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Abstract—Deep neural networks (DNNs) have been widely
used in classification tasks. Studies have shown that DNNs
may be fooled by artificial examples known as adversaries. A
common technique for testing the robustness of a classification
is to apply perturbations (such as random noise) to existing
examples and try many of them iteratively, but it is very tedious
and time-consuming. In this paper, we propose a technique to
select adversaries more effectively. We study the vulnerability of
examples by exploiting their class distinguishability. In this way,
we can evaluate the probability of generating adversaries from
each example, and prioritize all the examples accordingly. We
have conducted an empirical study using a classic DNN model
on four common datasets. The results reveal that the vulnerability
of examples has a strong relationship with distinguishability. The
effectiveness of our technique is demonstrated through 98.90 to
99.68% improvements in the F-measure.

I. INTRODUCTION

Deep learning has shown promising results in speech
recognition [1], image recognition [2], and natural language
processing [3].

Deep neural network (DNN for short)is an artificial neural
network system with multiple layers between the input layer
and the output layer. However, most DNNs heavily depend on
the quality of examples since trained DNNs are actually an
effective data representation of a given set of examples. Such
a trained DNN model may fail to classify a new example
correctly in practice. It is important to know whether a DNN
model is reliable. As a result, studies about the vulnerability of
DNN models become popular. Many of them tried to expose
potential errors in a DNN model.

An adversary (also known as an adversarial example) is an
example that the given DNN models cannot classify correctly.

Some previous studies focused on generating adversaries
based on existing examples. Goodfellow et al. [4] proposed a
framework to estimate generative models via an adversarial
process, and many variants have been proposed. They are
called generative adversarial networks (GANs), which form
a popular way to generate adversaries.

Researchers found that they can perturb existing examples to
generate adversaries to test the DNN models and improve their

robustness. Tabacof and Eduardo [5] generated adversaries
for shallow and deep network classifiers on MNIST [6], [7]
and ImageNet [8] datasets and probed the pixel space of
adversaries by using perturbation of various distribution and
intensity.

However, adding too much perturbation can make the
resultant example either meaningless or easily detected by
a defense mechanism [9]. For example, Akhtar et al. [9]
proposed a defense framework appending a pre-input layer
against the adversarial attacks. It is useful to study the minimal
amount of perturbation to achieve DNN attacks. The ad hoc
practice of adding random noise or trying many brute-force
examples may not be sufficient.

Nevertheless, adversaries are seldom easy to find. In
practice, existing work [10], [4], [11] randomly selected
examples from the example set, perturbed them, and used
the generated adversaries to attack a DNN model or improve
its robustness. It often needs a long process of perturbation
trials before a success in obtaining an effective adversary.
Many of them ignored the underlying difference of examples
in responding to perturbation. We realize that instead of
perturbing a long list of examples, it may be more effective if
examples sensitive to perturbation can be picked in advance.

In this paper, we will propose a prioritization tech-
nique named PEACEPACT (for Prioritizing Examples to
AcCElerate Perturbation-Based Adversary generation for
DNN Classification Testing) to tackle the problem. Instead of
perturbing every example from a candidate set, our technique
finds examples that are of high vulnerability to perturbations.
PEACEPACT is a black-box technique, and it works without
knowing the structure of the machine learning model.

First, PEACEPACT collects the probability vectors of original
examples in a given DNN model. Here, a probability
vector indicates the probabilities an example being attributed
to different classes. PEACEPACT next uses the distance
of the probability vectors to compute the vulnerability
values of original examples. Such vulnerability captures the
probability of example class changing after perturbation.
Finally, PEACEPACT ranks the original examples according
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Label:4
(a) one picture

Label:4
(b) another picture

Label:2
(c) an adversary generated from (b)

Fig. 1. Two Pictures and One Adversary

to their vulnerability values. The examples having higher
priorities are expected to be more vulnerable to perturbations
and thus easier to generate adversaries.

A test on dataset MNIST [7] to train a LeNet-5 model shows
that different examples have dissimilar vulnerability levels in
response to perturbations, and the vulnerability is related to the
class distinguishability of each example. Such an observation
matches the basic assumption of our technique. To validate the
effectiveness of PEACEPACT, we use four common datasets to
build up a DNN model. The experiment results show that the
more sensitive an example is to perturbations, the higher a
rank is given by PEACEPACT. It shows that our technique is
effective in finding vulnerable examples.

The main contribution of our work is fourfold.
• First, we conducted an empirical study to confirm that

the vulnerability levels of different examples vary from
one another. As a result, it is necessary to find promising
examples.

• Second, our study also unveiled the relationship between
vulnerability and class distinguishability of examples.

• Third, we proposed a prioritization technique that can
effectively find the examples having higher vulnerability
to perturbations.

• Fourth, we conducted an empirical research to validate
the effectiveness of our technique and evaluate its
robustness.

The rest of the paper is organized as follows. Section II
uses the observations on examples from a common data set
to motivate our work. Section III presents our technique and
elaborates on it in detail. Section IV evaluates our technique
with experiments. We introduce the related work in Section V.
Finally, we conclude our work in Section VI.

II. MOTIVATION

A. A Typical DNN Problem

MNIST [7] is a large database of handwritten digits that are
commonly used for training various image processing systems.

We used MNIST to train LeNet-5 model, randomly chose two
pictures from the data set, and showed them in Figure 1 (a)
and (b). LeNet-5 outputs the probability vectors of the two
pictures as follows.

〈 0, 0, 0, 0, 0.95, 0.01, 0, 0, 0.01, 0.03 〉
〈 0, 0, 0.18, 0, 0.81, 0, 0, 0, 0.01, 0 〉

Let us take the first vector to illustrate. It shows the
classification result of the DNN model with respect to the
first image. The DNN model deems that the probability of the
picture containing a number 4 is 0.95 (i.e., 95%), while the
probabilities it containing a number 5 and 8 are both 0.01 (i.e.,
1%). The only difference is that the DNN has less confidence
(with probability 0.81) to recognize the second picture than
the first one (with probability 0.95).

B. Adversarial Attacks to the Above DNN Model

Fuzz testing [12], [13], [14] is an automated software
testing technique that involves providing invalid, unexpected,
or random data as inputs to a computer program. It is
extensively used to test DNNs. We use fuzz testing to generate
adversaries. For each of the two pictures, we randomly choose
a 2× 2 pixel region and reverse the value of each pixel in the
region. We repeat such a step to generate 50 new pictures for
each picture. Among the 50 new examples generated for the
first picture, there are five adversaries; while eight adversaries
are generated for the second picture.

We have the observation that the effective adversaries with
respect to picture (a) (i.e., Figure 1 (a)) are less than those of
picture (b) (i.e., Figure 1 (b)). We repeated ten times to check
the difference among the numbers of effective adversaries with
respect to picture (a) and picture (b), and always had the same
observations. Moreover, in the ten repeated tests, the effective
adversaries with respect to picture (b) are mostly recognized
as a digit number 2 (shown in Figure 1 (c)).

C. The Inspiration

We attribute such observations to the difference in the
probability vectors of the two pictures.

First, we revisit the probability vectors of the two pictures
and find that DNN has more confidence that picture (a) is
a digit number 4 (95% probability), and less confidence that
picture (b) is a digit number 4 (81% probability). That explains
why it is more difficult to generate adversaries from picture
(a). Our basic understanding is that the more confidently DNN
recognizes an example, the more difficult it is to generate
adversaries from it.

Second, we focus on the probability vector of the second
picture. Though DNN has high confidence that picture (b) is a
digit number 4 (81% probability), it still has nonnegligible
confidence that it is a digit number 2 (18% probability).
That explains why most of the adversaries generated from
picture (b) are mislabeled as a digit number 2. Our basic
understanding is that the less different are the two highest
probabilities with respect to an example, the easier it will be to
generate adversaries from it. If we take the difference between
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the two highest probabilities as a metric to measure the
robustness of the DNN classification in recognizing pictures
(a) and (b), we obtain 0.95− 0.03 = 0.92 and 0.81− 0.18 =
0.63. Apparently, we want to choose picture (b) to generate
adversaries since it seems more vulnerable to noise.

The observation inspires us that examples are sensitive to
noise, and their vulnerabilities may bear a relationship with
their probability vectors. Our basic idea is to (1) collect the
probability vectors of examples, (2) use a distance metric
to assess class distinguishability of examples, (3) reference
it to evaluate the vulnerability of examples, and (4) rank
the examples accordingly with the aim of selecting most
promising candidates for adversary generation.

In next section, we will elaborate on our model to generalize
the basic idea.

III. OUR TECHNIQUE

In this section, we present a novel technique to address the
efficiency of perturbation-based adversary generation against
DNNs.

We have motivated that examples are not equally effective in
generating adversaries. Different from the conventional RAND
technique that applies random examples without distinguishing
one from another, our technique can pick out promising
examples that have higher chances of producing adversaries,
before the actual generation process begins.

A. Problem Settings

We focus on the problem of adversary generation, which
is based on the DNNs with the capability of n-class
classification. We describe the problem in the scenario where
we have a training set S for a DNN model C. Here, all the
examples in S are used to train C. We use si ∈ S to express
an input to C, and use pi to represent the probability vector
produced by C for each given si. This is expressed as:

pi = C(si) (1)

Here, pi is a vector 〈p1i , p2i , . . . , pni 〉. Each element of pi
represents the probability that si is of class 1, 2, . . . , or n.

In practice, such a probability vector can be obtained
by using a SoftMax function, which, as a tradition of
machine learning, takes as input a vector of real numbers,
and normalizes it into a probability distribution consisting
of probabilities proportional to the exponents of the input
numbers. The class of example si is usually determined as:

class(si) = argmax
j

{
pji

}
.

where “argmax” denotes the index of the largest element in
the vector.

Suppose that we are using S as a candidate set and plan
to perturb each example si ∈ S with the aim of generating
adversaries.

In practice, an adversarial attack technique is often used for
such a purpose, which accepts any si as input and modifies
it by adding perturbations. If the class of the modified si is

examples
𝑠1, 𝑠2, … , 𝑠𝑚

probability labels
𝑝1, 𝑝2, … , 𝑝𝑚

vulnerabilities
𝑣1, 𝑣2, … , 𝑣𝑚

𝑠𝑜𝑟𝑡𝑒𝑑 𝑆

Step 1 (Equation (1), Section III.A)

Step 2      (Equation (2), Section III.D)

Step 3
Step 4

Fig. 2. The workflow of our PEACEPACT method

different from class(si), we deem that an adversary is found;
otherwise, the process continues to try another input.

Existing studies focus on developing effective attack
techniques that try examples without differentiating them.
Such a generation process accepts a list of examples, working
on each example sequentially. We realize that the choice of
candidate examples plays an important role in the success of
attacking. Instead of randomly trying all the examples by brute
force, it would be more efficient if we can manage to select
those examples that have high chances to generate adversaries
from. For the purpose of comparison, we let the input of
the adversary generation process be the set of examples in a
random order in the conventional manner, and aim at finding
a ranked list that helps find adversaries more quickly.

In next section, we will propose a novel technique
that prioritizes examples to select promising candidates for
adversary generation.

B. Our PEACEPACT Technique

We design our technique to compute the vulnerability for
each example and rank the examples accordingly.

First, PEACEPACT collects information about the examples
by inputting each example to the DNN model and getting its
probability vector, which determines the class of that example.
PEACEPACT then assesses each probability vector to evaluate
the vulnerability of the corresponding example to attack,
which estimates the possibility of generating adversaries by
introducing perturbation to the example. The higher the value
of vulnerability, the more easily it is deemed to generate
an adversary from the corresponding example. After that, all
examples are sorted according to their vulnerability values
to produce a ranked list such that the examples with higher
vulnerabilities have higher ranks.
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To start the process of our technique, we assume that a
trained model C and a set of candidate examples S are ready.
Figure 2 illustrates the following process, each step of which
is shown using an arrow.
Step 1: Input each examples si ∈ S to C to collect the

probability vector pi;
Step 2: Use a metric to evaluate the vulnerability vi for each

probability vector pi;
Step 3: Sort si in descending order of vi to obtain a ranked

list, based on the results of last step.
In Figure 2, we also use a dashed arrow to show a follow-up

Step 4 that uses the ranked list of si to generate adversaries.
However, it is beyond the scope of the model development.
We next elaborate on each step of PEACEPACT.

C. Step 1 – Data collection

PEACEPACT aims at finding the promising examples.
Without loss of generality, we solely collect the basic
information of the DNN, and use that as input to our technique.

Since PEACEPACT is to evaluate each example si of the
DNN model C, we assume that the probability vectors of si
are also available. As introduced in Section III-A, pi is further
expressed as 〈p1i , p2i , . . . , pni 〉. Here, pji is the probability of
si being of class j.

Note that for any j ∈ [1, n], we have pji ≥ 0 and
∑

pji = 1.
It means that any si belongs to one and only one class.

D. Step 2 – Vulnerability

PEACEPACT evaluates the vulnerability of an example by
perturbing it and assessing how easy to generate an adversary
from it.

Let N stands for the perturbation added to si by an
adversarial attack technique, and ti = si ⊕ N to express the
new example generated. We use the following probability to
capture the vulnerability of si to perturbation N .

vi = Prob
(
class (si) 6= class (ti)

)
(2)

It captures the probability that si is of a different class after
perturbing. “Prob” means the probability.

We next use qi = class(ti) to express the prob-
ability vector of ti according to Equation (1). The
probability in Equation (2) can be further expressed as

Prob

(
argmax

j

{
pji

}
6= argmax

j

{
qji

})
. However, due to the

existence of the quantifier argmax, it is not possible to directly
assess the above probability. Without any wild guess to the
effect of N on class si, we based on the following intuitive
assumption to develop our model.
S1: The less distinguishable are the probabilities p1i , p2i , . . .,

and pni , the more probably will the class inferred from
the example si vary after perturbing.

It is interpreted as follows. For an example si having little
distinguishable probabilities p1i , p

2
i , . . . , p

n
i , it means that all

the probabilities are close to one another. Because adding
perturbation N may have unpredictable impact on each

probability value, it is very likely the class of ti may vary
from that of si. On the contrary, for an example si having
huge distinguishable probabilities, the highest probability is
relatively greater than the other probabilities. It is not easy
to be caught up and very likely still the maximal one after
perturbing. As a result, the class of si may not change.

We reinterpret S1 as vi ∝ ∆(pi). Here, ∆(pi) is the
class distinguishability distance, which calculates the distance
among p1i , p2i , . . ., and pni . We will simply refer to ∆(pi) as
distance when there is no ambiguity.

In next section, we propose the distance metric we used
to measure the class distinguishability, and evaluate the class
distinguishability with respect to an example.

E. Step 3 – Distance metrics
A distance metric ∆ evaluates the vulnerability vi of an

example si, based on the difference among the probabilities
pi with respect to si.

Given the probability vector 〈p1i , p2i , . . . , pni 〉, we define
the distance metric PD in Equation (3).Suppose there are n
values in the given probability vector, PD is the sum of the
probability differences with relevant weights.

PD : ∆(pi) =
n−1∑
j=1

p′
j
i − p′

j+1
i

j
(3)

(4)

Here, 〈p′1i , p′
2
i , . . . , p

′n
i 〉 is the list obtained by sorting 〈p1i ,

p2i , . . . , p
n
i 〉 in descending order. The average of p′1i , p′2i , . . .,

and p′
n
i is denoted as p′i.

F. Step 4 – Sorting the examples
With distance metric PD, we thus evaluate the class

distinguishability of each example si using its probability
vector pi. The less the distance ∆(pi), the less distinguishable
the probabilities p1i , p

2
i , . . . , p

n
i is, and the more vulnerable si

is to noise.
We then sort the examples in ascending order of their

distance values. In such a way, we avoid directly measuring
the vulnerabilities of si on N , and manage to prioritize the
examples susceptible to noise among all examples. In the
resultant ranked list, the examples having high chance to
generate adversaries are given high ranks hopefully.

IV. EVALUATION

This section gives the experiment to verify our technique.
We first describe the experiment design. Then, we introduce
the metrics used to evaluate our technique. Finally, we present
the results of the experiment.

A. Data sets
Our experiment is based on four common data sets, namely

MNIST [7], fashion-MNIST [18] (abbreviated as f-MNIST),
CIFAR-10 [19], and CIFAR-100 [19].

MNIST and f-MNIST are database of handwritten digis.
CIFAR-10 and CIFAR-100 are color images. More detailed
information about the data sets is listed in Table I.
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TABLE I
DATA SETS

Data sets
MNIST f-MNIST CIFAR-10 CIFAR-100

# of samples 70 000 70 000 60 000 60 000
Size of image 28× 28 28× 28 32× 32 32× 32

# of categories 10 10 10 100

TABLE II
MODEL ARCHITECTURES

DNN models Net-1
Convolution + ReLU 5× 5× 64

Max pooling 3× 3

Convolution + ReLU 5× 5× 64

Max pooling 3× 3

Convolution + ReLU 5× 5× 64

Max pooling 3× 3

Fully connected + ReLU 512
Fully connected + ReLU 512
Fully connected + ReLU 192

1) Generation of C: In our experiment, we use the entire
training sets of each dataset to train DNN models. In particular,
we train a classic network model with the four data sets. It
is named Net-1 in the experiment, whose model architecture
is listed out in Table II. For Net-1, there are three groups of
convolution layers, each activated with the Rectifier Linear
Unit (ReLU) function. The size of the convolution layers is
5 × 5 × 64. There is a 3 × 3 max pooling layer following
each convolution layer. After the convolution layers, we use
three full connection layers with dimensions 512, 512, and
192, respectively.

The hyper-parameters used for the four data sets (without
differentiating DNN models) are listed out in Table III. They
are the recommended settings and have been used in existing
previous studies. There are 512 train samples in a train batch.
For MNIST and f-MNIST, we train the model in the learning
rate of 0.1 for 20 epochs. The train process of CIFAR-10 and
CIFAR-100 is exhibited similarly in table III.

B. Relationship between vulnerability and probability of
examples

This test is to understand the correlation between probability
label of examples and their vulnerabilities. We apply
perturbation on each example, and use a metrics Eff to
evaluates its vulnerability to perturbations.

TABLE III
TRAINING PARAMETERS

Data sets
MNIST f-MNIST CIFAR-10 CIFAR-100

Learning rate 0.1 0.1 0.01 0.01
Batch size 512 512 512 512
Epochs 20 20 60 60

Similar to Su et al. [12], we also encode the perturbation
into an optimized array, albeit using a different mechanism.
In the experiment, each perturbation holds x-y coordinates
and RGB value of the perturbation, but modifies four
(2 × 2) pixels. The perturbation is generated by using the
random function numpy.random.random of programming
language Python.

Calculating the ratio of effective adversaries among
generated examples is the straightforward way to evaluate the
vulnerability of examples. The higher the ratio of effective
adversaries generated, the higher the example is vulnerable to
perturbations. For example, given an example si, a DNN C,
and a perturbation technique, M new examples are generated
from si. Among the M new examples, Me of them are
effective adversaries that can fool the given C. The ratio of
effectiveness is calculated as:

Eff(si) =
Me

M
.

In this test, M is set to be 100 throughout the experiment.
After calculating Eff(si) for each example si, we calculate

a distance ∆(pi) for si by using the distance metrics PD, and
compute the correlation between Eff(si) and ∆(pi). If a higher
correlation can be found, the distance metric will be deemed
more reliable to predict the vulnerability of examples.

In our experiment, there are four image datasets and a DNN
model. We conduct an exponential fitting on the relationship
between the distance ∆(pi) and the value of Eff. The fitted
results are also listed out in Table IV, and V. Take the
result of Net-1 on MNIST as example. A function f(x) =

0.49e−90.37x gives the best fitting. We further conduct a
correlation coefficient analysis on the fitting and obtain a
strong correlation of 0.97.

Finally, the conclusion is as follows:

conclusion: Most examples show sensitivity to pertur-
bation. The vulnerability shows a monotone
non-linear inverse relationship with the class
distinguishability distance.

C. Effectiveness comparison with random

This test is designed to answer whether PEACEPACT is
effective in finding the promising examples in terms of
generating effective adversaries. It compares the effectiveness
of our PEACEPACT technique, which prioritizes examples, with
that of the peer RAND technique, which selects examples in a
random manner.

We follow [15] to adopt F-measure, which calculates
the expected number of generations to obtain an effective
adversary. For example, given a list of example candidates L, a
DNN C, and a perturbation technique, the generation process
will (1) perturb the first example to generate M examples; (2)
if none of the M examples is an adversary, the process moves
to the next example in the list and redo (1); (3) otherwise, if
any of the M examples is an adversary, the generation process
stops. Suppose the process stops when operating the M0-th
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TABLE IV
FITTED FUNCTIONS BETWEEN DISTANCE AND EFFECTIVENESS

Net-1
MNIST f(x) = 0.49 · e−90.37x

f-MNIST f(x) = 0.47 · e−13.27x

Cifar-10 f(x) = 0.42 · e−20.76x

Cifar-100 f(x) = 0.43 · e−8.52x

TABLE V
CORRELATION BETWEEN DATA POINTS AND FITTING FUNCTION

Net-1
MNIST 0.97
f-MNIST 0.98
Cifar-10 0.97
Cifar-100 0.97

example, i.e., at least one adversary is generated from it, the
F-measure is calculated as:

F-measure(L) = M0.

The lower the F-measure value, the higher quality the ranked
list of example is of.

In this test, the effectiveness of PEACEPACT and RAND in
revealing adversaries for a DNN is evaluated using the F-
measure. First, we trained the DNN model on four image
datasets. We randomly select 1000 examples to initialize a
set of example candidates SC . We then shuffle SC to obtain
a list of example candidates LR in the RAND manner, and let
PEACEPACT prioritize examples in SC to obtain a ranked list
of example candidates LP . We thus calculate the F-measure
values for LR and LP separately. Note that for each given
examples, we use the attack strategy in above test to generate
M = 100 adversaries, and average the results of ten individual
tests to avoid experiment bias.

Though we expect a lower F-measure value for PEACEPACT
than that of RAND, we are also interested to contrast the
effectiveness of RAND and PEACEPACT. We introduce the
Inc metrics to measure the effective improvement in terms
of F-measure, from RAND to PEACEPACT. The effectiveness
improvement (Inc in short) is calculated as follows,

Inc =
F-measure(LR)− F-measure(LP )

F-measure(LR)
× 100%

A positive Inc value denotes that PEACEPACT is effective
in finding vulnerable examples by prioritizing them first. A
negative Inc value denotes that PEACEPACT has a negative
effectiveness by doing so. A zero-valued Inc denotes that
PEACEPACT has no difference from the random manner.

The experiment results of PEACEPACT and RAND in terms
of F-measure and Inc are shown in Table VI.

Table VI lists out the effectiveness of PEACEPACT and
RAND on each data set and each model. Let us take the
first cell to illustrate. It shows that the results of PEACEPACT
and RAND on the Net-1 model, and the MNIST data set

TABLE VI
CONTRASTING PEACEPACT AND RAND IN F-MEASURE

Net-1

MNIST
PEACEPACT 9.99
RAND 908.52
Inc 98.90%

f-MNIST
PEACEPACT 1.83
RAND 488.45
Inc 99.63%

Cifar-10
PEACEPACT 1.94
RAND 609.31
Inc 99.68%

Cifar-100
PEACEPACT 1.54
RAND 287.74
Inc 99.46%

are 7.13 and 144.82, respectively. It means that, on average,
7.13 and 144.82 examples are needed to be evaluated before
an effective adversary is generated, by PEACEPACT and
RAND, respectively. We further compute the effectiveness
improvement from RAND to PEACEPACT, which is calculated

as Inc =
144.82− 7.13

144.82
× 100% = 95.07%.

We further check the Inc values with respect to all tests
and list them out in Table VI. Our observation is that they
range from 98.90 to 99.68%, which shows that PEACEPACT is
more effective than the random manner in finding vulnerable
examples. Finally, the conclusion as follows:

conclusion: Our technique is effective to select examples
vulnerable to permutations. It empirically shows
98.90 to 99.68% improvements over the
standard random manner.

D. Threats to Validity

The choice of attack strategy, the DNN model, and data sets
could be a threat to validity. Different attack strategies may
use dissimilar perturbations to generate adversaries. Dissimilar
perturbations, such as randomly modifying 4 pixels, may
lead to different observations. We conduct our experiment on
representative image datasets with CNN network. Different
datasets and architectures of models, i.e. speech recognition
and RNN models, may have dissimilar result.

As for the evaluation metrics, we use F-measure [15] to
evaluate our method. It denotes how many test cases are
executed before successfully attacking a system. In order
to judge the effectiveness of distance metrics, an alternative
metric is the weighted average percentage of fault detected
(APFD) [16], [17] in test case prioritization.
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V. RELATED WORK

A. Adversary Generation and Defense

Machine learning models are often vulnerable to adversarial
manipulation of their input intended to cause incorrect
classification [20]. For example, Moosavi-Dezfooli et al. [21]
showed the existence of “universal noise”, fooling a network
classifier on most images.

In order to assist the test of machine learning models, people
design different techniques to generate adversaries. Apart from
GAN [4] mentioned in Section I, there has been much work
on generating adversaries. Tian et al. [22] proposed DeepTest,
which can generate realistic synthetic images by applying
image transformations, scale, shear, and rotation on original
images. Zhang et al. [23] proposed an unsupervised framework
to generate semantic-equivalent adversaries, which are used
to test the consistency of autonomous driving systems across
different scenes.

Most of these adversarial attacks rarely consider which
examples are more likely to survive. Our technique can
effectively prioritize the examples to accelerate the process
of adversary generation. It is able to work with the generation
techniques mentioned above.

The techniques to prevent models from being attacked by
adversaries have been studied.

While defenses that cause obfuscated gradients appear
to survive iterative optimization based attacks, Athalye et
al. [24] found that defenses relying on this effect may be
circumvented. They developed attack strategies to overcome
it. Tramèr et. al. [25] found that adversarial training remains
vulnerable to black-box attacks and introduced “Ensemble
Adversarial Training”, which augments training data with
perturbations transferred from other models. Their techniques
yielded models with strong robustness to black-box attacks.
Akhtar et al. [9] proposed a defense framework against
adversarial attacks generated using universal noise. Bhagoji
et al. [26] proposed to compress input data using Principal
Component Analysis for adversarial robustness. Mekala et
al. [27] applied metamorphic test to detect adversarial attacks.
Distillation was introduced by Hinton et al. [28] as a training
procedure to transfer knowledge of a more complex network
to a smaller network. Papernot et al. [29] exploited the notion
of “distillation” [28] to make DNNs robust against adversarial
attacks.

Since our technique is designed to accelerate adversary
generation, we are also interested in the integrating with
adversary defenses.

B. Test of Machine Learning Models

Apart from generating adversaries, there have been other
strategies of test machine learning models.

Pei et al. [30] proposed the concept of neuron coverage and
the first white-box framework DeepXplore for systematically
testing real-world DL systems to generate test inputs for a
deep learning system. Ma et al. [31] adopted mutation test in
deep learning system. Both the train data and the model are

injected faults, and the quality of test data are evaluated by the
extent to which the injected bugs are detected. Both the work
focuses on white-box test, in which the information of the
structure of neural network is necessary. We do not compare
the effectiveness of our work against theirs, becasue we are
having a black-box technique.

Wu et al. [32] used noise metamorphic relation pattern in the
verification and validation of machine translation and named
entity recognition systems.

C. Prioritization in Regression Testing and Machine Learning

Test case prioritization (TCP) [33], [34] has long been
popular in regression testing with a view to avoiding the
duplication of time and effort. Jiang et al. [35] examined 16
state-of-the-art TCP techniques in statistical fault localization,
and revealed that strategy and time-cost contribute more to
effectiveness than the coverage granularity does.

Prioritization techniques have been utilized in the test of
machine learning methods. Ma et al. [36] proposed a set of
multi-granularity criteria for testing in the DL system, which
could be used in prioritizing tests based on coverage. Byun
et al. [37] prioritized input data based on the analysis of the
DNN’s sentiment, which includes confidence, uncertainty, and
surprise.

The experiment demonstrated that it is useful to reveal the
weakness of model by identifying suspicious inputs. Jiang
et al. [38] prioritized test cases with high loss to accelerate
training of deep learning model.

Jacob et al. [39] utilized greedy algorithm to select
representative subset of data.

Our technique is different from theirs because we prioritize
examples dedicated for adversary generation.

VI. CONCLUSION

DNNs have been widely used in natural language
processing, computer vision, and image recognition. Related
work has shown that they can be fooled by artificial examples
and many attack models have been proposed to generate
such adversaries. A popular trend to test and detect adversary
generation is to try many existing examples by applying
perturbations to them. In practice, such a process can be
improved if vulnerable examples could be given high priority
with the aim of accelerating the generation of adversaries.
However, inadequate studies are carried out in this direction.

In this paper, we studied the correlation between the
vulnerability and the class distinguishability of examples. We
proposed a prioritization technique for DNNs that evaluates
the vulnerability of examples by referencing their class
distinguishability, and prioritize the examples accordingly. We
conducted a controlled experiment on a classic model over
four common datasets. The experimental result confirmed that
examples are sensitive to perturbations and the vulnerability
is related to their class distinguishability. The experiment
also validated the correctness of our technique, and showed
that applying the ranked list of examples generated from our

7



technique can save 98.90 to 99.68% of the generation cost,
compared to the conventional random manner.

One future work is to study the quality of the adversaries
generated and the influence of other distance metrics. Future
work also includes a thorough study on other datasets and
other deep learning models.
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