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Abstract

There are two fundamental limitations in software testiimgwn as the reliable test set problem and
the oracle problem. Fault-based testing is an attempt byeNMioralleviate the reliable test set problem.
In this paper, we propose to enhance fault-based testinietdisde the oracle problem as well. We
present an integrated method that combines metamorphiingesth fault-based testing using real and
symbolic inputs.
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1 Introduction

Program correctness has long been one of the most funddnesias of computer science. Although
program proving provides a formal means of verifying thereciness of programs, it suffers from the
complexity and automation of the proofs. It is not easy eweprove the correctness of a relatively simple
program. On the other hand, software testing is the mostlapmethod used by practitioners to improve
their confidence in the software product. There are, howéwerrecognized limitations in software testing,
known as the reliable test set problem and the oracle probl&éhe concept of aeliable test setwas
originally proposed by Howden [20]: Supposgeis a program computing functiof on domainD. A
test setT C D is reliable for p if (Vte T, p(t) = f(t)) = (Vt € D, p(t) = f(t)). In other words, the
success of a reliable test set implies the program correstidowden points out, however, that an effective
algorithm which generates a reliable test set for any givegnam cannot be constructed, unless the set
covers the whole input domain. We refer to this limitatiorttzsreliable test set probleror thereliability
problem Another deficiency in software testing is that, in someadians, testers are unable to decide
whetherp(t) = f(t), that is, whether the result of the program under testingegwith the expected result.
This second limitation is known as tloeacle problem17, 29].

Since reliable test sets of finite sizes are not attainalemneral, and test sets employed in practice must
be of finite sizes, testers need practical means of evatuatioh test sets with a view to selecting those with
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better performances. The mutation adequacy (or relatieguty) criteria were introduced [5, 15, 16] to
provide a realistic approach for determining whether agesis relatively sufficient. It restricts the faulty
programs to a smaller set, possibly finite in size. Suchyaquthgrams can be differentiated from the original
program by a test set that is also finite. Thus, supgoisea program computing functioh on domainD,
andQ is a finite set of programs generated by slightly modifying &miginal programp. Each program
g € Q such thatg # p is called amutantof p. A test setT C D is said to beadequate for p relative to Q
if, V programsqe Q, (3te D : q(t) # f(t)) = (3t € T : q(t) # f(t)). The purpose ofnutation testing
is to generate a relative adequate tesflsai differentiate all the mutantg < Q from the original program
p. Mutation testing has been shown to be very powerful in davggrogram faults both experimentally
and analytically [16, 26, 27, 28]. This is because, as rekeato the “fault coupling effect” [18, 19, 25]
demonstrated, “Complex faults areupledto simple faults in such a way that a test data set that deddicts
simple faults in a program will detect a high percentage efabmplex faults” [25].

In mutation testing, it is assumed that any set of mutantsistsonly of a finite number of programs, so
that they can be killed by a finite test set. This constraistiieen resolved by Morell using the concept of
fault-based testing22]. He refers to mutants adternate programsand a set of mutants as atternative
set which may contain an infinite number of programs. Hencedifaased testing “prove[s] the absence
of infinitely many faults based on finitely many execution82]. To achieve this goal, the technique of
symbolic execution [11, 12, 21] was used, and statementdgamung the absence of certain types of faults
were created and proved during the testing process. In this Morell combined program testing and
proving in a unified methodology.

Given any input to a program, amacleis a mechanism that specifies the expected outcome. We note
that, in the above methodologies for alleviating the rédéiabst set problem, there is always an underlying
assumption that a testing oracle exists. Testers checkxd®iton results against the oracles to decide
whether the program generates correct results on test das#sne practical situations, however, an oracle
is not attainable. This is known as the oracle problem. Inenizal analysis, for example, it is often difficult
to verify the results of calculations [17]. Weyuker [29] aefiil a program to be non-testable if “(1) there
does not exist an oracle” or “(2) it is theoretically possijbbut practically too difficult to determine the
correct output.” Moreover, in the theory of fault-baseditesintroduced by Morell, not only is the oracle
for real output required, but the oracle for symbolic outisudlso demanded because it involves symbolic
execution and symbolic output. Without an oracle, the alieglniques will not work. In this paper, we
propose an integrated approach that combines fault-basédg with metamorphic testing to alleviate the
oracle problem. Our method is built on the techniques of sylimlexecution [11, 12, 14, 21, 24].

In Section 2, we shall introduce the concepts in fault-bdesting, and highlight the need of a testing
oracle. In Section 3, we shall review testing techniquepg@sed by various researchers that can be carried
out in the absence of an oracle. In particular, we shall duce the metamorphic testing technique. In
Section 4, we shall present our approach that integratdstfased testing with metamorphic testing in
order to alleviate the oracle problem in the former techaide/e shall demonstrate through examples how
real and symbolic inputs can be used to rule out prescribegitlsfan programs even if testing oracles are
not available. In Section 5, we shall discuss how the metlaodbe applied further. The final section will
conclude the paper.



1. INPUT(x,Y);
2: X=X*y+3;
3: OUTPUT (x * 2);

Figure 1: Progranp for f(x, y) =2xy+6

1. INPUT(x,Y);
2" x=x*y+F;
3: OUTPUT (x * 2);

Figure 2: Progranp’

2 Fault-Based Testing

There have been a lot of discussions on the purposes of seftesting. Most people agree that testing
cannot prove the correctness of a program [2]. Some peogdedeesting as an activity to look for bugs in

a program, and therefore consider successful test casis fait to reveal errors, to be useless and a waste
of time [23]. Others argue that successful test cases afel @s&l informative [6, 22]. Fault-based testing
adopts the latter perspective and treats successful éxeswf a program as indications of the absence of
some types of faults [22]. Fault-based testing therefareives from a successful execution the information
on the absence of certain types of faults. In some sensetionutasting can be regarded as a special case of
fault-based testing. A major difference is that the set ofants eliminated by the former is finite whereas,
by making use of symbolic executions, the set of alternabgnams eliminated by fault-based testing can
be infinite.

2.1 Fault-based testing with real input

Figure 1 shows a 3-line programadapted from the first example in [22], which illustrates tbehnique
of using one singlsymbolic alternativeo represent infinitely many alternatives. The program gpssed
to calculate a mathematical functidiix, y) = 2xy+ 6. To ensure that there is no error with respect to the
constant “3” in line 2, we assume that it is replaced by anatbastant F”, as shown in line 2of program
p’ in Figure 2. ‘F” denotes all possible alternatives for the constant “3Y hance progranp’ represents
infinitely many alternate programs fpr

Letx=5andy = 6 be a test case. The original prograwill generate an output of 66, which can easily
be verified to be correct against an oracle. By means of syimbrécution of progranp’, we obtain an
output of(30+ F) «2. Morell’s goal is to find all the constanssuch that programp’ will produce the same
result as the original program In other words, we must find all the valuesfouch tha{30+ F ) x2 = 66.
Solving the equation, we obtal = 3. Hence, we have proved that the test cdse6) distinguishes the
original programp from all mutants constructed by replacing 3 in line 2 by arhyeotconstant values. Note
that, to do the testing, an oracle is required for checkiegtirrectness of the output of the original program.



double ComputeArea ({)
double a, b, incr, area, v;
INPUT (a, b, incr); /*incr> 0 */
v=a*a+1l,
area=0;
while (a + incr<=Db) {
area=area+ Vv *incr;
a=a-+incr;
v=a*a+1l,

}
8: incr=b- a;
9: if(incr >=0){

10: area = area + v *incr;

11: return area;
}
else

12: ERROR (“illegal values for a and b!");
}

Figure 3: Progran€omputeArea

2.2 Fault-based testing with symbolic input

The previous example illustrated the procedure of usingahingut to eliminate a constant alternative in
fault-based testing. Morell also demonstrated how to elat@ more complex alternatives such as variable
substitution using symbolic inputs rather than real inpuEgure 3 shows a sample program adapted
from [22]. It calculates the area under the curfer 1 over the interval betweea andb. Suppose the
aim of the testing is to show the absence of errors in the mss&gt statement 3. Let the symbolic input
bea= A, b=B, andincr =1 such thatB > AandA+1 > B. Then the symbolic output produced by
symbolic execution will béAx A+ 1)« (B— A). Note that, according to Morell's methodsgmbolic oracle
is required here to verify the correctness of the output.

Suppose we introduce a fault in the assignment statement 3:

3’: area=F; /*Should be “area =0;"*/

whereF is a constant. Following the same execution path, we obtaougput ofF + (AxA+ 1)« (B—A).
Morell’s goal is to find all the constants such that statement @ill produce the same result as the original
statement 3. Hence, we halet (A% + 1) (B— A) = (A2 + 1) x (B— A), which can be solved to give = 0.
Thus, statement’Zan only be exactly the same as statement 3.
Morell also proved that alternate programs would also beielited wherk denoted a polynomial &
In other words, ifF (a) denotes the set of all polynomialsanthen it can be proved th&t(a) can only be 0.
Furthermore, Morell introduced another error in statenfent is replaced by

5': area=F; [*Should be “area = area + v *incr;” */
whereF denotes a constant alternative. Let the symbolic inpat-bé\, b =B, andincr =1 such thaid+1 <

BandA+ 2l > B. Using a similar procedure, it can be shown that (AxA+ 1) x|, thus contradicting the
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assumption thak is a constant. This proves that no constant substitutiorbedound for statement 5. By
executing the loop twice, Morell further eliminated alleafiate programs in whidh could be a polynomial
of the variablesarea v, andincr. In other words, when the assignment fault introduced itestant 5 is a
polynomial in the fornF (area v, incr), it can be proved [22] thdt (X, y, z) = X+ yz which is exactly the
function computed in the original program.

Note again that these techniques have been based on theptissuthat both the real and symbolic
outputs can be verified against some oracles.

In Section 4, we shall present an approach to do fault-basstithg without the need of oracles for real
and symbolic outputs. Before doing this, let us review thacltar problem in more details.

3 Testing Without Oracles

In order to test a numerical program where an oracle is nataée, a common approach is to make
use of identity relations derived from theory. This teclugigvas, for example, intensively used in Cody
and Waite [13]. For instance, the identity ¢ex) = cogx) was used to test the program that supposedly
compute the cosine function.

Weyuker [29] undertook a detailed study and introducedovariapproaches to test “non-testable pro-
grams” via static and dynamic properties of the functionsdpealculated. She gave an example of the
testing of two programs that are supposed to compute theidmsc (x) and f’(x), respectively, wheréd’
is the derivative off. From elementary results in Taylor series, we know fHat+ A) = f(x) + A x f/(x) +
O(A?). SubstitutinghA = 1, 0.1, 0.01, ... into the expressior (x+A) — (f(x) +A x f/(x)), we can “see at
a glance whethef’ could be the derivative of.”

There is a closely related technique knowrdasa diversity It has been developed and advocated for
fault tolerance, rather than fault detection, by Ammannlanigiht [1]. Given an original input, the objective
of data diversity is to provide alternate means of computivegsame input using the same program. Such
alternate inputs are basically “reexpressed” forms of thgiral input. Consequently, properties used in
data diversity must also be identity relations.

Blum and Kannan [3] introduced the concept opgram checkerwhich is a program that prob-
abilistically checks the correctness of the output of aaofirogram. An example is a checker for the
graph isomorphism function, which employs the property th& andH are not isomorphic, the® and
permutations oH should not be isomorphic either. Blum et al. [4] extendedttieory of the program
checker into the theory afelf-testing correcting Given a functionf and a progranp that implementd, a
self-tester Tfor f is a probabilistic progranil estimates the error probability thatx) # f(x) for a random
input x. A self-corrector Cfor f is also a probabilistic program. If it is known that progransalculatesf
correctly for sufficiently large amount of data on the inpatrdhin, then for any input, C will make calls to
p and return the value df(x) correctly with a high probability. Blum et al. introducedrgeal techniques to
construct self-tester / corrector for a variety of numdrfoactions. For example, the self-tester / corrector
for integer multiplication functions essentially employe distributive lawa x (b+c) =axb+axc.
The self-tester / corrector for modular functions esséntmploys the property thata+ b) modr =
(amodr+bmodr) modr.

More recently, anetamorphic testingut) method was proposed by Chen et al. [8]. It can be explained
briefly as follows. Letf be a function to be programmed. Suppd&eis some property off that can
be expressed as a relation among a series of the functigodsirg, xo, ..., X,, wheren > 1, and their



corresponding value§(x;), f(x2), ..., f(xn). This relationRs is called ametamorphic relation Consider
the sine function, for instance. For any two inprtsandx, such thatx; + X, = 11, we must have six; =
sin Xo. This property is a metamorphic relation of the sine funtéod can be written formally as

Rsin={ (X1, X, Sin X1, SiNXp) | Xa+X% =T — sin X, = sin x;}.
When there is no ambiguity, we can simply write the relatisn a
Rsin: X1 +Xo =TT — Sin Xy = Sin Xp.

Supposep is a program that implements the functidn Let p(x1), p(X2), ..., p(xn) be the outputs
of p corresponding to the inputs, Xo, ..., X,, respectively. In theoryp should satisfy all the properties
of f, including metamorphic relationBs. In practice, however, the relatio®® need to be converted
into other metamorphic relatiori, more suitable for the implementation domain, by taking iatcount
such implementation issues as rounding errors in floataigt@rithmetic. MT proposes to check whether
a program under test satisfies such metamorphic relafiyns They arenecessary(but not sufficient)
conditions for the correctness of the program under test.

For example, supposgimplements the sine function. In theory, it should satisfy

Rp = {(x1, X2, p(x1), P(X2)) | X1 +X2 =Tt — p(x1) = p(X2) }.

In practice, when floating point arithmetic is involved, thputs and outputs should satisfy an implementation-
oriented metamorphic relation such as

P(X2) — p(x1)
min(|p(x2)|, |p(x¢)|)

R, = {(x, X2, p(x1), P(X2)) | X1+ X =PI <e}

or
Ry = {(x1, X2, p(xa), P(X2)) | X1 +X2 =Pl — [p(x2) — p(x1)| <€},

wherePl is the implemented value afande is the acceptable error. For the ease of presentation, vile sha
simply use the fornR, in the examples in this paper. Readers are reminded?rhat R’F; may be used in
the actual cases.

To verify this relation, two executions are needediin The firstinput top is a real numbexy, followed
by a second input, = 1—X;. Even if atesting oracle does not exigt; can still be applied because it checks
the relations among the inputs and outputs of more than ceeuérn of the program, instead of checking
a single result.

There is a similarity betweermT and the earlier methods introduced in this section, in thatfdhem
make use of some properties of the functions to check theg@mogutputs. There are, however, differences
betweenmT and the other methods in both practice and philosophy. Iotiopes metamorphic testing not
only employs identity relations, but also makes use of iadities. An example can be found in [9]. As for
the other approaches described above, apart from a coupleanfples on error bounds given by Weyuker,
they all employ identity relations only. With regard to tHalpsophical aspect, consider the program checker
as an example. Its ultimate goal is to estimate, through bgtitistic oracle, how likely the program output
is correct for a given test case. Even though other test caagsde generated by the checker during the
testing process, the fundamental goal does not change. éduttibr hand, it is not the prime objective of
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metamorphic testing to provide an alternate means of ify@mgi a testing oracle to verify the correctness of
a single output. Its intrinsic philosophy is that, when d tese selected according to some testing criteria
does not reveal any failure, it still carries useful infotirom, albeit implicitly. Thus, follow-up test cases can
be used to check certain necessary properties of the prograspective of whether a testing oracle exists
or not. If the necessary properties do not hold, the progsamiviously incorrect. In this way, metamorphic
testing is property-based and can be used along with any tecase selection strategies.

4 Integrating Fault-Based Testing with the M etamor phic Method

As introduced in Section 34T is a method that checks whether the program satisfies expeetzmorphic
relations. The latter is independent of the presence orwibe of an oraclemT can therefore be applied
without the need of an oracle. In this section, we shall irtegvT and fault-based testing to alleviate the
oracle problem, for both real and symbolic inputs.

4.1 Preliminary example

Similar to Morell’'s fault-based testing, our integratedthoal also allows two types of inputs: real and
symbolic. We shall also use the mathematical funcfigr y) = 2xy+ 6 and the 3-line program in Figure 1
as a preliminary example to illustrate our technique. Fronpke algebra, we find that the function satisfies
the propertyf (xy, f(x, y)) — f(x, y) = (2xy)®>+10xy. * This can be expressed formally as a metamorphic
relation as follows:

Re = {((x1, Y1), 02, ¥2), F0xa, y1), F0%2, ¥2)) |
(e=>xy1 A Ya=f(xa, Y1) — (X, ¥2) = f(xa, y1) = (2ay1)® + 10xay1 }.

Let p denote the program in Figure 1. The expected metamorplataerlfor p is defined as

Ry = {((x1, Y1), (%, ¥2), Pxa, Y1), P(Xe, ¥2)) |
(X =%y1 A Y2=p(X1, V1)) — P(Xe, Y2) — P(X1, Y1) = (2xay1)? + 10xqy1 }.

For the test caséx;, y1) = (5, 6), the programp produces “66” as output. Suppose, for the sake of
argument, that this program does not have a known ofadMe continue to generate the next test case as
suggested by the metamorphic relatRn Thus, we obtain; = x1y1 = 5 x 6 = 30, andy, = p(Xy, y1) =
66. For this test case, the program yieldS80, 66) = 3966. We need to verify whether the two test
results together satisfy the expected relatiyn Indeed,p(x2, y2) — p(X1, Y1) = 3966— 66 = 3900, and
(2x1y1)2 +10qy; = (2x 5% 6)2 +10x 5x 6=3900. Hence, the relatidR, is fulfilled.

Suppose we introduce an assignment fa&ulinto the program, as shown in Figure 2. This faulty
program, which we shall denote Ip/, produces B + 60 by the symbolic execution of the same initial test
case(x, y1) = (5, 6). Taking the metamorphic relatid®, into consideration, we choose a second symbolic
test casexp = 5x 6 =30) and {» = p’(5, 6) = 2F + 60). After symbolic executionp’ yields the output
(30x (2F +60) + F) x 2= 122F + 3600. Our goal is to find the value(s) Bffor which p’ satisfies the

IMany properties of can be identified as metamorphic relations. This is but oaengie.
2We use this simple but artificial example to illustrate thegedure behind metamorphic testing. Genuine examplesewtter
oracle exists will be given in Sections 4.2 and 4.3.



13:
14:
15:
16:

17:

18:
}

double Power (double u, double {)
double uMinusOne, numerator, InTerm, result;

inti;

if (v==

0)

result=1;

else{

if ((int)v == v) && (v > 0)) {

}

result=1;
for(i=1;i<=v;it+)
result = result * u;

else{

Flinu)=In(L+@U—-1)=Uu-1)—1/2*(u—1)"2+1/3*@U—1)"3— ...

}
}

i=1;
uMinusOne = u- 1;
numerator = uMinusOne;
InTerm = uMinusOne,;
result = uMinusOne,;
while (fabs (InTerm)> 1e-16){
[* “fabs” is a floating point function that returns the abgelvalue */
I*1le—16 =107{-16} */
i++;
numerator ={1) * numerator * uMinusOne;
InTerm = numerator/ i;
result = result + InTerm;

}

result = exp(v * result);

return result;

*

expected relatiofR,. Thus, substituting int&,, we establistp’(x2, y2) — p’ (X1, Y1) = (2x1y1)? + 10%1 Y1,
giving (122F + 3600 — (2F +60) = (2x 5x 6)?+10x 5x 6. Solving the equation, we obtan= 3, which

is the only value thafF can take. This means that all the alternate programs catetiby replacing 3 with
other constants have been eliminated. This result coiacidh that obtained by conventional fault-based
testing in [22]. A fundamental difference is that we haveligopbthe MT technique without referring to a

testing oracle.

In the next two sections, we shall further describe how faaked testing can be achieved in the absence

Figure 4: Progranfower

of an oracle using real and symbolic inputs, respectively.




4.2 Fault-based testing with real input in the absence of an oracle

Consider the prograrRowerin Figure 4. Given two real numbetsandv as input, the program computes
the value ofu’. This is done in three ways:

(i) If vis zero, then obviously¥ = 1.

(i) Otherwise, ifvis a positive integer, then' can be found by multiplying: by itself the appropriate
number of times.

(iii ) Otherwiseu" is computed by the mathematical expresshi (.

The main task of our testing lies with pdiii ).
Consider statement 11 in the program. Suppose we introdfadtan the statement 11, of the form

11’: result=F: /* Should be “result = uMinusOne;” */

Our goal here is to ensure that any constant alternativepsssible. Assume the contrary. We would like
to find all possible constants such that the erroneous statement Wbuld pass the test without being
detected.

Since it is not straightforward to verify the result of thisaenple against an oracle, especially for large
numbers, we shall make use of the metamorphic testing metAotypical property of the exponential
function isu¥ x u¥ = (ux u)¥. Hence, the program should satisfy the metamorphic relatio

Power(u, v) x Power(u, v) = Power(u x u, V).

Letu=0.5400128 and = 3.9 be a test case. The original program will geneRaeer(0.5400128 3.9) =
9.044317731867% 102, and Power(0.5400128« 0.54001283.9) = 8.179968323496% 10~3. Since
(Power(0.5400128 3.9))? = 8.179968323496% 103 = Power(0.5400128 0.5400128 3.9), the meta-
morphic relation is satisfied.

Now consider the program with the symbol “F” in statement 1%kt us call this prograrRower . After
symbolic execution, we obtain the symbolic output

Power (0.5400128 3.9) = e¥9x[F+3i%(~1)7(0.5400128-2)'/i]
Hence,
Power (0.5400128 3.9) x Power (0.5400128 3.9) = g2*39x[F+51%(~1)"}(05400128-1)!/i],
On the other hand, for the test cg€e56400128x 0.5400128 3.9), the output of the symbolic execution is
Power (0.5400128:0.5400128 3.9) — > F+31%z(~1)" *(05400128:0.5400128-1)'/i]
Hence, according to the metamorphic relation, we shoulé hav
e?x3.9x[F +35%2,(~1)""1(0.5400128-1)' /i] _ e39%[F +594,(~1)'-1(0.5400128¢0.5400128-1)! /i _

Solving the equation, we obtafh= —2.1158822416384 10 1.
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[* ProgramTrig calculates the value of sin x if “isSin” is trug.
Otherwise, it calculates the value of cos x. */

doubleTrig (double x, bool isSin)

int index;

double term, sum;

/* Initialize for cos x */

term =1,

index = 1;

if (isSin){ /* Initialize for sin x */
term =x;
index = 2;

AN

}

sum = term;

while (fabs (term)> 1e—16) {
term =term *(—1) *x * x / (index * (index + 1));
sum =sum + term;

0: index = index + 2;

}

11: return sum;

}

HBooxNo

Figure 5: Progranrig

Letu=0.7309782 and/ = 9.16 be another test case. Through the same procedure, wedaaredbat
F = —7.237272887524% 10 2. Even if rounding errors are taken into consideration, ¢htwgo values
of the same constafit obviously contradict each other. As a result, no constdatradtive is possible for
statement 11 In other words, we have proved that the metamorphic tesis¢as v) = (0.5400128 3.9),
(0.5400128x 0.5400128 3.9), (0.7309782 9.16), and (0.7309782x 0.7309782 9.16) distinguish the
original programPower from every mutant constructed by replacioylinusOnein statement 11 by any
constant value.

4.3 Fault-based testing with symbolic input in the absence of an oracle

Let us consider a further example as shown in Figure 5. ThgranoTrig accepts as inputs a real number
and a Boolean parametsiSinlt calculates sirk whenisSinis true and cox whenisSinis false. Except for
special cases such &s= 0 andx = 11/2, there is no easy way to verify the outputs of the progranessn
we check them against the outputs from yet another program.

Suppose statement 4 is replaced by an alternative:

4': term=F; /*Should be “term =x;” */

whereF is a function ofx in the formF = a x x" such that is a real number constant ands a non-negative
integral constant.

As explained earlier, it is not easy to verify the programimsfaan oracle, so that we cannot apply
Morell’'s fault-based testing method to eliminate the alédive. Instead, let us test the program using the
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property sik x4 cog x = 1. The metamorphic relation in the implementation domamtawritten as
Rp: (p(x, trug)®+ (p(x falsg))? = 1. (1)

Consider a symbolic inpwt= Swith isSin= true. By symbolic execution of the alternate program contai
ing statement 4 the output is

Trig (S, true) = F x (1— $2/6+S'/120—...).
Hence, we have
(Trig (S, trug))? = F2x (1— $*/6+S'/120—...)2
= (axS")%x (1- $/6+S/120—...)?
= (@2 xS x (1— (1/3) xS+ (2/45) xSt — ..)
=« " — (1/3) xa®« (MY 1 (2/45) x@® « (M2 _

(2)

For the same symbolic inpt= Swith isSin= false, we obtain a second symbolic output of the program,
thus:
Trig (S false = 1— /2 +S'/24— S /720+ ...

As aresult,

(Trig (S false))? =1—S*+(1/3)*S' — (2/45) S + ...

Based on equation (1), we should have
(Trig (S, true))? + (Trig (S, falsg))? = 1

and therefore
a2« " — (1/3) xa? « MY 1 (2/45) w2 x (™MD | = (1/3)xS'+(2/45) xS —...  (3)

As we know,n is a hon-negative integral constantnlf= 0, then there will be a constant teaf on the
left-hand side of identity (3), while the minimum degreelué right-hand side will be 2. This is obviously a
contradiction. Ifn > 2, then all the terms on the left-hand side of the identity have a degree> 4, while
there will be a term of degree 2 on the right-hand side. Th&ragill be a contradiction. Thus, the only
possible value of is 1. Sincen = 1, if we equate the coefficients of like terms on both sidesefidentity,
we obtaina® =1, — (1/3) xa? = —1/3, (2/45) xa® = (2/45), ..., which can be solved to give= +1.

In this way,F can only bex or —x. Of courseF = x is just the original statement 4 in programg.
Hence, we need only study = —x. To discard this alternative, we need to employ another meghic
relation. For example, we note that sir= — cog11/2+X). The metamorphic relation in the implementation
domain can be written as

Xo =T/24+ X1 — P(Xa, true) + p(xz, false) = 0. 4)

We apply the technique introduced in Section 4.2 to elingirtbé alternativé- = —x using real input.
Let Pl =3.1415926535898 and let the inpute 1.2. The original program withk = x in statement 4 will
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produceTrig (1.2, true) = 0.93203908596723, anttig (P1/2+ 1.2, false) = —0.93203908596723. Hence,
Trig (1.2, true) + Trig (P1/2+ 1.2, false) = 0 and the metamorphic relation (4) is satisfied.

We continue to test the alternate program with statementptaced by “term =—x;”. Let us
call it Trig’. For the same inpuk = 1.2, the results ardrig’(1.2, true) = —0.93203908596723 and
Trig’(P1/2 + 1.2, false) = —0.93203908596723. Hencelrig’(1.2, true) + Trig’(P1/2 + 1.2, false) =
—1.86407817193446. Obviously, this alternate program do¢satisfy the expected metamorphic rela-
tion (4). In this way, the alternatiie = —x is eliminated.

In this section, we have illustrated our technique of usiymglsolic input (possibly combined with real
input) to eliminate prescribed faults. The example also alestrated the power of combining different
metamorphic relations in testing. It shows that, by makisg of more than one metamorphic relation,
different types of faults may be revealed. In other wordeint metamorphic relations may have different
fault-detection capabilities for different types of fault

We must concede, however, that our method may not be fodlpreerms of program correctness. This
issue will be further discussed in the next section.

5 Discussions

In the previous examples, the prescribed types of faulte teen totally eliminated. This may not be
possible in some real life situations. Having said that, hadlsllustrate via an example in this section how
our method may still be applied in such circumstances.

The progranilrap as shown in Figure 6 is adapted from [11]. It calculates th@r@pmate area under
the curvef(x) for the interval betweer = a andx = b. Suppose statement 12 is replaced by an alternate
statement

12': area =area tk; *yOld + k, * yNew) / 2.;
/* Should be “area = area + (yOld + yNew) / 2.;” */

wherek; andk, are any constants. Before testing, let us first identify aametphic relation. Suppose
G(x) = F(x) +C, where C is a positive constant. = From elementary calculus, we knoat th
Trap(G, A, B, N, Error) = Trap(F, A, B, N, Error) +C x |B— A| whenN > 1. We execute the program
using the symbolic inputF, A, B, N, Error), whereF is any function A > B, andN = 1. The statements
(1,3,4,5 6,7, 8 9 10, 11, 12 13 9, 14 15 16, 17) will be traversed, generating the symbolic output

Trap(F, A, B, N, Error) = (ky «F(A) + ko« F(B)) /2% (A—B).
Running the program again using the symbolic inf@t A, B, N, Error), we obtain
Trap(G, A, B, N, Error) = (kg * (F(A)+C) + ko« (F(B)+C))/2% (A—B).
According to the metamorphic relation, therefore, we disthalan equation
(k1% (F(A)+C)+ko* (F(B)+C))/2% (A—B) = (ki xF(A) + ko« F(B))/2%x (A—B)+C x (A—B).

After simplification, we obtaink; + k) xC = 2C, thus giving (k; + k2) = 2. If k; andk, are possible
integers, then both of them can only take the value of “1”,clihis just the original value. Otherwise, we
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[* Program Trap implements the trapezoidal rule to find thgrapimate area under the curve f(x) between
x =aand x = b. The computation uses n intervals of ffize al / n each. The variable “error” will be set
to “true” when n< 1. */
float Trap (float (*f)(float), float a, float b, int n, bool &erfof

float area;

float h; /* interval */

float x;

float yOld; /* value of f(x— h) */

float yNew; /* value of f(x) */
1: if(n<1)
2: error = true;

else{
3 error = false;
4: area =0;
5. if(al=b){
6: h=(b—a)/n;
7 X=a;
8: yOld = (*f)(x);
9: while (a> b && x >b) || (a< b && x < b)) {
10: X=X+h;
11: yNew = (*f)(x);
12: area = area + (yOld + yNew) / 2.;
13: yOld = yNew;

}
14: area=area* h;
15: if (a> b)
16: area =—area,
¥
}
17: return area;
}

Figure 6: Progranirap

can still eliminate all pairs ok; andk, such thatk; + k» # 2. This example shows that, even in situations
where our method cannot exactly identify the fault, our teghe is still useful because it greatly narrows
down the range of possible faults.

The examples cited so far in this paper are numerical progrdtshould be noted that our approach
can also be applied to non-numerical ones. Consider, ftarngs, a prograrBhortestPattihat implements
the shortest path problem. The program accepts a déagid two node#\ andB, and then outputs all the
shortest paths frorAto B. Apart from simple graphs, itis expensive to verify whettier outputs are correct.
In this case, metamorphic testing can be applied as foll®estdomly select an elemeRtfrom the output
of ShortestPattG, A, B). P is one of the shortest paths frofito B. Randomly select a nodgin this path
P. Then, run the program to compuBhortestPatiG, A, C) and ShortestPattG, C, B). A metamorphic
relation is, “there exist an element ShortestPat(G, A, C) and an element dhortestPat(G, C, B) that
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can be combined to form the pa#i If this metamorphic relation is not satisfied, the prognamast contain

a fault. Another metamorphic relation is that a differentpetation of the input grap® should produce the
same output. Fault-based testing techniques can be applgech non-numerical metamorphic relations.
Furthermore, the concepts of attributive equivalence dsgivational equivalence have been introduced
in [7] for the testing of object-oriented programs. Theseoapts of equivalence can also be used as non-
numerical metamorphic relations in fault-based testing.

6 Conclusion

In this paper, we have looked into the oracle problem in fbakted testing. We have found that, by
integrating metamorphic testing with fault-based testaitgrnate programs can be eliminated even if there
is no testing oracle. We have presented techniques of usal@nd symbolic inputs.

When compared with other fault-based testing approactedsrély on testing oracles, our approach
requires additional efforts in identifying metamorphidateons and running the program more than once.
Obviously, whenever a testing oracle is available, it stidnd used to check the output. Nevertheless, there
are many situations where a testing oracle cannot be foundm®thod does provide an innovative solution
in such circumstances.
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