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Abstract—CUDA is a parallel computing platform and pro-
gramming model for the graphics processing unit (GPU) of
NVIDIA. With CUDA programming, general purpose computing
on GPU (GPGPU) is possible. However, the correctness of CUDA
programs relies on the correctness of CUDA compilers, which is
difficult to test due to its complexity. In this work, we propose
CUDAsmith, a fuzzing framework for CUDA compilers. Our
tool can randomly generate deterministic and valid CUDA kernel
code with several different strategies. Moreover, it adopts random
differential testing and EMI testing techniques to solve the test
oracle problems of CUDA compiler testing. In particular, we
apply live code injection to CUDA compiler testing to help
generate EMI variants. Our fuzzing experiments with both the
NVCC compiler and the LLVM compiler for CUDA have detected
thousands of failures, some of which have been confirmed by
compiler developers. Finally, the cost-effectiveness of CUDAsmith
is also thoroughly evaluated in our fuzzing experiment.

Index Terms—Compiler, compute unified device architecture
(CUDA), differential testing, equivalence modulo inputs (EMI)
testing, fuzzing, general purpose computing on graphics process-
ing unit (GPGPU)

I. INTRODUCTION

Compute unified device architecture (CUDA) is a parallel
computing platform and programming model developed by
NVIDIA for general purpose computing on graphical process-
ing units (GPGPUs). With CUDA, developers can dramatically
speed up computing applications by harnessing the power of
GPUs. The CUDA programming model has successfully accel-
erated computation in different domains such as computational
chemistry, machine learning, bioinformatics, data science, etc.

However, the correctness of the CUDA applications relies
on the correctness of the underlying CUDA compiler. A
bug in the compiler can either lead to compile-time errors
where the compiler fails to generate executable output. Or it
may also lead to runtime errors to silently produce wrong
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executable code. In fact, developers have reported CUDA
compiler bugs in CUDA developer forums [1] as well as in
NVIDIA Developer website [2]. The CUDA compiler bugs
may lead to build failures [3], [4], wrong code generation
failures [5], and timeout failures [6], [7]. This can seriously
affect the productivity of the CUDA application developers.
Therefore, extensive testing of CUDA compiler implementa-
tions is crucial for the flourish of CUDA ecosystem. In this
work, we are focusing on fuzz testing (i.e. fuzzing) techniques
to generate random valid kernels to test CUDA compilers for
failures.

However, there are two challenges for fuzzing CUDA
compilers. The first challenge is to generate effective and
deterministic kernel code as inputs to CUDA compilers. For
a CUDA compiler, it must support the memory hierarchies,
the vector data types, and the synchronization primitives
specified by CUDA programming model. A good fuzzing input
generator must generate kernel code with those features to
fully exercise the compiler under test. The second challenge
is to determine the test oracle when fuzzing CUDA compilers.
Indeed, the output of the compiler is binary code, whose
conformance with the source code is difficult to verify manu-
ally or automatically. Although differential testing techniques
and equivalence modulo inputs (EMI) testing techniques are
reported to be effective to solve the test oracle problem for
compiler testing in previous work [8] [9], there is still no work
on the adaptation of these techniques into the CUDA compiler
testing context. The idea of EMI [9] is to take existing real-
world code and transform it in a systematic way to produce
different, but equivalent variants of the original code for the
same input. In this way, the test oracle problem with compiler
testing can be mitigated. EMI techniques have been recognized
as successful applications of metamorphic testing [10] to C
compilers.

In previous work, Lidbury et al. [8] proposed the CLsmith
tool to fuzz OpenCL compilers. CLsmith used a stochastic
grammar approach to generate valid OpenCL kernels for
fuzzing. Furthermore, they proposed to use differential testing



and dead code mutation (a kind of EMI) to address the test
oracle problem for compiler testing. On the one hand, OpenCL
and CUDA share similar computing architectures targeted at
GPU devices. On the other hand, there are still nontrivial
differences between their execution models. Therefore, CL-
smith cannot be used for CUDA compiler testing directly.
Moreover, we want to further realize live code mutation
strategies (another kind of EMI) to better address the test
oracle problem of compiler testing.

In this work, we propose CUDAsmith!, a fuzzing frame-
work for CUDA compilers. Due to the similarity of CUDA
and OpenCL computation architecture, we choose to adapt the
kernel code generation logic of CLsmith to CUDA execution
model. The CUDAsmith tool can randomly generate deter-
ministic and valid CUDA kernel code based with a scholastic
grammar approach. To solve the test oracle problem of com-
piler testing, in addition to the differential testing and dead
code mutation techniques, CUDAsmith tool also applies the
live code injection mechanisms into CUDA compiler testing
context. Moreover, we have performed a large scale fuzzing
on several versions of NVCC and Clang compilers for CUDA
with different optimization levels. The experimental results
showed that CUDAsmith were effective to detect compiler
errors based on random differential testing. Furthermore, we
have also evaluated CUDAsmith in EMI testing mode, which
is also effective to expose CUDA compiler bugs.

The contributions of this work are three fold. First, we have
proposed an effective fuzzing tool for CUDA compilers by
generating deterministic and valid CUDA kernel code. Second,
we have enabled live code injection techniques to perform
EMI testing on CUDA compilers. Third, we have performed
the first comprehensive fuzzing campaign on CUDA compilers
with different optimization levels, our CUDAsmith tool has
found thousands of CUDA compiler failures in both NVCC
and Clang. The NVCC and Clang compiler developers have
already confirmed several of our reported bugs.

The organization of the remaining sections is as follows.
In Section 2, we will present our tool CUDAsmith in detail,
including both its input generation strategies and test oracle
checking strategies. In section 3, we will perform a com-
prehensive experimental study to evaluate the effectiveness
of CUDAsmith in detecting compiler failures. Then, we will
analyze some NVCC and Clang compiler bugs confirmed by
developers in section 4 followed by the related work in Section
5. Finally, we conclude our work in Section 6.

II. CUDAsSMITH: THE CUDA COMPILER FUZZER

In this section, we first present the general workflow of our
CUDAsmith tool. Then, we will present its kernel function
generation strategies, its differential testing strategy, and its
EMI variants generation strategies.
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Fig. 1. Overview of CUDAsmith Workflow

A. The general workflow of CUDAsmith

The general workflow of CUDAsmith is shown in Figure
1. First, the CUDA kernel generator of the CUDAsmith tool
will randomly generate a pool of CUDA kernel functions.
CUDAsmith can generate CUDA kernels in different mode
with different language features. The default configuration of
CUDAsmith is to use the all mode to generate kernels with
the most comprehensive features. Some of these generated
kernel functions will be fed into the EMI variants generator
to generate EMI variants of the kernel function with dead
code and livecode injection. Both the CUDA kernel functions
and the EMI kernel function variants are respectively merged
with a general host code to generate a mixed host and device
code ready for compilation. Then, CUDAsmith will use the
mixed CUDA code to perform differential testing on different
compiler configurations (i.e., different compiler versions and
optimization options). Furthermore, CUDAsmith will also use
the mixed CUDA code of EMI variants to perform EMI-based
testing. Finally, CUDAsmith will analyze the fuzzing logs to
report build failures, wrong code failures, and timeout failures.
In summary, CUDAsmith combines CUDA program gener-
ation techniques, differential testing techniques, and EMI-
based testing techniques to address the CUDA compiler testing
problem.

B. The Host Code of CUDAsmith

As shown in the Table I below, the host code of CUDAsmith
follows the basic design pattern of the host-side code of
CUDA. It first parse of arguments for launching the kernel
(line 1). Then, it queries the attributes of CUDA device, its
capabilities and memory size (line 2). After that, it creates
the CUDA context and checks whether the number of threads
and the block size are within the maximum limit of the device
(line 3 and 4). Then, it allocates and initializes host and device
memory based on the mode of kernel generation (line 5). At
line 5 to 7, the kernel launch performs its main task: copy
data from host to device, invoke the kernel function, and copy



TABLE I
THE WORKFLOW OF HOST CODE

Parse arguments.

Query device, capability and memory.

Create Context.

Check number of threads and block number.
Allocate host and device memory for different mode.
CuMemcpyHtoD(...) //copy data from host to device
Kernel<<< ... >>> () //invoke kernel function
CuMemcpyDtoH(...) //copy data from device to host
Calculate results.

Release Memory.
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TABLE II
THE MAPPING OF MAJOR API FUNCTIONS IN HOST CODE

CUDA
cudaGetDeviceProperties()
cudaMalloc()
cudaMemcpy()
cudaFree()
Kernel<<< ... >>> ()

OpenCL
clGetDevicelnfo()
clCreateBuffer()
clEnqueueRead(Write)Buffer()
clReleaseMemObj()
clEnqueueNDRangeKernel()

data from device to host. Finally, the launcher calculates the
results and releases the memory.

Within this workflow, the API functions used by CUD-
Asmith and CLsmith are syntactically different. We have
listed the mappings of the key API functions between CUDA
and OpenCL used by host code as shown in Table II. The
API functions in Table II involves device information query,
memory operations, and kernel launch functions. In particular,
the memory manipulation functions and kernel launch func-
tions must be adapted to CUDA specification. Moreover, the
CUDAsmith tool also provides different options when running
different types of kernels. In the host code, the main function
must also parse the options specified by the users to launch
the kernel accordingly.

C. The CUDA kernel function generator

In this section, we will present the technical details of
the CUDA kernel function generator. In general, based on
the syntactic characteristics of the kernel functions generated,
the CUDA kernel function generator can work in different
modes. More specifically, CUDAsmith can generate kernels
in basic mode, vector mode, barrier mode, atomic mode, and
the all mode. The design of different kernel generation modes
follows that of the CLsmith [8] but adapted for CUDA context.
The basic and the vector mode both generate embarrassingly
parallel random kernels. The difference is that the vector mode
will generate and use vector data types within the kernel. The
atomic and barrier modes will generate communicating yet
deterministic kernels. Finally, the all mode is the combination
of the features of all different modes. Each mode will enable
different syntactic characteristics in the generated kernels,
which we will present below in details.

1) Basic mode: Since the execution model of CUDAsmith
and CLsmith is similar, we follow the workflow of the basic
mode of CLsmith to build the basic mode of CUDAsmith.
In basic mode, each thread independently executes the same
logic in the kernel and writes its own result (aggregated with

TABLE III

MAPPING OF EXECUTION MODEL

CUDA OpenCL
Grid NDRange
Thread Block Work Group
Thread Work Item
gridDim get_num_groups()
blockDim get_local_size()
blockIdx get_group_id()
threadIdx get_local_id()
blockIdx*blockDim-+threadldx get_global_id()
gridDim*blockDim get_global_size()
TABLE IV

MAPPING OF MEMORY MODEL

CUDA
Host memory
Global or Device memory
Local memory
Constant memory
Shared memory
Registers

OpenCL
Host memory
Global memory
Global memory
Constant memory
Local memory
Private memory

CRC calculation) into an array called result with its own linear
global id as index. The result array holds the final result after
kernel execution. Therefore, the basic mode represents the
simplest form of data-parallel computing problems.

On the other hand, the execution model of CUDA and
OpenCL also has many differences. Fortunately, there is a
mapping between them, which we summarize in Table III.
For example, the hierarchy of computing unit of CUDA
includes Grid, Thread Block, and Thread, which corresponds
to NDRange, Work Group, and Work Item in OpenCL, respec-
tively. Similarly, the variables describing the size and indices
of computing unit in CUDA also have their counterparts in
OpenCL. Hence, we borrow the workflow of the basic mode of
CLsmith, and then we build the basic mode of CUDAsmith by
referencing the syntax mapping between CUDA and OpenCL.

Another major difference between CUDA and OpenCL is
their memory model. However, because the memory hierar-
chies of CUDA and OpenCL are both abstractions of the
same set of memory resources (such as host memory, graphics
memory, and registers), there is also a mapping between
CUDA and OpenCL in terms of memory model as shown in
Table IV. Based on this memory mapping, we manage to adapt
each memory related kernel code generation in CLsmith into
CUDA coding convention. For example, kernels are decorated
with __global__ in CUDA and with __kernel in OpenCL.
For functions containing device code, CUDA uses __device__
modifier while OpenCL uses no explicit modifier.

After carefully handling the execution model and the mem-
ory model mappings between OpenCL and CUDA (as well
as some other small syntactic differences), CUDAsmith is
able to generate kernels in basic mode conforming to CUDA
programming paradigm.

2) Vector mode: For data-parallel problems, vectors data
types with different dimensions (1D, 2D, and 3D) are fre-
quently used by CUDA programs for parallel processing on
computation units. Therefore, it is important to enhance the



basic mode with vector data types and operations support.
Hence, in vector mode, CUDAsmith aims at generating kernels
with valid vector data types and corresponding operations.

There are several differences between OpenCL and CUDA
in vector support. OpenCL supports signed and unsigned char,
short, int, and long vectors that can be declared as sizes
2, 3, 4, 8, and 16. While CUDA also provides a similar
set of vector data types, the supported vector length only
ranges from 1 to 4. Another difference between CUDA and
OpenCL vector data type is their constructor. CUDA provides
a constructor function of the form make_(typename). For ex-
ample, “make_int2(int x, int y)” will creates a vector of type
int2 with value(x,y). For OpenCL kernels, the constructor is
usually in the form of vector literals such as int2(int x, int y).
Hence, when adapting the kernel generation logic of vector
mode from CLsmith, we must not only control the length of
the vector data types for CUDA, but we also need to change
the vector constructor statements from OpenCL style to CUDA
style.

Moreover, OpenCL also supports built-in operators and
functions for vector datatype while CUDA has no such
support. Hence, we must also handle appropriately in the
generated CUDA kernel in vector mode. Finally, to avoid
undefined behavior arising from vector computations, we still
reused the well-defined “safe math” vector macros realized
within CLsmith in CUDAsmith.

3) Barrier mode: The basic mode and the vector mode only
generate the embarrassingly parallel kernels. But in reality,
different threads often need to communicate or synchronize
after each iteration of computation. The CUDAsmith in barrier
and atomic mode tries to generate such communicating yet
deterministic code.

The basic pattern for barrier mode is simple: the kernel
uses a barrier function (i.e., __syncthreads) just before redis-
tributing the ownership of elements within global or shared
array among threads in a block. The barrier primitive can
ensure race-freedom and deterministic result. An A_offset
value is used by the thread to index into a shared array A for
computation. A 2D array called permutations provides each
thread its unique A_offset value identified by its linear local
id and a random number. The generated code for the ith such
synchronization point is as follows:

__syncthreads ();
A_offset=permutations [rnd; ][ linear_local_id ()];

In this way, each time after thread synchronization, a thread
attains a new A_offset with its own linear thread id and a new
random number for the ith round. The barrier primitive ensures
race freedom upon offset redistribution.

OpenCL uses barrier primitive to synchronize Work Items
within a Work Group. Similarly, CUDA also uses barrier prim-
itive to synchronize Threads within a Thread Block. The differ-
ence is that CUDA uses __syncthreads() while OpenCL uses
barrier() as the barrier primitive. The barrier() primitive in
OpenCL has arguments specifying the memory address space
to perform synchronization. For CUDA, the __syncthreads()

TABLE V
MAPPING OF ATOMIC FUNCTIONS
CUDA OpenCL

atomicAdd atomic_add
atomicSub atomic_sub
atomicCAS | atomic_cmxchg
atomicMin atomic_min
atomicMax atomic_max
atomicInc atomic_inc
atomicDec atomic_dec
atomicAnd atomic_and
atomicOr atomic_or
atomicXor atomic_xor

has no arguments, but it works for both global and shared
variables. Hence, CUDAsmith uses __syncthreads() to re-
place barrier(cl_mem_fence_flags flags) for thread syn-
chronization and declares both global and shared variables to
synchronize on.

4) Atomic mode: The atomic functions are important instru-
ments for threads to synchronize with one another for many-
core computing. Hence, the atomic mode of CUDAsmith aims
at generating communicating yet deterministic kernels with
those atomic functions. Both OpenCL and CUDA provide a
rich set of atomic functions. The mapping between them are
shown in Table V. Each pair of atomic functions in OpenCL
and CUDA provides similar atomic operations, the difference
mainly lies in their function signature.

In particular, the atomic functions in OpenCL explicitly
differentiate the global and local variables. While the atomic
functions for CUDA are applicable to both global and shared
variable in CUDA. Therefore, when generating atomic func-
tion code in CUDAsmith, we must take special care of the
variable types.

Within the kernel generated by CUDAsmith, we use shared
variables as communication vehicles across threads. To avoid
unintended compiler optimizations of shared variable into
registers (accessible by one thread only), we must declare these
shared variables as volatile. However, these atomic functions
cannot directly accept pointers of volatile shared variables as
arguments. Therefore, we choose to write wrapper functions
to perform typecasts on pointers of volatile shared variables
for those atomic functions.

Similar to CLsmith, the atomic mode of CUDAsmith has
two sub-modes: the atomic section mode and the atomic
reduction mode, which we describe in detail as follows.

The workflow of the code generated in the atomic section
mode is similar to that of CLsmith [8]. Basically, CUDAsmith
will randomly insert several atomic sections within the kernel
code. The ith atomic section is shown in the code snippet
below. The rnd; is a random literal value for atomic section
i. The input contains a shared volatile uint value. One and
only one thread within a block will execute the atomic section
guarded by the conditional containing atomicInc based on
thread schedule. Within the atomic section, the thread will
execute the statements and store the result in the variable
result. The result will be added to another shared variable



s of type volatile uint. After the atomic sections, one of the
threads will finally output the result on behalf of the thread
block. Furthermore, different thread block will use different
variables such that they are independent of one another. Hence,
the result of the kernel execution is deterministic for any thread
schedule.

if (atomicInc (input) == rnd;){
/% statements */
atomicAdd (s, result);

}

For atomic reduction mode, the Threads within a Thread
Block first perform an atomic reduction on a volatile shared
variable v and expression i using one of the commutative and
associative atomic operations supported by CUDA: add, min,
max, or, and xor. Then, the threads synchronize via barrier
primitives and one of the threads with local id equal to O
calculates the sum for all threads. Due to the commutability
and associativity of atomic operations, the relative order of
the threads execution will not affect the final result. Hence,
the result is still deterministic.
atomicOp;(&v, expr;);

__syncthreads ();
if (get_linear_local_id ()==0) {sum+=v;}
__syncthreads ();

5) All mode: Finally, the all mode of CUDAsmith is the
combinations of all previous modes for kernel generation.
Therefore, in the all mode, we can generate a deterministic
kernel with most of the CUDA programming features enabled
with a certain probability. Compared with other modes, the
kernel generated by the all mode has a higher probability to
cover compiler code and trigger compiler failures. Note that
the occurrences of different program features are controlled
by probabilities configurable within CUDAsmith. In this way,
CUDAsmith can be configured to generate kernels with high-
lights on different features. It would be interesting to study
the impact of different configurations on the fault detection
ability of the generated kernels in future work.

D. EMI testing with CUDAsmith

To solve the test oracle problem, we further enabled EMI
testing techniques with CUDAsmith. To generate EMI vari-
ants, we inject code into a kernel function produced by
CUDAsmith with two strategies. One strategy is to inject
an Always False Conditional Block (FCB, i.e., dead code
mutation) and the other strategy is to inject always-true guard
(TG, i.e., live code mutation). The dead code mutation is
borrowed from CLsmith while the live code mutation is newly
supported in this work.

1) Injecting always False Conditional Block (FCB): To
generate always false conditional block, we follow the strategy
realized in CLsmith [9] to inject dead code into existing
kernels rather than prune existing dead code from the kernel.
This is because recording CUDA kernel coverage is difficult
and dead code is rare in real world kernels.

For an initial kernel, CUDAsmith first randomly generates
and injects a set of EMI-FCB blocks into it. Then, it prunes the

EMI-FCB blocks according to a set of probabilities to produce
variants of the kernel. This strategy is also used in previous
work in EMI testing [8], [9]. We follow the pruning strategies
of [8] to perform the pruning.

To construct an always false condition block, CUDAsmith
equips a kernel with an additional array parameter called dead
and randomly inserts into the kernel a number of EMI-FCB
blocks, where the ith FCB block to be generated has the
following form:

if (dead[rnd;;1] < dead[rndi2]){
/+ Any statements x/

}

The runtime values of elements of dead are initialized in the
host application so that dead[j] = j, which is unknown to the
CUDA compiler. The predicate of the if statement is designed
to be false: where rnd;; and rnd; > are selected randomly
during program generation to ensure rnd; ;1 > rnd; . In this
way, CUDAsmith can ensure the statements within the EMI
block are dynamically unreachable.

2) Injecting Always True Guard (TG): To inject always true
guard (TG) into an existing kernel, CUDAsmith follows one
of the strategy proposed by [11]. For an existing executed
statement s in the original program, CUDAsmith introduces
an if statement to guard s, of which the predicate p is always
true, (that is, if(p) s; ). This strategy injects live code while
still preserving the original semantics. The construction of
predicate p is the similar to the idea of EMI-FCB but with
an array called live:

The array live is also initialized in host code so that live[j]
= j. The only difference between FCB and TG is that rnd;
and rnd; » are selected randomly during program generation
to ensure rnd; 1 < rnd; 2. In this way, CUDAsmith can ensure
the if statements inserted is always true. Different form FCB,
to ensure simplicity, CUDAsmith will generate only one TG
variant for each original kernel. To ensure the validity of
the kernel code after live code injection, when choosing the
statement s to add always true if statement, CUDAsmith tries
to avoid choosing conditional statements as s.

if(live [rnd;1] < live[rndi2]){
s; /s is an executed statementx/
}

Finally, for both dead code injection and live code injection,
we follow [8] to perform filtering on base kernels to avoid
injection on dead code. Basically, we invert the values of dead
or live array and check whether the execution result of the
kernel is affected to perform filtering. This can help filter out
many ineffective EMI base kernels.

III. EXPERIMENT AND RESULTS ANALYSIS
In this section, we present the details of our experiment as
well as the results analysis.

A. Research Questions

o« RQI: Is differential testing effective to detect CUDA
compiler bugs?



TABLE VI
COMPILER CONFIGURATIONS IN DIFFERENTIAL TESTING

Compiler Version Opt. Options Total Config.
8.0 00, 01, 02, 03 12
NVCC 9.0 00, O1, 02, O3 12
9.2 00, O1, 02, O3 12
Clang 6.0 00, 01, 02, 03 12
7.0 (trunk) | OO0, O1, 02, O3 8

e RQ2: Are EMI techniques effective to detect CUDA

compiler bugs?

e RQ3: Which activity in fuzzing consumes the most time

during compiler testing?

For RQ1, we want to evaluate the effectiveness of differ-
ential testing techniques on detecting CUDA compiler bugs.
For RQ2, we want to evaluate the fault detection ability of
the two EMI techniques: dead code injection and live code
injection. Finally, the compiler testing process involves test
case generation, invalid kernel filtering (for EMI), compilation,
and execution. For RQ3, we want to understand which of these
activities consumes the most time.

B. Experiment setup

We performed our compiler fuzzing experiment on two
workstations and one desktop. Both workstations are equipped
with Intel(R) Xeon(R) CPU E5-2620 and Quadro K2200 while
the desktop is equipped with Intel Core i7-6700 and GeForce
GTX 1060. For operating system, we used Ubuntu 16.04.2
LTS on the workstations and the desktop. We also installed
different versions of NVCC and Clang compilers on these
machines for differential testing.

C. Experiment procedure and compiler configurations

When performing differential testing, we combine compiler
versions with compiler optimization options to form the basic
compilation configurations for comparison. As shown in Table
VI, we use NVCC and Clang compilers in differential testing,
each with different versions and different optimization options.
For NVCC, we use its official released versions 8.0, 9.1, and
9.2. Moreover, there are 4 optimization levels for ptxas, its
PTX optimization assembler. For Clang, we use its official
version 6.0 and the current trunk version (which is version
7.0 to be released). For Clang, the optimization of kernel
code is mainly performed by the LLVM IR optimizer [12] and
the corresponding optimization options are integrated with the
optimization options of Clang. When combined these versions
and options together, we have 12 compiler configurations for
NVCC and 8 compiler configurations for Clang. Hence, for
each kernel generated, we have 20 compilation configurations
used for differential testing in total.

For the FCB mode of EMI testing, we used the EMI module
to generate 40 EMI variants (kernels) for each valid base
kernel produced by CUDAsmith in the all mode. In total, we
generated 1726 valid kernels with CUDAsmith after filtering
invalid ones, and finally had 69 040 EMI variants (kernels)
for testing. When performing EMI testing on each group of

40 EMI variants, we used optimization level O0 for NVCC
9.2 and optimization level O3 for Clang.

For the TG mode of EMI testing, CUDAsmith only gener-
ates one TG variant for each kernel generated by the all mode.
Hence, we generated 76 111 valid base kernels for TG after
filtering. For each of the 76 111 base kernels, we generated a
TG variant for it to conduct EMI testing. For NVCC 9.2, we
used optimization level O0. For the Clang trunk version we
used optimization level O3.

When performing fuzzing, we wanted to use the same input
source files for NVCC and Clang compilers. NVCC supports
both whole program compilation and separate compilation
[13] while Clang only supports the compilation of the whole
program containing mixed host and kernel code [12]. Hence,
we built a general host code and merged it with the kernels
generated by CUDAsmith to form a whole program as the
uniform input to the compilers under test.

For each compiler configurations or EMI variant, we first
compiled the mixed CUDA code and compared their compi-
lations results to detect any build errors at compilation time.
Then, we executed the generated binary files and compared
their outputs. If there were discrepancies among their outputs,
we had successfully triggered a wrong code failure in the com-
piler under test. Since the kernels generated by CUDAsmith
normally took only a few seconds to execute, we set a timeout
of one minute for execution. If the execution of a kernel took
more than one minute, we marked the kernel as triggering
a timeout failure. After that, we manually inspected and re-
executed the same test case to confirm the failure. Finally, we
reduced the failure-triggering kernel for reporting to NVCC
or Clang compiler developers.

D. Answering RQ1

In this section, we first summarize the results for differential
testing. The differential testing results for the NVCC compiler
and the Clang compiler are shown in Table VII and Table VIII,
respectively.

As shown in Table VII, the first three columns show the
compiler configurations including the compiler under test,
the compiler version and the optimization level used dur-
ing fuzzing. While the last four columns show the number
of build failures, the number of wrong code failures, the
number of timeout failures, and the total number of valid
cases for each configuration. When generating test cases,
the total number of test cases were the same for different
configurations. However, a small amount of the test cases (less
than 0.5% on average) were syntactically invalid and removed
after compilation. The last row shows the average numbers
of build failures, wrong codes, timeout failures, and valid test
cases over all configurations. We can find that on average,
the majority of problems detected by differential testing are
wrong code failures, followed by timeout failures. No build
failures are detected on the NVCC compiler. The average
percentages of wrong code and timeout failures are 6.1% and
0.3% on the NVCC compiler. In general, the results show
that wrong code failures are the most prevalent in the NVCC



TABLE VII
RESULTS FOR DIFFERENTIAL TESTING ON NVCC COMPILER

. Opt. Build Wrong .

Version Level | Failure Code Timeout Total
00 0 1583 11 19 429
Ol 0 1583 11 19 430
8.0 02 0 1576 11 19 430
03 0 1576 11 19 430

00 0 579 88 19 473

Ol 0 885 95 19 473

9.0 02 0 153 96 19 473
03 0 161 95 19 473
00 0 1602 87 19 940

Ol 0 1598 87 19 922
9.2 02 0 1599 87 19 924
03 0 1602 87 19 924
Average / 0 1208 64 19 610

compiler. Furthermore, the timeout failure is also an important
problem to pay attention to since it may seriously affect the
performance of the CUDA application.

When comparing different compiler versions, there were
more wrong code failures for NVCC 8.0 and NVCC 9.2
than for NVCC 9.0. In contrast, the numbers of timeout
failures exposed in NVCC 9.0 and NVCC 9.2 are much
higher than NVCC 8.0. Therefore, it seems different compiler
versions have different distributions of failure types. It seems
that NVCC version 9.0 is relatively more stable among the
three versions under test. NVCC version 9.2 seems to have
introduced some new bugs during its feature enhancement.

When we focus on the optimization options, within each
compiler version, different optimization options in general
have similar numbers of failures for a specific failure type.
For example, for NVCC 9.2, the four optimization levels (OO0,
01, 02, and O3) have 1602, 1598, 1599, and 1602 wrong
code failures, which are quite close to one another. There is
an exception for NVCC 9.0, where optimization O0 and Ol
have many more wrong code failures than O2 and O3.

As shown in Table VIII, the meanings of the different
columns for Clang is the same as that in Table VII. On
average, 1120 wrong code failures, 149 timeout failures, and
1 build error are exposed on the Clang compilers for each
compiler configuration. The average percentages of wrong
code and timeout failures are 5.6% and 0.7% for the Clang
compiler, respectively. The percentage of wrong code failures
of Clang is close to that of NVCC but that of the timeout
failures is doubled.

When comparing different compiler versions, the trunk
version in general has many more wrong code failures than
Clang 6.0. This result is consistent with the common devel-
opment scenarios: the trunk version usually introduces more
bugs while adding new features. This is also true for timeout
bugs except for the configuration Clang 6.0 with optimization
level Ol, which has many more timeouts than any other
configuration.

When we focus on the optimization options, within each
compiler version, different optimization levels in general also
have similar numbers of failures for a specific failure type. For

TABLE VIII
RESULTS FOR DIFFERENTIAL TESTING ON CLANG COMPILER
. Optimization Build Wron .
Version P Level Failure Co deg Timeout Total
00 1 595 67 19 940
Ol 1 519 523 19 922
6.0 02 1 500 85 19 924
03 1 497 85 19 924
00 0 1930 118 19 941
trunk [e)} 1 1702 138 19 920
(7.0) 02 1 1603 99 19 729
03 I 1621 82 19 925
Average / 1 1120 149 19 903

example, for the Clang trunk version, the four optimization
levels (00, O1, O2, and O3) have 1930, 1702, 1603, and
1621 wrong code failures, which are quite close. For timeout
failures, the Clang 6.0 with optimization level O0, O2, and
03 have similar numbers, with the exception of O1. For the
Clang trunk version, the optimization level O0 and Ol have
higher numbers of timeouts than the other two optimization
level; however, the difference is small.

Since the number of valid test cases for Clang and NVCC
are close to each other (19 903 versus 19 610), we proceed
to compare them in terms of the number failures exposed. On
average, CUDAsmith exposed similar numbers of wrong code
failures in NVCC (1208) and Clang (1120). Furthermore, the
number of build failures exposed on the two compilers are
both very small. However, CUDAsmith exposed 149 timeout
failures on Clang, which is more than twice the number of
timeout failures (64) exposed on NVCC.

To summarize, the differential testing mode of CUDAsmith
can detect significant numbers of wrong code failures and
timeout failures on both Clang and NVCC compilers. There-
fore, we can answer RQ1 that differential testing is an effective
way to trigger CUDA compiler failures.

E. Answering RQ2

In this section, we will evaluate the effectiveness of EMI
testing on detecting CUDA compiler bugs. For EMI testing,
we have two modes, i.e., FCB and TG. To control the scale of
fuzzing, we have to fix the compiler configurations to specific
setting. For each mode, we perform fuzzing with both the
Clang trunk version (Clang 7.0.7) as well as NVCC version
9.2 (the newest release of CUDA Toolkit at the time of the
experiment). Furthermore, we use the optimization level of O3
for Clang and optimization level O0 for NVCC, respectively.

The EMI fuzzing results are shown in Table IX. The first
two columns show the Compilers and EMI testing modes
while the following four columns have the same meaning as
the table for differential testing. When comparing TG mode
and FCB mode, we can find that FCB mode can expose more
failures than TG mode on both Clang and CUDA. The last
row shows the average number of failures exposed over all
compilers and EMI configurations. We can see that on average,
EMI detected 19 build failures, 14 wrong code failures, and
17 timeout failures with around 72 377 test cases for each



TABLE IX
RESULTS FOR EMI TESTING
. Build Wrong .

Compiler | Mode Failure Code Timeout Total
CUDA TG 0 13 17 76 111
Clang TG 3 5 9 71 877
CUDA FCB 0 27 32 69 040
Clang FCB 72 16 12 72 480
Average / 19 15 20 72 377

compiler version and EMI mode configuration. On the one
hand, the failure detection rate of EMI testing is relatively
small when compared with differential testing. On the other
hand, the EMI testing approach can detect different failures
from differential testing. Indeed, EMI detects many more build
failures than differential testing. A manual analysis on the
wrong code failures and timeout failures detected by EMI and
differential testing shows that most of the bugs found are also
different.

To summarize, the EMI testing mode of CUDAsmith is also
effective to detect different types of CUDA compiler bugs. The
differential testing mode and EMI testing mode of CUDAsmith
are complement to each other in terms of failure detection.

F. Answering RQ3

In this section, we want to understand which activity in the
fuzzing process consumes the most time. Since the compilation
and execution time are highly dependent on the hardware
configuration, we will show the time cost of each activity on
two hardware configurations separately. One hardware config-
uration is our workstation, which is equipped with Intel(R)
Xeon(R) CPU E5-2620 and GPU model Quadro K2200. The
other is a desktop equipped with Intel Core i7-6700 and
GeForce GTX 1060. For each hardware configuration, we
measured the mean time of test case generation, test case
compilation, test case execution, and test case filtering for
10000 test cases. During our fuzzing process, we set a one-
minute timeout for the execution of one test case. In another
word, we will stop the execution process when it takes more
than one minute.

The time cost of different fuzzing activity is shown in Figure
2. The y-axis shows different activities of fuzzing on the
two hardware configurations named with their GPU models,
respectively. The x-axis shows the time cost of different
activities for fuzzing 10000 test cases in minutes. In general,
we can see that on both GPU model, the time costs for test case
generation are both very small. Furthermore, the time costs
for compilation and execution are both much higher than test
case generation. Finally, the filtering cost of EMI FCB mode
is small while the filtering cost of EMI TG mode is relative
large. This is because, for the EMI FCB mode, we only need
to verify the base kernels to check the validity of all kernels
generated. Since we generate 40 kernels for each base kernel,
the cost of filtering for FCB mode is approximately 1/20 of
the time cost of executing all the kernels. For EMI TG mode,
each base kernel will only generate two kernels. Therefore, its

filtering cost is close to the execution cost, which is a little
bit high.

For the desktop with GeForce GTX 1060, the compilation
cost is much higher than the execution or filtering cost. In
contrast, for the desktop with Quadro K2200, the compilation
cost is smaller than execution or filtering cost. This difference
results from the difference in their computation abilities.

On our workstation, it roughly takes 650 minutes to finish
the fuzzing of 10 000 test cases on CUDA compilers in
differential testing (note filtering is not needed). Combining
the 6.1% and 0.3% failure rates for wrong code failures and
timeout failures in differential testing, about 9 wrong code
failures and 0.46 timeout failures can be exposed in every 10
minutes of fuzzing by CUDAsmith on average, which is cost-
effective.

However, compared with the time to perform fuzzing,
reducing the kernels to reproduce the failures (the first step
in debugging) is in fact the most time-consuming activity.
The kernels generated by CUDAsmith are generally large
in size and complex to understand. To make it possible for
developer to debug the compiler bugs, it is crucial to reduce the
failure-triggering kernels as much as possible while ensuring
to reproduce the same failures. However, there is still no
practical tool to do this. We have tried using the Berkeley
delta tool to reduce the kernels. However, the tool is difficult
to terminate during reduction due to the complexity of the
kernels generated. Therefore, we have to manually reduce the
kernels for reporting. Based on our experiences, it may take
more than 14 hours to reduce a single kernel manually, which
is tedious and frustrating. Therefore, we consider it is crucial to
build an effective reducer for failure-triggering CUDA kernels,
which we will leave as future work.

To sum up, the time cost of the CUDAsmith tool is rea-
sonable on our workstation. Considering its failure-triggering
ability, the CUDAsmith tool is in general cost-effective for
practical use on compiler testing. On the other hand, an
effective test case reduction tool for reducing the failure
triggering kernels is desired for debugging.

IV. ANALYSIS OF COMPILER BUGS DETECTED

In this section, we will analyze some of the confirmed
compiler bugs by NVCC or Clang developers detected by
CUDAsmith.

A. Wrong code bug with vector data type

During differential testing, we have identified one wrong
code bug related to logical operations on vector data type
in CUDA Toolkit versions 9.0 and 9.1 when performing
differential testing. The results on CUDA Toolkit version 8.0
and on Clang were correct. Using nontrivial manual effort, we
managed to reduce the failure-triggering test case into a small
code snippet for filing bugs to CUDA development community
[14]. The NVIDIA developers later confirmed the bug. They
planned to fix the bug in future releases.

The reduced failure triggering code snippet is shown in the
listing below. At line 1, the variable val is assigned with a
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value. Then, at line 2, we build a 2D vector < 10,2 > with
make_int2 and perform OR operation with val. The expected
value for a is 1 since y is 2. However, during our fuzzing, the
value of a is 2. At line 3, we build another 2D vector < 10,0 >
with make_int2 and perform OR operation with val. Since
the y component of the vector is 0, the value of b should be
dependent on val. However, the value of b is always O when the
code is compiled with NVCC versions 9.0 and 9.1. We have
also tested 4D vectors with make_int4 with the same operation,
and similar bugs also manifested on the y, z, w component of
the 4D vector. The workaround provided by NVIDIA experts
was to first store the vector value into a nonconstant temporary
variable and then perform logical operation on the variable.

1. int val = SOME_VAL;
int a = make_int2(10,2).y || val;
//the expected value of a is 1.
//However, the actual value is 2.
3. int b = make_int2(10,0).y || val;
// The value of b is always O.
//However, when val is 1,
//b is expected to be 1.

B. Wrong code with ptxas tool within NVCC 8.0

We also identified a bug with ptxas tool within NVCC 8.0.
When performing differential testing on the front end of the
Clang compiler, CUDAsmith triggered a wrong code bug with
ptxas at optimization level “-O1”. Note the Clang compiler
just provides the front end to compile CUDA source code into
PTX intermediate code, while the PTX intermediate code is
in turn translated and optimized by the ptxas tool provided in
NVCC toolchain into the final binary code. Hence, the whole
compilation process is the joint effort of Clang front end and
ptxas back end provided by CUDA Toolkit.

Initially, we thought it is a bug in Clang front end related
to optimization. But it turns out to be a bug with the ptxas
tool provided by CUDA Toolkit version 8.0. If we update the
CUDA Toolkit to versions 9.0 or 9.1, the bug will disappear.

Both NVIDIA and LLVM engineers confirmed the bug [15],
[16].

As discussed by LLVM engineers [16], the problem is with
the ptxas tool in CUDA-8. The PTX code generated by Clang
is identical for both CUDA-8 and CUDA-9. However, the
SASS generated by ptxas tool from CUDA-8 and CUDA-9
is significantly different. With CUDA-9 the code is straight-
forward and there are two writes, 8§ bytes apart, both with
the same value. With CUDA-8, func3 messes up the store to
*]_302 and writes zero to the should_not_change field instead.

C. Wrong code with printf output in NVCC

We also identified a wrong code bug related to the debug
flag and printf option in NVCC version 9.2 [17]. When
performing reduction on a kernel, we found that the debug
flag (the “-G” option) or the printf statement can independently
affect the result when inspecting or outputting the value of one
variable. The kernel function itself has no illegal operations,
however, the result is always wrong. But once we begin to
observe (with debug option) or output the value of a variable
(with printf), the results will be correct. This bug can make
the life of developers very hard as it may seriously affect their
judgement during debugging and coding. We have reported
this bug to NVCC engineers. They confirmed this bug and
planned to fix it in future releases.

D. Timeout Failures of NVCC Compiler

During our fuzzing, we also identify many timeout failures
in NVCC and Clang compilers. In particular, our EMI-TG
testing mode triggered one timeout failure on both versions
9.2 and 10.0 of the NVCC compiler with GeForce 940MX.
The kernel with an always true condition (always true guard)
inserted should have generated the same result as the original
kernel. However, the kernel with always true guard returns an
error "CUDA_ERROR_LAUNCH_TIMEOUT = 702”. Based
on the CUDA_Driver_ API documentation, this means that
the kernel took too long to execute. In contrast, the original
kernel executes normally without exceeding time limit. We
manually reduced the kernel and filed the bug to the NVCC
compiler developers. The NVCC developers have no GeForce
940MX at hand, so they try reproducing the case with both
GeForce GTX 980 and GeForce GTX 1080 Ti. Although they
did not receive the "CUDA_ERROR_LAUNCH_TIMEOUT
= 702” error message, they still unveiled a surprising result
on performance: the execution time on the more powerful
GeForce GTX 1080Ti is significantly slower than GeForce
GTX 980. (The bugs is filed at [2] and only accessible with
bug reporter account). The execution time also exceeded our
one-minute timeout criterion. Therefore, the developers also
confirmed our bug report on this timeout issue. Considering
the large number timeout failures exposed in our experiment,
we believe the performance issues with CUDA compilers are
also an important problem to solve for compiler developers in
the future.



V. RELATED WORK

In this section, we briefly review related work on compiler
testing and its oracle problem.

Csmith [18], [19] is a well-known testing tool for C
compilers. It randomly generates deterministic C programs
as test cases containing complex code that covers a large
subset of C while avoiding the undefined and unspecified
behaviors. Using this tool, The Csmith found more than 325
bugs in mainstream compilers including GCC, LLVM, and
commercial tools. In [20], Regehr et al. further proposed
test case reduction techniques to further reduce the failure
triggering test cases such that the following up debugging
activities could be made easier.

Lidbury et al. [8] proposed CLsmith to find OpenCL com-
piler bugs. Based on Csmith, CLsmith can randomly gener-
ate deterministic, communicating, and feature-rich OpenCL
kernels. CLsmith used both random differential testing and
EMI testing to handle the test oracle problem. In contrast, our
CUDAsmith tool is adapted and enhanced from the CLsmith
tool in many aspects to handle the CUDA programming model.
CUDAsmith also introduces live code mutation to handle the
test oracle problem.

The random differential testing has proved successful at
hunting compiler bugs. A deterministic program should al-
ways have a unique and well-defined result so that random
differential testing can circumvent the test oracle problem
with majority voting. The random testing has been widely
used in the domain of compiler testing, e.g. C compiler [19],
C++ compiler [21], JavaScript, and PHP interpreter [22]. Eide
[23] proposed a tool called randprog, which was a signifi-
cantly enhanced version of a program generator written by
Turner [24]. The randprog tool can detect the miscompilations
of volatiles via generating random c programs that contain
volatile variables. In [25], Chen et al. proposed an approach
to differential testing JVM implementations. They adopted
mutation testing strategy and code coverage information to
guide the class files selection process. Finally, the selected
class files are used as inputs to differential testing.

Equivalence Modulo Inputs (EMI) is a recent promising
approach for compiler validation proposed by Le et al. [9].
Using this approach, they have developed many tools such
as Orion [9] and Athena [26] to find bugs in compilers.
Both Orion and Athena relied on deleting code from or
inserting code into code regions that are not executed under the
inputs. Then, they further proposed a novel technique [11] that
allowed mutation in the live code regions. Using this approach,
they effectively found 168 confirmed bugs in GCC and LLVM
in 13 months. The CLsmith tool [8] introduced an injection
of dead-by-construction code mechanism that enabled EMI
testing of OpenCL compilers.

EMI techniques have been recognized [27] as successful
applications of metamorphic testing (MT) [10] to compilers.
MT aims at checking the relations among inputs/outputs of
multiple executions of the program under test to reveal failures.
It has been applied to various software domains, including
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compilers, web services, computer graphics, and machine
learning. In particular, Donaldson et al. [27] proposed an
approach for metamorphic testing of compilers using opaque
value injection. Their experimental results showed that MT
was effective in exposing failures in OpenGL shading lan-
guage compilers. Donaldson et al. [28] further proposed an
automated testing tool for graphics shader compilers. They
leveraged existing high-value graphics shaders to create sets
of semantically equivalent transformed shaders, and success-
fully identified 60 distinct bugs over 17 GPU and driver
configurations. In 2018, Google announced the acquisition of
their company GraphicsFuzz to improve GPU reliability in the
Android ecosystem [29].

VI. CONCLUSION

CUDA is one of the most popular general-purpose parallel
computing platform and programming model. The correctness
of CUDA compilers is the basis for the correctness of CUDA
applications. In this work, we propose CUDAsmith, a practical
CUDA compiler fuzzing tool to generate grammatically valid
CUDA kernels, to perform differential testing, and to conduct
EMI testing. Our CUDAsmith tool has successfully triggered
thousands of compiler failures (including build failures, wrong
code, and timeout) in both the NVCC CUDA compiler and
the LLVM CUDA compiler with reasonable time cost. Fur-
thermore, CUDAsmith identified failures not only in the trunk
version of the CUDA compilers, but also the previous stable
releases of the CUDA compilers. Finally, the NVIDIA and
LLVM compiler developers have confirmed several compiler
bugs based on our test report. For future work, we will
study automatic test case reduction tools on CUDA kernels
to facilitate more efficient bug reporting and debugging.
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