
Technical Report, Department of Computer Science, the University of Hong Kong, Jan 2021. 1

TA M I N G T H E M E R G E O P E R AT O R

A Type-directed Operational Semantics Approach

XUEJING HUANG JINXU ZHAO BRUNO C. D. S. OLIVEIRA
The University of Hong Kong

(e-mail: {xjhuang, jxzhao, bruno}@cs.hku.hk)

Abstract

Calculi with disjoint intersection types support a symmetric merge operator with subtyping. The
merge operator generalizes record concatenation to any type, enabling expressive forms of object
composition, and simple solutions to hard modularity problems. Unfortunately, recent calculi with
disjoint intersection types and the merge operator lack a (direct) operational semantics with expected
properties such as determinism and subject reduction, and only account for terminating programs.

This paper proposes a type-directed operational semantics (TDOS) for calculi with intersection
types and a merge operator. We study two variants of calculi in the literature. The first calculus,
called λi, is a variant of a calculus presented by Oliveira et al. (2016) and closely related to another
calculus by Dunfield (2014). Although Dunfield proposes a direct small-step semantics for her calcu-
lus, her semantics lacks both determinism and subject reduction. Using our TDOS we obtain a direct
semantics for λi that has both properties. The second calculus, called λ

+
i , employs the well-known

subtyping relation of Barendregt, Coppo and Dezani-Ciancaglini (BCD). Therefore, λ
+
i extends the

more basic subtyping relation of λi, and also adds support for record types and nested composition
(which enables recursive composition of merged components). To fully obtain determinism, both λi
and λ

+
i employ a disjointness restriction proposed in the original λi calculus. As an added benefit the

TDOS approach deals with recursion in a straightforward way, unlike previous calculi with disjoint
intersection types where recursion is problematic. We relate the static and dynamic semantics of λi
to the original version of the calculus and the calculus by Dunfield. Furthermore, for λ

+
i , we show

a novel formulation of BCD subtyping, which is algorithmic, has a very simple proof of transitiv-
ity and allows for the modular addition of distributivity rules (i.e. without affecting other rules of
subtyping). All results have been fully formalized in the Coq theorem prover.

1 Introduction

The merge operator for intersection types was firstly introduced in the Forsythe language
over 30 years ago (Reynolds, 1988). It has since been studied, refined and used in some
language designs by multiple researchers (Pierce, 1991; Castagna et al., 1995; Dunfield,
2014; Oliveira et al., 2016; Alpuim et al., 2017; Bi et al., 2018). At its essence the merge
operator allows the creation of values that can have multiple types, which are encoded
as intersection types (Pottinger, 1980; Coppo et al., 1981). For example, with the merge
operator, the following program is valid:

let x : Int & Bool = 1 ,, True in (x + 1, not x)

Administrator
 HKU CS Tech Report TR-2021-01

2 Taming the Merge Operator

Here the variable x has two types, expressed by the intersection type Int & Bool. The cor-
responding value for x is built using the merge operator (,,). Later uses of x, such as the
expression (x + 1, not x) can use x both as an integer or as a boolean. For this particular
example, the result of executing the expression is the pair (2, False).

The merge operator adds expressive power to calculi with intersection types. Much
work on intersection types has focused on refinement intersections (Freeman & Pfenning,
1991; Davies & Pfenning, 2000; Dunfield & Pfenning, 2003), which only increase the
expressive power of types. In systems with refinement intersections, types can simply be
erased during compilation. However, in those systems the intersection type Int & Bool is
invalid since Int and Bool are not refinements of each other. In other systems, includ-
ing many OO languages with intersection types – such as Scala (Odersky et al., 2004),
TypeScript (Microsoft, 2012), Flow (Facebook, 2014) or Ceylon (RedHat, 2011) – the
type Int & Bool has no inhabitants and the simple program above is inexpressible. The
merge operator adds expressiveness to terms and allows constructing values that inhabit
the disjoint intersection type Int & Bool.

There are various practical applications for the merge operator. One benefit, as Dunfield
(2014) argues, is that the merge operator provides “general mechanisms that subsume many
different features”. This is important because a new type system feature often involves
extending the metatheory and implementation, which can be non-trivial. If instead we pro-
vide general mechanisms that can encode such features, then adding new features will
become a lot easier. Dunfield has illustrated this point by showing that multi-field records,
overloading and forms of dynamic typing can all be easily encoded in the presence of the
merge operator. Furthermore, when we restrict our attention to concatenation of records,
which the merge operator generalizes, the combination of record concatenation and sub-
typing paves the ground for encoding expressive forms of multiple inheritance (Cardelli &
Mitchell, 1991; Rémy, 1995; Palsberg & Zhao, 2004; Zwanenburg, 1997).

More recently, the merge operator has been used in calculi with disjoint intersection
types (Oliveira et al., 2016; Alpuim et al., 2017; Bi et al., 2018). The disjointness restriction
means that the two values being merged cannot have conflicts. In such settings the merge
operator is symmetric, associative and commutative (Bi et al., 2018). Such a variant of the
merge operator has been used to encode several non-trivial object-oriented features, which
enable highly dynamic forms of object composition not available in current mainstream
languages such as Scala or Java. These include first-class traits (Bi & Oliveira, 2018),
dynamic mixins (Alpuim et al., 2017), and forms of family polymorphism (Bi et al., 2018).
These features enable capturing widely used and expressive techniques for object com-
position used by JavaScript programmers (and programmers in other dynamically typed
languages), but in a completely statically type-safe manner (Bi & Oliveira, 2018; Alpuim
et al., 2017). For example, in the SEDEL language (Bi & Oliveira, 2018), which is based
on disjoint intersection types, we can define and use first-class traits such as:

// addId takes a trait as an argument, and returns another trait
addId(base : Trait[Person], idNumber : Int) : Trait[Student] =

trait inherits base ⇒ { // dynamically inheriting from an unknown person
def id : Int = idNumber

}

X. Huang, J. Zhao, and B. Oliveira 3

Similarly to classes in JavaScript, first-class traits can be passed as arguments, returned
as results, and they can be constructed dynamically (at run-time). In the program above
inheritance is encoded as a merge in the core language used by SEDEL.

Despite over 30 years of research, the semantics of the merge operator has proved to
be quite elusive. In retrospect this is perhaps not too surprising. It is well-known that, in
the closely related area of record calculi, the combination of record concatenation and
subtyping is highly non-trivial (Cardelli & Mitchell, 1991). Since the merge operator for
intersection types generalizes record concatenation and calculi with intersection types nat-
urally give rise to subtyping, the semantics of the merge operator will clearly not be any
simpler than the semantics of record concatenation with subtyping!

Because of its foundational importance, we would expect a simple and clear direct
semantics to exist for calculi with a merge operator. After all, this is what we get for
other foundational calculi such as the simply typed lambda calculus, System F , System Fω ,
the calculus of constructions, System F<:, Featherweight Java and others. All these cal-
culi have a simple and elegant direct operational semantics (often presented in a small-step
style (Wright & Felleisen, 1994)). While for the merge operator there have been efforts
in the past to define direct operational semantics, these efforts have placed severe limita-
tions that disallow many of the previously discussed applications or they lacked important
properties. Reynolds (1991) was the first to look at this problem, but in his calculus the
merge operator is severely limited. Castagna et al. (1995) studied another calculus, where
only merges of functions are possible. Pierce (1991) was the first to briefly consider a cal-
culus with an unrestricted merge operator (called glue in his own work). He discussed an
extension to F∧ with a merge operator but he did not study the dynamic semantics with the
extension. Finally, Dunfield (2014) goes further and presents a direct operational seman-
tics for a calculus with an unrestricted merge operator. However the problem is that subject
reduction and determinism are lost.

Dunfield also presents an alternative way to give the semantics for a calculus with the
merge operator indirectly by elaboration to another calculus. This elaboration semantics
is type-safe and offers, for instance, a reasonable implementation strategy, and it is also
employed in more recent work on the merge operator with disjoint intersection types.
However the elaboration semantics has two major drawbacks. Firstly, reasoning about the
elaboration semantics is much more complex: to understand the semantics of programs
with the merge operator we have to understand the translation and semantics of the tar-
get calculus. This complicates informal and formal reasoning. Secondly, a fundamental
property in an elaboration semantics is coherence (Reynolds, 1991) (which ensures that
the meaning of a program is not ambiguous). All existing calculi with disjoint intersec-
tion types prove coherence, but this currently comes at a high price: the calculi and proof
techniques employed to prove coherence are complex, and can only deal with terminating
programs. The later is a severe limitation in practice!

This paper proposes a type-directed operational semantics (TDOS) for calculi with inter-
section types and a merge operator. We study two calculi, which are variants of existing
calculi with disjoint intersection types in the literature. The first calculus, called λi, is a
variant of a calculus introduced by Oliveira et al. (2016) and it is also closely related to
a calculus by Dunfield (2014). The second calculus, called λ

+
i , employs the well-known

subtyping relation of Barendregt, Coppo and Dezani-Ciancaglini (BCD). Therefore, λ
+
i

4 Taming the Merge Operator

extends the more basic subtyping relation of λi, and also adds support for record types
and nested composition (Bi et al., 2018). Both calculi address two key difficulties in
the dynamic semantics of calculi with a merge operator. The first difficulty is the type-
dependent nature of the merge operator. Using type annotations in the TDOS to guide
reduction (and influence operational behavior) addresses this difficulty, and paves the way
to prove subject reduction. The second difficulty is that a fully unrestricted merge oper-
ator is inherently ambiguous. For instance the merge 1, , 2 can evaluate to both 1 and 2.
Therefore some restriction is still necessary for a deterministic semantics. To fully obtain
determinism, both calculi employ a disjointness restriction that is used in calculi using dis-
joint intersection types, and two important new notions: typed reduction and consistency.
Typed reduction is a reduction relation that can further reduce values under a certain type.
Consistency is an equivalence relation on values, that is key for the determinism result.
Determinism in TDOS offers the same guarantee that coherence offers in an elaboration
semantics (both properties ensure that the semantics is unambiguous), but it is much sim-
pler to prove. Additionally, the TDOS approach deals with recursion in a straightforward
way, unlike λi and subsequent calculi where recursion is very problematic for proving
coherence.

To further relate λi to the calculi by Dunfield and the original λi by Oliveira et al., we
show two results. Firstly, we show that the type system of λi is complete with respect to
the original calculus. Secondly, the semantics of λi is sound with respect to an extension
of Dunfield’s semantics. The extension is needed because λi uses a slightly more powerful
subtyping relation, which enables λi to account for merges of functions in a natural way
compared to the original λi. Furthermore, for λ

+
i , we show a novel formulation of BCD

subtyping, which is algorithmic, has a very simple proof of transitivity and allows for the
modular addition of distributivity rules (i.e. without affecting other rules of subtyping). We
also deal with several additional complications in the operational semantics that arise from
nested composition. The two calculi and their metatheory have been fully formalized in
the Coq theorem prover.

In summary, the contributions of this paper are:

• The λi and λ
+
i calculi and their TDOS: We present a TDOS for two calculi

with intersection types and a merge operator. The semantics of both calculi is
deterministic and it has subject reduction.

• Support for non-terminating programs: Our new proof methods can deal with
recursion, unlike the proof methods used in previous calculi with disjoint intersection
types (Bi et al., 2018, 2019), due to limitations of the current proof approaches for
coherence.

• Typed reduction and consistency: We propose the novel notions of typed reduction
and consistency, which are useful to prove determinism and subject reduction.

• Relation with other calculus with intersection types: We relate λi with the calculi
proposed by Dunfield and Oliveira et al.. In short all programs that are accepted by
the original λi calculus can type-check with our type system, and the semantics of
λi is sound with respect to Dunfield’s semantics.

X. Huang, J. Zhao, and B. Oliveira 5

• Novel algorithmic formulation of BCD subtyping: In our new formulation, the
challenging distributivity rule is added in a modular way, and the transitivity proof
is straightforward.

• Coq formalization: All the results presented in this paper have been formalized in
the Coq theorem prover and they are available from https://github.com/XSnow/

TamingMerge.

This paper is an extended version from a conference paper (Huang & Oliveira, 2020).
The λ

+
i calculus and the algorithmic formulation of BCD subtyping are new. Furthermore

λi differs from the calculus originally presented at ECOOP (where it is called λ :
i) in that it

employs bidirectional typechecking (Pierce & Turner, 1998). This change enables typing
formulations (for both λi and λ

+
i) to be algorithmic, while in the conference version the

type system is not algorithmic. Finally we improved the presentation and added an extra
section with background, motivation and applications for the calculi.

2 Motivation and Applications of the Merge Operator

A key advantage of the merge operator is its generality and the ability to model various
programming language features. However, there are challenging problems that arise from
the merge operator, for instance, the combination of the merge operator and subtyping. In
this section, we revisit those challenges, as well as two applications of the merge operator:
typed first-class traits (Bi & Oliveira, 2018) and nested composition (Bi et al., 2018).

2.1 The Merge Operator, Ambiguity and Subtyping

Ambiguity. As we have discussed in Section 1, a key problem with the merge operator is
ambiguity. The problem stems from the implicit (type-directed) extraction of values from
merges. For instance, for the expression:

(1 ,, 2) + 3

the result is ambiguous (it could be 4 or 5) since we could extract either 1 or 2 from the
merge to add to 3. One way to avoid ambiguity is to restrict the types of merged values
to be disjoint (Oliveira et al., 2016). For instance Int is disjoint to Bool, so the merge
1 ,, True is accepted. Disjointness leads to a symmetric merge operator, where merges with
non-disjoint values are rejected, and the operator is associative and commutative (Bi et al.,
2018). Other alternatives include having a biased (or asymmetric) merge operator, which
allows overlapping values. In such case, when extracting a value of a certain type of a
merge, the merge is searched in a particular order (for instance left-to-right or right-to-left)
and the first value of the searched type is returned (Dunfield, 2014).

The Complications of Subtyping. Intersection types naturally induce a subtyping rela-
tionship between types. However subtyping and the subsumption rule enable a program to
“forget” about some static information about the types of values. Since the extraction of
values from merges is type-directed, such loss of type information can affect the search for
the value. For instance consider the following program:

let x : Bool = 1 ,, True in (2 ,, x) + 3

https://github.com/XSnow/TamingMerge
https://github.com/XSnow/TamingMerge

6 Taming the Merge Operator

The merge 1 ,, True can have type Int & Bool, but because of subtyping it can also have
type Bool, which is the type that is chosen for x. In a naive (untyped) operational semantics,
for the program above, we would eventually reach a point where we would need to extract
a value from the merge 2 ,, 1 ,, True. This merge has two overlapping integers values.

In a language employing a disjointness restriction the merge 2 ,, 1 ,, True ought to
rejected, but such merge only appears at run-time. In the program itself all merges are
disjoint: 1 ,, True is disjoint; and 2 ,, x is also disjoint since x has type Bool (which is dis-
joint to Int). Thus the program should type check! One possibility would be to abort the
program at run-time with a disjointness error. However this would defeat the main purpose
of the disjointness restriction, which is to provide a way to statically prevent ambiguity.

A language offering an asymmetric merge operator would have other issues. Assuming
that the merge operator would be right-biased (giving preference to the values on the right
side), then a programmer may expect that because x has type Bool, (2 ,, x) + 3 should eval-
uate to 5. However such static reasoning is not synchronized with the run-time behavior,
since x contains the integer 1 and therefore the result of the evaluation would be 4.

From another perspective we could expect that a valid optimization of the program above
is to replace the expression (2 ,, x) + 3 by 2 + 3, since the static type of x has no integer
type. This optimization would be valid (for both symmetric and asymmetric merges) if the
origin of runtime values can be statically determined by looking at the types. However this
is clearly not the case if we simply employ a naive untyped semantics: we statically know
that the merge contains an integer because of the value 2, but at runtime a different integer
value (1) is extracted instead. The issue is somewhat similar to the (naive) dynamic scoping
semantics for the lambda calculus, where the origin of the values for free variables cannot
be determined statically when a function is created. Static (or lexical) scoping solves the
problem of dynamic scoping by using a more sophisticated semantics that enables the
origin of the values for free variables to be determined statically. Thus a possible solution
for the problem of determining the origin of values in merges statically in the presence of
subtyping is to have a more sophisticated semantics as well.

Record Concatenation and Subtyping. The problems with the merge operator and sub-
typing are closely related to the problem of typing record concatenation in the presence of
subtyping. The later is well-acknowledged to be a difficult problem in the design of record
calculi (Cardelli & Mitchell, 1991). Foundational work done on programming languages
in the end of the 80s and early 90s looked at this problem because the combination record
concatenation with subtyping was perceived as a way to extend lambda calculi with sup-
port for OOP. In essence, since objects in OOP can be viewed as records, it is natural to
look for a language that supports records. Furthermore record concatenation would provide
support for encoding multiple inheritance, which entails composing several objects/records
together. Finally, subtyping is perceived as a key feature of OOP and should be supported
as well. Unfortunatelly the problem was found to be quite challenging, for very similar
reasons to those that make interaction of the merge operator with subtyping difficult. This
should not come as a surprise, since the merge operator can generalize record concatena-
tion. To see the relationship between the two problems, consider the following variant of
the previous program with records:

let x : {n : Bool} = {m = 1} ,, {n = True} in ({m = 2} ,, x).m + 3

X. Huang, J. Zhao, and B. Oliveira 7

In this variant x is a record with the static type {n : Bool}, but having an extra field m that
is hidden by subtyping. The record x is then merged with the record {m = 2}. Statically
this merge seems safe, since the static types of both records do not share record labels in
common. However, when doing the field lookup for m at runtime there would be two fields
m with different values (once again assuming a naive untyped semantics). In essence we
would have the same problems as with the earlier variant of the program without records.

As we have been hinting, a way to solve this problem is to change the operational seman-
tics to account for types at run-time. We will discuss in depth the technical challenges and
aspects of such an approach from Section 3 onwards. But before doing this, we first show
why this is a problem worth solving in the first place, by illustrating interesting applica-
tions that can be defined in languages that support a merge operator in the presence of
subtyping.

2.2 Typed First-Class Traits

To illustrate the interesting applications that a merge operator enables we briefly introduce
typed first-class traits (Bi & Oliveira, 2018) in the SEDEL language. This application is
not new to this paper, but it is useful to revisit it to illustrate of the kinds of applications
that are enabled by the merge operator. Typed first-class traits are very much inline with the
applications that OOP researchers had in mind while seeking for calculi integrating record
concatenation and subtyping. In particular the merge operator naturally enables a form of
multiple inheritance, as well as a powerful form of dynamic inheritance (where inherited
implementations can be parameterized).

Traits (Schärli et al., 2003) in Object-Oriented Programming provide a model of
multiple inheritance. Both traits and mixins (Bracha & Cook, 1990; Flatt et al., 1998)
encapsulate a collection of related methods to be added to a class. The main difference
between traits and mixins has to do with how conflicts are dealt with. Mixins use the order
of composition to determine which implementation to pick in the case of conflicts. Traits
require programmers to explicitly resolve the conflicts instead, and reject compositions
with conflicts. In essence this difference is closely related to the choice of a symmetric
or asymmetric model for the merge operator. Symmetric merges with disjoint intersection
types are closely related to traits because merges with conflicts are rejected, and the com-
position is associative and commutative (just like the composition for traits). Asymmetric
merges are closer to mixins, giving preference to one of the implementations in the case
of conflicts. We point the reader to Scharli’s et al. paper for an extensive discussion of the
qualities of the trait model and a comparison with the mixin model.

The SEDEL language (Bi & Oliveira, 2018) has a variant of traits. It essentially adopts
the original trait model, but traits in SEDEL are statically typed and support dynamic
inheritance (unlike Scharli et al. traits). The semantics of SEDEL’s traits is defined via an
elaboration to a calculus with disjoint intersection types, where the merge operator is key
to model trait composition. The details of the elaboration have been presented by Bi and
Oliveira. Our examples next are also adapted from Bi and Oliveira.

A first, simple example of a trait in SEDEL is:

type Editor = {on_key : String → String, do_cut : String, show_help :
String};

type Version = {version : String};

8 Taming the Merge Operator

trait editor [self : Editor & Version] ⇒ {
on_key(key : String) = "Pressing " ++ key;
do_cut = self.on_key "C-x" ++ " for cutting text";
show_help = "Version: " ++ self.version ++ " Basic usage..."

};

A trait can be viewed as a function taking a self argument and producing a record. In this
example, the record, which contains three fields, is encoded as a merge of three single
field records. Because all the fields have distinct field names, the merge is disjoint and the
definition is accepted. Methods in SEDEL can be dynamically dispatched, as usual in OOP
languages. For instance, in the trait editor, the doCut method calls the onKey method via
the self reference and it is dynamically dispatched. Moreover, traits in SEDEL have a self
type annotation similar to Scala (Odersky et al., 2004). In this example, the type of the self
reference is the intersection of two record types Editor and Version. Note that show_help
is defined in terms of an undefined version method. Usually, in a statically typed language
like Java, an abstract method is required, making editor an abstract class. Instead, SEDEL
encodes abstract methods via self-types. The requirements stated by the type annotation of
self must be satisfied when later composing editor with other traits, i.e. an implementation
of the method version should be provided.

First-class Traits and Dynamic Inheritance. The interesting features in SEDEL are that
traits are first-class and inheritance can be dynamic. The next example shows such features:

type Spelling = {check : String};

spell (base : Trait[Editor & Version, Editor]) =
trait [self : Editor & Version] inherits base ⇒ {
override on_key(key : String) =

"Process " ++ key ++ " on spell editor";
check = super.on_key "C-c" ++ " for spelling check"

};

The spell function takes a trait as an argument, and returns a trait as a result. Thus,
since traits can be passed as arguments and returned as results they are first-class (just
like lambda functions in functional programming). The new trait adds a check method
and overrides the on_key method of the base trait. The argument base is a trait of type
Trait[Editor & Version, Editor], where the two types denote trait requirements and
functionality respectively. As we can see from its definition, trait editor matches that type.
Note that unlike mainstream OOP languages like Java, the inherited trait (which would
correspond to a superclass in Java) is parameterized, thus enabling dynamic inheritance.
In SEDEL the choice of the inherited trait (i.e. the superclass) can happen at run-time,
unlike in languages with static inheritance (such as Java or Scala).

Multiple Inheritance. Besides first-class traits and dynamic inheritance, multiple inheri-
tance is also supported. The following trait illustrates multiple inheritance in SEDEL:

trait spell_editor [self : Editor & Version & Spelling]
inherits spell & editor ⇒ {
version = "0.2"

};

X. Huang, J. Zhao, and B. Oliveira 9

editor1 = new[Editor & Version & Spelling] spell_editor;

The trait spell_editor inherits from both spell and editor and defines an implementation
for the field version. Finally an object editor1 can be created from the trait spell_editor.

2.3 Nested Composition

BCD-style subtyping brings more power to calculi with the merge operator. The distribu-
tivity rules of functions and records over intersection types enable the NeColus calculus (Bi
et al., 2018), as well as the SEDEL language to support nested composition. With nested
composition it is not only possible to compose top-level traits, but also to compose any ele-
ments inside the top-level trait recursively. Nested composition enables simple solutions to
hard modularity problems like the Expression Problem (Wadler, 1998).

The Expression Problem. Here we present the SEDEL style solution of the Expression
Problem, originally described by Bi et al. (2018). The Expression Problem is a classic
challenge about the extensibility of a programming language. Assuming that a datatype
of expressions is defined, with several cases (literals and additions in the following code)
associated with some operations (e.g. evaluation). There are two directions to extend the
datatype: adding a new case and adding a new operation. In a solution both extensions
should be independently defined, and it should be possible to combine them to close the
diamond. In a typical OOP language, class inheritance makes it easy to add a new case to
the datatype, while extending in the other direction in a modular and type-safe way remains
hard. To illustrate the SEDEL solution, we start from a simple language with two cases and
one operation.

type IEval = { eval : Double };
type Lang = { lit : Double → IEval, add : IEval → IEval → IEval };

trait implLang ⇒ {
lit (x : Double) = { eval = x };
add (x : IEval) (y : IEval) = { eval = x.eval + y.eval }

} : Lang;

In the above example, two fields lit and add in Lang model the constructors for expres-
sions. Trait implLang defines a concrete evaluation operation over expressions by providing
implementations for lit and add. As observed by Bi et al., traits such as implLang, can be
viewed as a family of related implementations in the sense of family polymorphism (Ernst,
2001). In family polymorphism the central idea is that classes can be nested inside other
classes, to form a family of related classes. In implLang, we can view the trait itself as a
family, and the implementations of the constructors as the implementations of the nested
“classes”. The type Lang can be understood as the type of the family.

Adding a new operation print is straightforward via a new trait implPrint, which is
defined in as a similar way to implLang.

type IPrint = { print : String };
type LangPrint = { lit : Double → IPrint, add : IPrint → IPrint → IPrint };

trait implPrint ⇒ {

10 Taming the Merge Operator

lit (x : Double) = { print = x.toString };
add (x : IPrint) (y : IPrint) = {
print = "(" ++ x.print ++ " + " ++ y.print ++ ")"

}
} : LangPrint;

Similarly, a new case for negation can be added independently. The type of the new trait is
the intersection of Lang and a record type for negation. Correspondingly, its implementation
also reuses implLang via trait inheritance.

type LangNeg = Lang & { neg : IEval → IEval };

trait implNeg inherits implLang ⇒ {
neg (x : IEval) = { eval = 0 - x.eval }

} : LangNeg;

It is necessary to extend implPrint for the newly defined case neg before composing them.

trait implExt inherits implNeg & implPrint ⇒ {
neg (x : IPrint) = { print= "-" ++ x.print }

};

The trait combines the missing method with the extension of two dimensions: implNeg and
implPrint. The following code shows how we can use the extended arithmetic language.

type ExtLang = { lit : Double → IEval&IPrint, add : IEval&IPrint →
IEval&IPrint → IEval&IPrint, neg : IEval&IPrint → IEval&IPrint };

fac = new[ExtLang] implExt;
e = fac.add (fac.neg (fac.lit 2)) (fac.lit 3);
main = e.print ++ " = " ++ e.eval.toString -- "(-2.0 + 3.0) = 1.0";

BCD Subtyping and Nested Composition. Notably the expression e has type IEval &

IPrint allowing both the print and eval methods to be called. This is possible because
nested composition is triggered by the annotation ExtLang for new when creating the
object fac. While the expression implExt has type Trait[LangNeg & LangPrint & { neg

: IPrint → IPrint }], the annotation in new forces the resulting object to have type
ExtLang. This is allowed because with BCD-style subtyping the following subtyping
statement holds:

LangNeg & LangPrint & { neg : IPrint → IPrint } <: ExtLang

In short, in BCD-style subtyping, intersections distribute over other type constructors, like
functions or records, thus allowing the previous subtyping statement to hold. Nested com-
position gives an operational meaning to such an upcast at runtime, by suitably adapting
the values of the subtype to the right form to fit the supertype. Thus the components that
are nested inside the traits being composed are themselves recursively composed, enabling
the creation of objects like e containing implementations for both print and eval.

3 An Overview of the Type-Directed Operational Semantics

While the merge operator has many applications, designing a direct operational semantics
for it is not straightforward. This section gives an overview of the type-directed oper-
ational semantics for λi. We first introduce Dunfield (2014)’s untyped semantics, and

X. Huang, J. Zhao, and B. Oliveira 11

(Syntax of Dunfield’s Calculus)

Type A, B ::= Top | A→ B | A & B
Expr E ::= x | > | λx. E | E1 E2 | fix x. E | E1 ,, E2
Value V ::= x | > | λx. E |V1 V2

E E ′ (Operational Semantics of Dunfield’s Calculus)

DSTEP-APPL

E1 E ′1
E1 E2 E ′1 E2

DSTEP-APPR

E2 E ′2
V1 E2 V1 E ′2

DSTEP-BETA

(λx. E)V E[x 7→V]

DSTEP-FIX

fix x. E E[x 7→ fix x. E]

DSTEP-MERGEL

E1 E ′1
E1 ,, E2 E ′1 ,, E2

DSTEP-MERGER

E2 E ′2
V1 ,, E2 V1 ,, E ′2

DSTEP-UNMERGEL

E1 ,, E2 E1

DSTEP-UNMERGER

E1 ,, E2 E2

DSTEP-SPLIT

E E ,, E

Fig. 1. The syntax and non-deterministic small-step semantics of Dunfield’s calculus.

identify its problems: the non-determinism of the semantics and the lack of subject reduc-
tion. Dunfield’s semantics is nonetheless used to guide the design of our own TDOS.
We show how the TDOS of λi uses type annotations to guide reduction, thus obtaining
a deterministic semantics that also has the subject-reduction property.

3.1 Background: Dunfield’s Non-Deterministic Semantics

Dunfield studied the semantics of a calculus with intersection types and a merge operator.
The interesting aspect of her calculus is the merge operator, which takes two terms e1 and
e2, of some types A and B, to create a new term that can behave both as a term of type A and
as a term of type B. Intersection types and the merge operator in Dunfield’s calculus are
similar to pair types and pairs. Indeed, a program written with pairs that behaves identically
to the program shown in Section 1 is:

let x : (Int, Bool) = (1, True) in (fst x + 1, not (snd x))

However while for pairs both the introductions and eliminations are explicit, with the
merge operator the eliminations (i.e. projections) are implicit and driven by the types of
the terms. Dunfield exploits this similarity to give a type-directed elaboration semantics
to her calculus. The elaboration transforms merges into pairs, intersection types into pair
types and inserts the missing projections.

Syntax. The top of Figure 1 shows the syntax of Dunfield’s calculus. Types include a top
type Top, function types (A→ B) and intersection types (written as A & B). Following the
convention introduced by previous works (Oliveira et al., 2016),→ has lower precedence
than &, which means A→ B & C equals to A→ (B & C). Most expressions are standard,
except the merges (E1 ,, E2). The calculus also includes a canonical top value >, and
allows variables to be values. Note that the original Dunfield’s calculus uses a different
notation for intersection types (A∧ B), and supports union types (A∨ B). Union types are

12 Taming the Merge Operator

not supported by λi, since it is based on the calculus by Oliveira et al. (2016) with disjoint
intersection types, which does not have unions either. For a better comparison, we adjust
the syntax and omit union types in Dunfield’s system.

Operational Semantics. The bottom part of Figure 1 presents the reduction rules. The
interesting construct is the merge operator, as all other rules not involving the merge
operator are standard call-by-value reduction rules. The reduction of a merge construct in
Dunfield’s calculus is quite flexible: a merge of two expressions (which do not even need to
be two values) can step to its left subexpression (by rule DSTEP-UNMERGEL) or the right
one (by rule DSTEP-UNMERGER). Any expressions can split into two by rule DSTEP-
SPLIT. Therefore, even though the reduction rules may have already reached a value form,
it is still possible to step further using rule DSTEP-SPLIT.

Problem 1: No Subject Reduction. A major problem of this operational semantics is that
it does not preserve types. Note that reduction is oblivious of types, so a term can reduce
to two other terms with potentially different (and unrelated) types. For instance:

1 ,, True 1 1 ,, True True

Here the merge of an integer and a boolean is reduced to either the integer (using
rule DSTEP-UNMERGEL) or the boolean (using rule DSTEP-UNMERGER). In Dunfield’s
calculus the term 1 ,, True can have multiple types, including Int or Bool or even
Int & Bool. As a consequence, the semantics is not type-preserving in general.

What is worse, a well-typed expression can reduce to an expression that is ill-typed:

(1 ,, λx. x + 1) 2 1 2

This reduction leads to an ill-typed term (with any type) because we drop the lambda
instead of the 1 in the merge.

Problem 2: Non-determinism. Even in the case of type-preserving reductions there can
be another problem. Because of the pair of unmerge rules (rule DSTEP-UNMERGEL and
rule DSTEP-UNMERGER), the choice between a merge always has two options. This means
that a reduced term can lead to two other terms of the same type, but with different
meanings. For example:

1 ,, 2 1 1 ,, 2 2

There is even a third option to reduce a merge with the split rule (rule DSTEP-SPLIT):

1 ,, 2 (1 ,, 2) ,, (1 ,, 2)

In other words the semantics is non-deterministic. Non-determinism is also the root of the
problem with the examples discussed in Section 2.1.

Note that Dunfield’s operational semantics is an overapproximation of the intended
behavior. In her work, it is used to provide a soundness result for her elaboration semantics,
which is type-safe (but still ambiguous).

X. Huang, J. Zhao, and B. Oliveira 13

3.2 A Type-Driven Semantics for Type Preservation

An essential problem is that the semantics cannot ignore the types if the reduction is
meant to be type-preserving. Dunfield (2014) notes that “For type preservation to hold,
the operational semantics would need access to the typing derivation”. To avoid run-time
type-checking, we design a type-driven semantics and use type annotations to guide reduc-
tion. Therefore our λi calculus is explicitly typed, unlike Dunfield’s calculus. Nevertheless,
it is easy to design source languages that infer some of the type annotations and insert them
automatically to create valid λi terms as we will see in Section 4.4. We discuss the main
challenges and key ideas of the design of λi next.

Type-driven Reduction. Our operational semantics follows a standard call-by-value
small-step reduction and it is closely related to Dunfield’s semantics. However, type anno-
tations play an important role in the reduction rules and are used to guide reduction. For
example, in λi we can write explicitly annotated expressions such as (1 ,, True) : Int and
(1 ,, True) : Bool. For those expressions the following reductions are valid:

(1 ,, True) : Int−→ 1 (1 ,, True) : Bool−→True

In contrast the following reductions are not possible:

(1 ,, True) : Bool 6↪→ 1 (1 ,, True) : Int 6↪→True

Note also that in λi the meaning of expression 1 ,, True without any type annotation can
only be a corresponding value 1 ,, True that does not drop any information.

Typed Reduction. The crucial component in the operational semantics that enables the
use of type information during reduction is an auxiliary typed reduction relation v −→A v′

that is used when we want some value to match a type. Typed reduction is where type
information from annotations in λi “filters” reductions that are invalid due to a type mis-
match. Typed reduction takes a value and a type (which can be viewed as inputs), and gives
a unique value of that type as output. Note that this process may result in further reduc-
tion of the value, unlike many other languages where values can never be further reduced.
Typed reduction is used in two places during reduction:

STEP-ANNOV

v −→A v′

v : A−→ v′

STEP-BETA

v −→A v′

(λx. e : A→ B) v−→ (e[x 7→ v′]) : B

The first place where typed reduction is used is in rule STEP-ANNOV. When reduction
encounters a value with a type annotation A it uses typed reduction to do further reduction
depending on the type A. To see typed reduction in action, consider a simple merge of
primitive values such as 1 ,, True ,, ‘c’ with an annotation Int & Char. Using rule STEP-
ANNOV typed reduction is invoked, resulting in:

1 ,, True ,, ‘c’ −→Int & Char 1 ,, ‘c’

We could have type-reduced the same value under a similar type but where the two types
in the intersection are interchanged:

1 ,, True ,, ‘c’ −→Char & Int ‘c’ ,, 1

14 Taming the Merge Operator

Both typed reductions are valid and they illustrate the ability of typed reduction to create a
value that matches exactly with the shape of the type.

The second place where typed reduction is used is in rule STEP-BETA. In a function
application, the actual argument could be a merge containing more components than what
the function expects. One example is (λx. x + 1 : Int→ Int) (1 ,, True). Since the merge
term (1 ,, True) provides an integer 1, the redundant components (the True in this case)
are useless, and sometimes even harmful. Consider a function λx. (x ,, False) with type
Int→ Int & Bool, applied to (1 ,, True). If we perform direct substitution of the argument
in the lambda body, this will result in 1 ,, True ,, False. This brings ambiguity, and the
term is not well-typed, as we shall see in Section 3.4. Therefore, before substitution, the
value must be further reduced with typed reduction under the expected type of the function
argument. Thus the value that is substituted in the lambda body is 1 (but not 1 ,, True),
and the final result is 1 ,, False.

These examples show some non-trivial aspects of typed reduction, which must decom-
pose values, and possibly drop some of the components and permute other components.
The details of the typed reduction relation will be discussed in Section 5. As we shall see
functions introduce further complications.

3.3 The Challenges of Functions

One of the hardest challenges in designing the semantics of λi was the design of the rules
for functions. We discuss the challenges next.

Return Types Matter. As we have seen above, the input type annotation of lambdas is
necessary during beta reduction. However, it is not enough to distinguish among multi-
ple functions in a merge (e.g. (λx. x + 1) ,, (λx. True)) without run-time type checking.
Unlike primitive values, whose types can be told by their forms, for functions, we need the
type of the function (including the output type) to select the right function from a merge.
Therefore, in λi all functions are annotated with both the input and output types. With such
annotations we can deal with programs such as:

((λ f . f 1 : (Int→ Int)→ Int)) ((λx. x + 1 : Int→ Int) ,, (λx. True : Int→Bool))

In this program we have a lambda that takes a function f as an argument and applies it to
1. The lambda is applied to the merge of two functions of types Int→ Int and Int→Bool.
To select the right function from the merge, the types of the functions are used to guide
the reduction of the merge. This avoids the need for run-time type-checking, which would
otherwise be necessary to recover the full type of functions.

Annotation Refinement. Typed reduction reduces any value to one of its supertypes.
When the value is a lambda abstraction, we need to refine its type annotation during typed
reduction. Consider a single function λx. x ,, True : Int→ Int & Bool to be reduced under
type Int & Bool→ Int. To let the function return an integer when applied to a merge of
type Int & Bool, we must change either the lambda body or the embedded annotation.
Since reducing under a lambda body is not allowed in call-by-value, λi adopts the latter
option, and treats the input and output annotations differently. The input annotation should
not be changed as it represents the expected input type of the function and helps to adjust

X. Huang, J. Zhao, and B. Oliveira 15

the input value before substitution in beta reduction. The output annotation, in contrast,
must be replaced by Int, representing a future reduction to be done after substitution. The
output of the application then can be thought as an integer and can be safely merged with
another boolean, for example. In short, the actual λi reduction is:

((λx. x ,, True) : Int→ Int & Bool) : Int & Bool→ Int

−→ (λx. x ,, True) : Int→ Int

Some calculi avoid the problem of function annotation refinement by treating annotated
lambdas as values. For example, the target language of NeColus does not reduce a value
wrapped by a coercion in a function form. In the blame calculus (Wadler & Findler, 2009),
a value with a cast from an arrow type to another arrow type is still a value.

3.4 Disjoint Intersection Types and Consistency for Determinism

Even if the semantics is type-directed and it rules out reductions that do not preserve types,
it can still be non-deterministic. To solve this problem, we employ the disjointness restric-
tion that is used in calculi with disjoint intersection types (Oliveira et al., 2016) and the
novel notion of consistency. Both disjointness and consistency play a fundamental role in
the proof of determinism.

Disjointness. Two types are disjoint (written as A ∗ B), if any common supertypes that they
have are top-like types (i.e. supertypes of any type; written as eCd).
Definition 3.1 (Disjoint Types). A ∗ B ≡ ∀ C, if A <: C and B <: C then eCd
If two types are disjoint (e.g. (Int & Char) ∗Bool), their corresponding values do not over-
lap (e.g. 1 ,, ‘c’ and True). The only exceptions are top-like types, as they are disjoint with
any type (Alpuim et al., 2017). Since every value of a top-like type has the same effect,
typed reduction unifies them to a fixed result. Thus the disjointness check in the following
typing rule guarantees that e1 and e2 can be merged safely, without any ambiguities. For
example, this typing rule does not accept 1 ,, 2 or True ,, 1 ,, False, as two subterms of the
merge have overlapped types (in this case, the same type Int and Bool, respectively).

TYP-MERGE

Γ ` e1 ⇒ A Γ ` e2 ⇒ B A ∗ B

Γ ` e1 ,, e2 ⇒ A & B

Consistency. Recall the rule DSTEP-SPLIT in Dunfield’s semantics: E E ,, E. It dupli-
cates terms in a merge. Similar things can happen in our typed reduction if the type has
overlapping parts, which is allowed, for example, in an expression 1 : Int & Int. Note that
in this expression the term 1 can be given type annotation Int & Int since Int <: Int & Int.
During reduction, typed reduction is eventually used to create a value that matches the
shape of type Int & Int by duplicating the integer:

1 −→Int & Int 1 ,, 1

Note that the disjointness restriction does not allow sub-expressions in a merge to have
the same type: 1 ,, 1 cannot type-check with rule TYP-MERGE. To retain type preservation,
there is a special (run-time) typing rule for merges of values, where a novel consistency

16 Taming the Merge Operator

check is used (written as v1 ≈spec v2):
TYP-MERGEV

· ` v1 ⇒ A · ` v2 ⇒ B v1 ≈spec v2

Γ ` v1 ,, v2 ⇒ A & B

Mainly, consistency allows values to have overlapped parts as far as they are syntactically
equal. For example, 1 ,, True and 1 ,, ‘c’ are consistent, since the overlapped part Int in both
of merges is the same value. True and ‘c’ are consistent because they are not overlapped
at all. But 1 ,, True and 2 are not consistent, as they have different values for the same
type Int. When two values have disjoint types, they must be consistent. For merges of such
values, both rule TYP-MERGEV and rule TYP-MERGE can be applied, and the types always
coincide. In λi, consistency is defined in terms of typed reduction:

Definition 3.2 (Consistency). Two values v1 and v2 are said to be consistent (written
v1 ≈spec v2) if, for any type A, the result of typed reduction for the two values is the same.

v1 ≈spec v2 ≡ ∀ A, if v1 −→A v′1 and v2 −→A v′2 then v′1 = v′2
Although the specification of consistency is decidable and an equivalent algorithmic defi-
nition exists (later defined in Figure 13), it is not required. In practice, in a programming
language implementation, the rule TYP-MERGEV may be omitted, since, as stated, its main
purpose is to ensure that run-time values are type-preserving.

Finally, note that the original λi (Oliveira et al., 2016) is stricter than our variant of λi and
forbids any intersection types which are not disjoint. That is to say, the term 1 : Int & Int is
not well-typed because the intersection Int & Int is not disjoint. The idea of allowing unre-
stricted intersections, while only having the disjointness restriction for merges, was first
employed in the NeColus calculus (Bi et al., 2018). λi follows such an idea and 1 : Int & Int

is well-typed in λi. Allowing unrestricted intersections adds extra expressive power. For
instance, in calculi with polymorphism, unrestricted intersections can be used to encode
bounded quantification (Cardelli & Wegner, 1985), whereas with disjoint intersections
only such an encoding does not work (Bi et al., 2019).

Revisiting the examples with merges and subtyping. Recall the example presented in
Section 2, rewritten here to use a lambda instead of a let expression:

(λx. (2 ,, x) + 3 : Bool→ Int) (1 ,, True)

As argued in Section 2, in a naive untyped semantics, examples like the above are prob-
lematic since they can lead to non-disjoint merges appearing at runtime. So, how does the
TDOS approach deal with such example? Here are the full reduction steps:

(λx. (2 ,, x) + 3 : Bool→ Int) (1 ,, True)

−→ ((2 ,, True) + 3) : Int

−→ 5 : Int

−→ 5

Firstly, the input value is filtered via the typed reduction against the input type Bool.
Importantly, only the selected part True is substituted in the body of the lambda during
beta-reduction. Then, the expression (2 ,, True) + 3 evaluates to 5. In the process, + acts
like a lambda with annotation Int→ Int→ Int. Finally, the return type Int filters the result,

X. Huang, J. Zhao, and B. Oliveira 17

which does not change it in this case. The second example with records, is slightly more
involved, but can be dealt with similarly.

3.5 The Challenges of Distributivity

The λi calculus captures the basic functionality of the merge operator with a simple sub-
typing relation with intersection types. However, such simple subtyping relation lacks
distributivity rules that enable, for instance, subtyping statements such as:

(A→ B) & (C→D)<: A & C→ B & D

where the intersections distribute over the function types. Distributivity in a calculus with
a merge operator is interesting because it enables nested composition, which essentially
reflects the distributivity seen at the type level into the term level. Therefore, a merge of
two functions can be treated as a single function where the inputs and outputs of the two
original functions have intersection types.

The λ
+
i calculus extends λi with distributivity rules for subtyping and nested compo-

sition. The subtyping relation for λ
+
i is based on the well-known subtyping relation of

Barendregt, Coppo and Dezani-Ciancaglini (BCD) (Barendregt et al., 1983). Adding BCD
style subtying into the type system of λi enables interesting applications, but it also brings
more challenges.

Splittable Arrow Types. Without distributivity, if an arrow type is a supertype of an inter-
section of multiple types, then it must be a supertype of one of those types. Conversely,
when doing typed reduction of a merge under an arrow type, we will obtain a single func-
tion (one of the components of the merge) as a result. However, in λ

+
i , we are now faced

with the following kind of typed reduction due to the change in subtyping:

(λx. x : Int→ Int) ,, (λx. True : Int→Bool) ,, (λx. ‘c’ : Int→ Char)

−→Int→Int & Char (λx. x : Int→ Int) ,, (λx. ‘c’ : Int→ Char)

Even though we are doing typed reduction under an arrow type, we do not obtain a func-
tion as a result. Instead what we have is a merge of two functions. This is because, with
distributivity of arrow types, multiple components present in a merge can contribute to the
final result. For instance, in the reduction above both the first and the last lambdas must be
present to ensure that the resulting value “behaves” as a function of type Int→ Int & Char.

Parallel Application. One consequence of allowing merges to have arrow types is that
a beta reduction for applications is not enough, since merges of functions can also be
applied to values. We use a relation called the parallel application to deal with applications
of merges to another value. Parallel application distributes the input to every lambda in a
merge, and beta reduces them in parallel. From the point-of-view of the small-step seman-
tics, the parallel application process, like typed reduction, is finished in a single step, like
the following example.

(λx. x + 1 : Int→ Int ,, (λx. True : Int→Bool ,, λx. ‘c’ : Int→ Char)) 2

−→ (2 + 1) : Int ,, (True ,, ‘c’)

18 Taming the Merge Operator

Generalized Consistency. In λ
+
i a merge of function values, once applied to an argument,

can step to a merge of expressions. In the previous example, for instance, one of the com-
ponents in the resulting merge is (2 + 1) : Int, which is an expression but not a value.
This raises a challenge to the consistency definition employed in λi, which can only relate
values (but not arbitrary expressions). Therefore we have to extend the definition of consis-
tency in λ

+
i to include such expressions. Intuitively, two expressions can be safely merged

if their reduction result is the same, like (2 + 1) : Int or 3 ,, (2 + 1). However, there are
some difficulties regarding how to reason about expressions like the later one. Consider
two non-terminating programs, comparing them may never end. Instead we generalize the
consistency with a syntactical definition, which is less powerful in the sense that it does not
allow 3 ,, (2 + 1). But such a definition is enough to accept the terms generated by parallel
application, which keeps the syntactical equivalence among the components of merges.

Records. Together with the BCD subtyping, single-field records and record types are
added into λ

+
i . There is a distributivity rule in subtyping for records as well. So a merge

of several records can be used as a record as long as they have the same label.

({l = True} ,, {l = 2}).l−→True ,, 2

In reduction, projection on records is treated similarly to how function application is
treated. That is to say, the parallel application relation does not only apply functions in
parallel in a merge, but also projects records in parallel in a merge.

4 The λi Calculus: Syntax, Subtyping and Typing

This section presents the type system of λi: a calculus with intersection types and a merge
operator. It is a small variant of the original λi calculus (Oliveira et al., 2016) (which
is inspired by Dunfield (2014)’s calculus) with fixpoints and having explicitly annotated
lambdas instead of unannotated ones. The explicit annotations are necessary for the type-
directed operational semantics of λi and to preserve determinism. The addition of fixpoints
illustrates the ability of TDOS to deal with non-terminating programs, which are still not
supported by calculi that rely on elaboration and coherence proofs (Bi et al., 2018, 2019).

4.1 Syntax

The syntax of λi is:

Types A, B ::= Int |Top | A→ B | A & B
Expressions e ::= x | i | > | e : A | e1 e2 | λx. e : A→ B | e1 ,, e2 | fix x. e : A
Values v ::= i | > | λx. e : A→ B | v1 ,, v2
Contexts Γ ::= · | Γ, x : A
Typing modes ⇔ ::= ⇒|⇐

Types. Meta-variables A and B range over types. Two basic types are included: the integer
type Int and the top type Top. Function types A→ B and intersection types A & B can be
used to construct compound types.

X. Huang, J. Zhao, and B. Oliveira 19

A <: B (Subtyping)

S-Z

Int <: Int

S-TOP

eBd
A <: B

S-ANDL1

A1 <: A3

A1 & A2 <: A3

S-ANDL2

A2 <: A3

A1 & A2 <: A3

S-ARR

B1 <: A1 A2 <: B2

A1→ A2 <: B1→ B2

S-ANDR

A1 <: A2 A1 <: A3

A1 <: A2 & A3

eAd (Top-Like Types)

TL-TOP

eTopd

TL-ARR

eBd
eA→ Bd

TL-AND

eAd eBd
eA & Bd

A ∗a B (Algorithmic Disjointness)

D-TOPL

Top ∗a A

D-TOPR

A ∗a Top

D-ANDL

A1 ∗a B A2 ∗a B

A1 & A2 ∗a B

D-ANDR

A ∗a B1 A ∗a B2

A ∗a B1 & B2

D-INTARR

Int ∗a A1→ A2

D-ARRINT

A1→ A2 ∗a Int

D-ARRARR

A2 ∗a B2

A1→ A2 ∗a B1→ B2

Fig. 2. Subtyping rules and definition of top-like types and disjointness in λi.

Expressions. Meta-variable e ranges over expressions. Expressions include some standard
constructs: variables (x); integers (i); a canonical top value>; annotated expressions (e : A);
and application of a term e1 to term e2 (denoted by e1 e2). Lambda abstractions (λx.e :
A→ B) must have a type annotation A→ B, meaning that the input type is A and the output
type is B. The expression e1 ,, e2 is the merge of expressions e1 and e2. Finally, fixpoints
fix x. e : A (which also require a type annotation) model recursion.

Values, Contexts, and Typing Modes. The meta-variable v ranges over values. Values
include integers, the canonical > value, lambda abstractions and merges of values. Typing
contexts are standard. Γ tracks the bound variables x with their type A. ⇔ stands for the
mode of a bidirectional typing judgement: either the synthesis mode or the checking mode.

4.2 Subtyping and Disjointness

Shown on the top of Figure 2, these subtyping rules can be traced back to the
1980s (Barendregt et al., 1983). Here we follow the formalization by Davies & Pfenning
(2000), except for rule S-TOP. Originally, in rule S-TOP, B must be Top. We extend the
rule to make defined top-like types to be supertypes of any type. The original subtyping

20 Taming the Merge Operator

relation is known to be reflexive and transitive (Davies & Pfenning, 2000). We proved the
reflexivity and transitivity of the extended subtyping relation as well.

Top-like Types and Arrow Types. Intuitively, a top-like type is both a supertype and a
subtype of Top. In calculi with intersection types, top-like types are not just the type Top as
in some other calculi with subtyping. For instance the type Top & Top is also a supertype
and subtype of Top. A simple unary relation that captures top-like types inductively is
defined in the middle of Figure 2. Top-like types include the Top type and intersections
of top-like types. Rule TL-ARR enlarges top-like types to include arrow types when their
return types are top-like. This enlargement of top-like types is inspired by the following
rule in BCD-style subtyping (Barendregt et al., 1983):

Top <: Top→Top
BCD-TOPARR

We will come back to our motivation for allowing such top-like types in Section 4.3.

Disjointness. In Section 3.4, the specification of disjointness is presented. Such specifica-
tion is a slightly more liberal version of the definition originally used in λi. In particular
in our definition A and B themselves can be top-like types, which was forbidden in λi.
An equivalent algorithmic definition of disjointness (A ∗a B) is presented on the bottom of
Figure 2, which is the same as the definition in the NeColus calculus (Bi et al., 2018).

Lemma 4.1 (Disjointness Properties). Disjointness satisfies:

1. A ∗ B if and only if A ∗a B.
2. if A ∗ (B1→C) then A ∗ (B2→C).
3. if A ∗ B & C then A ∗ B and A ∗C.

4.3 Bidirectional Typing

We use a bidirectional type system for λi. The main motivation to use a bidirectional type
system is that we can avoid a general subsumption rule, which is known to cause ambiguity
in the presence of a merge operator. In a bidirectional type system, there are two kinds of
typing judgements, each associated with one mode. The checking judgement Γ ` e ⇐ A
says that in the typing environment Γ the expression e can be checked against type A. The
synthesis judgment Γ ` e ⇒ A, on the other hand, has type A as its output. Unlike the
original type system of λi (showed in Figure 4), there is no well-formedness restriction
on types. This generalization is inspired by the calculus NeColus (Bi et al., 2018), where
the well-formedness constraints are removed from λi, and expressions like 1 : Int & Int are
allowed. In other words the calculus supports unrestricted intersections as well as disjoint
intersection types (which are the only kind of intersections supported in the original λi).

In the type system in Figure 3, most typing rules directly follow the bidirectional type
system of the original λi, including the merge rule TYP-MERGE, where disjointness is used.
When two expressions have disjoint types, any parts from each of them do not overlap in
types. Therefore, their merge does not introduce ambiguity. With this restriction, rule TYP-
MERGE does not accept expressions like 1 ,, 2 or even 1 ,, 1. On the other hand, the novel
rule TYP-MERGEV allows consistent values to be merged regardless of their types. It

X. Huang, J. Zhao, and B. Oliveira 21

A � B (Applicative Distributivity)
AD-ARR

A→ B � A→ B

AD-TOPARR

Top � Top→Top

Γ ` e ⇔ A (Bidirectional Typing)
TYP-TOP

Γ `> ⇒ Top

TYP-LIT

Γ ` i ⇒ Int

TYP-VAR

x : A ∈ Γ

Γ ` x ⇒ A

TYP-ABS

Γ, x : A ` e ⇐ B

Γ ` λx. e : A→ B ⇒ A→ B

TYP-APP

Γ ` e1 ⇒ C
C � A→ B Γ ` e2 ⇐ A

Γ ` e1 e2 ⇒ B

TYP-MERGE

Γ ` e1 ⇒ A Γ ` e2 ⇒ B A ∗ B

Γ ` e1 ,, e2 ⇒ A & B

TYP-ANNO

Γ ` e ⇐ A

Γ ` (e : A) ⇒ A

TYP-FIX

Γ, x : A ` e ⇐ A

Γ ` fix x. e : A ⇒ A

TYP-MERGEV

· ` v1 ⇒ A · ` v2 ⇒ B v1 ≈spec v2

Γ ` v1 ,, v2 ⇒ A & B

TYP-SUB

Γ ` e ⇒ A A <: B

Γ ` e ⇐ B

Fig. 3. Typing of λi.

accepts 1 ,, 1 while still rejecting 1 ,, 2. The consistency specification used in rule TYP-
MERGEV is given in Definition 3.1. It is for values only, and values are closed. Therefore
the type judgments appearing in it as premises should have empty context (denoted by
·). As discussed in Section 3.4, together the two rules support the determinism and type
preservation of the TDOS, and rule TYP-MERGEV does not need to be included in an
implementation. The type system with the rest of rules is algorithmic.

Applicative Distributivity and Rule TYP-APP. The top of Figure 3 shows the applica-
tive distributivity relation, which relates a type with one of its supertypes in applicative
form. Here in λi, this relation finds a supertype of the given type that is a function type.
Applicative distributivity is used in rule TYP-APP, where a term is expected to play the
role of a function. Therefore a term of type Top can be used as if it has type Top→Top,
and be applied to any terms. For example, > 1 is allowed and it evaluates to >.

Top-Like Types and Merges of Functions. We can finally come back to the motiva-
tion to allow arrow types in top-like types and depart from Dunfield’s calculus. If no
arrow types are top-like, two arrow types A→ B and C→D are never disjoint in terms
of Definition 3.1, as they have a common supertype A & C→Top. Consequently, we can
never create merges with more than one function, which is quite restrictive. For Dunfield
this is not a problem, because she does not have the disjointness restriction. So her cal-
culus supports merges of any functions (but it is incoherent). In the original λi an ad-hoc

22 Taming the Merge Operator

solution is proposed, by forcing the matter and employing the syntactic definition of top-
like types in Figure 2 in disjointness, while keeping the standard rule A <:> in subtyping.
However this means that top-like function types are not supertypes of Top, which contra-
dicts the intended meaning of a top-like type. In contrast, the approach we take in λi is
to change the rule S-TOP in subtyping. Now Top <: (A & C→Top) is derivable and thus
A & C→Top is genuinely a top-like type. In turn this makes merges of multiple functions
typeable without losing the intuition behind top-like types.

Checked Subsumption. Unlike many calculi where there is a general subsumption rule
that can apply anywhere, λi employs bidirectional typechecking, where subsumption is
controlled. The subsumption (rule TYP-SUB) is in checking mode only. The checking mode
is explicitly triggered by a type annotation, either via the rule TYP-ANNO, rule TYP-ABS

or rule TYP-FIX. The annotation rule TYP-ANNO acts as explicit subsumption and assigns
supertypes to expressions, provided a suitable type annotation. There is a strong motivation
not to include a general (implicit) subsumption rule in calculi with disjoint intersection
types. With an implicit subsumption rule disjointness alone is insufficient to prevent some
ambiguous terms, as shown in the following example.

SUB

MERGE

SUB
· ` 1 ⇒ Int Int <: Top

· ` 1 ⇒ Top · ` 2 ⇒ Int Top ∗ Int

· ` 1 ,, 2 ⇒ Top & Int Top & Int <: Int & Int

· ` 1 ,, 2 ⇒ Int & Int

Via the typical implicit subsumption, type Top is assigned to integer 1. Then 1 can be
merged with 2 of type Int since their types are disjoint. At that time, the merged term
1 ,, 2 has type Top & Int, which is a subtype of Int & Int. By applying the subsumption
rule again, the ambiguous term 1 ,, 2 finally bypasses the disjointness restriction, having
type Int & Int. However, note that with rule TYP-ANNO we can still type-check the term
(1 : Top) ,, 2, and reducing that term under the type Int can only unambiguously result in
2. The type annotation is key to prevent using the value 1 as an integer.

Typing Properties. The bidirectional type-checking system has some properties that are
important for the type soundness proof presented in Section 5. Firstly, each term has only
one synthesized type. Secondly, any well-typed term has a synthesized type, which is the
principal type. Thirdly, the type in a checking judgement can be replaced by a supertype.

Lemma 4.2 (Synthesis uniqueness). If Γ ` e ⇒ A and Γ ` e ⇒ B , then A = B.

Lemma 4.3 (Synthesis has principal types). If Γ ` e ⇐ A then there exists type B, s.t.
Γ ` e ⇒ B and B <: A.

Lemma 4.4 (Checking subsumption). If Γ ` e ⇐ A and A <: B, then Γ ` e ⇐ B.

4.4 Completeness with respect to the Original Type System

In this section, we discuss the relationship between the original λi (Oliveira et al., 2016)
and the new variant. We prove that the type system of the new variant is at least as expres-
sive as the original λi. The syntax of the original λi (minus pairs and product types) is
almost the same, except that there are no fixpoints and the lambdas do not have any type

X. Huang, J. Zhao, and B. Oliveira 23

Γ |= A (Type wellformedness)

WF-TOP

Γ |= Top

WF-INT

Γ |= Int

WF-ARR

Γ |= A Γ |= B

Γ |= A→ B

WF-AND

Γ |= A Γ |= B A ∗ B

Γ |= A & B

Γ |= E⇔ A ↪→ e (Bidirectional Typing)

IBTYP-TOP

Γ |=>⇒Top ↪→>

IBTYP-LIT

Γ |= i⇒ Int ↪→ i

IBTYP-VAR

x : A ∈ Γ

Γ |= x⇒ A ↪→ x

IBTYP-APP

Γ |= E1⇒ A→ B ↪→ e1

Γ |= E2⇐ A ↪→ e2

Γ |= E1 E2⇒ B ↪→ e1 e2

IBTYP-MERGE

Γ |= E1⇒ A ↪→ e1

Γ |= E2⇒ B ↪→ e2 A ∗ B

Γ |= E1 ,, E2⇒ A & B ↪→ e1 ,, e2

IBTYP-ANNO

Γ |= E⇐ A ↪→ e

Γ |= E : A⇒ A ↪→ e : A

IBTYP-FIX

Γ |= A Γ, x : A |= E⇐ A ↪→ e

Γ |= fix x. E⇐ A ↪→ fix x. e : A

IBTYP-LAM

Γ |= A Γ, x : A |= E⇐ B ↪→ e

Γ |= λx. E⇐ A→ B ↪→ (λx. e : A→ B)

IBTYP-SUB

Γ |= E⇒ A ↪→ e A <: B

Γ |= E⇐ B ↪→ e

Fig. 4. The type system of original λi extended by fixpoints.

annotations. Thus lambdas can only be typed in checked mode. Figure 4 presents an excerpt
of the type system. The type system has a type well-formedness definition and a slightly
different disjointness relation compared to our variant of λi. Also note that the rule for
the merge of values (rule TYP-MERGEV) is absent because the disjointness restriction in
well-formedness prevents duplicated values.

Some details need to be explained before presenting the completeness theorem. Firstly,
because they are irrelevant, rules related to products and projection operators in λi are
dropped. Secondly, the subtyping in our variant of λi is stronger due to top-like types.
Thirdly, top-like types are disjoint to any type in our variant, while the disjointness in the
original λi is restricted to types which are not top-like. We extended the bidirectional type
system of the original λi with recursion and designed an elaboration from the extended
system to λi. We proved a theorem shows that the type system of λi can type check any
well-typed terms in λi, with type annotations inserted based on the typing derivation:

Theorem 4.1 (Completeness of typing with respect to the extended original λi). If Γ |=
E⇔ A ↪→ e , then Γ ` e ⇔ A.

The result means that λi’s type system (or any type system equivalent to it) can be used as
a surface language where many of the explicit annotations of λi are inferred automatically.
That is to say, the λi calculus can be translated without loss of expressivity or flexibility

24 Taming the Merge Operator

v −→A v′ (Typed Reduction)

TR-LIT

i −→Int i

TR-TOP

A Ordinary eAd
v −→A >

TR-ARROW

¬eA2d A1 <: B1 B2 <: A2

λx. e : B1→ B2 −→(A1→A2) λx. e : B1→ A2

TR-MERGEVL

v1 −→A v′1 A Ordinary

v1 ,, v2 −→A v′1

TR-MERGEVR

v2 −→A v′2 A Ordinary

v1 ,, v2 −→A v′2

TR-AND

v −→A v1 v −→B v2

v −→A & B v1 ,, v2

Fig. 5. Typed reduction of λi.

into λi. Moreover, the extension of fixpoints further shows that some type inference with
recursion is feasible.

5 A Type-Directed Operational Semantics for λi

This section introduces the type-directed operational semantics for λi. The operational
semantics uses type information arising from type annotations to guide the reduction pro-
cess. In particular, a new relation called typed reduction is used to further reduce values
based on the contextual type information, forcing the value to match the type structure. We
show two important properties for λi: determinism of reduction and type soundness. That
is to say, there is only one way to reduce an expression according to the small-step relation,
and the process preserves types and never gets stuck.

5.1 Typed Reduction of Values

To account for the type information during reduction, λi uses an auxiliary reduction relation
called typed reduction for reducing values under a certain type. Typed reduction v −→A v′

reduces the value v under type A, producing a value v′ that has type A. It arises when
given a value v of some type, where A is a supertype of the type of v, and v needs to
be converted to a value compatible with the supertype A. Typed reduction ensures that
values and types have a strong correspondence. If a value is well-typed, its principal type
can be told directly by looking at its syntactic form. Typed reduction can be viewed as a
relation that gives a runtime interpretation to subtyping, and the rules of typed reduction are
aligned in a one-by-one correspondence with subtyping. While subtyping states what kind
of conversions are valid at the type level, typed reduction gives an operational meaning for
such conversions on values.

Figure 5 shows the typed reduction relation. Rule TR-TOP expresses the fact that a
top-like type is the supertype of any type, which means that any value can be reduced
under it. The top-like type is restricted to be ordinary (Davies & Pfenning, 2000), to
avoid overlapping with the rule TR-AND. Ordinary types are all types which are not
intersections:

X. Huang, J. Zhao, and B. Oliveira 25

A Ordinary (Ordinary types)

O-TOP

Top Ordinary

O-INT

Int Ordinary

O-ARROW

A→ B Ordinary

The rule TR-TOP indicates that under such a type, any value reduces to the top value
>. Recall that the top-like definition in Figure 2 includes arrow types whose return type
is top-like, thus the rule TR-TOP covers values with such top-like arrow types as well.
Rule TR-LIT expresses that an integer value reduced under the supertype Int is just the
integer value itself. Rule TR-ARROW states that a lambda value λx. e : A→ B, under a
non-top-like type C→D, evaluates to λx. e : A→D if C <: A and B <: D. The restriction
that C→D is not top-like avoids overlapping with rule TR-TOP. Importantly rule TR-
ARROW changes the return type of lambda abstractions, and keeps the input type, since it
is needed in the run-time.

Intersections and Merges. In the remaining rules, we first decompose intersections. Then
we only need to consider ordinary types. We take care of the value by going through every
merge, until both the value and type are in a basic form. Rule TR-MERGEVL and rule TR-
MERGEVR are a pair of rules for reducing merges under an ordinary type. Since the type
is not an intersection, the result contains no merge. Usually, we need to select between the
left part and right part of a merge according to the type. The values of disjoint types do not
overlap on non-top-like types. For example, 1 ,, (λx. x : Int→ Int) −→Int 1 selects the left
part. For top-like types, no matter which rule is applied, the reduction result is determined
by the type only, as the rule TR-TOP suggests.

Rule TR-AND is the rule that deals with intersection types. It says that if a value v can
be reduced to v1 under type A, and can be reduced to v2 under type B, then its reduction
result under type A & B is the merge of two results v1 ,, v2. Note that this rule may duplicate
values. For example 1 −→Int & Int 1 ,, 1. Such duplication requires special care, since the
merge violates disjointness. The specially designed typing rule (rule TYP-MERGEV) uses
the notion of consistency (Definition 3.2) instead of disjointness to type-check a merge
of two values. Note also that such duplication implies that sometimes it is possible to
use either rule TR-MERGEVL or rule TR-MERGEVR to reduce a value. For example, 1 ,,

1 −→Int 1. The consistency restriction in rule TYP-MERGEV ensures that no matter which
rule is applied in such a case, the result is the same.

Example. A larger example to demonstrate how typed reduction works is:

(λx. (x ,, ‘c’) : Int→ Int & Char) ,, (λx. x : Bool→Bool) ,, 1

−→Int & (Int→Int) 1 ,, (λx. (x ,, ‘c’) : Int→ Int)

The initial value is the merge of two lambda abstractions and an integer. The target type is
Int & (Int→ Int). Because the target type is an intersection, typed reduction first employs
rule TR-AND to decompose the intersection into Int and Int→ Int. Under type Int the value
reduces to 1, and under type Int→ Int it will reduce to λx. x ,, ‘c’ : Int→ Int. Therefore,
we obtain the merge 1 ,, (λx. x ,, ‘c’ : Int→ Int) with type Int & (Int→ Int).

26 Taming the Merge Operator

Basic Properties of Typed Reduction. Some properties of typed reduction can be proved
directly by induction on the typed reduction derivation. First, when typed reduction is under
a top-like type, the result only depends on the type. Second, typed reduction produces the
same result whenever it is done directly or indirectly. Third, if a well-typed value can be
typed reduced by some type, its principal type must be a subtype of that type. The three
properties are formally stated next:

Lemma 5.1 (Top-like typed reduction). If eAd, v1 −→A v′1 , and v2 −→A v′2 then v′1 = v′2.

Lemma 5.2 (Typed reduction transitivity). If v −→A v1, and v1 −→B v2, then v −→B v2.

Lemma 5.3 (Subtyping preservation). If v −→A v′ and · ` v ⇒ B, then B <: A.

Lemma 5.3 relates typed reduction and subtyping. It states that if a well-typed value can
be typed reduced by type A, its synthesized type must be a subtype of A.

5.2 Consistency, Determinism and Type Soundness of Typed Reduction

Consistent values, as specified in Definition 3.2, introduce no ambiguity in typed reduction.
If two consistent values both can reduce under a type, they should produce the same result.
The consistency restriction ensures that duplicated values in a merge type-check, but it
still rejects merges with different values of the same type. A value of a top-like type is
consistent with any other value. It only type reduces under top-like types, which leads to a
fixed result decided by the type.

Relating Disjointness and Consistency. Assuming that the synthesized types of two val-
ues are disjoint, from Lemma 5.3, we can conclude that when the two values both reduce
under a type, that type must be a common supertype of their principal types, which is
known to be top-like. Furthermore, Lemma 5.1 implies that their reduction results are
always the same under such top-like types, so they are consistent. The conclusion of the
above discussion is that values with disjoint types evaluate to the same result under the
same type, i.e. they are consistent. This is captured by the following lemma:

Lemma 5.4 (Consistency of disjoint values). If A ∗ B, · ` v1 ⇒ A, and · ` v2 ⇒ B then
v1 ≈spec v2.

Determinism of Typed Reduction. The merge construct makes it hard to design a deter-
ministic operational semantics. Disjointness and consistency restrictions prevent merges
like 1 ,, 2, and bring the possibility to deal with merges based on types. Typed reduc-
tion takes a well-typed value, which, if it is a merge, must be consistent (according to
Lemma 5.4). When the two typed reduction rules for merges (rule TR-MERGEVL and
rule TR-MERGEVR) overlap, no matter which one is chosen, either value reduces to the
same result due to consistency. Indeed our typed reduction relation always produces a
unique result for any legal combination of the input value and type. This serves as a
foundation for the determinism of the operational semantics.

Lemma 5.5 (Determinism of Typed Reduction). For every well-typed v (that is there is
some type B such that · ` v ⇒ B), if v −→A v1 and v −→A v2 then v1 = v2.

Runtime Subtyping. While most typed reduction rules produce values of the reduction
type, rule TR-TOP and rule TR-ARROW are more relaxed. Rule TR-TOP offers > for any
top-like types. Rule TR-ARROW keeps the original input annotation. Thus, the inferred

X. Huang, J. Zhao, and B. Oliveira 27

A� B (Runtime Subtyping)

RSUB-Z

A� A

RSUB-ARR

B1 <: A1 A2� B2

A1→ A2� B1→ B2

RSUB-AND

A1� B1 A2� B2

A1 & A2� B1 & B2

RSUB-TOP

eAd
Top� A

Fig. 6. Runtime subtyping for λi.

type of a reduced lambda may differ from the reduction type according to rule TYP-ABS,
which brings a similar challenge to preservation as rule TR-TOP. For example:

(λx. x ,, 2 : Char→ Char & Int) −→(Char & Int→Char) λx. x ,, 2 : Char→ Char

Precisely speaking, the type of the result in typed reduction is a runtime subtype of the
reduction type. Figure 6 shows the definition of the novel runtime subtyping relation, which
is a restricted form of subtyping. It captures only the forms of subtyping that can happen
when type reducing a value v into another value v′. In the general case, v and v′ will have
different synthesized types, but we know that the type of v′ is a (runtime) subtype of v.
Roughly speaking, runtime subtyping only allows subtyping in contravariant positions.

Runtime subtyping is introduced because we need to find a middle point between equal-
ity and subtyping. If A is the type of the input value and C is the type of the output value
in the typed reduction relation, we cannot simply say that C = A. But knowing only that
C <: A is not enough, since the preservation lemma would be too relaxed to prevent even
directly using the input value v as result. Runtime subtyping ensures that the reduction
result behaves like a term of the reduction type, and it keeps transitivity as well. Thus after
multiple steps of reduction, the ultimate result still has a runtime subtype in terms of the
type of the initial expression. Therefore the preservation property of λi is safely relaxed, to
allow the expression type to become more and more specific during reduction.

Type Soundness of Typed Reduction. Via the transitivity lemma (Lemma 5.2) and the
determinism lemma (Lemma 5.5), we obtain the following property: any reduction results
of the given value are consistent.

Lemma 5.6 (Consistency after Typed Reduction). If v is well-typed , and v −→A v1 , and
v −→B v2 then v1 ≈spec v2.

The lemma shows that the reduction result of rule TR-AND is always made of consistent
values, which is needed in type preservation via the typing rule TYP-MERGEV. Then a
(generalized) type preservation lemma on typed reduction can be proved.

Lemma 5.7 (Preservation of Typed Reduction). If · ` v ⇐ A and v −→A v′, then ∃B,
· ` v′ ⇒ B and B� A.

In general, this lemma shows that typed reduction produces well-typed values: it shows
that if a value is checked by type A and it can be type reduced by A then the reduced value
is always well-typed, and its synthesized type B is a runtime subtype of A. What is more,
typed reduction is guaranteed to progress for a given value and a type it can be checked
against. That is to say, from a well-typed value, we can derive the existence of a typed
reduction judgement and the well-typedness of the reduction result.

28 Taming the Merge Operator

e−→ e′ (Reduction)
STEP-APPL

e1 −→ e′1
e1 e2 −→ e′1 e2

STEP-APPR

e2 −→ e′2
v1 e2 −→ v1 e′2

STEP-FIX

(fix x. e : A)−→ (e[x 7→ (fix x. e : A)]) : A

STEP-MERGEL

e1 −→ e′1
e1 ,, e2 −→ e′1 ,, e2

STEP-MERGER

e2 −→ e′2
v1 ,, e2 −→ v1 ,, e′2

STEP-ANNO

e−→ e′

e : A−→ e′ : A

STEP-BETA

v −→A v′

(λx. e : A→ B) v−→ (e[x 7→ v′]) : B

STEP-ANNOV

v −→A v′

v : A−→ v′

Fig. 7. Call-by-value reduction of λi.

Lemma 5.8 (Progress of Typed Reduction). If · ` v ⇐ A, then ∃v′, v −→A v′.

Less Checks on Typed Reduction. In rule TR-ARROW (in Figure 5), the premise C <: A
is redundant for the purposes of reduction. Since we only care about well-typed terms
being reduced, such a check has already been guaranteed by typing. Therefore an actual
implementation could omit that check. The reason why we keep the premise is that
typed reduction plays another role in our metatheory: it allows us to define consistency.
Consistency is defined for any (untyped) values, and the extra check there tightens up the
definition of consistency. With the premise, typed reduction directly implies a subtyping
relation between the type of the reduced value and the reduction type. (See Lemma 5.3: If
v −→A v′, and · ` v ⇒ B, then B <: A). One could wonder if this property is unnecessary
because it may be derived by type preservation of reduction. Note that whenever typed
reduction is called in a reduction rule, the subtyping relation can be obtained from the typ-
ing derivation of the reduced term. For example, reducing v : A will type reduce v under
A. If v : A is well-typed, then we could in principle prove that the type of v is a subtype of
A. Unfortunately, the above proof is hard to attain in practice. Because type preservation
depends on consistency, and consistency is defined by typed reduction. Once the subtyping
property relies on type preservation, there is a cyclic dependency between the properties.

5.3 Reduction

The reduction rules are presented in Figure 7. Most of them are standard. Rule STEP-BETA

and rule STEP-ANNOV are the two rules relying on typed reduction judgments. Rule STEP-
BETA says that a lambda value λx. e : A→ B applied to value v reduces by replacing the
bound variable x in e by v′. Importantly v′ is obtained by type reducing v under type A.
In other words, in rule STEP-BETA further (typed) reduction may be necessary on the
argument depending on its type. This is unlike many other calculi where values are in a
final form and no further reduction is needed before substitution. The rule STEP-ANNOV

says that an annotated v : A can be reduced to v′ if v type reduces to v′ under type A.

X. Huang, J. Zhao, and B. Oliveira 29

Metatheory of Reduction. When designing the operational semantics of λi, we want it to
have two properties: determinism of reduction and type soundness. That is to say, there is
only one way to reduce an expression according to the small-step relation, and the process
preserves types and never gets stuck. Similar lemmas on typed reduction were already
presented, which are necessary for proving the following theorems, mainly in cases related
to rule STEP-ANNOV and rule STEP-BETA.

Theorem 5.1 (Determinism of −→). If · ` e ⇐ A, e−→ e1, e−→ e2, then e1 = e2.

The preservation theorem states that during reduction, the program is always well-typed,
and the reduced expression can be checked against the original type.

Theorem 5.2 (Type preservation of −→). If · ` e ⇔ A, and e−→ e′ then · ` e′ ⇐ A.

This theorem is a corollary of the following lemma:

Lemma 5.9 (Generalized Type preservation of −→). If · ` e ⇔ A, and e−→ e′ then ∃B,
· ` e′ ⇔ B and B� A.

The lemma has a similar structure to Lemma 5.7: the type of the reduced result is a runtime
subtype (Figure 6) of the target type. To prove Lemma 5.9, the substitution lemma has to
be adapted. The substituted term is allowed to have a runtime subtype of the expected type.
The type of the result, accordingly, is a subtype of the initial type. For example, a lambda
of type Int→ Int can be used when a term of Int & Char→ Int is expected.

Lemma 5.10 (Substitution preserves types). For any expression e, if Γ1, x : B, Γ2 ` e1 ⇔
A and Γ2 ` e2 ⇒ B′, B′� B, then Γ1, Γ2 ` e[x 7→ e2] ⇔ A′ and A′� A.

Finally, the progress theorem promises that reduction never gets stuck. Its proof relies
on the progress lemma of typed reduction.

Theorem 5.3 (Progress of −→). If · ` e ⇐ A, then e is a value or ∃e′, e−→ e′.

5.4 Soundness with respect to Dunfield’s Operational Semantics

Dunfield’s non-deterministic operational semantics motivates our TDOS. Here, we show
the soundness of the operational semantics of λi with respect to a slightly extended version
of Dunfield’s semantics. The need for extending Dunfield’s original semantics is mostly
due to the generalization of the rule S-TOP in subtyping. In the conference version of this
paper (Huang & Oliveira, 2020) we also discuss a variant of λi (which uses the original
subtyping) and show that such a variant requires no changes to Dunfield’s semantics.

Dunfield’s original reduction rules are presented in Fig 1. We extend her operational
semantics with the following two rules

E E ′ (The extension of Dunfield’s calculus)
DSTEP-TOP

V >

DSTEP-TOPARR

>V >

Rule DSTEP-TOPARR states that the value > can be used as a lambda which returns >,
suggested by the newly added top-like types for arrow types returning Top. Rule DSTEP-
TOP states that any value can be reduced to>, corresponding to A <: Top. Dunfield avoids

30 Taming the Merge Operator

| i | = i
| > | = >

| λx. e : A→ B | = λx. | e |
| fix x. e : A | = fix x. | e |

e : A	=	e		
e1 e2	=	e1		e2
e1 ,, e2	=	e1	,,	e2

Fig. 8. Type erasure for λi expressions.

having a rule DSTEP-TOP by performing a simplifying elaboration step in advance:

Γ `V : Top−→>
DUNFIELD-TYPING-T

With such a rule values of type Top are directly translated into >, and do not need any
further reduction in the target language. We do not have such an elaboration step. Instead
we extend the original semantics with the two rules above.

Type Erasure. Differently from Dunfield’s calculus, λi uses type annotations in its syntax
to obtain a direct operational semantics. | e | erases annotations in term e. By erasing all
annotations, terms in λi can be converted to terms in Dunfield’s calculus (and also the
original λi). The annotation erasure function is defined in Figure 8. Note that for every
value v in λi, | v | is a value as well.

Soundness. Given Dunfield’s extended semantics, we can show a theorem that each step
in the TDOS of λi corresponds to zero, one, or multiple steps in Dunfield’s semantics.

Theorem 5.4 (Soundness of −→ with respect to Dunfield’s semantics). If e−→ e′, then
| e | ∗ | e′ |.

A necessary auxiliary lemma for this theorem is the soundness of typed reduction.

Lemma 5.11 (Soundness of Typed Reduction with respect to Dunfield’s semantics). If
v −→A v′, then | v | ∗ | v′ |.
This lemma shows that although the type information guides the reduction of values, it
does not add additional behavior to values. For example, a merge can step to its left
part (or the right part) with rule TR-MERGEVL (or rule TR-MERGEVR), corresponding
to rule DSTEP-UNMERGEL (or rule DSTEP-UNMERGER). And rule TR-AND (v −→A & B

v1 ,, v2 if v −→A v1 and v −→B v2) can be understood as a combination of splitting
(rule DSTEP-SPLIT V V ,, V) and further reduction on each component separately.

6 A Modular and Algorithmic Formulation of BCD Subtyping

The formalization of λ
+
i in Section 7 is an extension of λi. At the type level, the main

addition of λ
+
i over λi is a more powerful subtyping relation based on BCD subtyp-

ing (Barendregt et al., 1983). In this section, we first revisit BCD subtyping and propose a
new modular and algorithmic formulation of BCD subtyping. This new algorithmic formu-
lation of BCD subtyping is important for the design of the typed reduction relation for λ

+
i .

The most interesting feature in BCD subtyping is its distributivity rule between intersection
and function types. However, such a rule introduces complications and designing sound

X. Huang, J. Zhao, and B. Oliveira 31

A6 B (Original BCD Declarative Subtyping)

OS-REFL

A6 A

OS-TRANS

A6 B B6C

A6C

OS-TOP

A6Top

OS-TOPARR

Top6Top→Top

OS-ARR

B6 A C6D

A→C6 B→D

OS-AND

A6 B A6C

A6 B & C

OS-ANDL

A & B6 A

OS-ANDR

A & B6 B

OS-DISTARR

(A→ B) & (A→C)6 A→ B & C

Fig. 9. Declarative BCD Subtyping

and complete algorithms is tricky. In particular, in previous work (Bi et al., 2018; Pierce,
1989; Bessai et al., 2016, 2019; Siek, 2019), the distributivity rule leads to non-modular
algorithmic formulations where many standard subtyping rules have to be changed due to
distributivity. Furthermore the metatheory of BCD subtyping is challenging.

We propose a novel modular and algorithmic BCD formulation. The key idea is to use
the novel notion of splittable types, which are types that can be split into an intersection of
two simpler types. We show basic properties of our formulation, including transitivity and
inversion lemmas, and conclude that it is sound and complete with respect to the declarative
BCD subtyping. Of particular interest is our transitivity proof. This proof is remarkably
simple in comparison with other proofs in the literature due to a semantic characterization
of types using splittable and ordinary types (Davies & Pfenning, 2000), which is used as
the inductive argument for transitivity.

6.1 BCD Subtyping

The BCD subtyping relation supports intersection types and allows some forms of distribu-
tivity. The original BCD formulation is shown in Figure 9. Most notably BCD subtyping
supports distributivity of intersections over function types using the rule OS-DISTARR.
This rule says that an intersection of two function types A→ B and A→C is a subtype of
a function type A→ B&C. The rule OS-TOPARR is also interesting: in combination with
the transitivity rule, it essentially allows > to be a subtype (and also a supertype) of any
function type returning > (recall also the discussion in Section 4.2). The reflexivity and
transitivity rules are common elements for declarative systems. In this particular system,
the transitivity rule is hard to eliminate, mainly due to the existence of rule OS-DISTARR.

6.2 A Simple and Modular Formulation of BCD with Splittable Types

In order to obtain an algorithm for the BCD subtyping, the transitivity rule must be elim-
inated. As a step towards transitivity elimination, we treat any type A that is equivalent to
an intersection type directly as an equivalent intersection type B & C. If such treatment is
possible, we call A splittable; otherwise A is ordinary.

32 Taming the Merge Operator

A Ordinary (Ordinary Types)

O-BCD-TOP

Top Ordinary

O-BCD-INT

Int Ordinary

O-BCD-ARROW

B Ordinary

A→ B Ordinary

B � A � C (Splittable Types)

SP-AND

A � A & B � B

SP-ARROW

C � B � D

A→C � A→ B � A→D

eAd (Top-like types)

TL-AND

eAd eBd
eA & Bd

TL-TOP

eTopd

TL-ARR

eBd
eA→ Bd

A <: B (Modular BCD Subtyping)

S-BCD-INT

Int <: Int

S-BCD-TOP

B Ordinary eBd
A <: B

S-BCD-ARR

D Ordinary B <: A C <: D

A→C <: B→D

S-BCD-ANDL

C Ordinary A <: C

A & B <: C

S-BCD-ANDR

C Ordinary B <: C

A & B <: C

S-BCD-AND

B � D � C A <: B A <: C

A <: D

Fig. 10. Algorithmic and Modular Subtyping rules

Ordinary Types. Ordinary types (Davies & Pfenning, 2000) have been used in the past
to define algorithmic formulations of subtyping with intersection types (but without dis-
tributivity). At the top of Figure 10 we present the definition of ordinary types for our
formulation. Traditionally an ordinary type is any type that is not an intersection of two
other types. However, in our work, this distinction is more fine-grained, since some func-
tion types may not be ordinary. For a function type to be ordinary its output type must be
ordinary as well.

Splittable Types. The Splittable relation, also shown in Figure 10, can be viewed as taking
an input type A, and returning two types B and C, such that A is equivalent to B & C, i.e.

X. Huang, J. Zhao, and B. Oliveira 33

A <: B & C ∧ B & C <: A. Rule SP-AND splits an intersection type directly. Rule SP-
ARROW splits a function type when its return type is splittable. The reasoning for rule SP-
ARROW is that both A→ B & C <: (A→ B) & (A→C) and (A→ B) & (A→C)<: A→
B & C are derivable in declarative BCD subtyping.

Three important properties related to ordinary and splittable types are:

Lemma 6.1 (Decidability of Ordinary). For any type A, it is decidable wheather A is
ordinary.

Lemma 6.2 (Decidability of Splittable). For any type A, it is decidable wheather A is
splittable.

Lemma 6.3 (Ordinary Types Are Not Splittable). For any ordinary type A, A is not
splittable.

Algorithmic BCD Subtyping. By splitting a type into (nested) intersections of ordinary
types, the distributivity rule in BCD subtyping is no longer problematic. In essence we
normalize the function type produced by distributivity to an equivalent intersection type.

Our new formulation of the subtyping relation A <: B is shown at the bottom of
Figure 10. The main idea with this formulation is that we always split B if possible. In such
case, rule S-BCD-AND is applied, which works in a similar way as rule S-ANDR when D
is already an intersection type, such as D1 & D2. The most interesting case is when D is
a splittable function type. For example, D := D1→ (D21 & D22), and D can be split into
D1→D21 and D1→D22. Therefore, the premises of A <: D are A <: D1→D21 and A <:
D1→D22, or equivalently, A <: (D1→D21) & (D1→D22), which is able to conclude
A <: D with a combination of rule OS-TRANS and rule OS-DISTARR in the declarative
BCD subtyping. In fact, the split of two types already takes rule OS-DISTARR into con-
sideration implicitly, while rule S-BCD-AND combines rule OS-TRANS and rule OS-AND.
All the other rules are straightforward, because we already rule out the possibility that B
is splittable. They look almost identical to standard subtyping rules found in the literature,
modulo the additional ordinary-type conditions marked in gray.

Top-Like Types. Top-like types are defined similarly to the definition in Section 4.2.
Rule S-BCD-TOP says that a top-like type is a supertype of any type, which is equiva-
lent to the declarative rule OS-TOP and rule OS-TOPARR. Although the super type in
rule OS-TOPARR looks different than that of rule TL-ARR, the equivalence is supported
by the transitivity rule. For example, Int→Top and Int→ (Top→Top) are supertypes
(and also subtypes) of Top.

Modularity. A more declarative (and modular) formulation of subtyping is to omit each
ordinary condition in a gray background in Figure 10. Note that here we employ the term
“modularity” to mean that existing subtyping rules do not need to be changed because of a
new feature (in this case distributivity).

Our first observation is that omitting the ordinary-type conditions does not change
expressiveness: the two formulations (with and without ordinary conditions) are proved
to be sound and complete with respect to each other. Thus, compared to the subtyping
relation in Figure 2 (which is not BCD), the modular BCD subtyping rules only modifies
rule S-ANDR to rule S-BCD-AND to enable BCD distributivity. The new subtyping rules
generalize the previous ones.

34 Taming the Merge Operator

It is possible to have an equivalent alternative approach for adding BCD distributivity
(rule S-BCD-AND) without modifying the existing rules. One just needs to keep the old
rule S-ANDR and add rule S-BCD-AND-ALT:

S-ANDR

A1 <: A2 A1 <: A3

A1 <: A2 & A3

S-BCD-AND-ALT

B � E � C
A <: D→ B A <: D→C

A <: D→ E

Additionally top-like types are handled by rule S-BCD-TOP using the top-like relation
(eAd). An alternative to that rule is to use the following two rules:

S-BCD-TOP-ALT

A <: Top

S-BCD-TOP-ALT-ARR

Top <: C

A <: B→C

The first rule is just the standard rule for top types, while the second rule is a special rule
that deal with top-like function types.

Both alternative approaches replace one rule in our modular subtyping relation by two,
while keeping the expressiveness of subtyping unchanged. Rule S-BCD-AND and rule S-
BCD-TOP in our modular BCD subtyping are generalizations of the designs that would use
2 rules instead, which is why we choose them to be in our system.

It is also worth mentioning that our algorithmic relation keeps the simple judgment
form A <: B, thus the system is easier to extend with orthogonal features, which have
been presented with a subtyping relation of that form. Some BCD subtyping formulations
require a different form to the subtyping relation (Bi et al., 2018; Pierce, 1989; Bessai
et al., 2016, 2019).

6.3 Metatheory of Modular BCD

A benefit of our new formulation of BCD subtyping is that the metatheory is remark-
ably simple. The metatheory of BCD subtyping has been a notoriously difficult topic of
research.

Inversion Lemmas. Given that our algorithmic relations are not entirely syntax-directed,
several inversion lemmas indicate that the algorithm behaves similarly to the declarative
system.

Lemma 6.4 (Inversion on Intersection Types). If A <: B & C then A <: B and A <: C.

Lemma 6.5 (Inversion on Split). If C � B � D and A <: B then A <: C and A <: D.

Lemma 6.6 (Inversion on Left Split). If C � B � D and B <: A and A Ordinary then C <: A
and D <: A.

All the above lemmas are easily proven by induction on their first premises.

Transitivity. Since the transitivity rule is eliminated in algorithmic systems, we need to
show that the transitivity lemma holds. This property is critical but difficult for any BCD
formulation without the transitivity axiom built-in.

Lemma 6.7 (Transitivity of Modular BCD). If A <: B and B <: C then A <: C.

X. Huang, J. Zhao, and B. Oliveira 35

`& A (Proper Types)

RTY-INT

`& Int

RTY-TOP

`& Top

RTY-ORDFUN

B Ordinary `& A `& B

`& A→ B

RTY-SPLIT

B � A � C `& B `& C

`& A

Fig. 11. Proper Types

To prove the transitivity lemma, one might try at first to proceed by induction on B.
However, that does not succeed, since our algorithm is not entirely syntax-directed.

To overcome this problem we would like to treat any splittable type similarly to an
intersection type. Therefore, we need a proper characterization of the type structure, so
that the induction hypothesis on splittable types is always as desired. The relation defined
in Figure 11 defines the so-called proper types. Proper types act as an alternative inductive
definition for types, distinguishing types based on whether they are ordinary or splittable.
The following lemma shows that the definition is general: any type is a proper type.

Lemma 6.8 (Types are Proper Types). For any type A, `& A.

With the new definition for types, we are ready to prove the transitivity lemma. Induction
is performed on the relation `& B which is obtained easily on type B through Lemma 6.8.
Int and Top are the base cases that are quite easy. When B is a function type constructed by
rule RTY-ORDFUN, a nested induction on the premise B <: C gives three sub-cases. Sub-
cases rule S-BCD-TOP and rule S-BCD-AND are easy to prove by induction hypothesis.
Sub-case rule S-BCD-ARR is then able to finish by another nested induction on the other
premise A <: B. The last case is that B is a splittable type, where we know that A <: C and
A <: D by Lemma 6.5. If B is directly an intersection type like B1 & B2, a nested induction
on B <: C finishes the proof. The last sub-case is when B is a splittable function type. A
similar nested induction on B <: C solves all cases but rule S-BCD-ARR. For the last sub-
sub-case, Lemma 6.6 divides the subtyping hypotheses into two possibilities, and each one
of them can be shown by the induction hypothesis of the first level.

Equivalence to Declarative BCD. Thanks to the simple judgment form used in our
algorithm, the soundness and completeness theorems are stated directly as follows.

Theorem 6.1 (Soundness of Modular BCD). If A <: B then A6 B.

The soundness theorem only requires the following lemma, which is proven by a routine
induction on the splittable premise.

Lemma 6.9 (Split BCD). If C � B � D and A6C and A6D, then A6 B.

Finally, the completeness theorem is also easy to show with the help of the transitivity
lemma (Lemma 6.7), by induction on the premise.

Theorem 6.2 (Completeness of Modular BCD). If A6 B then A <: B.

36 Taming the Merge Operator

A Ordinary (Ordinary Types)

O-BCD-RCD

B Ordinary

{l : B} Ordinary

eAd (Top-like Types)

TL-RCD

eBd
e{l : B}d

B � A � C (Splittable Types)
SP-RCD

C � B � D

{l : C}� {l : B}� {l : D}

A <: B (Modular BCD Subtyping)
S-BCD-RCD

D Ordinary C <: D

{l : C}<: {l : D}

Fig. 12. The extensions of various definitions in Figure 10 to support records.

To sum up, our novel formulation of BCD subtyping adds the function distributivity
feature in a modular way, and the metatheory is straightforward to establish with the notion
of proper types.

7 The Nested Composition Calculus: Syntax, Subtyping and Typing

In this section, we will introduce the λ
+
i calculus, including its type system and operational

semantics. λ
+
i has record types and supports record concatenation via the merge operator.

While λ
+
i is quite similar to the λi calculus, BCD subtyping empowers λ

+
i so that a merge

of functions (or records) can act as a function (or a record). We will see how this behaviour
leads to changes in the typing and reduction rules.

7.1 Syntax and Typing

The syntax of λ
+
i is:

Type A, B ::= Int | Top | A→ B | A & B | {l : A}
Expr e ::= x | i | > | e : A | e1 e2 | λx.e : A→ B | e1 ,, e2 | fix x. e : A

| {l = e} | e.l
Value v ::= i | > | λx.e : A→ B | v1 ,, v2 | {l = v}
Pre-value u ::= v | e : A | u1 ,, u2 | {l = u}
Context Γ ::= · | Γ, x : A
Values and labels vl ::= v | {l}

Records and Record Types. The addition of records affects definitions at both the term
and type level. {l = e} stands for a single-field record whose label is l and its field is e.
Projection (e.l) selects the field(s) from e with label l. In a record type {l : A}, A is the type
of the field. As discussed in Section 2, records can be concatenated by the merge operator.
A merge of single-field records can be thought as a multi-field record, and therefore can be
used, for example, to model objects. Finally, for the purposes of reduction, a new syntactic
category vl is defined to unify values and labels.

Splittable Types and Subtyping. Figure 12 shows the extension of ordinary types, split-
table types, top-like types, and the modular BCD subtyping to record types. The original
definitions can be found in Figure 10, discussed in Section 6. For each relation, a rule for
record types is added in a modular way. To support distributivity of intersection over record

X. Huang, J. Zhao, and B. Oliveira 37

types via rule S-BCD-AND the definition of splittable types is extended with a new rule,
which states that a record type is splittable if the type of its field is splittable.

Disjointness. The disjointness definition, presented on the top of Figure 13, extends λi’s
definition in Figure 2. It might be a bit surprising that, except for the new record related
rules, the remaining rules are the same as λi’s disjointness definition. The two systems
both respect the specification of disjointness (Definition 3.1), from which we know that if
type A is not disjoint with type B, then it is not disjoint with any subtypes of B. Therefore,
since types in λ

+
i can have more supertypes, its disjointness definition is expected to be

stricter than λi. However, in λi, for arrow types, disjointness only cares about output types.
In other words, the set of all output types in an intersection of arrow types decides the
set of its disjoint types. For (A→ B) & (A→C), if a type is disjoint to it, the type cannot
contain B or C in the return type of any its components. The same criterion applies to types
disjoint from (A→ B & C). Therefore, for (A→ B) & (A→C), the additional supertype
A→ B & C introduced by the distributivity rule in BCD subtyping, brings no extra non-
disjoint type to it. Thus the disjointness definition does not change. What is more, the
extended definition also has the following properties:

Lemma 7.1 (Disjointness properties). Disjointness satisfies:

1. A ∗ B if and only if A ∗a B.
2. if A ∗ (B1→C) then A ∗ (B2→C).
3. if A ∗ B & C then A ∗ B and A ∗C.

Pre-Values and Consistency. As shown in Section 3.5, merges like e : A ,, e : A, could be
produced during reduction, since merged functions both take the input. To type check such
merges, in λ

+
i , we use pre-values to denote a sort of terms including values, annotated

terms, and merges composed by them, and generalize consistency to pre-values. A pre-
value’s type, if it is not a merge, can be told directly from its form without analyzing its
structure. The principal type of a term is the most specific one among all of its types,
i.e. it is the subtype of any other type of the term. The middle of Figure 13 shows the
syntax-directed definition of principal types for pre-values. It is proved that for a well-typed
pre-value with type A, its principal type is A.

Lemma 7.2 (Principal Types). For any pre-value u,

1. if u : A and · ` u ⇒ B, then A = B.
2. if · ` u ⇒ A then u : A.

Recall that the intuition of consistency is to allow two terms in a merge if they have
disjoint types or their overlapped parts are equal. In λi, only values can be consistent,
and the specification of consistency relies on typed reduction, which is hard to extend
to expressions. To extend consistency to pre-values, we now use an inductive relation to
define consistency, where principal types are used to simplify the definition. Consistency
is showed on the bottom of Figure 13. Notably, for values, the definition is sound and
complete with respect to the specification (Definition 3.2).

Theorem 7.1 (Soundness and completeness of consistency definition). For all well-typed
value v1 and v2, v1 ≈ v2 if and only if v1 ≈spec v2.

38 Taming the Merge Operator

A ∗a B (Algorithmic Disjointness (Extension for records))

D-RCDEQ

A ∗a B

{l : A} ∗a {l : B}

D-RCDNEQ

l1 6= l2
{l1 : A} ∗a {l2 : B}

D-INTRCD

Int ∗a {l : A}

D-RCDINT

{l : A} ∗a Int

D-ARRRCD

A1→ A2 ∗a {l : A}

D-RCDARR

{l : A} ∗a A1→ A2

u : A (Principal Type of Pre-Values)

PT-TOP

> : Top

PT-INT

i : Int

PT-LAM

(λx. e : A→ B) : (A→ B)

PT-RCD

u : A

{l = u} : {l : A}

PT-ANNO

(e : A) : A

PT-MERGE

u1 : A u2 : B

(u1 ,, u2) : (A & B)

u1 ≈ u2 (Consistency)

C-LIT

i≈ i

C-ABS

λx. e : A→ B1 ≈ λx. e : A→ B2

C-ANNO

e : A≈ e : B

C-RCD

u1 ≈ u2

{l = u1} ≈ {l = u2}

C-DISJOINT

u1 : A u2 : B A ∗a B

u1 ≈ u2

C-MERGEL

u1 ≈ u u2 ≈ u

u1 ,, u2 ≈ u

C-MERGER

u≈ u1 u≈ u2

u≈ u1 ,, u2

Fig. 13. The disjointness extension to the definition in Figure 2, principal types and
consistency of pre-values in λ

+
i .

Typing and Applicative Distributivity. Figure 14 presents the extension of typing and
applicative distributivity. The initial definitions can be found in Figure 3. Applicative
distributivity is extended in two dimensions. One is to treat record types as one of the
applicative forms. Thus record types and intersections of them are related to record types.
And Top relates to {l : Top} as well as Top→Top. The other is about distributivity over
intersections, as rule AD-ANDARR and rule AD-ANDRCD show.

Typing relies on applicative distributivity. Due to the distributivity and top-like types,
in rule TYP-APP and rule TYP-BCD-PROJ, where a term is expected to play the role of a
function or record, its inferred type is allowed to be Top, or (in λ

+
i) an intersection type.

Assuming that a term e1 of type (Int→ Int) & (Bool→Bool) is applied to term e2, via this
relation, we can derive that e2 should be checked against type Int & Bool. Besides this, two
new rules are added for records and record projection: rule TYP-BCD-RCD and rule TYP-
BCD-PROJ. Moreover, rule TYP-BCD-MERGEV is generalized from values to pre-values.
Thus, merges like e : A ,, e : A are well-typed in λ

+
i .

X. Huang, J. Zhao, and B. Oliveira 39

A � B (Applicative Distributivity (λ+
i Extension))

AD-RCD

{l : A}� {l : A}

AD-TOPRCD

Top � {l : Top}

AD-ANDRCD

A � {l : A2} B � {l : B2}
A & B � {l : A2 & B2}

AD-ANDARR

A � A1→ A2 B � B1→ B2

A & B � A1 & B1→ A2 & B2

Γ ` e ⇔ A (Bidirectional Typing (λ+
i Extension))

TYP-BCD-RCD

Γ ` e ⇒ A

Γ ` {l = e} ⇒ {l : A}

TYP-BCD-PROJ

Γ ` e ⇒ A A � {l : C}
Γ ` e.l ⇒ C

TYP-BCD-MERGEV

· ` u1 ⇒ A
· ` u2 ⇒ B u1 ≈ u2

Γ ` u1 ,, u2 ⇒ A & B

Fig. 14. Typing and applicative distributivity extension for λ
+
i . It extends Figure 3.

v −→A v′ (Typed Reduction (λ+
i Extension))

TR-BCD-RCD

A Ordinary ¬eAd v −→A v′

{l = v} −→{l:A} {l = v′}

TR-BCD-ARROW

D Ordinary

¬eDd C <: A B <: D

λx. e : A→ B −→(C→D) λx. e : A→D

TR-BCD-AND

B � A � C v −→B v1 v −→C v2

v −→A v1 ,, v2

Fig. 15. The extension of typed reduction for λ
+
i . It extends Figure 5.

7.2 Operational Semantics

Typed Reduction. Compared with λi, the new typed reduction has one more rule for
records, and two rules that change, as shown in Figure 15. An additional condition is added
in rule TR-BCD-ARROW to make sure that it only applies to ordinary arrow types. The con-
dition is unnecessary in λi because every arrow type there is ordinary. Rule TR-BCD-RCD

mimics the arrow rule. Rule TR-BCD-AND works on splittable types, so now it needs
to take care of more types than just intersections. Although we choose to merge the two
results of the splitted types, there are some other alternative options. One possible design is
to construct a lambda from the results. Therefore, we could prevent merges from being the
inhabitants of arrow types. However, manipulating the lambda body breaks the transitivity
of typed reduction, which plays an important role in our metatheory.

Parallel Application and Reduction of Merges. The distributivity rule in BCD subtyping
indicates that a merge of functions can be applied. While the current typing rule can check

40 Taming the Merge Operator

v • vl−→ e (Parallel Application)
PAPP-ABS

v −→A v′

λx. e : A→ B • v−→ (e[x 7→ v′]) : B

PAPP-PROJ

{l = v} • {l} −→ v

PAPP-TOP

> • vl−→>

PAPP-MERGE

v1 • vl−→ e1 v2 • vl−→ e2

(v1 ,, v2) • vl−→ e1 ,, e2

e−→ e′ (Reduction (λ+
i Extension))

STEP-BCD-PAPP

v1 • v2 −→ e

v1 v2 −→ e

STEP-BCD-PROJ

e −→ e′

e.l −→ e′.l

STEP-BCD-PPROJ

v • {l} −→ v′

v.l −→ v′

STEP-BCD-MERGE

e1 −→ e′1 e2 −→ e′2
e1 ,, e2 −→ e′1 ,, e′2

STEP-BCD-MERGEL

e1 −→ e′1
e1 ,, v2 −→ e′1 ,, v2

STEP-BCD-MERGER

e2 −→ e′2
v1 ,, e2 −→ v1 ,, e′2

Fig. 16. Parallel application and the extension of reduction in λ
+
i

such applications with suitable annotations, designing new reduction rules is necessary. An
intuitive solution is to have a rule that distributes the input value, like

(v1 ,, v2) v−→ v1 v ,, v2 v

Assuming that v1 and v2 are consistent but not disjoint, to obtain preservation, v1 v and
v2 v have to be consistent. To avoid the complexity of extending consistency to expres-
sions including applications, we design parallel application (Figure 16) to distribute and
substitute the input value in a big-step style, where a function application is divided into
two parts v and vl, and steps to an expression e. Consider a merge of three functions being
applied to a value. Compared to adding the previous single rule to the small-step reduc-
tion, parallel reduction helps us to “jump” from (f1 ,, f2 ,, f3) v to a merge of annotated
terms when reasoning about reduction. Every lambda gets the input directly without inter-
mediate reduction steps such as ((f1 ,, f2) v) ,, f3 v. Record projection is handled in a similar
style. In this case, v is a record value, and vl stands for a label instead.

{l = 1} ,, ({l = True} ,, {l = 1}) • {l} −→ 1 ,, (True ,, 1)

The above example shows how merged records are projected in parallel, and the whole
term is kept consistent. Rule PAPP-TOP shows that the top value can be used as a function
which returns >, or a record which contains > in its field. To maintain the consistency
in a merge (which may contain non-values), for the purpose of type preservation, besides
parallel application, the evaluation of every component in a merge is done simultaneously.
Therefore, in λ

+
i , there are three reduction rules for merges, instead of the original two

merge rules. The extension of reduction is shown in Figure 16.

X. Huang, J. Zhao, and B. Oliveira 41

A� B (BCD Runtime Subtyping (λ+
i Extension))

RSUB-BCD-RCD

A� B

{l : A}� {l : B}

RSUB-BCD-TOP

A Ordinary eAd
Top� A

RSUB-BCD-SPLIT

A1 � A � A2

B1 � B � B2 A1� B1 A2� B2

A� B

Fig. 17. Runtime Subtyping in λ
+
i

7.3 Metatheory

Completeness of the type system with respect to NeColus Calculus. Besides the extra
rule for consistent merges (rule TYP-BCD-MERGEV), λ

+
i has two different rules for record

projection and function application when compared with the type system of NeColus.

Γ `n e⇔ A (NeColus Typing (Selected))

NEC-T-APP

Γ `n e1⇒ A1→ A2 Γ `n e2⇐ A1

Γ `n e1 e2⇒ A2

NEC-T-PROJ

Γ `n e⇒{l : A}
Γ `n e.l⇒ A

To show that every well-typed term in NeColus can be type checked in λ
+
i , we prove

following lemmas:

Lemma 7.3 (λ+
i application subsumes NeColus’s application). For any expressions e1 and

e2, if Γ ` e1 ⇒ A→ B and Γ ` e2 ⇐ A, then Γ ` e1 e2 ⇒ B.

Lemma 7.4 (λ+
i projection subsumes NeColus’s projection). For any expressions e and

any label l, if Γ ` e ⇒ {l : A}, then Γ ` e.l ⇒ C.

Then it is straightforward that NeColus can be translated into λ
+
i . In our Coq formaliza-

tion we designed an elaboration from NeColus to λ
+
i and proved the completeness of λ

+
i ’s

type system with respect to NeColus.

TDOS. The TDOS of λ
+
i preserves determinism, progress, and subject-reduction. Most of

the proof follows λi’s structure. The runtime subtyping is extended and the newly added
parallel application needs some extra lemmas.

Runtime Subtyping and Preservation. Compared with λi’s Figure 6, λ
+
i ’s runtime sub-

typing has one more rule for record types, and two rules changed for distributivity
(Figure 17). Rule RSUB-BCD-RCD allows a record type to be a runtime subtype of another
record type if their label is the same and the former’s field type is a runtime subtype
of the latter’s. Type A is constrained to be ordinary in rule RSUB-BCD-TOP. Therefore,
Top�Top & Top and A→Top� A→Top & Top are no longer derivable. The change
is to maintain the transitivity of subtyping. As a consequence of the generalization of
rule RSUB-AND to rule RSUB-BCD-SPLIT, an intersection type can be a runtime super-
type of an arrow type. However, A→Top, as an ordinary type, is not a runtime subtype

42 Taming the Merge Operator

of (A→Top) & (A→Top), and that would break transitivity. Since we need rule RSUB-
BCD-SPLIT to help some merges of functions to act as a function, we choose to drop the
unneeded A→Top� A→Top & Top.

Parallel Application. Some extra lemmas about parallel application are proved:

Lemma 7.5 (Type preservation of parallel application on functions). If · ` v1 v2 ⇒ A, and
v1 • v2 −→ e then · ` e ⇒ A.

Lemma 7.6 (Type preservation of parallel application on records). If · ` v1.l ⇒ A, and
v1 • {l} −→ e then · ` e ⇒ A.

For both function application and record projection, parallel reduction preserves the
original type. Furthermore we can prove the following determinism lemmas:

Lemma 7.7 (Determinism of parallel application on functions). If · ` v1 v2 ⇒ A, v1 •
v2 −→ e1, v1 • v2 −→ e2 then e1 = e2.

Lemma 7.8 (Determinism of parallel application on records). If · ` v1.l ⇒ A, v1 • l−→
e1, v1 • l−→ e2 then e1 = e2.

We can also prove the following progress lemmas for parallel application:

Lemma 7.9 (Progress of parallel application on functions). If · ` v1 v2 ⇒ A, then ∃e, v1 •
v2 −→ e.

Lemma 7.10 (Progress of parallel application on records). If · ` v1.l ⇒ A, then ∃e, v1 •
l−→ e.

Finally, based on all the lemmas above, the key properties of reduction can be derived,
including type preservation with runtime subtyping:

Theorem 7.2 (Type preservation of −→ with respect to runtime subtyping). If · ` e ⇒ A,
and e−→ e′ then exists B, · ` e′ ⇒ B and B� A.

And its corollary:

Theorem 7.3 (Type preservation). If · ` e ⇒ A, and e−→ e′ then · ` e′ ⇐ A.

Determinism and progress theorems are proved as well.

Theorem 7.4 (Determinism of −→). If · ` e ⇒ A, e−→ e1, e−→ e2, then e1 = e2.

Theorem 7.5 (Progress of −→). If · ` e ⇒ A, then e is a value or ∃e′, e−→ e′.

8 Related Work

8.1 Calculi with the Merge Operator and a Direct Semantics

Intersection types with a merge operator are a key feature of Reynolds (1988)’ Forsythe
language. Reynolds (1991) also studied a core calculus with similarities to λi. However,
merges in Forsythe are restricted and use a syntactic criterion to determine what merges
are allowed. A merge is permitted only when the second term is a lambda abstraction
or a single field record, which makes the structure of merge always biased. To prevent
potential ambiguity, the latter overrides the former when they overlap. If formalized as a
tree, the right child of every node is a leaf. The only place for primitive types is the leftmost
component. Forsythe follows the standard call-by-name small-step reduction, during which
types are ignored. The reduction rules deal with merges by continuously checking if the

X. Huang, J. Zhao, and B. Oliveira 43

second component can be used in the context (abstractions for application, records for
projection). This simple approach, however, is unable to reduce merges when (multiple)
primitive types are required. Reynolds (1997) admitted this issue in his later work. We
use types to select values from a merge and the disjointness restriction guarantees the
determinism. Therefore the order of a value in a merge is not a deciding factor on whether
the value is used.

The calculus λ& proposed by Castagna et al. (1995) has a restricted version of the
merge operator for functions only. The merge operator is indexed by a list of types of
its components. Its operational semantics uses the runtime types of values to select the
“best approximate” branch of an overloaded function. λ& requires runtime type check-
ing on values, while in TDOS, all type information is present already in type annotations.
Another obvious difference is that λi supports merges of any type (not just functions),
which are useful for applications other than overloading of functions, including: multi-
field extensible records with subtyping (Oliveira et al., 2016); encodings of objects and
traits (Bi & Oliveira, 2018); dynamic mixins (Alpuim et al., 2017); or simple forms of
family polymorphism (Bi et al., 2018).

Several other calculi with intersection types and overloading of functions have been
proposed (Castagna & Xu, 2011; Castagna et al., 2015, 2014), but these calculi do not
support a merge operator, and thus avoid the ambiguity problems caused by the construct.

8.2 Calculi with a Merge Operator and an Elaboration Semantics

Instead of a direct semantics, many recent works (Dunfield, 2014; Oliveira et al., 2016;
Alpuim et al., 2017; Bi et al., 2018, 2019) on intersection types employ an elaboration
semantics, translating merges in the source language to products (or pairs) in a target lan-
guage. With an elaboration semantics the subtyping derivations are coercive (Luo, 1999):
they produce coercion functions that explicitly convert terms of one type to another in the
target language. This idea was first proposed by Dunfield (2014), where she shows how to
elaborate a calculus with intersection and union types and a merge operator to a standard
call-by-value lambda calculus with products and sums. Dunfield also proposed a direct
semantics, which served as inspiration for our own work. However, her direct semantics is
non-deterministic and lacks subject reduction (as discussed in detail in Section 3.1). Unlike
Forsythe and λ&, Dunfield’s calculus has unrestricted merges and allows a merge to work
as an argument. Her calculus is flexible and expressive and can deal with several programs
that are not allowed in Forsythe and λ&.

To remove the ambiguity issues in Dunfield’s work, the original λi calculus (Oliveira
et al., 2016) forbids overlapping in intersections using the disjointness restriction for all
well-formed intersections. In other words, it does not support unrestricted intersections.
Because of this restriction, the proof of coherence in the original λi is still relatively simple.
Likewise, in the following work on the Fi calculus (Alpuim et al., 2017), which extends
λi with disjoint polymorphism, all intersections must be disjoint. However the disjointness
restriction causes difficulties because it breaks stability of type substitutions. Stability is a
desirable property in a polymorphic type system that ensures that if a polymorphic type
is well-formed then any instantiation of that type is also well-formed. Unfortunately, with

44 Taming the Merge Operator

λ,, λi Fi NeColus F+
i λi λ

+
i

Disjointness
Unrestricted Intersections
Determinism or Coherence No Coh. Coh. Coh. Coh. Det. Det.
Coercion Free
Recursion
Direct Semantics
Subject Reduction - - - -
BCD Subtyping

Fig. 18. Summary of intersection calculi with the merge operator.
λ,, stands for Dunfield’s calculus. Note that the left-most λi is the original one by Oliveira

et al. (2016), whereas the rightmost λi is the variant introduced in this paper.
(= yes, = no, - = not applicable)

disjoint intersections only, this property is not true in general. Thus Fi can only prove a
restricted version of stability, which makes its metatheory non-trivial.

Disjointness of all well-formed intersections is only a sufficient (but not necessary)
restriction to ensure an unambiguous semantics. The NeColus calculus (Bi et al., 2018)
relaxes the restriction without introducing ambiguity. In NeColus 1 : Int & Int is allowed,
but the same term is rejected in the original λi. NeColus employs the disjointness restric-
tion only on merges, but otherwise allows unrestricted intersections. Unfortunately, this
comes at a cost: it is much harder to prove coherence of elaboration. Both NeColus and
F+

i (Bi et al., 2019) (a calculus derived from Fi that allows unrestricted intersections) deal
with this problem by establishing coherence using contextual equivalence and a logical
relation (Tait, 1967; Plotkin, 1973; Statman, 1985) to prove it. The proof method, how-
ever, cannot deal with non-terminating programs. In fact none of the existing calculi with
disjoint intersection types supports recursion, which is a severe restriction.

We retain the essence of the power of Dunfield’s calculus (modulo the disjointness
restrictions to rule out ambiguity), and gain benefits from the direct semantics. Figure 18
summarizes the key differences between our work and prior work, focusing on the most
recent work on disjoint intersection types. Note that the row titled “Coercion Free” denotes
whether subtyping generates coercions or not. Our calculi are coercion free, while all other
calculi based on an elaboration semantics employ coercive subtyping. Next, we give more
detail on the advantages of a direct semantics over the elaboration semantics and proof
methods employed in previous work on disjoint intersection types.

Shorter, more Direct Reasoning. Programmers want to understand the meaning of their
programs. A formal semantics can help with this. With our TDOS semantics we can
essentially employ a style similar to equational reasoning in functional programming to
directly reason about programs written in λi. For example, it takes a few reasoning steps
to work out the result of (λx. x + 1 : Int→ Int) (2 ,, ‘c’):

(λx. x + 1 : Int→ Int) (2 ,, ‘c’)
−→ (2 + 1) : Int by STEP-BETA and typed reduction
−→ 3 : Int by STEP-ANNO and arithmetic
−→ 3 by STEP-ANNOV and typed reduction

X. Huang, J. Zhao, and B. Oliveira 45

T-APP

T-ANN
...

· ` (λx. x + 1 : Int→ Int)⇒ Int→ Int λx. x + 1
······

T-SUB

T-MERGE
...

· ` (2 ,, ‘c’)⇒ Int & Char (2 , ‘c’)
·········

SUB-ANDL

Int & Char <: Int fst

· ` (2 ,, ‘c’)⇐ Int fst (2 , ‘c’)
· ` (λx. x + 1 : Int→ Int) (2 ,, ‘c’)⇒ Int (λx. x + 1) (fst (2 , ‘c’))

Fig. 19. Elaboration of (λx. x + 1 : Int→ Int) (2 ,, ‘c’) to a calculus with products.

Here reasoning is easily justifiable from the small-step reduction rules and type-directed
reduction. In fact building tools (such as some form of debugger), that automate such kind
of reasoning should be easy using the TDOS rules.

However, with an elaboration semantics, the (precise) reasoning steps to determine the
final result are much more complex. Firstly the expression has to be translated into the
target language before reducing to a similar target term. Figure 19 shows this elaboration
process in λi, where an expression in the source language is translated into an expression
in a target language with products. The source term (λx. x + 1 : Int→ Int) (2 ,, ‘c’)
is elaborated into the target term (λx. x + 1) (fst (2 , ‘c’)). As we can see the actual
derivation is rather long, so we skip the full steps. Also, for simplicity’s sake, here we
assume the subtyping judgement produces the most straightforward coercion fst. This
elaboration step and the introduction of coercions into the program make it much harder
for programmers to precisely understand the semantics of a program. Moreover while
the coercions inserted in this small expression may not look too bad, in larger programs
the addition of coercions can be a lot more severe, hampering the understanding of the
program. After elaboration we can then use the target language semantics, to determine a
target language value.

(λx. x + 1) (fst (2 , ‘c’))
−→ (λx. x + 1) 2 reduction for application and pairs
−→ 2 + 1 by the beta reduction rule
−→ 3 by arithmetic

A final issue is that sometimes it is not even possible to translate back the value of the target
language into an equivalent “value” on the source. For instance in the NeColus calculus (Bi
et al., 2018) 1 : Int & Int results in (1, 1), which is a pair in the target language. But the
corresponding source value 1 ,, 1 is not typable in NeColus. In essence, with an elabora-
tion, programmers must understand not only the source language, but also the elaboration
process as well as the semantics of the target language, if they want to precisely under-
stand the semantics of a program. Since the main point of semantics is to give clear and
simple rules to understand the meaning of programs, a direct semantics is a better option
for providing such understanding.

46 Taming the Merge Operator

Simpler Proofs of Unambiguity. For calculi with an elaboration semantics, unrestricted
intersections make it harder to prove the coherence. Our λi calculus, on the other hand,
has a deterministic semantics, which implies unambiguity directly. For instance, (1 :
Int & Int) : Int only steps to 1 in λi. But it can be elaborated into two target expressions
in the NeColus calculus corresponding to two typing derivations:

(1 : Int & Int) : Int fst (1, 1)
(1 : Int & Int) : Int snd (1, 1)

Thus the coherence proof needs deeper knowledge about the semantics: the two different
terms are known to both reduce to 1 eventually. Therefore they are related by the logical
relation employed in NeColus for coherence. Things get more complicated for functions.
The following example shows two possible elaborations of the same function. Relating
them requires reasoning inside the binders and a notion of contextual equivalence.

λx. x + 1 : Int & Int→ Int λx. fst x + 1
λx. x + 1 : Int & Int→ Int λx. snd x + 1

Furthermore, the two target expressions above are clearly not equivalent in the general
case. For instance, if we apply them to (1, 2) we get different results. However, the target
expressions will always behave equivalently when applied to arguments elaborated from
the NeColus source calculus. NeColus, forbids terms like (1 , , 2) and thus cannot pro-
duce a target value (1, 2). Because of elaboration and also this deeper form of reasoning
required to show the equivalence of semantics, calculi defined by elaboration require a
lot more infrastructure for the source and target calculi and the elaboration between them,
while in a direct semantics only one calculus is involved and the reasoning required to
prove determinism is quite simple.

Not Limited to Terminating Programs. The (basic) forms of logical relations employed
by NeColus and F+

i has cannot deal with non-terminating programs. In principle, recursion
could be supported by using a step-indexed logical relation (Ahmed, 2006), but this is
left for future work. λi smoothly handles unrestricted intersections and recursion, using
TDOS to reach determinism with a significantly simpler proof method. It also makes other
features that lead to non-terminating programs, such as recursive types, feasible.

8.3 Record Calculi with Record Concatenation and Subtyping

As we have seen, in calculi with disjoint intersection types and records, the merge opera-
tor concatenates records in a symmetric way. However, designing a record concatenation
operator, no matter symmetric or asymmetric, is a difficult problem in calculi with subtyp-
ing, as identified by Cardelli & Mitchell (1991). In both cases, a record can “hide” some
fields via subsumption to bypass the restriction on types. Cardelli and Mitchell propose to
use extension and restriction as primitive operators instead of concatenation. They intro-
duce type operators and negative restrictions in record types, so that in their calculus, via
bounded quantification, programmers can declare a polymorphic function which takes any
records lacking certain fields.

Symmetric Concatenation without Subtyping. Harper & Pierce (1991) design a record
calculus with symmetric concatenation. A compatibility check is enforced on types, via

X. Huang, J. Zhao, and B. Oliveira 47

the typing of record concatenation and type-wellformedness definition. This constraint,
which is sometimes called disjointness, prevents concatenated records to have fields in
common. There is no subtyping in the calculus, and its type quantification only takes care
of negative information. For example, Λa#l.a stands for any type that does not have a field
of name l. A disjointness constraint employed by the language Ur proposed by Chlipala
(2010). Ur is dependently typed language with first-class labels, designed for statically-
typed metaprogramming with type inference. It encodes disjoint assertions in guarded
types. The semantics is given by elaboration. Like the previous work with symmetric
concatenation, Ur has no subtyping due to difficulties with ambiguity.

Subtyping-Constraint-Based Calculi. Rémy (1995) and following work by Pottier
(2000) handle both symmetric and asymmetric concatenation in a constraint-based type
system. To deal with record concatenation, type operators or conditional constraints are
used to express two branches: either a field exists or is absent, mirroring the reduction of
program. In subtyping, the type of records are distinguished into two forms: rigid record
types and flexible record types. A rigid record type of a term reflects all fields in it. Rigid
records have no subtyping; but they can be used in a concatenation with another record.
Every rigid record type corresponds to a flexible record type, which has subtypes and
supertypes. However flexible records cannot be used with concatenation. In λi and λ

+
i all

records are flexible and they can be used with concatenation.

Record Calculi as Extensions of System F<:. The F<:ρ calculus proposed by Cardelli
(1992) extends System F<: by extensible records, and combines row quantification used in
the previously discussed Harper & Pierce (1991)’s work with bounded quantification. The
former expresses negative information while the latter only carries positive information.
F<:ρ does not have record concatenation as primitive operator. Instead, it has row extension
and restriction. A translation to F<: is provided. Poll (1997) solves the polymorphic record
update problem in System F with a restricted formulation of subtyping: it only supports
width-subtyping on record types. It has a record-update operator instead of concatenation.
One record-update operation only alters a field in a record. The subtype checking in its
typing rule makes sure the record contains that field of the expected type.

The F# calculus by Zwanenburg (1995) supports intersection types (in its later ver-
sion (Zwanenburg, 1997) intersection types are eliminated) and record concatenation in
a F<:-like system. Similar to λ

+
i , multi-field records are obtained by concatenating single-

field records, and there is a distributivity rule for records in subtyping as well. They use
a “with” construct for record concatenation which is similar to the merge operator. Like
rule TYP-MERGE, the typing of “with” introduces intersections, and it has a compatibility
pre-condiction for the two terms’ types (written as A#B). Only record types or Top can
be compatible. The concatenation operator is asymmetric. When two concatenated records
have the same label, the right one overwrites the left. Correspondingly, two compatible
types can have common fields as long as for those shared fields the right one has a subtype
of the left’s , e.g. {l : Int}#{l : Int}& {l : Char}. In contrast, disjointness is symmetric, and
a type (unless it is top-like) cannot be disjoint with its subtypes, to ensure the two sides
of a merge coexist safely. To prevent the issue of subsumption “hiding” fields of differ-
ent types the compatibility checking, they require explicit annotations on merged records.
These annotations are used during elaboration to a target calculus, therefore affecting the

48 Taming the Merge Operator

program behaviour, like in our calculus. The semantics of F# is given by elaborating into
system F with pairs and records. In this sense, it predates Dunfield’s work. Concatenated
records are translated into pairs, where a special “overwriter” function, generated by the
compatibility derivation, is applied to update the overlapped fields in the first record by the
second one. In Zwanenburg (1995)’s work coherence is left for future work.

8.4 Languages and Calculi with Type-Dependent Semantics

Typed Operational Semantics. Goguen (1994) uses types in his reduction, similarly
to typed reduction in λi. However, Goguen’s typed operational semantics is designed
for studying meta-theoretic properties, especially strong normalization, and is not aimed
to describe type-dependent semantics. Unlike TDOS, in typed operational semantics
the reduction process does not use the additional type information to guide reduction.
Instead, the combination of well-typedness and computation provides inversion princi-
ples for proving various metatheoretical properties. Typed operational semantics has been
applied to several systems. These include simply typed lambda calculi (Goguen, 1995),
calculi with dependent types (Goguen, 1994; Feng & Luo, 2009) and higher-order sub-
typing (Compagnoni & Goguen, 2003). Note that the semantics of these systems does not
depend on typing, and the untyped (type-erased) reduction relations are still presented to
describe how to evaluate programs.

Type classes (Wadler & Blott, 1989; Kaes, 1988) are an approach to parametric over-
loading used in languages like Haskell. The commonly adopted compilation strategy for
it is the dictionary passing style elaboration (Wadler & Blott, 1989; Hall et al., 1996;
Chakravarty et al., 2005a,b). Other mechanisms inspired by type classes, such as Scala’s
implicits (Oliveira et al., 2010), Agda’s instance arguments (Devriese & Piessens, 2011) or
Ocaml’s modular implicits (White et al., 2014) have an elaboration semantics as well. In
one of the pioneering works of type classes, Kaes (1988) gives two formulations for a direct
operational semantics. One of them decides the concrete type of the instance of overloaded
functions at run-time, by analyzing all arguments after evaluating them. In both Kaes’ work
and a following work by Odersky et al. (1995), the run-time semantics has some restric-
tions with respect to type classes. For example, overloading on return types (needed for
example for the read function in Haskell) is not supported. Interestingly, the semantics of
λi allows overloading on return types, which is used whenever two functions coexist on a
merge.

Gradual typing (Siek & Taha, 2006) has become popular over the last few years. Gradual
typing is another example of a type-dependent mechanism, since the success or not of
an (implicit) cast may depend on the particular type used for the implicit cast. Thus the
semantics of a gradually typed language is type-dependent. Like other type-dependent
mechanisms the semantics of gradually typed source languages is usually given by a (type-
dependent) elaboration semantics into a cast calculus, such as the Blame calculus (Wadler
& Findler, 2009) or the Threesome calculus (Siek & Wadler, 2010).

Multiple dispatching (Clifton et al., 2000; Chambers & Chen, 1999; Muschevici et al.,
2008; Park et al., 2019) generalizes object-oriented dynamic dispatch to determine the
overloaded method to invoke based on the runtime type of all its arguments. Similarly

X. Huang, J. Zhao, and B. Oliveira 49

to TDOS, much of the type information is recovered from type annotations in multiple
dispatching mechanisms, but, unlike TDOS, they only use input types to determine the
semantics.

8.5 BCD Subtyping Algorithms

Pierce (1989) developed an algorithm for a form of subtyping close to BCD subtyping
using a queue of types. Their algorithmic decision procedure le(σ , τ, τ) is equivalent to the
declarative judgment σ ≤ τ→ τ , where τ is the queue, containing known argument types
of the right-hand-side function type. When τ is a function type τ1→ τ2, its argument type
τ1 is added to the queue. When σ is an intersection type σ1 & σ2, the queue is duplicated
on both sub-branches in order to reflect the distributivity rule, by distributing the argument
types to both components of an intersection type. The rule for function types, top types and
intersection types then take care of argument types in the queue. Bi et al. (2018) adapted
Pierce’s algorithm to BCD algorithm and extended it with record types without major
difficulties, while discovering logical flaws in the original work.

The decidability of BCD subtyping is shown in several other works (Kurata &
Takahashi, 1995; Rehof & Urzyczyn, 2011; Statman, 2015) through manual proofs, and
there are also proofs formalized in Coq (Laurent, 2012; Bessai et al., 2016). Bessai et al.
(2019) developed a fast algorithm verified by Coq. Their algorithm is presented as a rela-
tional abstract machine specification, with a long proof due to the mismatch between
the styles of the declarative system and algorithmic system. In contrast, our algorithm
is defined in a simple relational form, keeping the modularity of existing rules, resulting
in a novel, simple and concise formulation of the metatheory for the algorithm. Of course
the two lines of work have quite distinct goals: while we emphasize the modularity and
simplicity of the metatheory, Bessai et al. are interested in a fast algorithm, which justifies
the additional complexity in the metatheory of their approach.

Muehlboeck & Tate (2018) developed a framework for subtyping algorithms with inter-
section and union types. They also showed a variant that supports minimal relevant logic
B+, which is a generalized system with intersection and union types, subsuming BCD sub-
typing. To decide A <: B, they rewrite A with (a generalized version of) rule OS-DISTARR

as much as possible. In contrast, we split B to make the types match. Siek (2019), inspired
by Laurent (2019), proposed a new subtyping system and proved the transitivity lemma
directly. Siek keeps the judgment form A <: B (like us), but most subtyping rules require
changes, and are less modular than our rules. Siek’s transitivity proof involves a size mea-
sure, while we avoid any size measure by using an alternative relation of types (proper
types), which exploits properties of our splittable type relation. Both works formalize the
transitivity property, as well as soundness and completeness to BCD subtyping in proof
assistants.

9 Conclusion

In this work we showed how a type-directed operational semantics allows us to address the
ambiguity problems of calculi with a merge operator. Therefore, with the TDOS approach,
we can answer the question of how to give a direct operational semantics for both the
general merge operator in a setting with intersection types, as well as, calculi with record

50 Taming the Merge Operator

concatenation and subtyping. Both of these problems are well-known to be challenging in
the literature, while at the same time having important practical applications. Compared
with the elaboration approach, having a direct semantics avoids the translation process
and a target calculus. This simplifies both informal and formal reasoning. For instance,
establishing the coherence of elaboration in NeColus (Bi et al., 2018) requires much
more sophistication than obtaining the determinism theorem in λ

+
i . Furthermore the proof

method for coherence in NeColus cannot deal with non-terminating programs, whereas
dealing with recursion is straightforward in λi and λ

+
i . The TDOS approach exploits type

annotations to guide reduction. The key component of TDOS is typed reduction, which
allows values to be further reduced depending on their type.

There are several avenues for future work. In the setting of disjoint intersection types,
an obvious extension is disjoint polymorphism (Alpuim et al., 2017), which adds polymor-
phism into calculi with disjoint intersection types. There are also other refinements and
extensions that are worthwhile exploring. We discuss two of these briefly, next:

First-Class Record Labels. Instead of having two constructs for record and record projec-
tion as our current system does, we believe it is also possible to employ first-class labels.
First-class labels are used in some record calculi with extensible rows (Leijen, 2004).
Record {l = 1} would have type Lab l→ Int in the new setting, where the type Lab l is
the type of label. Therefore, to project a field against the label l we would apply it to a term
of type Lab l. Using first-class labels the parallel application (defined on Figure 16) could
be simplified and unified further. Especially, the syntactic sort vl would not be needed, as
labels would already be values.

Splittable Union Types. Although our calculus does not support union types, splittable
types (defined in Figure 10) have the potential to be extended to union types (A|B). For
example, assume that the rule:

A→C � (A | B)→C � B→C

is added to the existing definition of splittable types. Combined with rule S-BCD-AND,
then the following subtyping statement is derivable:

(A→C) & (B→C)<: (A | B)→C

This means that two functions with the same input type can be merged and act like a
function. Besides this, we believe that it is also possible to add a dual of the rule S-BCD-
AND in the modular BCD subtyping to accomplish more union-related subtyping. We hope
to investigate this further in the future.

Acknowledgements: We are grateful to anonymous reviewers that helped improving the
presentation of our work. This work has been sponsored by Hong Kong Research Grant
Council projects number 17210617 and 17209519.

Conflicts of Interest: None.

X. Huang, J. Zhao, and B. Oliveira 51

References

Ahmed, Amal J. (2006). Step-indexed syntactic logical relations for recursive and quantified types.
Pages 69–83 of: Sestoft, Peter (ed), Programming languages and systems, 15th european sympo-
sium on programming, ESOP 2006, proceedings. Lecture Notes in Computer Science, vol. 3924.
Springer.

Alpuim, João, d. S. Oliveira, Bruno C., & Shi, Zhiyuan. (2017). Disjoint polymorphism. Pages 1–28
of: Yang, Hongseok (ed), Programming languages and systems - 26th european symposium on
programming, ESOP 2017, uppsala, sweden, april 22-29, 2017, proceedings. Lecture Notes in
Computer Science, vol. 10201. Springer.

Barendregt, Henk, Coppo, Mario, & Dezani-Ciancaglini, Mariangiola. (1983). A filter lambda model
and the completeness of type assignment. The journal of symbolic logic, 48(4).

Bessai, Jan, Dudenhefner, Andrej, Düdder, Boris, & Rehof, Jakob. (2016). Extracting a formally
verified subtyping algorithm for intersection types from ideals and filters. Types.

Bessai, Jan, Rehof, Jakob, & Düdder, Boris. (2019). Fast verified bcd subtyping. Pages 356–371.
Bi, Xuan, & Oliveira, Bruno C. d. S. (2018). Typed first-class traits. Pages 9:1–9:28 of: Millstein,

Todd D. (ed), 32nd european conference on object-oriented programming, ECOOP 2018. LIPIcs,
vol. 109. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Bi, Xuan, d. S. Oliveira, Bruno C., & Schrijvers, Tom. (2018). The essence of nested composition.
Pages 22:1–22:33 of: Millstein, Todd D. (ed), 32nd european conference on object-oriented pro-
gramming, ECOOP 2018, july 16-21, 2018, amsterdam, the netherlands. LIPIcs, vol. 109. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

Bi, Xuan, Xie, Ningning, d. S. Oliveira, Bruno C., & Schrijvers, Tom. (2019). Distributive dis-
joint polymorphism for compositional programming. Pages 381–409 of: Caires, Luı́s (ed),
Programming languages and systems - 28th european symposium on programming, ESOP 2019,
prague, czech republic, april 6-11, 2019, proceedings. Lecture Notes in Computer Science, vol.
11423. Springer.

Bracha, Gilad, & Cook, William R. (1990). Mixin-based inheritance. Pages 303–311 of: Yonezawa,
Akinori (ed), Conference on object-oriented programming systems, languages, and applications
/ european conference on object-oriented programming (oopsla/ecoop), ottawa, canada, october
21-25, 1990, proceedings. ACM.

Cardelli, Luca. (1992). Extensible records in a pure calculus of subtyping. Digital. Systems Research
Center.

Cardelli, Luca, & Mitchell, John. (1991). Operations on records. Mathematical structures in
computer science, 1, 3–48.

Cardelli, Luca, & Wegner, Peter. (1985). On understanding types, data abstraction, and polymor-
phism. ACM comput. surv., 17(4), 471–522.

Castagna, Giuseppe, & Xu, Zhiwu. (2011). Set-theoretic foundation of parametric polymorphism and
subtyping. Pages 94–106 of: Chakravarty, Manuel M. T., Hu, Zhenjiang, & Danvy, Olivier (eds),
Proceeding of the 16th ACM SIGPLAN international conference on functional programming,
ICFP 2011, tokyo, japan, september 19-21, 2011. ACM.

Castagna, Giuseppe, Ghelli, Giorgio, & Longo, Giuseppe. (1995). A calculus for overloaded
functions with subtyping. Inf. comput., 117(1), 115–135.

Castagna, Giuseppe, Nguyen, Kim, Xu, Zhiwu, Im, Hyeonseung, Lenglet, Sergueı̈, & Padovani,
Luca. (2014). Polymorphic functions with set-theoretic types: part 1: syntax, semantics, and
evaluation. Pages 5–18 of: Jagannathan, Suresh, & Sewell, Peter (eds), The 41st annual ACM
SIGPLAN-SIGACT symposium on principles of programming languages, POPL ’14, 2014. ACM.

Castagna, Giuseppe, Nguyen, Kim, Xu, Zhiwu, & Abate, Pietro. (2015). Polymorphic functions
with set-theoretic types: Part 2: Local type inference and type reconstruction. Pages 289–
302 of: Rajamani, Sriram K., & Walker, David (eds), Proceedings of the 42nd annual ACM
SIGPLAN-SIGACT symposium on principles of programming languages, POPL 2015, mumbai,
india, january 15-17, 2015. ACM.

52 Taming the Merge Operator

Chakravarty, Manuel M. T., Keller, Gabriele, & Jones, Simon L. Peyton. (2005a). Associated type
synonyms. Pages 241–253 of: Danvy, Olivier, & Pierce, Benjamin C. (eds), Proceedings of the
10th ACM SIGPLAN international conference on functional programming, ICFP 2005, tallinn,
estonia, september 26-28, 2005. ACM.

Chakravarty, Manuel M. T., Keller, Gabriele, Jones, Simon L. Peyton, & Marlow, Simon. (2005b).
Associated types with class. Pages 1–13 of: Palsberg, Jens, & Abadi, Martı́n (eds), Proceedings
of the 32nd ACM SIGPLAN-SIGACT symposium on principles of programming languages, POPL
2005, long beach, california, usa, january 12-14, 2005. ACM.

Chambers, Craig, & Chen, Weimin. (1999). Efficient multiple and predicated dispatching. Pages
238–255 of: Hailpern, Brent, Northrop, Linda M., & Berman, A. Michael (eds), Proceedings
of the 1999 ACM SIGPLAN conference on object-oriented programming systems, languages &
applications (OOPSLA ’99), denver, colorado, usa, november 1-5, 1999. ACM.

Chlipala, Adam. (2010). Ur: statically-typed metaprogramming with type-level record computation.
Acm sigplan notices, 45(6), 122–133.

Clifton, Curtis, Leavens, Gary T., Chambers, Craig, & Millstein, Todd D. (2000). Multijava: modular
open classes and symmetric multiple dispatch for java. Pages 130–145 of: Rosson, Mary Beth, &
Lea, Doug (eds), Proceedings of the 2000 ACM SIGPLAN conference on object-oriented program-
ming systems, languages & applications (OOPSLA 2000), minneapolis, minnesota, usa, october
15-19, 2000. ACM.

Compagnoni, Adriana B., & Goguen, Healfdene. (2003). Typed operational semantics for higher-
order subtyping. Inf. comput., 184(2), 242–297.

Coppo, Mario, Dezani-Ciancaglini, Mariangiola, & Venneri, Betti. (1981). Functional characters of
solvable terms. Math. log. q., 27(2-6), 45–58.

Davies, Rowan, & Pfenning, Frank. (2000). Intersection types and computational effects. Pages
198–208 of: Odersky, Martin, & Wadler, Philip (eds), Proceedings of the fifth ACM SIGPLAN
international conference on functional programming (ICFP ’00), montreal, canada, september
18-21, 2000. ACM.

Devriese, Dominique, & Piessens, Frank. (2011). On the bright side of type classes: instance
arguments in agda. Pages 143–155 of: Chakravarty, Manuel M. T., Hu, Zhenjiang, & Danvy,
Olivier (eds), Proceeding of the 16th ACM SIGPLAN international conference on functional
programming, ICFP 2011, tokyo, japan, september 19-21, 2011. ACM.

Dunfield, Jana. (2014). Elaborating intersection and union types. J. funct. program., 24(2-3), 133–
165.

Dunfield, Jana, & Pfenning, Frank. (2003). Type assignment for intersections and unions in call-by-
value languages. Pages 250–266 of: Gordon, Andrew D. (ed), Foundations of software science
and computational structures, 6th international conference, FOSSACS 2003, warsaw, poland,
proceedings. Lecture Notes in Computer Science, vol. 2620. Springer.

Ernst, Erik. (2001). Family polymorphism. Page 303–326 of: Proceedings of the 15th european
conference on object-oriented programming. ECOOP ’01. Berlin, Heidelberg: Springer-Verlag.

Facebook. (2014). Flow. https://flow.org/.
Feng, Yangyue, & Luo, Zhaohui. (2009). Typed operational semantics for dependent record types.

Pages 30–46 of: Hirschowitz, Tom (ed), Proceedings types for proofs and programs, revised
selected papers, TYPES 2009, aussois, france, 12-15th may 2009. EPTCS, vol. 53.

Flatt, Matthew, Krishnamurthi, Shriram, & Felleisen, Matthias. (1998). Classes and mixins. Pages
171–183 of: MacQueen, David B., & Cardelli, Luca (eds), POPL ’98, proceedings of the 25th
ACM SIGPLAN-SIGACT symposium on principles of programming languages, 1998. ACM.

Freeman, Timothy S., & Pfenning, Frank. (1991). Refinement types for ML. Pages 268–277 of:
Wise, David S. (ed), Proceedings of the ACM sigplan’91 conference on programming language
design and implementation (pldi). ACM.

Goguen, Healfdene. (1994). A typed operational semantics for type theory. Ph.D. thesis, University
of Edinburgh, UK.

https://flow.org/

X. Huang, J. Zhao, and B. Oliveira 53

Goguen, Healfdene. (1995). Typed operational semantics. Pages 186–200 of: Dezani-Ciancaglini,
Mariangiola, & Plotkin, Gordon D. (eds), Typed lambda calculi and applications, second interna-
tional conference on typed lambda calculi and applications, TLCA ’95, 1995, proceedings. Lecture
Notes in Computer Science, vol. 902. Springer.

Hall, Cordelia V., Hammond, Kevin, Jones, Simon L. Peyton, & Wadler, Philip. (1996). Type classes
in haskell. ACM trans. program. lang. syst., 18(2), 109–138.

Harper, Robert, & Pierce, Benjamin. (1991). A record calculus based on symmetric concatena-
tion. Pages 131–142 of: Proceedings of the 18th acm sigplan-sigact symposium on principles of
programming languages.

Huang, Xuejing, & Oliveira, Bruno C. d. S. (2020). A type-directed operational semantics for a cal-
culus with a merge operator. 34th european conference on object-oriented programming, ECOOP
2020. LIPIcs.

Kaes, Stefan. (1988). Parametric overloading in polymorphic programming languages. Pages
131–144 of: Ganzinger, Harald (ed), ESOP ’88, 2nd european symposium on programming,
proceedings. Lecture Notes in Computer Science, vol. 300. Springer.

Kurata, Toshihiko, & Takahashi, Masako. (1995). Decidable properties of intersection type systems.
Page 297–311 of: Proceedings of the second international conference on typed lambda calculi and
applications. TLCA ’95. Springer-Verlag.

Laurent, Olivier. (2012). Intersection types with subtyping by means of cut elimination. Fundamenta
informaticae, 121(1-4), 203–226.

Laurent, Olivier. 2019 (Apr.). Intersection subtyping with constructors. Pages 73–84 of:
Pagani, Michele, & Alves, Sandra (eds), Proceedings twelfth workshop on Developments in
Computational Models and ninth workshop on Intersection Types and Related Systems (DCM
2018 and ITRS 2018). Electronic Proceedings in Theoretical Computer Science, vol. 293.

Leijen, Daan. 2004 (December). First-class labels for extensible rows. Tech. rept. UU-CS-2004-51.
UTCS Technical Report.

Luo, Zhaohui. (1999). Coercive subtyping. J. log. comput., 9(1), 105–130.
Microsoft. (2012). TypeScript. https://www.typescriptlang.org/.
Muehlboeck, Fabian, & Tate, Ross. (2018). Empowering union and intersection types with integrated

subtyping. Proc. ACM program. lang., 2(OOPSLA), 112:1–112:29.
Muschevici, Radu, Potanin, Alex, Tempero, Ewan D., & Noble, James. (2008). Multiple dispatch in

practice. Pages 563–582 of: Harris, Gail E. (ed), Proceedings of the 23rd annual ACM SIGPLAN
conference on object-oriented programming, systems, languages, and applications, OOPSLA
2008, october 19-23, 2008, nashville, tn, USA. ACM.

Odersky, Martin, Wadler, Philip, & Wehr, Martin. (1995). A second look at overloading. Pages 135–
146 of: Williams, John (ed), Proceedings of the seventh international conference on functional
programming languages and computer architecture, FPCA 1995. ACM.

Odersky, Martin, Altherr, Philippe, Cremet, Vincent, Emir, Burak, Maneth, Sebastian, Micheloud,
Stéphane, Mihaylov, Nikolay, Schinz, Michel, Stenman, Erik, & Zenger, Matthias. (2004). An
overview of the Scala programming language. Tech. rept. École Polytechnique Fédérale de
Lausanne.

Oliveira, Bruno C. d. S., Moors, Adriaan, & Odersky, Martin. (2010). Type classes as objects and
implicits. Pages 341–360 of: Cook, William R., Clarke, Siobhán, & Rinard, Martin C. (eds),
Proceedings of the 25th annual ACM SIGPLAN conference on object-oriented programming, sys-
tems, languages, and applications, OOPSLA 2010, october 17-21, 2010, reno/tahoe, nevada, USA.
ACM.

Oliveira, Bruno C. d. S., Shi, Zhiyuan, & Alpuim, João. (2016). Disjoint intersection types. Pages
364–377 of: Garrigue, Jacques, Keller, Gabriele, & Sumii, Eijiro (eds), Proceedings of the 21st
ACM SIGPLAN international conference on functional programming, ICFP 2016, nara, japan,
september 18-22, 2016. ACM.

Palsberg, Jens, & Zhao, Tian. (2004). Type inference for record concatenation and subtyping. Inf.
comput., 189(1), 54–86.

https://www.typescriptlang.org/

54 Taming the Merge Operator

Park, Gyunghee, Hong, Jaemin, Jr., Guy L. Steele, & Ryu, Sukyoung. (2019). Polymorphic
symmetric multiple dispatch with variance. Proc. ACM program. lang., 3(POPL), 11:1–11:28.

Pierce, Benjamin C. 1989 (September). A decision procedure for the subtype relation on intersection
types with bounded variables. Tech. rept.

Pierce, Benjamin C. 1991 (December). Programming with intersection types and bounded
polymorphism. Ph.D. thesis, Carnegie Mellon University.

Pierce, Benjamin C., & Turner, David N. 1998 (January). Local type inference. Pages 252–265 of:
Proceedings of acm symposium on principles of programming languages.

Plotkin, Gordon. (1973). Lambda-definability and logical relations.
Poll, Erik. (1997). System F with width-subtyping and record updating. Pages 439–457 of:

International symposium on theoretical aspects of computer software. Springer.
Pottier, François. (2000). A 3-part type inference engine. Pages 320–335 of: European symposium

on programming. Springer.
Pottinger, Garrel. (1980). A type assignment for the strongly normalizable λ -terms. To hb curry:

essays on combinatory logic, lambda calculus and formalism, 561–577.
RedHat. (2011). Ceylon. https://ceylon-lang.org/.
Rehof, Jakob, & Urzyczyn, Paweł. (2011). Finite combinatory logic with intersection types.

International conference on typed lambda calculi and applications.
Rémy, Didier. (1995). A case study of typechecking with constrained types: Typing record concate-

nation. Presented at the workshop on Advances in types for computer science at the Newton
Institute, Cambridge, UK.

Reynolds, John C. (1988). Preliminary design of the programming language Forsythe. Tech. rept.
CMU-CS-88-159. Carnegie Mellon University.

Reynolds, John C. (1991). The coherence of languages with intersection types. Pages 675–700
of: Ito, Takayasu, & Meyer, Albert R. (eds), Theoretical aspects of computer software, interna-
tional conference TACS ’91, sendai, japan, september 24-27, 1991, proceedings. Lecture Notes in
Computer Science, vol. 526. Springer.

Reynolds, John C. (1997). Design of the programming language Forsythe. Pages 173–233 of:
Algol-like languages. Springer.

Schärli, Nathanael, Ducasse, Stéphane, Nierstrasz, Oscar, & Black, Andrew P. (2003). Traits:
Composable units of behaviour. Pages 248–274 of: Cardelli, Luca (ed), ECOOP 2003 - object-
oriented programming, 17th european conference, proceedings. Lecture Notes in Computer
Science, vol. 2743. Springer.

Siek, Jeremy G. (2019). Transitivity of subtyping for intersection types. Corr, abs / 1906.09709.
Siek, Jeremy G, & Taha, Walid. (2006). Gradual typing for functional languages. Scheme and

functional programming workshop.
Siek, Jeremy G., & Wadler, Philip. (2010). Threesomes, with and without blame. Pages 365–376

of: Hermenegildo, Manuel V., & Palsberg, Jens (eds), Proceedings of the 37th ACM SIGPLAN-
SIGACT symposium on principles of programming languages, POPL 2010, madrid, spain, january
17-23, 2010. ACM.

Statman, Richard. (1985). Logical relations and the typed λ -calculus. Inf. control., 65(2/3), 85–97.
Statman, Rick. (2015). A finite model property for intersection types. Electronic proceedings in

theoretical computer science, 177, 1–9.
Tait, William W. (1967). Intensional interpretations of functionals of finite type I. J. symb. log.,

32(2), 198–212.
Wadler, Philip. (1998). The expression problem. Posted on the java genericity mailing list.
Wadler, Philip, & Blott, Stephen. (1989). How to make ad-hoc polymorphism less ad-hoc. Pages 60–

76 of: Conference record of the sixteenth annual ACM symposium on principles of programming
languages, austin, texas, usa, january 11-13, 1989. ACM Press.

Wadler, Philip, & Findler, Robert Bruce. (2009). Well-typed programs can’t be blamed. Pages 1–16
of: Castagna, Giuseppe (ed), Programming languages and systems, 18th european symposium on
programming, ESOP 2009, york, uk, march 22-29, 2009. proceedings. Lecture Notes in Computer
Science, vol. 5502. Springer.

https://ceylon-lang.org/

X. Huang, J. Zhao, and B. Oliveira 55

White, Leo, Bour, Frédéric, & Yallop, Jeremy. (2014). Modular implicits. Pages 22–63 of: Kiselyov,
Oleg, & Garrigue, Jacques (eds), Proceedings ML family/ocaml users and developers workshops,
ml/ocaml 2014, gothenburg, sweden, september 4-5, 2014. EPTCS, vol. 198.

Wright, Andrew K., & Felleisen, Matthias. (1994). A syntactic approach to type soundness. Inf.
comput., 115(1), 38–94.

Zwanenburg, Jan. (1995). Record concatenation with intersection types.
Zwanenburg, Jan. 1997 (July). A type system for record concatenation and subtyping. Tech. rept.

Eindhoven University of Technology.

	Introduction
	Motivation and Applications of the Merge Operator
	The Merge Operator, Ambiguity and Subtyping
	Typed First-Class Traits
	Nested Composition

	An Overview of the Type-Directed Operational Semantics
	Background: Dunfield's Non-Deterministic Semantics
	A Type-Driven Semantics for Type Preservation
	The Challenges of Functions
	Disjoint Intersection Types and Consistency for Determinism
	The Challenges of Distributivity

	The i Calculus: Syntax, Subtyping and Typing
	Syntax
	Subtyping and Disjointness
	Bidirectional Typing
	Completeness with respect to the Original Type System

	A Type-Directed Operational Semantics for i
	Typed Reduction of Values
	Consistency, Determinism and Type Soundness of Typed Reduction
	Reduction
	Soundness with respect to Dunfield's Operational Semantics

	A Modular and Algorithmic Formulation of BCD Subtyping
	BCD Subtyping
	A Simple and Modular Formulation of BCD with Splittable Types
	Metatheory of Modular BCD

	The Nested Composition Calculus: Syntax, Subtyping and Typing
	Syntax and Typing
	Operational Semantics
	Metatheory

	Related Work
	Calculi with the Merge Operator and a Direct Semantics
	Calculi with a Merge Operator and an Elaboration Semantics
	Record Calculi with Record Concatenation and Subtyping
	Languages and Calculi with Type-Dependent Semantics
	BCD Subtyping Algorithms

	Conclusion

