs (i.e., 0.1%, 0.5%, 1.0%, 1.5% and 2.0%) and ρg
(i.e., 2, 3, 4, 5 and ∞). Before examining the runtimes of the algorithms, let us take a look at the
number of ESs with different combinations of values of these two thresholds. Table 4(a) shows the
number of non-jumping ESs and Table 4(b) shows the number of JESs. Observe that the number
of non-jumping ESs decreases when the value of either ρs or ρg increases, while the number of JESs
decreases when the value of ρs increases but it is not influenced by the choice of ρg. The column

14

mincount in Table 4(b) denotes the minimum number of occurrences for a substring to be frequent
in the melody dataset, with respect to a certain value of ρs. It is worth noting that when ρs = 0.1%,
a substring is frequent as long as it exists in the melody dataset since mincount = d843×0.1%e = 1.
This accounts for the enormous number of both kinds of ESs when ρs attains this value.

ρs \ ρg 2 3 4 5
0.1% 10,588,746 10,503,828 9,336,484 9,331,844
0.5% 17,619 13,850 9,931 7,264
1.0% 8,195 6,013 3,961 2,535
1.5% 5,249 3,701 2,294 1,321
2.0% 3,799 2,573 1,552 819

(a) Non-jumping ESs

ρs mincount Any value of ρg
0.1% 1 34,531,736
0.5% 5 89
1.0% 9 1
1.5% 13 0
2.0% 17 0

(b) JESs

Table 4: Number of non-jumping ESs and JESs

Table 5 states the size (in terms of the number of nodes) of the merged tree after different phases
of various algorithms, with different values for the thresholds. Though not covering all values of
the thresholds used in the experiments, the table gives a useful overview of the relative tree sizes
and extent of substring pruning resulted from the algorithms.

Algorithm MT (Dk) MT s(Dk) MT ′(Dk)
Baseline 416,151 / 542,094
g-pruning (ρg = 2) 416,151 / 510,764
g-pruning (ρg =∞) 416,151 / 330,865
s-pruning (ρs = 1.0%) 416,151 10,945 10,963
sg-pruning (ρs = 1.0%, ρg = 2) 416,151 10,945 8,599
sg-pruning (ρs = 1.0%, ρg =∞) 416,151 10,945 2
l-pruning (ρl = 500) 416,151 / 542,080
l-pruning (ρl = 100) 389,671 / 506,378
l-pruning (ρl = 50) 261,839 / 357,327

Table 5: Number of nodes in the merged tree after different phases

The merged tree MT (Dk) constructed in the C-Phase for the algorithms without the “l” parameter
is the same, and possesses 416,151 nodes. The Baseline algorithm expands the tree to the size of
542,094 nodes after the U -Phase. With node pruning in the Ug-Phase, the g-pruning algorithm
limits |MT ′(Dk)| to 510,764 (−5.8%) when ρg = 2, and to 330,865 (−39.0%) when ρg = ∞.
With s-pruning and ρs = 1.0%, the sizes of the input and output trees of the U -Phase shrink to
10,945 (−97.4%) and 10,963 (−98.0%), respectively. sg-pruning shares the same size of MT s(Dk)
(10,963) produced by s-pruning, and further reduces |MT ′(Dk)| to 8,599 (−98.4%) when ρg = 2,
and a distinguishing 2 (−100.0%) when ρg = ∞. With l-pruning, the sizes of both MT (Dk) and
MT ′(Dk) are smaller than those in the Baseline algorithm, and the reduction is greater when the
value of ρl is tuned smaller. We will relate the performance of the algorithms to their ability to
remove ES candidates from the merged tree.

In the rest of this section, we will first discuss the performance of the algorithms that make use
of a single pruning technique, and then evaluate those using multiple pruning techniques. All the
runtimes were taken on a Pentium III Xeon 700 machine with 4 GB RAM.

6.1 Performance of the BASELINE algorithm

Figure 4 shows the runtimes of the Baseline algorithm for different values of ρs and ρg. For
each value of ρs, the mining time decreases slightly with an increase in the value of ρg, due to

15

the reduction in the number of ESs and hence in the time spent in extracting and storing ESs in
the X-Phase. The difference is very small since most of the mining time is spent in constructing
MT (Dk) with the melody sequences in the C-Phase (13 − 14%) and updating the tree with the
non-melody sequences in the U -Phase (74 − 85%). When ρs = 0.1%, the runtime for ρg = ∞ is
much less than those for other values of ρg, since it only has to mine JESs while the latter cases
have to spend much time on extracting and storing around ten million non-jumping ESs (as seen
in Table 4(a)).

33

34

35

36

37

38

39

40

0.1% 0.5% 1.0% 1.5% 2.0%

M
in

in
g

T
im

e
(s

ec
)

Support Threshold, ρs

ρg = 2
ρg = 3
ρg = 4
ρg = 5
ρg =∞

Figure 4: Runtimes of the Baseline algorithm

For each value of ρg, the mining time decreases by a clear margin (from 37.4−39.5 secs to 34.4−34.7
secs) when the value of ρs is raised from 0.1% to 0.5%, and remains rather stable (in fact, decreases
very mildly) when the value of ρs increases further. This is due to the sharp decrease in the number
of ESs from the order of millions when ρs = 0.1% to the order of thousands (for non-jumping ESs)
or tens (for JESs) when ρs ≥ 0.5%.

6.2 Performance of the s-PRUNING algorithm

Figure 5 gives the runtimes of the s-pruning algorithm for different values of ρs and ρg. For
comparison, the curve for the Baseline algorithm when ρg = 2 is also shown. The runtime of
this algorithm is much shorter than the corresponding runtime of the Baseline algorithm, except
when ρs = 0.1%.

1.5% 2.0%

M
in

in
g

T
im

e
(s

ec
)

Support Threshold, ρs

Baseline alg., ρg = 2

ρg = 4

ρg = 2
ρg = 3

ρg = 5
ρg =∞30

1.0%0.5%0.1%

45

40

35

25

20

15

10

Figure 5: Runtimes of the s-pruning algorithm

As we discussed in Subsection 5.2, the s-pruning algorithm aims to reduce the mining time by
shrinking the tree size by removing infrequent substrings (with respect to Dk) in the extra Ps-Phase,
and thus spending less time on tree update in the U -Phase. When ρs = 0.1%, no substrings in

16

MT (Dk) are infrequent with respect to Dk, hence no nodes can be removed from the tree and the
time taken in the U -Phase remains the same. Besides, the algorithm also suffers the cost (about
0.64 secs) of performing a complete tree walk on MT (Dk) in the Ps-Phase, leading to a mild increase
in the overall runtime.

However, when ρs ≥ 0.5%, the algorithm meets its objectives. A large proportion (e.g., 98.0% for
ρs = 1.0%, as seen in Table 4(a)) of the tree can be discarded in the Ps-Phase, and the U -Phase
is speeded up to a large extent (by 39− 52%). As the U -Phase is the most time-consuming phase,
the total mining time is speeded up accordingly (by 33 − 44%). The greater the value of ρs, the
greater the speedup. Similar to the Baseline algorithm, the value of ρg almost does not affect the
runtime of the s-pruning algorithm.

6.3 Performance of the g-PRUNING algorithm

Figure 6 gives the runtimes of the g-pruning algorithm for different values of ρs and ρg. Again,
for comparison, the curve for the Baseline algorithm when ρg = 2 is also shown. This algorithm
is slightly slower than the Baseline algorithm, except when ρg =∞.

1.5% 2.0%

M
in

in
g

T
im

e
(s

ec
)

Support Threshold, ρs

Baseline alg., ρg = 2

ρg = 4

ρg = 2
ρg = 3

ρg = 5
ρg =∞

36

1.0%0.5%0.1%

42

40

38

34

32

30

Figure 6: Runtimes of the g-pruning algorithm

The g-pruning algorithm aims to reduce the tree updating and overall mining time by computing
the updated growth rate of ES candidates and removing the disqualified (with respect to ρg) ones
from the merged tree in the Ug-Phase. Our experiments showed that when the value of ρg is finite,
not many nodes can be pruned in the Ug-Phase. For example, as indicated in Table 5, only 5.8%
of the nodes are removed when ρg = 2. Even when ρg increases to 5, less than 15% of the nodes
can be pruned. As shown in our experiments, when ρg = 2 to 5, the time spent on growth rate
checking and path compression cannot be compensated by the time saved by the reduction in tree
size and tree updating efforts. Moreover, there is an extra node creation overhead for g-pruning

as it requires an additional index for each edge of the tree. The overall runtime exceeds that of the
Baseline algorithm by about 1.3− 3.7%. The greater the value of ρg, the smaller the slowdown.

When ρg = ∞, only JESs are to be discovered. If a substring is found to be present in any non-
melody sequence, it can be pruned right away. Hence, candidature checking is simplified and more
nodes can be removed from the tree. As we have seen in Table 5, 39.0% of the tree can be discarded
when the value of ρg is infinite. This significantly speeds up tree update and contributes to the
4.9% drop in runtime compared with the Baseline algorithm, when ρs ≥ 0.5%. Like the Baseline

algorithm, the value of ρs almost does not affect the runtime of the g-pruning algorithm, except
when ρs = 0.1%, when the runtime is significantly longer.

17

6.4 Performance of the l-PRUNING algorithm

Figure 7 shows the runtimes of the l-pruning algorithm with the value of the length threshold, ρl,
ranging from 1 to 1085 (the length of the longest melody sequence). In Figure 7(a), ρg is fixed at
2 and the curves represent varying values of ρs. In Figure 7(b), ρs is fixed at 1.0% and the curves
represent varying values of ρg. Like the Baseline algorithm, different combinations of the values
of ρs and ρg result in almost identical performance of the l-pruning algorithm at any value of ρl,
except when ρs = 1.0%. When ρl = 1085, this algorithm is same as the Baseline algorithm.

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900 1000 1100

M
in

in
g

T
im

e
(s

ec
)

Length Threshold, ρl

ρs = 0.1%
ρs = 0.5%
ρs = 1.0%
ρs = 1.5%
ρs = 2.0%

(a) With fixed growth rate threshold (ρg = 2)

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900 1000 1100

M
in

in
g

T
im

e
(s

ec
)

Length Threshold, ρl

ρg = 2
ρg = 3
ρg = 4
ρg = 5

(b) With fixed support threshold (ρs = 1.0%)

Figure 7: Runtimes of the l-pruning algorithm

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100

P
er

ce
n
ta

ge
of

T
im

e
S

av
ed

Length Threshold, ρl

ρs = 0.1%
ρs = 0.5%
ρs = 1.0%
ρs = 1.5%
ρs = 2.0%

Figure 8: Percentage of time saved by l-pruning (with fixed growth rate threshold, i.e., ρg = 2)

The l-pruning algorithm was designed to build a smaller MT (Dk) by constructing the tree with
length-limited suffixes in the Cl-Phase, thereby saving time in tree construction and update. Fig-
ure 8 shows the percentage of time saved by the algorithm with ρg = 2 and varying values of ρs.
When ρl > 100, less than 3.0% of time can be saved. This is because the size of MT (Dk) built
is not significantly smaller than that built in the C-Phase (of the Baseline algorithm). We have
seen from Table 5 that when ρl = 100, the tree MT (Dk) built in these two phases has 389,671
and 416,151 nodes, respectively. The difference in tree size is just 6.4%. As the value of ρl reduces
further, the mining time reduces more sharply.

As discussed previously, applying l-pruning to remove ES candidates may lead to a loss of ESs.
Figure 9 shows the percentage of ES loss with ρl ranging from 1 to 50. Except when ρs = 0.1%,
where a huge portion of ESs are lost even when ρl = 50, there is no ES loss unless ρl is less than 19
(for ρs = 0.5%), 17 (for ρs = 1.0%), 13 (for ρs = 1.5%) or 11 (for ρs = 2.0%). If we compare this
figure with Figure 8, we can easily recognize the benefit of performing l-pruning. For example,

18

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40 45 50
P

er
ce

n
ta

ge
of

E
S

L
os

s

Length Threshold, ρl

ρs = 0.1%
ρs = 0.5%
ρs = 1.0%
ρs = 1.5%
ρs = 2.0%

Figure 9: Percentage of ES loss due to l-pruning (with fixed growth rate threshold, i.e., ρg = 2,
and only non-zero values shown)

taking ρs = 0.5%, l-pruning can reduce the mining time by over 25% without causing any ES
loss. The benefit is greater with larger values of ρs and smaller values of ρl. Several factors may
influence the choice of ρl, such as the average sequence length and the maximum length among the
ESs found in a previous or similar (in terms of application domain) ES mining activity. One may
prefer to sacrifice a small proportion of ESs for performance speedup, hence picking a smaller value
for the threshold. One may also determine a suitable value of ρl by taking a sample of each class’
sequences and performing an ES mining exercise on the target class.

6.5 The combined pruning performance

Having examined the effectiveness of each individual pruning technique, let us look at the combined
pruning performance.

Figure 10 presents the runtimes of the sg-pruning algorithm for different values of ρs and ρg.
We have discussed in Subsection 6.2 that the s-pruning algorithm achieves a great reduction in
runtime when ρs ≥ 0.5%, and in Subsection 6.3 that the g-pruning algorithm performs slightly
worse than the Baseline algorithm when the value of ρg is finite. Combining the above two
pruning techniques, the sg-pruning algorithm is able to achieve lower runtimes than any of these
three algorithms when ρs ≥ 0.5% and for any magnitude of ρg. Its runtime decreases apparently
when either the value of ρs or ρg increases.

1.0% 1.5% 2.0%

M
in

in
g

T
im

e
(s

ec
)

Support Threshold, ρs

ρg = 4

Baseline alg., ρg = 2
ρg = 2
ρg = 3

ρg = 5
ρg =∞

20

0.5%0.1%

45

40

35

30

25

15

10

5

0

Figure 10: Runtimes of the sg-pruning algorithm

19

50 100 150 200
M

in
in

g
T

im
e

(s
ec

)

ρs = 1.5%

Length Threshold, ρl

ρs = 0.1%
ρs = 0.5%
ρs = 1.0%

ρs = 2.0%
5

0

45

40

35

30

25

20

15

10

0

Figure 11: Runtimes of the ls-pruning algorithm (with fixed growth rate threshold, i.e., ρg = 2)

50 100 150 200

M
in

in
g

T
im

e
(s

ec
)

ρg = 4

Length Threshold, ρl

ρg = 2
ρg = 3

ρg = 5

10

0

45

40

35

30

25

20

15

5

0

Figure 12: Runtimes of the lg-pruning algorithm (with fixed support threshold, i.e., ρs = 1.0%)

Figure 11 presents the runtimes of the ls-pruning algorithm with ρg = 2 and varying values of ρs
and ρl (only ρl ≤ 200 is shown). In fact, when ρl = 1085, this algorithm is same as the s-pruning

algorithm. Like the l-pruning algorithm, the runtime of the ls-pruning algorithm drops when
the value of ρl becomes small. The drop is less sharp than the former since the time achieved by
s-pruning (consider the level region of the curve) is already much shorter than that achieved by
the Baseline algorithm. Hence, applying l-pruning on top of the s-pruning algorithm is less
advantageous than applying it on top of the Baseline algorithm.

Figure 12 gives the runtimes of the lg-pruning algorithm with ρs = 1.0% and varying values of
ρg and ρl (only ρl ≤ 200 is shown). When ρl = 1085, this algorithm is indeed identical to the g-
pruning algorithm. Like the l-pruning algorithm, the runtime of the lg-pruning algorithm drops
when the value of ρl becomes small. We described in Subsection 6.3 that g-pruning slows down
performance when the value of ρg is finite, but when l-pruning is coupled with it, its performance
is comparable to the l-pruning algorithm for small values (e.g., 50) of ρg. This is mainly due
to the decreased time overhead in node creation, and the observation is clearer as the value of ρg
increases.

Figure 13 gives the runtimes of the lsg-pruning algorithm. In Figure 13(a), ρg is fixed at 2 and the
curves represent varying values of ρs. In Figure 13(b), ρs is fixed at 1.0% and the curves represent
varying values of ρg. When ρl = 1085, this algorithm is identical to the sg-pruning algorithm.
For any values of ρl and ρg, and with ρs ≥ 1.0% , the lsg-pruning algorithm achieves the least
runtime among all the algorithms described.

The performance of all our ES mining algorithms on the melody dataset, with the general setting

20

50 100 150 200

M
in

in
g

T
im

e
(s

ec
)

ρs = 1.5%

Length Threshold, ρl

ρs = 0.1%
ρs = 0.5%
ρs = 1.0%

ρs = 2.0%
5

0

45

40

35

30

25

20

15

10

0

(a) With fixed growth rate threshold (ρg = 2)

50 100 150 200

M
in

in
g

T
im

e
(s

ec
)

ρg = 4

Length Threshold, ρl

ρg = 2
ρg = 3

ρg = 5

10

0

45

40

35

30

25

20

15

5

0

(b) With fixed support threshold (ρs = 1.0%)

Figure 13: Runtimes of the lsg-pruning algorithm

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900 1000 1100

M
in

in
g

T
im

e
(s

ec
)

Length Threshold, ρl

l-pruning alg.
ls-pruning alg.
lg-pruning alg.
lsg-pruning alg.

(a) Runtimes

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700 800 900 10001100

P
er

ce
n
ta

ge
of

T
im

e
S

av
ed

Length Threshold, ρl

l-pruning alg.
ls-pruning alg.
lg-pruning alg.
lsg-pruning alg.

(b) Percentage of time saved (compared with the Base-

line algorithm)

Figure 14: Runtimes and percentage of time saved for all the algorithms (with fixed support
threshold, i.e., ρs = 1.0%, and fixed growth rate threshold, i.e., ρg = 2) on the melody dataset.
The rightmost point on the curve for an algorithm denotes the performance of the corresponding
algorithm that does not have the “l” parameter.

of ρs = 1.0% and ρg = 2, is summarized in Figure 14. Figure 14(a) shows the algorithms’ runtimes,
while Figure 14(b) shows the percentage of time saved compared with the Baseline algorithm
(a negative value means being slower than the Baseline algorithm). The rightmost point (at
ρl = 1085) on the curve for a labeled algorithm denotes the performance of the corresponding
algorithm upon which l-pruning has not been applied. Compared with the Baseline algorithm,
the s-pruning algorithm is faster by 38.2%; the g-pruning algorithm is slower by 3.3% but when
it is coupled with s-pruning, a 41.6% reduction in time is registered. Taking ρl = 18 (no ES loss),
lg-pruning, l-pruning, ls-pruning and lsg-pruning achieve an overall 22%, 25%, 42% and 45%
reduction in mining time, respectively. It has been shown in the previous subsections that when
the value of ρs is larger, the algorithms that involve s-pruning can cause more ES candidates to
be pruned and hence further decrease the overall ES mining time. Similarly, when the value of ρg
is larger, the performance of the algorithms that involve g-pruning will be boosted.

Besides speeding up the mining of ESs, another important contribution of the pruning techniques
introduced in this paper is reducing the number of nodes in the merged tree both before and after
tree update. This effectively limits the memory requirements of the tree structure.

21

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000

M
in

in
g

T
im

e
(s

ec
)

Length Threshold, ρl

l-pruning alg.
ls-pruning alg.
lg-pruning alg.
lsg-pruning alg.

(a) Runtimes

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 500 1000 1500 2000 2500 3000

P
er

ce
n
ta

ge
of

T
im

e
S

av
ed

Length Threshold, ρl

l-pruning alg.
ls-pruning alg.
lg-pruning alg.
lsg-pruning alg.

(b) Percentage of time saved (compared with the Base-

line algorithm)

Figure 15: Runtimes and percentage of time saved for all the algorithms (with fixed support
threshold, i.e., ρs = 1.0%, and fixed growth rate threshold, i.e., ρg = 2) on the non-melody dataset

All the experimental results described so far are for single-class ES mining on the minority (melody)
class. To analyze the case of mining ESs of the majority (non-melody) class, we reversed the roles
of the datasets (non-melody became the target class; melody became the opponent class) and
conducted the same sets of experiments. Figure 15 presents the performance of the ES mining
algorithms on the non-melody dataset, with ρs = 1.0% and ρg = 2. Again, the g-pruning algo-
rithm is a bit (2.4%) slower than the Baseline algorithm, while the s-pruning and sg-pruning

algorithms are faster than that. Despite achieving a 64% (resp. 72%) cutdown in the time spent
in the U -Phase (resp. Ug-Phase), the s-pruning (resp. sg-pruning) algorithm only results in a
4.7% (resp. 2.5%) reduction in the total runtime, compared with the Baseline algorithm. This is
because with the majority class being the target class, over 93% of the time is spent in tree con-
struction in the C-Phase. Thus, the time saved in the U -Phase does not benefit the overall runtime
much. Also notice that unlike the case of mining ESs of the melody class when there are not as
many nodes, sg-pruning now performs worse than s-pruning due to the huge time overhead in
creating one more index to represent each edge of the tree. With the specified values of ρs and ρg,
the non-melody class has 2,958 non-jumping ESs and 1,360 JESs. Taking ρl as 382, the length of
the longest ES, the maximum proportion of time saved by the l-pruning algorithm is about 12%.
When ρl = 382, the reduction in the size of MT (Dk) is only 1.3%. Most of the time is saved in the
Cl-Phase; the amount of time spent in the U -Phase and the X-Phase is almost unaffected.

In fact, the tree construction time can be shortened. Besides using the current method of suffix
path matching, we also experimented with constructing the merged tree by building a suffix tree
from each sequence and merging it to the merged tree by a depth-first-based merging approach.
This speeds up the C-Phase of the Baseline algorithm from 81.8 secs to 36.1 secs (i.e., by 55.9%).
This merging approach can also be applied to the U -Phase, when sequences of the opponent class
are used to update the tree. By speeding up tree construction and update, the amount of time
saved by the s-pruning and g-pruning would become more significant with respect to the overall
runtime. However, since the target class is the majority, the effect of l-pruning mostly acts on the
Cl-Phase. It follows that if the tree construction time is shortened, the proportion of time saved
by l-pruning would become less apparent.

22

7 Conclusions

In this paper we proposed emerging substrings (ESs) as a new type of knowledge patterns, with
Jumping Emerging Substrings (JESs) being an important specialization of them. ESs in sequence
databases are valuable because of their ability to capture distinguishing characteristics of data
classes, and potential usefulness for the construction of powerful sequence classifiers. We introduced
the ES mining problem and the sub-problem of single-class ES mining. The latter is the focus of
this paper, and it refers to the discovery of ESs from a target class, among all the classes in
the database. We proposed a suffix tree-based framework for efficient mining of ESs, and three
basic pruning techniques for removing ES candidates, namely, s-pruning (pruning with the support
threshold), g-pruning (pruning with the growth rate threshold) and l-pruning (pruning with the
length threshold). We performed a series of experiments to evaluate the effectiveness of applying one
or more pruning techniques in different stages of our ES mining algorithm. Experimental results
showed that if the target class is of a small population with respect to the whole database, which
is the normal scenario in single-class ES mining, most of the pruning techniques would achieve
considerable performance gain. Furthermore, we demonstrated that s-pruning would be more
effective when the value of ρs is larger; g-pruning would be more effective when the value of ρg is
larger; l-pruning would be more effective when the value of ρl is smaller, but a loss of ESs may be
resulted. Another benefit brought about by the pruning techniques is that by shrinking the size of
the merged suffix tree, memory usage can be lessened.

On the other hand, if the target class is the majority of the sequence database, some of the pruning
techniques may not be useful. If a merged suffix tree can be built efficiently from sequences of
the target class, s-pruning and sg-pruning would be effective, while l-pruning may only bring a
small cutdown on the total mining time. If tree construction is slow, l-pruning would be effective
but the time reduction brought about by s-pruning and sg-pruning may not be obvious. One
possible direction to speed up the mining of ESs of a majority class would be to discover more
efficient methods to construct and update the merged suffix tree.

References

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in large
databases. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors, Proc. of the 20th International
Conference on Very Large Data Bases (VLDB’94), pages 487–499, Santiago de Chile, Chile, 1994.
Morgan Kaufmann.

[2] Alberto Apostolico. The myriad virtues of subword trees. In Alberto Apostolico and Zvi Galil, editors,
Combinatorial Algorithms on Words, volume 12 of NATO ASI series. Series F, Computer and System
Sciences. Springer-Verlag, 1984.

[3] Roberto J. Bayardo. Efficiently mining long patterns from databases. In Proc. of the ACM SIGMOD
International Conference on Management of Data (SIGMOD’98), pages 85–93, Seattle, WA USA, 1998.
ACM.

[4] Dennis A. Benson, Ilene Karsch-Mizrachi, David J. Lipman, James Ostell, Barbara A. Rapp, and
David L. Wheeler. GenBank. Nucleic Acids Research, 28(1):15–18, 2000.

[5] Michael J. A. Berry and Gordon S. Linoff. Data Mining Techniques for Marketing, Sales and Customer
Support. John Wiley & Sons, 1997.

[6] W. B. Cavner and J. M. Trenkle. N-gram based text categorization. In Proc. of the Third Annual
Symposium on Document Analysis and Information Retrieval, pages 161–169, 1994.

23

[7] Guozhu Dong and Jinyan Li. Efficient mining of emerging patterns: Discovering trends and differ-
ences. In Surajit Chaudhuri and David Madigan, editors, Proc. of the 5th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 43–52, San Diego, California, USA, 1999.
ACM.

[8] Guozhu Dong, Jinyan Li, and Xiuzhen Zhang. Discovering jumping emerging patterns and experiments
on real datasets. In Joseph Fong, editor, Proc. of the 9th International Database Conference on Het-
erogeneous and Internet Databases, pages 155–168, Hong Kong, 1999. ACM Hong Kong Chapter, City
University of Hong Kong Press.

[9] Guozhu Dong, Xiuzhen Zhang, Limsoon Wong, and Jinyan Li. CAEP: Classification by aggregating
emerging patterns. In Setsuo Arikawa and Koichi Furukawa, editors, Proc. of the 2nd International
Conference on Discovery Science, (DS’99), volume 1721 of Lecture Notes in Artificial Intelligence, pages
30–42, Tokyo, Japan, 1999. Springer-Verlag.

[10] W. J. Frawley, G. Piatetsky-Shapiro, and C. Matheus. Knowledge Discovery In Databases: An
Overview. In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery In Databases,
pages 1-30, AAAI Press/MIT Press, Cambridge, MA., 1991.

[11] Jinyan Li. Mining Emerging Patterns to Construct Accurate and Efficient Classifiers. PhD thesis,
Department of Computer Science & Software Engineering, The University of Melbourne, 2001.

[12] Jinyan Li, Guozhu Dong, and Kotagiri Ramamohanarao. Instance-based classification by emerging
patterns. In Djamel A. Zighed, Jan Komorowski, and Jan Zytkow, editors, Proc. of the 4th European
Conference on Principles and Practice of Knowledge Discovery in Databases, volume 1910 of Lecture
Notes in Artificial Intelligence, Lyon, France, 2000. Springer-Verlag.

[13] Jinyan Li, Guozhu Dong, and Kotagiri Ramamohanarao. Making use of the most expressive jumping
emerging patterns for classification. In Takao Terano, Huan Liu, and Arbee L. P. Chen, editors, Proc.
of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Current Issues and
New Applications (PAKDD’00), volume 1805 of Lecture Notes in Artificial Intelligence, pages 220–232,
Kyoto, Japan, 2000. Springer-Verlag.

[14] Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classification and association rule mining. In Rakesh
Agrawal and Paul Stolorz, editors, Proc. of the International Conference of Knowledge Discovery and
Data Mining (KDD’98), pages 80–86, New York, 1998. AAAI, AAAI Press.

[15] Edward M. McCreight. A space-economical suffix tree construction algorithm. Communication of the
ACM, 23(2):262–272, 1976.

[16] MIDI Manufacturers Association, MMA, PO Box 3173, La Habra, CA 90632-3173. The Complete MIDI
1.0 Detailed Specification, document version 96.1, 1996.

[17] Y. K. Muthusamy, E. Barnard, and R. A. Cole. Reviewing automatic language identification. IEEE
Signal Processing Magazine, 11(4):33–41, 1994.

[18] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu. Mining Access Patterns Efficiently from Web Logs.
In Proc. of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’00),
pages 396–407, Kyoto, Japan, 2000.

[19] R. J. Povinelli. Identifying temporal patterns for characterization and prediction of financial time series
events. In Proc. of the International Workshop on Temporal, Spatial and Spatio-Temporal Data Mining
(TSDM’00), pages 46–61, Lyon, France, 2000.

[20] John Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, Inc., 1993.

[21] G. Stober, M. M. Nothen, P. Porzgen, M. Bruss, H. Bonisch, M. Knapp, H. Beckmann, and P. Propping.
Systematic search for variation in the human norepinephrine transporter gene: identification of five
naturally occurring missense mutations and study of association with major psychiatric disorders. In
Am J Med Genet, 67(6):523–532, 1996.

24

[22] Michael Tang, Chi-Lap Yip, and Ben Kao. Selection of melody lines for music databases. In Proc. of
the 24th Annual International Computer Software and Applications Conference, 2000 (COMPSAC’00),
pages 243–248, Taipei, Taiwan, 2000. IEEE.

[23] Esko Ukkonen. Constructing suffix trees on-line in linear time. Information Processing, 1:484–492,
1992.

[24] Rita S. Wolpert. Recognition of melody, harmonic accompaniment, and instrumentation: Musicians
vs. nonmusicians. Music Perception, 8(1):95–106, 1990.

[25] Chi-Lap Yip and Ben Kao. A study on musical features for melody databases. In Trevor Bench-Capon,
Giovanni Soda, and A. Min Tjoa, editors, Proc. of the 10th International Conference and Workshop
on Database and Expert Systems Applications (DEXA’99), volume 1677 of Lecture Notes in Computer
Science, pages 724–733, Florence, Italy, 1999. Springer-Verlag.

25

	1 Introduction
	2 Problem Definition
	2.1 Basic definitions
	2.2 ES and JES
	2.3 The ES mining problem

	3 Related Work
	4 Merged Suffix Trees
	4.1 Suffix Trees
	4.2 Merging Suffix Trees

	5 ES Mining Algorithms
	5.1 The BASELINE algorithm
	5.2 With support threshold pruning
	5.3 With growth rate threshold pruning
	5.4 With length threshold pruning
	5.5 Combining the power of the pruning techniques

	6 Performance Evaluation
	6.1 Performance of the BASELINE algorithm
	6.2 Performance of the s-PRUNING algorithm
	6.3 Performance of the g-PRUNING algorithm
	6.4 Performance of the l-PRUNING algorithm
	6.5 The combined pruning performance

	7 Conclusions

