
Postprint of article inInformation and Software Technology45 (1): 1–9 (2003)

Fault-Based Testing Without the Need of Oracles∗ †

T.Y. Chen‡

School of Information Technology,
Swinburne University

of Technology, Australia

T.H. Tse and Zhi Quan Zhou
Department of Computer Science,

The University of Hong Kong,
Pokfulam, Hong Kong

Abstract

There are two fundamental limitations in software testing,known as the reliable test set problem and
the oracle problem. Fault-based testing is an attempt by Morell to alleviate the reliable test set problem.
In this paper, we propose to enhance fault-based testing to alleviate the oracle problem as well. We
present an integrated method that combines metamorphic testing with fault-based testing using real and
symbolic inputs.

Keywords:Fault-based testing, metamorphic testing, oracle problem, symbolic execution.

1 Introduction

Program correctness has long been one of the most fundamental issues of computer science. Although
program proving provides a formal means of verifying the correctness of programs, it suffers from the
complexity and automation of the proofs. It is not easy even to prove the correctness of a relatively simple
program. On the other hand, software testing is the most popular method used by practitioners to improve
their confidence in the software product. There are, however, two recognized limitations in software testing,
known as the reliable test set problem and the oracle problem. The concept of areliable test setwas
originally proposed by Howden [20]: Supposep is a program computing functionf on domainD. A
test setT ⊂ D is reliable for p if

(

∀ t ∈ T, p(t) = f (t)
)

⇒
(

∀ t ∈ D, p(t) = f (t)
)

. In other words, the
success of a reliable test set implies the program correctness. Howden points out, however, that an effective
algorithm which generates a reliable test set for any given program cannot be constructed, unless the set
covers the whole input domain. We refer to this limitation asthe reliable test set problemor thereliability
problem. Another deficiency in software testing is that, in some situations, testers are unable to decide
whetherp(t) = f (t), that is, whether the result of the program under testing agrees with the expected result.
This second limitation is known as theoracle problem[17, 29].

Since reliable test sets of finite sizes are not attainable ingeneral, and test sets employed in practice must
be of finite sizes, testers need practical means of evaluating such test sets with a view to selecting those with

∗This research is supported in part by the Hong Kong Research Grants Council and the University of Hong Kong Committee on
Research and Conference Grants.

†A preliminary version of this paper was presented at the 25thAnnual International Computer Software and Applications
Conference (COMPSAC 2001) [10].

‡All correspondence should be addressed to T.Y. Chen, Department of Computer Science and Software Engineering, Swinburne
University of Technology, Hawthorn 3122, Australia. Email: tychen@swin.edu.au.

Administrator
 HKU CSIS Tech Report TR-2002-07

better performances. The mutation adequacy (or relative adequacy) criteria were introduced [5, 15, 16] to
provide a realistic approach for determining whether a testset is relatively sufficient. It restricts the faulty
programs to a smaller set, possibly finite in size. Such faulty programs can be differentiated from the original
program by a test set that is also finite. Thus, supposep is a program computing functionf on domainD,
andQ is a finite set of programs generated by slightly modifying the original programp. Each program
q∈ Q such thatq 6= p is called amutantof p. A test setT ⊂ D is said to beadequate for p relative to Q
if, ∀ programsq∈ Q,

(

∃ t ∈ D : q(t) 6= f (t)
)

⇒
(

∃ t ∈ T : q(t) 6= f (t)
)

. The purpose ofmutation testing
is to generate a relative adequate test setT to differentiate all the mutantsq∈ Q from the original program
p. Mutation testing has been shown to be very powerful in revealing program faults both experimentally
and analytically [16, 26, 27, 28]. This is because, as research into the “fault coupling effect” [18, 19, 25]
demonstrated, “Complex faults arecoupledto simple faults in such a way that a test data set that detectsall
simple faults in a program will detect a high percentage of the complex faults” [25].

In mutation testing, it is assumed that any set of mutants consists only of a finite number of programs, so
that they can be killed by a finite test set. This constraint has been resolved by Morell using the concept of
fault-based testing[22]. He refers to mutants asalternate programs, and a set of mutants as analternative
set, which may contain an infinite number of programs. Hence, fault-based testing “prove[s] the absence
of infinitely many faults based on finitely many executions” [22]. To achieve this goal, the technique of
symbolic execution [11, 12, 21] was used, and statements proclaiming the absence of certain types of faults
were created and proved during the testing process. In this way, Morell combined program testing and
proving in a unified methodology.

Given any input to a program, anoracle is a mechanism that specifies the expected outcome. We note
that, in the above methodologies for alleviating the reliable test set problem, there is always an underlying
assumption that a testing oracle exists. Testers check the execution results against the oracles to decide
whether the program generates correct results on test cases. In some practical situations, however, an oracle
is not attainable. This is known as the oracle problem. In numerical analysis, for example, it is often difficult
to verify the results of calculations [17]. Weyuker [29] defined a program to be non-testable if “(1) there
does not exist an oracle” or “(2) it is theoretically possible, but practically too difficult to determine the
correct output.” Moreover, in the theory of fault-based testing introduced by Morell, not only is the oracle
for real output required, but the oracle for symbolic outputis also demanded because it involves symbolic
execution and symbolic output. Without an oracle, the abovetechniques will not work. In this paper, we
propose an integrated approach that combines fault-based testing with metamorphic testing to alleviate the
oracle problem. Our method is built on the techniques of symbolic execution [11, 12, 14, 21, 24].

In Section 2, we shall introduce the concepts in fault-basedtesting, and highlight the need of a testing
oracle. In Section 3, we shall review testing techniques proposed by various researchers that can be carried
out in the absence of an oracle. In particular, we shall introduce the metamorphic testing technique. In
Section 4, we shall present our approach that integrates fault-based testing with metamorphic testing in
order to alleviate the oracle problem in the former technique. We shall demonstrate through examples how
real and symbolic inputs can be used to rule out prescribed faults in programs even if testing oracles are
not available. In Section 5, we shall discuss how the method can be applied further. The final section will
conclude the paper.

2

1: INPUT (x, y);
2: x = x * y + 3;
3: OUTPUT (x * 2);

Figure 1: Programp for f (x, y) = 2xy+6

1: INPUT (x, y);
2′: x = x * y + F;
3: OUTPUT (x * 2);

Figure 2: Programp′

2 Fault-Based Testing

There have been a lot of discussions on the purposes of software testing. Most people agree that testing
cannot prove the correctness of a program [2]. Some people regard testing as an activity to look for bugs in
a program, and therefore consider successful test cases, which fail to reveal errors, to be useless and a waste
of time [23]. Others argue that successful test cases are useful and informative [6, 22]. Fault-based testing
adopts the latter perspective and treats successful executions of a program as indications of the absence of
some types of faults [22]. Fault-based testing therefore receives from a successful execution the information
on the absence of certain types of faults. In some sense, mutation testing can be regarded as a special case of
fault-based testing. A major difference is that the set of mutants eliminated by the former is finite whereas,
by making use of symbolic executions, the set of alternate programs eliminated by fault-based testing can
be infinite.

2.1 Fault-based testing with real input

Figure 1 shows a 3-line programp adapted from the first example in [22], which illustrates thetechnique
of using one singlesymbolic alternativeto represent infinitely many alternatives. The program is supposed
to calculate a mathematical functionf (x, y) = 2xy+ 6. To ensure that there is no error with respect to the
constant “3” in line 2, we assume that it is replaced by another constant “F”, as shown in line 2′ of program
p′ in Figure 2. “F” denotes all possible alternatives for the constant “3”, and hence programp′ represents
infinitely many alternate programs forp.

Let x= 5 andy= 6 be a test case. The original programp will generate an output of 66, which can easily
be verified to be correct against an oracle. By means of symbolic execution of programp′, we obtain an
output of(30+F)∗2. Morell’s goal is to find all the constantsF such that programp′ will produce the same
result as the original programp. In other words, we must find all the values ofF such that(30+F)∗2 = 66.
Solving the equation, we obtainF = 3. Hence, we have proved that the test case(5, 6) distinguishes the
original programp from all mutants constructed by replacing 3 in line 2 by any other constant values. Note
that, to do the testing, an oracle is required for checking the correctness of the output of the original program.

3

double ComputeArea (){
double a, b, incr, area, v;

1: INPUT (a, b, incr); /* incr> 0 */
2: v = a * a + 1;
3: area = 0;
4: while (a + incr<= b) {
5: area = area + v * incr;
6: a = a + incr;
7: v = a * a + 1;

}
8: incr = b− a;
9: if (incr >= 0) {
10: area = area + v * incr;
11: return area;

}
else

12: ERROR (“illegal values for a and b!”);
}

Figure 3: ProgramComputeArea

2.2 Fault-based testing with symbolic input

The previous example illustrated the procedure of using a real input to eliminate a constant alternative in
fault-based testing. Morell also demonstrated how to eliminate more complex alternatives such as variable
substitution using symbolic inputs rather than real inputs. Figure 3 shows a sample program adapted
from [22]. It calculates the area under the curvex2 + 1 over the interval betweena andb. Suppose the
aim of the testing is to show the absence of errors in the assignment statement 3. Let the symbolic input
be a = A, b = B, and incr = I such thatB ≥ A and A+ I > B. Then the symbolic output produced by
symbolic execution will be(A∗A+1)∗(B−A). Note that, according to Morell’s method, asymbolic oracle
is required here to verify the correctness of the output.

Suppose we introduce a fault in the assignment statement 3:

3′ : area = F; /* Should be “area = 0;” */

whereF is a constant. Following the same execution path, we obtain an output ofF +(A∗A+1)∗ (B−A).
Morell’s goal is to find all the constantsF such that statement 3′ will produce the same result as the original
statement 3. Hence, we haveF +(A2+1)∗(B−A) = (A2+1)∗(B−A), which can be solved to giveF = 0.
Thus, statement 3′ can only be exactly the same as statement 3.

Morell also proved that alternate programs would also be eliminated whenF denoted a polynomial ofa.
In other words, ifF(a) denotes the set of all polynomials ina, then it can be proved thatF(a) can only be 0.

Furthermore, Morell introduced another error in statement5. It is replaced by

5′ : area = F; /* Should be “area = area + v * incr;” */

whereF denotes a constant alternative. Let the symbolic input bea= A, b= B, andincr = I such thatA+ I ≤
B andA+2I > B. Using a similar procedure, it can be shown thatF = (A∗A+1)∗ I , thus contradicting the

4

assumption thatF is a constant. This proves that no constant substitution canbe found for statement 5. By
executing the loop twice, Morell further eliminated all alternate programs in whichF could be a polynomial
of the variablesarea, v, andincr. In other words, when the assignment fault introduced in statement 5 is a
polynomial in the formF(area, v, incr), it can be proved [22] thatF(x, y, z) = x+yz, which is exactly the
function computed in the original program.

Note again that these techniques have been based on the assumption that both the real and symbolic
outputs can be verified against some oracles.

In Section 4, we shall present an approach to do fault-based testing without the need of oracles for real
and symbolic outputs. Before doing this, let us review the oracle problem in more details.

3 Testing Without Oracles

In order to test a numerical program where an oracle is not available, a common approach is to make
use of identity relations derived from theory. This technique was, for example, intensively used in Cody
and Waite [13]. For instance, the identity cos(−x) = cos(x) was used to test the program that supposedly
compute the cosine function.

Weyuker [29] undertook a detailed study and introduced various approaches to test “non-testable pro-
grams” via static and dynamic properties of the functions being calculated. She gave an example of the
testing of two programs that are supposed to compute the functions f (x) and f ′(x), respectively, wheref ′

is the derivative off . From elementary results in Taylor series, we know thatf (x+∆) = f (x)+∆× f ′(x)+
O(∆2). Substituting∆ = 1, 0.1, 0.01, . . . into the expressionf (x+ ∆)− (f (x)+ ∆× f ′(x)), we can “see at
a glance whetherf ′ could be the derivative off .”

There is a closely related technique known asdata diversity. It has been developed and advocated for
fault tolerance, rather than fault detection, by Ammann andKnight [1]. Given an original input, the objective
of data diversity is to provide alternate means of computingthe same input using the same program. Such
alternate inputs are basically “reexpressed” forms of the original input. Consequently, properties used in
data diversity must also be identity relations.

Blum and Kannan [3] introduced the concept of aprogram checker, which is a program that prob-
abilistically checks the correctness of the output of another program. An example is a checker for the
graph isomorphism function, which employs the property that if G andH are not isomorphic, thenG and
permutations ofH should not be isomorphic either. Blum et al. [4] extended thetheory of the program
checker into the theory ofself-testing/ correcting. Given a functionf and a programp that implementsf , a
self-tester Tfor f is a probabilistic program.T estimates the error probability thatp(x) 6= f (x) for a random
input x. A self-corrector Cfor f is also a probabilistic program. If it is known that programp calculatesf
correctly for sufficiently large amount of data on the input domain, then for any inputx, C will make calls to
p and return the value off (x) correctly with a high probability. Blum et al. introduced general techniques to
construct self-tester / corrector for a variety of numerical functions. For example, the self-tester / corrector
for integer multiplication functions essentially employsthe distributive lawa× (b+ c) = a× b+ a× c.
The self-tester / corrector for modular functions essentially employs the property that(a+ b) mod r =
(a mod r +b mod r) mod r.

More recently, ametamorphic testing(MT) method was proposed by Chen et al. [8]. It can be explained
briefly as follows. Let f be a function to be programmed. SupposeRf is some property off that can
be expressed as a relation among a series of the function’s inputs x1, x2, . . . , xn, wheren > 1, and their

5

corresponding valuesf (x1), f (x2), . . . , f (xn). This relationRf is called ametamorphic relation. Consider
the sine function, for instance. For any two inputsx1 andx2 such thatx1 + x2 = π, we must have sinx1 =
sin x2. This property is a metamorphic relation of the sine function and can be written formally as

Rsin =
{

(x1, x2, sin x1, sin x2)
∣

∣ x1 +x2 = π → sin x1 = sin x2
}

.

When there is no ambiguity, we can simply write the relation as

Rsin : x1 +x2 = π → sin x1 = sin x2.

Supposep is a program that implements the functionf . Let p(x1), p(x2), . . . , p(xn) be the outputs
of p corresponding to the inputsx1, x2, . . . , xn, respectively. In theory,p should satisfy all the properties
of f , including metamorphic relationsRf . In practice, however, the relationsRf need to be converted
into other metamorphic relationsRp more suitable for the implementation domain, by taking intoaccount
such implementation issues as rounding errors in floating-point arithmetic.MT proposes to check whether
a program under test satisfies such metamorphic relationsRp. They arenecessary(but not sufficient)
conditions for the correctness of the program under test.

For example, supposep implements the sine function. In theory, it should satisfy

Rp =
{

(x1, x2, p(x1), p(x2))
∣

∣ x1 +x2 = π → p(x1) = p(x2)
}

.

In practice, when floating point arithmetic is involved, theinputs and outputs should satisfy an implementation-
oriented metamorphic relation such as

R′
p =

{

(x1, x2, p(x1), p(x2))
∣

∣ x1 +x2 = PI →

∣

∣

∣

∣

p(x2)− p(x1)

min(|p(x2)|, |p(x1)|)

∣

∣

∣

∣

< ε
}

or
R′′

p =
{

(x1, x2, p(x1), p(x2))
∣

∣ x1 +x2 = PI → |p(x2)− p(x1)| < ε
}

,

wherePI is the implemented value ofπ andε is the acceptable error. For the ease of presentation, we shall
simply use the formRp in the examples in this paper. Readers are reminded thatR′

p or R′′
p may be used in

the actual cases.
To verify this relation, two executions are needed inMT. The first input top is a real numberx1, followed

by a second inputx2 = π−x1. Even if a testing oracle does not exist,MT can still be applied because it checks
the relations among the inputs and outputs of more than one execution of the program, instead of checking
a single result.

There is a similarity betweenMT and the earlier methods introduced in this section, in that all of them
make use of some properties of the functions to check the program outputs. There are, however, differences
betweenMT and the other methods in both practice and philosophy. In practice, metamorphic testing not
only employs identity relations, but also makes use of inequalities. An example can be found in [9]. As for
the other approaches described above, apart from a couple ofexamples on error bounds given by Weyuker,
they all employ identity relations only. With regard to the philosophical aspect, consider the program checker
as an example. Its ultimate goal is to estimate, through a probabilistic oracle, how likely the program output
is correct for a given test case. Even though other test casesmay be generated by the checker during the
testing process, the fundamental goal does not change. On the other hand, it is not the prime objective of

6

metamorphic testing to provide an alternate means of identifying a testing oracle to verify the correctness of
a single output. Its intrinsic philosophy is that, when a test case selected according to some testing criteria
does not reveal any failure, it still carries useful information, albeit implicitly. Thus, follow-up test cases can
be used to check certain necessary properties of the program, irrespective of whether a testing oracle exists
or not. If the necessary properties do not hold, the program is obviously incorrect. In this way, metamorphic
testing is property-based and can be used along with any other test case selection strategies.

4 Integrating Fault-Based Testing with the Metamorphic Method

As introduced in Section 3,MT is a method that checks whether the program satisfies expected metamorphic
relations. The latter is independent of the presence or otherwise of an oracle.MT can therefore be applied
without the need of an oracle. In this section, we shall integrateMT and fault-based testing to alleviate the
oracle problem, for both real and symbolic inputs.

4.1 Preliminary example

Similar to Morell’s fault-based testing, our integrated method also allows two types of inputs: real and
symbolic. We shall also use the mathematical functionf (x, y) = 2xy+6 and the 3-line program in Figure 1
as a preliminary example to illustrate our technique. From simple algebra, we find that the function satisfies
the propertyf (xy, f (x, y))− f (x, y) = (2xy)2 +10xy. 1 This can be expressed formally as a metamorphic
relation as follows:

Rf =
{(

(x1, y1), (x2, y2), f (x1, y1), f (x2, y2)
) ∣

∣

(

x2 = x1y1 ∧ y2 = f (x1, y1)
)

→ f (x2, y2)− f (x1, y1) = (2x1y1)
2 +10x1y1

}

.

Let p denote the program in Figure 1. The expected metamorphic relation for p is defined as

Rp =
{(

(x1, y1), (x2, y2), p(x1, y1), p(x2, y2)
) ∣

∣

(

x2 = x1y1 ∧ y2 = p(x1, y1)
)

→ p(x2, y2)− p(x1, y1) = (2x1y1)
2 +10x1y1

}

.

For the test case(x1, y1) = (5, 6), the programp produces “66” as output. Suppose, for the sake of
argument, that this program does not have a known oracle.2 We continue to generate the next test case as
suggested by the metamorphic relationRp. Thus, we obtainx2 = x1y1 = 5×6 = 30, andy2 = p(x1, y1) =
66. For this test case, the program yieldsp(30, 66) = 3966. We need to verify whether the two test
results together satisfy the expected relationRp. Indeed,p(x2, y2)− p(x1, y1) = 3966− 66 = 3900, and
(2x1y1)

2 +10x1y1 = (2×5×6)2 +10×5×6= 3900. Hence, the relationRp is fulfilled.
Suppose we introduce an assignment faultF into the program, as shown in Figure 2. This faulty

program, which we shall denote byp′, produces 2F +60 by the symbolic execution of the same initial test
case(x1, y1) = (5, 6). Taking the metamorphic relationRp into consideration, we choose a second symbolic
test case (x2 = 5×6 = 30) and (y2 = p′(5, 6) = 2F + 60). After symbolic execution,p′ yields the output
(30× (2F + 60)+ F)× 2 = 122F + 3600. Our goal is to find the value(s) ofF for which p′ satisfies the

1Many properties off can be identified as metamorphic relations. This is but one example.
2We use this simple but artificial example to illustrate the procedure behind metamorphic testing. Genuine examples where no

oracle exists will be given in Sections 4.2 and 4.3.

7

double Power (double u, double v){
double uMinusOne, numerator, lnTerm, result;
int i;

1: if (v = = 0)
2: result = 1;

else{
3: if ((int)v = = v) && (v > 0)) {
4: result = 1;
5: for (i = 1; i <= v; i++)
6: result = result * u;

}
else{
/* ln (u) = ln (1 + (u− 1)) = (u− 1)− 1 / 2 * (u− 1) ˆ 2 + 1 / 3 * (u− 1) ˆ 3− . . . */

7: i = 1;
8: uMinusOne = u− 1;
9: numerator = uMinusOne;
10: lnTerm = uMinusOne;
11: result = uMinusOne;
12: while (fabs (lnTerm)> 1e−16){

/* “fabs” is a floating point function that returns the absolute value */
/* 1e−16 = 10 {̂−16} */

13: i++;
14: numerator = (−1) * numerator * uMinusOne;
15: lnTerm = numerator / i;
16: result = result + lnTerm;

}
17: result = exp(v * result);

}
}

18: return result;
}

Figure 4: ProgramPower

expected relationRp. Thus, substituting intoRp, we establishp′(x2, y2)− p′(x1, y1) = (2x1y1)
2 +10x1y1,

giving (122F +3600)−(2F +60) = (2×5×6)2+10×5×6. Solving the equation, we obtainF = 3, which
is the only value thatF can take. This means that all the alternate programs constructed by replacing 3 with
other constants have been eliminated. This result coincides with that obtained by conventional fault-based
testing in [22]. A fundamental difference is that we have applied theMT technique without referring to a
testing oracle.

In the next two sections, we shall further describe how fault-based testing can be achieved in the absence
of an oracle using real and symbolic inputs, respectively.

8

4.2 Fault-based testing with real input in the absence of an oracle

Consider the programPower in Figure 4. Given two real numbersu andv as input, the program computes
the value ofuv. This is done in three ways:

(i) If v is zero, then obviouslyuv = 1.

(ii) Otherwise, ifv is a positive integer, thenuv can be found by multiplyingu by itself the appropriate
number of times.

(iii) Otherwise,uv is computed by the mathematical expressionev ln (u).

The main task of our testing lies with part(iii).
Consider statement 11 in the program. Suppose we introduce afault in the statement 11, of the form

11′ : result = F; /* Should be “result = uMinusOne;” */

Our goal here is to ensure that any constant alternative is impossible. Assume the contrary. We would like
to find all possible constantsF such that the erroneous statement 11′ would pass the test without being
detected.

Since it is not straightforward to verify the result of this example against an oracle, especially for large
numbers, we shall make use of the metamorphic testing method. A typical property of the exponential
function isuv×uv = (u×u)v. Hence, the program should satisfy the metamorphic relation

Power(u, v)×Power(u, v) = Power(u×u, v).

Let u= 0.5400128 andv= 3.9 be a test case. The original program will generatePower(0.5400128, 3.9) =
9.0443177318673× 10−2, and Power(0.5400128∗ 0.5400128, 3.9) = 8.1799683234969× 10−3. Since
(Power(0.5400128, 3.9))2 = 8.1799683234969× 10−3 = Power(0.5400128∗ 0.5400128, 3.9), the meta-
morphic relation is satisfied.

Now consider the program with the symbol “F” in statement 11′. Let us call this programPower′. After
symbolic execution, we obtain the symbolic output

Power′(0.5400128, 3.9) = e3.9×[F+∑43
i=2(−1)i−1(0.5400128−1)i/i].

Hence,

Power′(0.5400128, 3.9)×Power′(0.5400128, 3.9) = e2×3.9×[F+∑43
i=2(−1)i−1(0.5400128−1)i/i].

On the other hand, for the test case(0.5400128×0.5400128, 3.9), the output of the symbolic execution is

Power′(0.5400128∗0.5400128, 3.9) = e3.9×[F+∑94
i=2(−1)i−1(0.5400128×0.5400128−1)i /i].

Hence, according to the metamorphic relation, we should have

e2×3.9×[F+∑43
i=2(−1)i−1(0.5400128−1)i/i] = e3.9×[F+∑94

i=2(−1)i−1(0.5400128×0.5400128−1)i /i].

Solving the equation, we obtainF = −2.1158822416384×10−1.

9

/* ProgramTrig calculates the value of sin x if “isSin” is true.
Otherwise, it calculates the value of cos x. */

doubleTrig (double x, bool isSin){
int index;
double term, sum;
/* Initialize for cos x */

1: term = 1;
2: index = 1;
3: if (isSin){ /* Initialize for sin x */
4: term = x;
5: index = 2;

}
6: sum = term;
7: while (fabs (term)> 1e−16){
8: term = term *(−1) * x * x / (index * (index + 1));
9: sum = sum + term;
10: index = index + 2;

}
11: return sum;

}

Figure 5: ProgramTrig

Let u = 0.7309782 andv = 9.16 be another test case. Through the same procedure, we can deduce that
F = −7.2372728875240× 10−2. Even if rounding errors are taken into consideration, those two values
of the same constantF obviously contradict each other. As a result, no constant alternative is possible for
statement 11′. In other words, we have proved that the metamorphic test cases(u, v) = (0.5400128, 3.9),
(0.5400128× 0.5400128, 3.9), (0.7309782, 9.16), and (0.7309782× 0.7309782, 9.16) distinguish the
original programPower from every mutant constructed by replacinguMinusOnein statement 11 by any
constant value.

4.3 Fault-based testing with symbolic input in the absence of an oracle

Let us consider a further example as shown in Figure 5. The programTrig accepts as inputs a real numberx
and a Boolean parameterisSinIt calculates sinx whenisSinis true and cosx whenisSinis false. Except for
special cases such asx = 0 andx = π/2, there is no easy way to verify the outputs of the program, unless
we check them against the outputs from yet another program.

Suppose statement 4 is replaced by an alternative:

4′ : term = F; /* Should be “term = x;” */

whereF is a function ofx in the formF = a×xn such thata is a real number constant andn is a non-negative
integral constant.

As explained earlier, it is not easy to verify the program against an oracle, so that we cannot apply
Morell’s fault-based testing method to eliminate the alternative. Instead, let us test the program using the

10

property sin2 x+cos2 x = 1. The metamorphic relation in the implementation domain can be written as

Rp : (p(x, true))2 +(p(x, false))2 = 1. (1)

Consider a symbolic inputx = Swith isSin= true. By symbolic execution of the alternate program contain-
ing statement 4′, the output is

Trig(S, true) = F ∗ (1−S2/6+S4/120− . . .).

Hence, we have

(Trig (S, true))2 = F2∗ (1−S2/6+S4/120− . . .)2

= (a∗Sn)2∗ (1−S2/6+S4/120− . . .)2

= (a2 ∗S2n)∗ (1− (1/3)∗S2 +(2/45)∗S4− . . .)

= a2 ∗S2n− (1/3)∗a2 ∗S2∗(n+1) +(2/45)∗a2 ∗S2∗(n+2) − . . .

(2)

For the same symbolic inputx= Swith isSin= false, we obtain a second symbolic output of the program,
thus:

Trig (S, false) = 1−S2/2+S4/24−S6/720+ . . .

As a result,
(Trig (S, false))2 = 1−S2+(1/3)∗S4− (2/45)∗S6 + . . .

Based on equation (1), we should have

(Trig (S, true))2 +(Trig(S, false))2 = 1

and therefore

a2 ∗S2n− (1/3)∗a2 ∗S2∗(n+1) +(2/45)∗a2 ∗S2∗(n+2) − . . . = S2− (1/3)∗S4 +(2/45)∗S6− . . . (3)

As we know,n is a non-negative integral constant. Ifn = 0, then there will be a constant terma2 on the
left-hand side of identity (3), while the minimum degree of the right-hand side will be 2. This is obviously a
contradiction. Ifn≥ 2, then all the terms on the left-hand side of the identity will have a degree≥ 4, while
there will be a term of degree 2 on the right-hand side. This again will be a contradiction. Thus, the only
possible value ofn is 1. Sincen = 1, if we equate the coefficients of like terms on both sides of the identity,
we obtaina2 = 1, − (1/3)∗a2 = −1/3, (2/45)∗a2 = (2/45), . . ., which can be solved to givea = ±1.

In this way,F can only bex or −x. Of course,F = x is just the original statement 4 in programTrig.
Hence, we need only studyF = −x. To discard this alternative, we need to employ another metamorphic
relation. For example, we note that sinx=−cos(π/2+x). The metamorphic relation in the implementation
domain can be written as

x2 = π/2+x1 → p(x1, true)+ p(x2, false) = 0. (4)

We apply the technique introduced in Section 4.2 to eliminate the alternativeF = −x using real input.
Let PI = 3.1415926535898 and let the input bex= 1.2. The original program withF = x in statement 4 will

11

produceTrig (1.2, true) = 0.93203908596723, andTrig (PI/2+1.2, false) = −0.93203908596723. Hence,
Trig (1.2, true)+Trig(PI/2+1.2, false) = 0 and the metamorphic relation (4) is satisfied.

We continue to test the alternate program with statement 4 replaced by “term =−x;”. Let us
call it Trig ′. For the same inputx = 1.2, the results areTrig ′(1.2, true) = −0.93203908596723 and
Trig ′(PI/2 + 1.2, false) = −0.93203908596723. Hence,Trig ′(1.2, true) + Trig ′(PI/2 + 1.2, false) =
−1.86407817193446. Obviously, this alternate program does not satisfy the expected metamorphic rela-
tion (4). In this way, the alternativeF = −x is eliminated.

In this section, we have illustrated our technique of using symbolic input (possibly combined with real
input) to eliminate prescribed faults. The example also demonstrated the power of combining different
metamorphic relations in testing. It shows that, by making use of more than one metamorphic relation,
different types of faults may be revealed. In other words, different metamorphic relations may have different
fault-detection capabilities for different types of faults.

We must concede, however, that our method may not be foolproof in terms of program correctness. This
issue will be further discussed in the next section.

5 Discussions

In the previous examples, the prescribed types of faults have been totally eliminated. This may not be
possible in some real life situations. Having said that, we shall illustrate via an example in this section how
our method may still be applied in such circumstances.

The programTrap as shown in Figure 6 is adapted from [11]. It calculates the approximate area under
the curvef (x) for the interval betweenx = a andx = b. Suppose statement 12 is replaced by an alternate
statement

12′ : area = area +(k1 * yOld + k2 * yNew) / 2.;

/* Should be “area = area + (yOld + yNew) / 2.;” */

wherek1 andk2 are any constants. Before testing, let us first identify a metamorphic relation. Suppose
G(x) = F(x) + C, where C is a positive constant. From elementary calculus, we know that
Trap(G, A, B, N, Error) = Trap(F, A, B, N, Error)+C×|B−A| whenN ≥ 1. We execute the program
using the symbolic input(F, A, B, N, Error), whereF is any function,A > B, andN = 1. The statements
(1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 9, 14, 15, 16, 17) will be traversed, generating the symbolic output

Trap(F, A, B, N, Error) = (k1∗F(A)+k2∗F(B))/2∗ (A−B).

Running the program again using the symbolic input(G, A, B, N, Error), we obtain

Trap(G, A, B, N, Error) = (k1 ∗ (F(A)+C)+k2∗ (F(B)+C))/2∗ (A−B).

According to the metamorphic relation, therefore, we establish an equation

(k1∗ (F(A)+C)+k2∗ (F(B)+C))/2∗ (A−B) = (k1∗F(A)+k2∗F(B))/2∗ (A−B)+C× (A−B).

After simplification, we obtain(k1 + k2) ∗C = 2C, thus giving(k1 + k2) = 2. If k1 and k2 are possible
integers, then both of them can only take the value of “1”, which is just the original value. Otherwise, we

12

/* Program Trap implements the trapezoidal rule to find the approximate area under the curve f(x) between
x = a and x = b. The computation uses n intervals of size|b − a| / n each. The variable “error” will be set
to “true” when n< 1. */

float Trap (float (*f)(float), float a, float b, int n, bool &error) {
float area;
float h; /* interval */
float x;
float yOld; /* value of f(x− h) */
float yNew; /* value of f(x) */

1: if (n < 1)
2: error = true;

else{
3: error = false;
4: area = 0;
5: if (a != b) {
6: h = (b− a) / n;
7: x = a;
8: yOld = (*f)(x);
9: while ((a> b && x > b) || (a< b && x < b)) {
10: x = x + h;
11: yNew = (*f)(x);
12: area = area + (yOld + yNew) / 2.;
13: yOld = yNew;

}
14: area = area * h;
15: if (a> b)
16: area =−area;

}
}

17: return area;
}

Figure 6: ProgramTrap

can still eliminate all pairs ofk1 andk2 such thatk1 + k2 6= 2. This example shows that, even in situations
where our method cannot exactly identify the fault, our technique is still useful because it greatly narrows
down the range of possible faults.

The examples cited so far in this paper are numerical programs. It should be noted that our approach
can also be applied to non-numerical ones. Consider, for instance, a programShortestPaththat implements
the shortest path problem. The program accepts a graphG and two nodesA andB, and then outputs all the
shortest paths fromA toB. Apart from simple graphs, it is expensive to verify whetherthe outputs are correct.
In this case, metamorphic testing can be applied as follows:Randomly select an elementP from the output
of ShortestPath(G, A, B). P is one of the shortest paths fromA to B. Randomly select a nodeC in this path
P. Then, run the program to computeShortestPath(G, A, C) andShortestPath(G, C, B). A metamorphic
relation is, “there exist an element ofShortestPath(G, A, C) and an element ofShortestPath(G, C, B) that

13

can be combined to form the pathP.” If this metamorphic relation is not satisfied, the programmust contain
a fault. Another metamorphic relation is that a different permutation of the input graphG should produce the
same output. Fault-based testing techniques can be appliedto such non-numerical metamorphic relations.
Furthermore, the concepts of attributive equivalence and observational equivalence have been introduced
in [7] for the testing of object-oriented programs. These concepts of equivalence can also be used as non-
numerical metamorphic relations in fault-based testing.

6 Conclusion

In this paper, we have looked into the oracle problem in fault-based testing. We have found that, by
integrating metamorphic testing with fault-based testing, alternate programs can be eliminated even if there
is no testing oracle. We have presented techniques of using real and symbolic inputs.

When compared with other fault-based testing approaches that rely on testing oracles, our approach
requires additional efforts in identifying metamorphic relations and running the program more than once.
Obviously, whenever a testing oracle is available, it should be used to check the output. Nevertheless, there
are many situations where a testing oracle cannot be found. Our method does provide an innovative solution
in such circumstances.

References

[1] P.E. Ammann and J.C. Knight, Data diversity: an approachto software fault tolerance,IEEE Transactions on
Computers37 (4) (1988) 418–425.

[2] B. Beizer,Software Testing Techniques(Van Nostrand Reinhold, New York, NY, 1990).

[3] M. Blum and S. Kannan, Designing programs that check their work,Journal of the ACM42 (1) (1995) 269–291.

[4] M. Blum, M. Luby, and R. Rubinfeld, Self-testing / correcting with applications to numerical problems,Journal
of Computer and System Sciences47 (3) (1993) 549–595.

[5] T.A. Budd, Mutation analysis: ideas, examples, problems and prospects, in: B. Chandrasekaran and S. Radicchi,
eds.,Computer Program Testing(North-Holland, Amsterdam, 1981) 129–148.

[6] F.T. Chan, T.Y. Chen, S.C. Cheung, M.F. Lau, and S.M. Yiu,Application of metamorphic testing in numerical
analysis, in:Proceedings of the IASTED International Conference on Software Engineering(SE ’98) (ACTA
Press, Calgary, Canada, 1998) 191–197.

[7] H.Y. Chen, T.H. Tse, and T.Y. Chen, TACCLE: a methodologyfor object-oriented software testing at the class
and cluster levels,ACM Transactions on Software Engineering and Methodology10 (1) (2001) 56–109.

[8] T.Y. Chen, S.C. Cheung, and S.M. Yiu, Metamorphic testing: a new approach for generating next test cases,
Technical Report HKUST-CS98-01 (Department of Computer Science, Hong Kong University of Science and
Technology, Hong Kong, 1998).

[9] T.Y. Chen, J. Feng, and T.H. Tse, Metamorphic testing of programs on partial differential equations: a case study,
in: Proceedings of the 26th Annual International Computer Software and Applications Conference(COMPSAC
2002) (IEEE Computer Society, Los Alamitos, CA, 2002).

[10] T.Y. Chen, T.H. Tse, and Z. Zhou, Fault-based testing inthe absence of an oracle, in:Proceedings of the 25th
Annual International Computer Software and Applications Conference(COMPSAC 2001) (IEEE Computer
Society, Los Alamitos, CA, 2001) 172–178.

14

[11] L.A. Clarke and D.J. Richardson, Symbolic evaluation methods: implementations and applications, in:
B. Chandrasekaran and S. Radicchi, eds.,Computer Program Testing(North-Holland, Amsterdam, 1981) 65–
102.

[12] L.A. Clarke and D.J. Richardson, Applications of symbolic evaluation,Journal of Systems and Software5 (1985)
15–35.

[13] W.J. Cody, Jr. and W. Waite,Software Manual for the Elementary Functions(Prentice Hall, Englewood Cliffs,
NJ, 1980).

[14] G. Colman, P. Andreae, and L. Groves, Program analysis by symbolic execution and generalization, in:
C. Rattray and G. Robert, eds.,The Unified Computation Laboratory: Modelling, Specifications, and Tools
(Clarendon Press, Oxford, 1992) 367–380.

[15] R.A. DeMillo, R.J. Lipton, and F.G. Sayward, Hints on test data selection: help for the practicing programmer,
IEEE Computer11 (4) (1978) 34–41.

[16] R.A. DeMillo and A.J. Offutt, Constraint-based automatic test data generation,IEEE Transactions on Software
Engineering17 (9) (1991) 900–910.

[17] M.-C. Gaudel, Testing can be formal, too, in:Proceedings of the 6th International Joint CAAP/FASE Conference
on Theory and Practice of Software Development(TAPSOFT ’95) (Lecture Notes in Computer Science915,
Springer-Verlag, Berlin, 1995) 82–96.

[18] K.S. How Tai Wah, Fault coupling in finite bijective functions,Software Testing, Verification and Reliability5
(1) (1995) 3–47.

[19] K.S. How Tai Wah, A theoretical study of fault coupling,Software Testing, Verification and Reliability10 (1)
(2000) 3–45.

[20] W.E. Howden, Reliability of the path analysis testing strategy,IEEE Transactions on Software EngineeringSE-2
(3) (1976) 208–215.

[21] W.E. Howden, Symbolic testing and the DISSECT symbolicevaluation system,IEEE Transactions on Software
EngineeringSE-3 (4) (1977) 266–278.

[22] L.J. Morell, A theory of fault-based testing,IEEE Transactions on Software Engineering16 (8) (1990) 844–857.

[23] G.J. Myers,The Art of Software Testing(John Wiley, New York, NY, 1979).

[24] A.J. Offutt and E.J. Seaman, Using symbolic execution to aid automatic test data generation, in:Systems
Integrity, Software Safety, and Process Security: Proceedings of the 5th Annual Conference on Computer
Assurance(COMPASS ’90) (IEEE Computer Society, Los Alamitos, CA, 1990) 12–21.

[25] A.J. Offutt, Investigations of the software testing coupling effect,ACM Transactions on Software Engineering
and Methodology1 (1) (1992) 5–20.

[26] A.J. Offutt and S.D. Lee, An empirical evaluation of weak mutation,IEEE Transactions on Software Engineering
20 (5) (1994) 337–344.

[27] A.J. Offutt, A. Lee, G. Rothermel, R.H. Untch, and C. Zapf, An experimental determination of sufficient mutant
operators,ACM Transactions on Software Engineering and Methodology5 (2) (1996) 99–118.

[28] J.M. Voas and G. McGraw,Software Fault Injection: Inoculating Programs against Errors (John Wiley, New
York, NY, 1998).

[29] E.J. Weyuker, On testing non-testable programs,The Computer Journal25 (4) (1982) 465–470.

15

