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Abstract—Existing test case prioritization (TCP) techniques have limitations when applied to real-world projects, because these
techniques require certain information to be made available before they can be applied. For example, the family of input-based TCP
techniques are based on test case values or test script strings; other techniques use test coverage, test history, program structure, or
requirements information. Existing techniques also cannot guarantee to always be more effective than random prioritization (RP) that
does not have any precondition. As a result, RP remains the most applicable and most fundamental TCP technique. This paper proposes
an extremely simple, effective, and efficient way to prioritize test cases through the introduction of a dispersity metric. Our technique is
as applicable as RP. We conduct empirical studies using 43 different versions of 15 real-world projects. Empirical results show that our
technique is more effective than RP. Our algorithm has a linear computational complexity and, therefore, provides a practical solution to
the problem of prioritizing very large test suites (such as those containing hundreds of thousands, or millions, of test cases), where the
execution time of conventional nonlinear prioritization algorithms can be prohibitive. Our technique also provides a practical solution to
TCP when neither input-based nor execution-based techniques are applicable due to lack of information.

Index Terms—Dispersity, dispersity metric, dispersity-based prioritization, dissimilarity, random prioritization, natural distance, adaptive
random testing, adaptive random sequence.
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1 INTRODUCTION

Test case prioritization (TCP) is a major challenge in
software testing. It attempts to find an optimal ordering
of test case executions, which can maximize the tester’s
effort even if the testing is prematurely terminated, such
as when the testing resources have been exhausted [1]–[4].

The majority of automated test case prioritization meth-
ods involve the use of structural coverage information
(such as control flow, data flow, call-tree paths, and
relevant slices information) of the test cases [3], or an
estimate of such information [5]. One of the intuitions
is that early fulfillment of structural coverage should
increase the chance of fault detection. Among the various
prioritization methods, the additional algorithm (which
is an instance of additional greedy algorithms) has been
considered as one of the most frequently used benchmark
methods [2], [3], [6], [7].

Other approaches to automated test case prioritization
involve the use of requirements specifications [3], [8],
[9], system models [10], test case execution history in
previous runs [11]–[13], mutation testing [14], [15], cost-
awareness information such as the severity of faults and
the costs of test case executions [3], [12], [16], test case
distance metrics based on their execution profiles [6], [17],
[18], or differences between different versions of the SUT
[19]. More recently, Busjaeger and Xie reduced the TCP
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problem to that of learning to rank [20].
The above approaches have their advantages under

different assumptions and situations, and yet none of
them or their combinations can be as applicable as, or can
always be more cost-effective than, random prioritization.
This is because the required information (such as test case
coverage, test case execution history, program structure,
or requirements specifications) may not always be avail-
able in practical situations [21]. To address this problem,
several input-based TCP techniques have been developed
[21]–[23], making use of the test case values/test script
strings rather than their code-coverage or other test
performance information. Compared with most other
approaches (which are execution-based), the input-based
TCP strategy has better applicability; nevertheless, its
application requires the tester to be able to access the
concrete input values of the test cases, and to design
effective distance (or dis/similarity) metrics to measure the
dissimilarity between the concrete values of two test cases.
This means that the tester must have thorough knowledge
of “the input structure and semantics of the application
under test” [21, p. 95]. Even with such knowledge, to
design good distance metrics for any arbitrary input
structure of any arbitrary program can be challenging.
Therefore, input-based TCP techniques are still not as
applicable as random prioritization, as the latter does not
even require the tester to know the concrete values of
the test cases.

Furthermore, as pointed out by Zhou et al. in 2012
[18], traditional TCP research did not consider the fact
that real-world test suites could become very large with
“millions of test cases.” In this situation, the computational
overhead of test case prioritization is a major concern.
The additional statement (or branch) coverage algorithm
[2], for example, has a time complexity of O(n2m), where
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n is the number of test cases and m is the number of
statements (or branches) of the program under test. In
our empirical studies with real-world large test suites,
we find that their execution time can become prohibitive.

Following up on Zhou et al.’s observations [18],
Miranda et al. [24] also reported the following:

The number of test cases to prioritize grows in
size up to millions . . . for real-world software
the size of a test suite can often exceed the
size of the system under test. In contrast, the
time available for test execution cycles decreases
. . . every day at Google an amount of 800K
builds and 150M test runs are performed on
more than 13K code projects . . . most TCP
approaches in the literature cannot handle
such scale. Our experimental results show that
some TCP approaches become soon inefficient
even for small-medium size benchmarks.

To address these problems, Miranda et al. [24] intro-
duced a FAST family of scalable test case prioritization
techniques based on similarity, and compared FAST
with other similarity-based TCP techniques (including
adaptive random test case prioritization techniques
introduced by Jiang et al. [6] and Zhou et al. [17], [18])
among others. FAST can be used either as a white-
box prioritization technique based on code coverage
information, or as a black-box prioritization technique
based on the string representation of the actual test cases—
in this aspect, the black-box FAST is essentially an input-
based TCP strategy because it needs to know the input
values/test scripts. As with the other TCP techniques
discussed earlier in this section, therefore, FAST is still
not as applicable as random prioritization that requires
neither white-box coverage information nor the values
of the concrete test cases/scripts.

This paper, therefore, raises the following practical
research question:

RQ1 In real-world software testing, can there be
a lightweight test case prioritization method that
has the following properties: (i) it is more effective
than random prioritization; (ii) it can more quickly
detect failures (in terms of execution time) than
random prioritization; (iii) it is as efficient as random
prioritization; and (iv) it is as readily applicable as
random prioritization?

Remarks

1) The objective of this research is to provide prac-
tical guidelines to software engineers in testing.
Therefore, we are interested in real-world software
projects.

2) In the context of test cases prioritization, method A
is more “effective” than method B if the ordering
of test case executions generated by the former can
enable an earlier detection of problems, such as the
detection of failures. To measure effectiveness, we
need to record the number of test case executions,
without considering the actual execution time.

3) To check property (ii), we need to record the overall,
actual execution time for failure detection, without
considering the number of test case executions.

4) The “efficiency” of a TCP algorithm can be eval-
uated either by analyzing its computational com-
plexity or by measuring its actual execution time of
prioritizing a given test suite, without considering
failure detections. “It is as efficient as random
prioritization” means that it should at least have
the same order of time and space complexity as
random prioritization, namely, linear complexity.

5) “It is as readily applicable as random prioritization”
means that it can be applied whenever random
prioritization can be applied. For example, random
prioritization can be applied without the knowledge
of the concrete input values of the test cases,
test case performance/coverage information, or
requirements specifications. Therefore, the new TCP
method should also have this property.

6) If all of the above requirements are met, the new
method should have a big chance to replace random
prioritization in practical situations.

If the answer to RQ1 is positive, we further raise the
following research question:

RQ2 How does the lightweight technique of RQ1
compare with the heavyweight “additional” algo-
rithm, with respect to the same properties, namely,
(i) effectiveness, (ii) actual execution time for failure
detection, (iii) efficiency, and (iv) applicability?

The additional algorithm is considered because it is
representative as one of the most frequently used bench-
mark TCP techniques and is easy to implement. Readers
are referred to Section 9.4 for further discussion on
benchmark TCP techniques.

2 SUMMARY OF CONTRIBUTIONS

The contributions of this paper are summarized as
follows:

1) To the best of our knowledge, this is the first work
to point out that neighboring test cases in a real-
world test suite often have similarities in certain
ways while more dispersed test cases tend to be
dissimilar.

2) Based on the above observation, we propose a
concept of natural distance that can be used as
a universal distance metric for measuring the
dispersity among test cases in real-world test suites.
The measurement requires neither the knowledge
of the source code, requirements specifications,
designs, input types, etc., of the program under
test, nor knowledge of coverage data, execution
history, concrete input values, etc., of the test cases.

3) Using the concept of natural distance, we
propose a simple and practical test case
selection / prioritization strategy to address
the research question RQ1. The general form
of our strategy is given as Hypothesis I, and a
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specific implementation of our strategy is given
as an algorithm shown in Fig. 4, which has a
linear time and space complexity. Our strategy,
therefore, provides a practical solution to the
problem of prioritizing very large test suites—for
large test suites containing hundreds of thousands,
or millions, of test cases, the execution time of
conventional nonlinear prioritization algorithms
can be prohibitive.

4) We conduct a series of empirical studies using 43
different versions of software under test from 15
real-world software projects. The empirical results
show that our method significantly improves the
effectiveness and reduces failure detection time of
random prioritization and that, even in the worst
case, the performance of our method is still close
to that of random prioritization.

5) The results also show that our lightweight
approach outperforms the heavyweight branch-
coverage-based additional algorithm with respect to
applicability, execution time for failure detection, as
well as efficiency, whereas the additional algorithm
outperforms our approach in the majority of
situations with respect to effectiveness. This finding
addresses the research question RQ2.

The rest of this paper is organized as follows: Section 3
presents our observation of the nature of real-world
test suites, and proposes a natural distance metric based
on this observation. Section 4 describes the design of
empirical evaluation as well as introduces our test case
prioritization method. Section 5 analyzes the empirical
results. Section 6 further compares the efficiency of our
method with that of random prioritization. Section 7
discusses threats to validity, and Section 8 describes
related work. Section 9 contains further discussion of
related topics, and Section 10 concludes the paper.

3 A NATURAL DISTANCE METRIC FOR REAL-
WORLD TEST SUITES

We first present our observation of real-world test suites
as follows:

Observation I: Real-world test suites have one impor-
tant commonality that is, to the best of our knowledge,
never exploited for test case prioritization: Neighboring
test cases often have similarities in certain ways while
more dispersed test cases tend to be dissimilar.

Consider how test cases in a real-world test suite would
have been generated. In white-box testing, for instance,
test cases are generated to cover the statements, branches,
functions, etc., of the source code. After testers have
designed a test case to cover the true branch of an if
statement S, they would normally consider a second
test case to cover the false branch of the same statement.
Therefore, these two consecutively designed test cases
may execute similar paths or branches before statement
S is reached. For real-world programs with complex loop
and branch structures, a basic technique of generating

void testme(int a, int b, int c, int d, int e){
if(a>b){ /* Condition 1 */
  printf("1T "); /* Condition 1, True Branch */
    if(b>c){ /* Condition 2 */
      printf("2T "); /* Condition 2, True Branch */
        if(c>d){ /* Condition 3 */
          printf("3T "); /* Condition 3, True Branch */
          if(d>e) /* Condition 4 */
            printf("4T "); /* Condition 4, True Branch */
          else
            printf("4F "); /* Condition 4, False Branch */
        }
        else
          printf("3F "); /* Condition 3, False Branch */
    }
    else
      printf("2F ");  /* Condition 2, False Branch */
}
else{
  printf("1F "); /* Condition 1, False Branch */
    if(b==1){ /* Condition 5 */
      printf("5T "); /* Condition 5, True Branch */
        if(c==1){ /* Condition 6 */
          printf("6T "); /* Condition 6, True Branch */
          if(d==1) /* Condition 7 */
            printf("7T "); /* Condition 7, True Branch */
          else
            printf("7F "); /* Condition 7, False Branch */
        }
        else
          printf("6F "); /* Condition 6, False Branch */
    }
    else
      printf("5F ");  /* Condition 5, False Branch */
}
printf("\n");
return;

}

Fig. 1: An illustrative example of a program under test,
named “a”.

white-box test cases is to traverse the execution tree of the
program under test [25], [26]. Sen et al. [26] observed,
for instance, that “the feasible executions of a program
can be represented as a tree, where the branch points in
a program are internal nodes of the tree. The goal is to
generate concrete values for inputs which would result
in different paths being taken. The classic approach is to
use depth first exploration of the paths by backtracking.”
Consecutive test cases generated in this way will also
exhibit similarities. Consider the example shown in Fig. 1
and Fig. 2. This simple illustration enables readers to
understand Observation I easily.

Fig. 1 shows the source code of a C program “a.c”. The
program has seven if statements, marked as “Condition
1,” “Condition 2,” . . ., “Condition 7.” As a result, the
program has a total of 7 × 2 = 14 branches. In each of
these 14 branches, a printf statement is first executed to
print the unique ID of the current branch. For example,
the third line prints an ID “1T” to the console to indicate
that a true branch of Condition 1 has been taken. The
IDs “1F,” “2T,” “2F,” . . ., “7F” can be explained similarly.

Fig. 2 shows a screenshot of using an automatic test
case generator “CUTE” for the above program. CUTE
(Concolic Unit Testing Engine for C) was developed by Sen
et al. [26]. It combines concrete and symbolic execution
techniques to automatically generate and execute white-
box test cases. The first line “cute a −i 100” is a command
entered by the user to run CUTE, where “a” indicates the
name of the program under test, “−i 100” requests that
the total number of test cases be no more than 100. The
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Fig. 2: Screenshot: CUTE generated and executed a total
of eight consecutive test cases for a complete search of
the execution tree of the program under test, whose
source code is shown in Fig. 1. The executable code
of the program under test is named a.exe.

second line, starting with “[Iteration 1],” is an output line
of CUTE, indicating that test case 1 is being generated
and executed. The message “−m 2” indicates the work
mode, which is not relevant to our present discussion.
The output of the program under test is shown in the next
line, that is, “1F 5F,” which indicates that the execution
path of test case 1 is branch 1F followed by 5F. The next
line, starting with “[Iteration 2],” is again an output line
of CUTE, meaning that test case 2 is being generated and
executed. The output of the program under test against
test case 2 is shown in the next line, which is “1F 5T 6F.”
This indicates that both test cases 1 and 2 took the false
branch at Condition 1. In the end, a total of eight test
cases have been generated and executed by CUTE. At the
bottom of the screenshot, CUTE prints that the search in
the execution tree of the program under test is complete.
Let Si denote the set of branches covered by test case
i, i = 1, 2, . . . , 8. It can be found that |S1 ∩ S2| = 1,
|S2 ∩ S3| = 2, |S3 ∩ S4| = 3, |S4 ∩ S5| = 0, |S5 ∩ S6| = 1,
|S6 ∩ S7| = 2, and |S7 ∩ S8| = 3. In most situations, any
two consecutively generated test cases have something
in common in the branches that they cover (and in the
paths that they execute), with the exception of test cases
4 and 5. For more dispersed test cases, they tend to be
dissimilar (such as |S2 ∩ S8| = 0 for test cases 2 and 8).
This situation is further illustrated using Fig. 3, which
gives all of the values of |Si∩Sj |, i, j = 1, 2, . . . , 8. In the
figure, because the matrix is symmetric, only half of it is
colored to show that, when the value of |i− j| increases
from 1 to 7, the average of |Si ∩ Sj | drops from 1.71 to 0.

For real-world large and complex programs with
complicated control flow and data structures, a bounded
depth-first search strategy can be used for test case
generation [26], and the similarities between consecu-
tively generated test cases can become more evident as
the lengths of execution paths become large. Generally

Fig. 3: |Si ∩ Sj |, i, j = 1, 2, . . . , 8.

speaking, it is our observation that test cases that are
dispersed with respect to their positions in a real-world test
suite often have a higher degree of dissimilarity than those that
are close together 1. This statement should not, of course,
be absolute as there are always exceptions.

The above observation can also be made when test
cases are generated using other techniques, such as
black-box testing, model-based testing, fault-based testing,
or in the context of regression testing [27]. This is
because test designers or automated test case generators
normally follow a logical or systematic approach when
designing / generating test cases. Neighboring test cases,
therefore, tend to have similarities in their logic or
purpose. For example, test cases that are close together
in their relative positions in a black-box test suite may
have similarities in the functions that they exercise or
the value combinations that they take, and those that are
close together in a regression test suite may have been
designed around the same period of time for a specific
version of the software under test.

The above observation may not hold true if all of
the test cases are randomly generated. However, in
real-world software testing, random testing is often
used in combination with other techniques such as
partition testing and testing with special values. In these
situations, nonrandom neighboring test cases may still
have similarities. Even in situations where all the test
cases are purely random, our testing method (which
will be introduced shortly) will still do no harm to the
effectiveness and efficiency of the original random testing
method.

Definition I: Let T = (t1, t2, . . . , tn), where n > 0, be
a sequence of test cases. The natural distance between test
cases ti and tj , where 1 ≤ i, j ≤ n, is defined as |i − j|,
the absolute value of i− j.

Definition I specifies a natural distance metric. In short,
the natural distance between two test cases is the
difference in their positions in the test suite.

Let T = (t1, t2, . . . , t10000) be a real-world test suite.
Suppose that test case t9 is selected and executed first, and

1. This observation is made through our participation in more than
ten real-life software projects in collaboration with the Australian
IT industry. The projects involve the development and testing of
Web Application Programming Interfaces (APIs) and Graphical User
Interfaces (GUIs), where most test cases are manually generated.
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then no failure is detected. According to Observation I,
t9 and t10 could be similar and, therefore, if t9 does not
reveal a failure, it is not wise to select t10 as the next
test case. Instead, the next test case had better be farther
apart from the previously executed test cases that have
not yet detected a failure.

We propose the following hypothesis:
Hypothesis I: Consider software testing in the real

world where test cases are selected from, or prioritized
using, a (possibly very large) suite of test cases. If the
test cases are selected in such a way that they are evenly
spread over the test suite in terms of natural distance,
then the test effectiveness will be at least as good as
random testing.

Note that the concept of evenly spreading test cases also
forms the basic intuition of Adaptive Random Testing (ART)
[28]–[30]. ART has been proposed as an enhancement
to Random Testing (RT) based on the observation that
failure-causing inputs tend to form contiguous failure
regions. If certain test cases do not reveal any failure, ART
recommends the selection of subsequent test cases that
are far away from those already executed. In this way,
ART generates test cases that are more evenly spread
over the input domain than RT. There is a fundamental
difference between ART and the present approach: The
former generates concrete values of test cases by evenly
spreading them across the input domain (and hence needs
to develop different distance calculation methods/metrics
for different types of input domains). On the other
hand, the latter does not consider the input domain—
it generates an execution sequence of test cases (rather
than actual test cases with concrete values) based on IDs
assigned to them when they were first added to the test
pool.

Furthermore, our approach is different from adaptive
random test case prioritization, which uses ART algorithms
and coverage information to prioritize test cases [6],
[17], [18]. Our approach does not need any coverage
information.

There are different effectiveness metrics for test case
selection and prioritization, such as the P-measure, the
F-measure, and the average percentage of faults detected
(APFD) [15], [29], [31]. While Hypothesis I is not restricted
to any specific effectiveness metric, we will adopt APFD
and the F-measure in our empirical studies, as will be
explained later in the paper.

The next question is: how can the order of the test
cases in a real-world test suite be identified? To answer
this question, we have the following observation:

Observation II: An order of the test cases in a real-
world test suite can often be decided easily.

Observation II states that deciding the position (ordinal
rank) of a test case in a real-world test suite can often
be easy. In automated testing, for instance, a test driver
(such as a shell script file) is normally provided to run
all the test cases. The order of test case executions can
therefore be regarded as the order of the test cases in the
test suite. The majority of the subject packages used in

our empirical studies are of this category. For instance, in
the “mochitest-devtools” test suite of Firefox 2, one of the
test cases assigns a property “unchecked” to the “record
snapshot” button; the immediate next test case assigns a
property “enabled” to the same button; and the test case
that follows makes the same button “visible,” and so on.
All these neighboring test cases involve setting certain
properties of the same button.

In situations where a test driver is not provided, the
test case names (such as function names, filenames,
and directory structures) can often provide hints on a
potentially useful ordering of the test cases. For example,
the alphanumeric order of the names can often be a
useful indicator of a suitable order of the test cases. The
following example shows typical test case names of the
Apache Commons Text, a library of algorithms working
on strings 3:

testContains_char,
testContains_String,
testContains_StringMatcher,
testDeleteAll_char,
testDeleteAll_String,
testDeleteFirst_char,
testReplaceAll_char_char,
testReplaceAll_String_String,
testReplaceFirst_char_char,

and so on. See Section 4.4 for more discussions. The
sequence of test cases may also be revealed by the dates
and times that the test case files were first created.

Testers may also apply more than one strategy to iden-
tify test case sequences. For example, in a collaborative
project (including open source ones), multiple contribu-
tors may be working on different parts of the code and
adding test cases to the repository simultaneously. In this
scenario, we may need to first partition the test cases
into different groups according to the contributor ID, and
then identify each group’s test case sequence using the
strategies discussed above.

4 DESIGN OF EMPIRICAL EVALUATION

A series of empirical studies with real-world software
packages have been conducted to validate Hypothesis I
in the context of test case prioritization. This section
describes the design of the empirical evaluation, including
dependent and independent variables, our test case
prioritization algorithm, subject packages, and how the
orders of test cases in the test suites were decided.

4.1 A summary of dependent and independent vari-
ables for the empirical studies

The independent variable for the empirical studies is
the test case prioritization algorithm, namely, (i) random
prioritization, (ii) dispersity-based prioritization, and (iii)
the additional algorithm based on the branch coverage
information of the test cases collected from an earlier

2. https://www.mozilla.org
3. https://commons.apache.org/proper/commons-text/
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version of the program under test. Algorithm (ii) is our
approach, based on the natural distance metric and will
be elaborated in Section 4.2. Algorithm (iii) is widely
considered to be one of the best test case prioritization
algorithms.

The dependent variables for the empirical studies are:
(i) applicability of the test case prioritization algorithm
(that is, whether the algorithm can be applied to the object
under study), (ii) test case prioritization effectiveness,
evaluated using APFD and the F-measure, and (iii)
execution time for the detection of the first failure. These
will be elaborated in Section 4.3.

The efficiency of a test case prioritization algorithm is
evaluated by referring to its computational complexity.
Because random prioritization and dispersity-based pri-
oritization are both linear algorithms, their efficiency is
further compared in Section 6 through an additional set
of experiments.

The objects include the programs under test and their
test suites, which will be described in Section 4.3.

4.2 Our dispersity-based prioritization (DBP) algo-
rithm

As explained earlier, our dispersity-based approach is
not an ART technique as we do not consider the input
domain of the program under test. Nevertheless, for the
purpose of empirical evaluation, we have applied an
efficient ART algorithm to generate an adaptive random
sequence of integers in the range [1, n], where n is the
number of test cases, to serve as a sequence of test case
IDs. In this way, we can achieve an even spread of test
case IDs, which will enable us to validate Hypothesis I.

The algorithm we have applied is FSCS-ART enhanced
with the “forgetting by consecutive retention” strategy
[29], [32], as explained in the next paragraph. Section 8
discusses ART algorithms in more detail.

FSCS-ART is a member of the ART family of algorithms
that works as follows: Whenever a new test case is needed,
c candidates are first generated randomly, where c is a
constant. The distances between each candidate and all
the already executed test cases are calculated, and the
minimum distance is recorded. The candidate having
the largest minimum distance is then chosen as the next
test case, and all the other candidates are discarded. To
generate n test cases, the time complexity of FSCS-ART
is in O(n2). The “forgetting by consecutive retention”
strategy improves the complexity to O(n) [32]. To apply
this strategy, instead of calculating the distances between
each candidate and all the already executed test cases,
the distance calculation is limited to the last k already
executed test cases, where k is a constant known as the
memory parameter.

It was previously reported that the effectiveness of
FSCS-ART improves as c increases up to about 10,
and then does not improve much further [33]. Another
study found that the “forgetting by consecutive retention”
strategy is more effective than random testing even when

k is as small as 10 [34]. Therefore, in the present study of
generating test case IDs, c and k are both given a constant
value of 10. The enhanced algorithm in combination with
the natural distance metric is shown in Fig. 4.

The algorithm accepts one single input parameter n,
which is a positive integer. It is assumed that the original
test suite is a sequence of test cases (t0, t1, . . . , tn−1),
where i is the ID of test case ti, i = 0, 1, . . . , n− 1.

Statement 1 of the algorithm uses an array A to store
the test case IDs. Statement 2 randomly selects the first
test case ID, and statement 3 moves the selected test case
ID to A[0] (which can be implemented by the following
three statements: temp=A[0]; A[0]=A[m]; A[m]=temp;).
In this way, the selected test case ID is stored in A[0],
and the rest of the array is the set of not-yet-selected test
case IDs, from which future test case IDs will be selected.
Statement 4 sets nbOfSelectedTestCases (for “number of
selected test cases”) to 1, as one test case ID has been
selected. In this way, the following invariant is created
for the while loop starting from statement 5: {A[0], A[1],
. . ., A[nbOfSelectedTestCases−1]} is always the set of
selected test case IDs, and {A[nbOfSelectedTestCases],
A[nbOfSelectedTestCases+1], . . ., A[n−1]} is always the
set of not-yet-selected test case IDs.

Statement 6 means that the memory parameter
to be used in “forgetting by consecutive retention”
[32] is 10, that is, the distance calculation will
be applied only to the last 10 executed test
cases. The variable memoryParameter is set to
“minimum(nbOfSelectedTestCases, 10)” because in the
beginning the number of selected test case IDs is less
than 10. Statement 7 applies FSCS-ART to select the
next test case ID as follows: First, select 10 candidates
randomly from the set of not-yet-selected test case IDs.
Let the 10 candidates be A[c1], A[c2], . . ., A[c10]. (In the
situation where the number of not-yet-selected test cases
is smaller than 10, select all of them as candidates.) For
each candidate A[ci], calculate di, which is the minimum
of:
|A[ci]−A[nbOfSelectedTestCases−memoryParameter]|,
|A[ci]−A[nbOfSelectedTestCases−memoryParameter+1]|,
. . .,
|A[ci]−A[nbOfSelectedTestCases−1]|.

Let dj be the maximum value among {d1, d2, . . . , d10}.
Then, A[cj] will be selected to be the next test case ID.
This A[cj] is referred to as “A[r]” in statement 7. Because
only up to 10 candidates and up to 10 executed test
cases are involved in the distance calculation, the time
complexity of statement 7 is constant. Statement 8 again
moves the selected test case ID to the left part of the
array, and statement 9 moves the boundary between the
prioritized and un-prioritized sets rightward.

Finally, statements 11 to 14 print the IDs of test cases
in their prioritized order. In other words, the prioritized
order of test cases is (tA[0], tA[1], . . . , tA[n−1]).

The above algorithm has a linear O(n) time and space
complexity, which is in the same order of complexity as
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Purpose: This algorithm performs test case prioritization in linear time and space complexity. 
The FSCS-ART algorithm with the "consecutive retention" forgetting strategy is applied 
together with the natural distance metric to generate a sequence of test case IDs, where the 
size of candidate set is 10 and the Memory Parameter in "forgetting" is also 10 (that is, the 
distance calculation is applied to only the last 10 executed test cases). 
Input: A positive integer n. 
Precondition: The real-world test suite to be prioritized is a sequence of n test cases, 
denoted by (t0, t1, ..., tn-1).
Output: Array A, which is a sequence of prioritized test case IDs. Therefore, the prioritized 
order of test cases will be (tA[0], tA[1], ..., tA[n-1]).

Begin Algorithm 
1.  For i = 0, 1, ..., n-1, set A[i] to i;
    /*A[i] is initialized to store the ID of test case ti.*/

2.  Randomly select an integer m in the range [0, n-1];
    /*Select the first test case ID, A[m], randomly.*/ 

3.  Swap(A[0], A[m]); 
    /*Let A[0] store the ID of the first selected test case.*/ 

4.  Set nbOfSelectedTestCases to 1; 

5.  While(nbOfSelectedTestCases < n-1) 
6.    Set memoryParameter to minimum(nbOfSelectedTestCases, 10); 
7.    Apply FSCS-ART to select the next test case ID from the set

{A[nbOfSelectedTestCases], A[nbOfSelectedTestCases+1], ... A[n-1]}, using 
{A[nbOfSelectedTestCases-memoryParameter], A[nbOfSelectedTestCases-
memoryParameter+1], ..., A[nbOfSelectedTestCases-1]} as the set of selected test case 
IDs; The distance between A[x] and A[y] is given by |A[x]-A[y]|; Let A[r] be the 
finally selected test case ID, where nbOfSelectedTestCases <= r <= n-1; 

8.    Swap(A[nbOfSelectedTestCases], A[r]); 
9.    nbOfSelectedTestCases = nbOfSelectedTestCases + 1; 
10. EndWhile; 
11. Print("The IDs of the prioritized order of test cases are in the following sequence:"); 
12. For i from 0 to n-1 
13.   print(A[i]); 
14. EndFor; 
End of Algorithm 

Fig. 4: Our dispersity-based algorithm for test case prioritization, which is in the same order of time and space
complexity as random prioritization, namely, O(n) where n is the number of test cases prioritized.

random prioritization. This algorithm is also as applicable
as random prioritization because it demands as little
information as the latter.

4.3 Subject programs, test suites, and evaluation
metrics

In this section, we first provide an overview of the
subject programs, and then discuss the evaluation metrics.
We also show the challenges in designing the controlled
experiments and provide our solutions. Finally, we
present more details of the subject packages.

4.3.1 Overview
In the empirical evaluation, we investigated 15 real-

world software projects, involving a total of 43 different
versions of software under test (SUT), which are sum-
marized in Table 1. The SUTs are written in different
programming languages and have various sizes and
functionality. Their test suites also have various sizes
ranging from a few hundred test cases to very large
(which can be larger than the number of statements in
the source code of the SUT). This set of projects, therefore,
can be considered representative of real-world projects.

The 15 projects listed in Table 1 are SQLite (row
#1), g++ (row #2), gcc (row #3), gfortran (row #4),

libmudflap (row #5), libstdc++ (row #6), commons-
lang (row #7), commons-math (row #8), jfreechart (row
#9), joda-time (row #10), Firefox (row #11), Autoconf
(rows #12 to #16, five versions), Automake (rows #17
to #21, five versions), MySQL (rows #22 to #26, five
versions), and Space (rows #27 to #43, seventeen versions).
All the packages, including the SUTs and test suites,
were downloaded from the project websites listed in
the third column of Table 1. Most packages contain
programs, scripts, or other types of files, written in
different programming, scripting, or markup languages.
The fifth column of Table 1 lists only the main languages,
which are not exhaustive. Furthermore, a tool named
SLOCCount (http://manpages.ubuntu.com/manpages/
precise/man1/sloccount.1.html) was used to count the
source lines of code (SLOC) of the packages.

4.3.2 Evaluation metrics
Because the F-measure [29], [35] and APFD [15] are

the most common metrics for the evaluation of the
effectiveness of test case prioritization approaches, they are
used in our empirical evaluation. The F-measure refers
to the expected number of test case executions that need
to be run in order to detect the first failure. APFD also
measures how quickly failures can be detected, and takes
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TABLE 1
Summary of software packages used in empirical evaluation.

multiple faulty versions into consideration.
Another effectiveness metric is the P-measure, which

is the probability of detecting at least one failure using
a set of test cases [31]. By definition, the P-measure will
increase when the number of selected test cases increases,
and the difference in P-measure between two techniques
also depends on the number of selected test cases. Hence,
a range of sizes of test sets need to be used when
comparing P-measures. Normally, the P-measure is used
to evaluate test case selection (rather than prioritization)
techniques where the size of the test set is supposed
to be meaningful. Consider, for example, a scenario in
branch coverage testing in which the test set achieves
100% branch coverage. Then, we can select the same
number of random test cases and use the P-measure to
compare the effectiveness of the branch coverage and
random testing techniques. For the present study, which
is on test case prioritization, the P-measure is obviously
not as suitable as the F-measure.

For each TCP technique, we record the total

CPU time (including the time spent in test case
selection / prioritization and in SUT execution) consumed
to detect the first failure.

To make statistically meaningful comparisons, 10, 000
trials were conducted every time random prioritization
or dispersity-based prioritization (which is an improved
random technique) was performed, and the F-measure
and the mean APFD of the two prioritization methods
were computed.

For random testing by sampling with replacement, its
F-measure is given by 1

θ , where θ is the failure rate. In
the context of test case prioritization, however, test case
sampling should be performed without replacement. In
this situation, the F-measure of random prioritization
can be easily calculated using the approach developed
by Zhou [17, Equation (2)]. Despite the existence of
this analytical solution, in our empirical study, for
both the random and the dispersity-based prioritization
algorithms, we recorded the actual number of test cases
executed to detect the first failure, for each of the 10, 000
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trials (this treatment allowed us to conduct further
statistical analysis on the results). This number of test
case executions in a particular trial is referred to as the
“F-count” [35] of that trial. In the rest of this paper, we
use the term “F-measure” less rigorously to refer to the
mean F-count over all trials performed using a particular
TCP algorithm for a particular version of the SUT.

Compared with the random and dispersity-based
prioritization, the additional algorithm is basically a
deterministic algorithm. Therefore, any experiment with
the additional algorithm involved only one trial.

To evaluate the applicability of a test case prioritization
technique, we inspect the subject packages to decide
whether the technique can be applied. For random and
dispersity-based prioritization algorithms, this process is
trivial: We just need to ensure that an ordering of test case
executions can be generated. For the additional algorithm,
we need to check whether test case coverage data can be
collected.

4.3.3 Challenges
There are challenges in controlled experiments with

real-world software packages. First, in order to compare
the fault-detection effectiveness of different test case
prioritization methods, the test suite must be able to
detect at least one failure of the SUT. For some of the
software packages investigated, we found that if the test
suite and the SUT were from the same version, no failure
could be detected. This is because the SUT had already
been thoroughly tested against the test suite and passed
all of the tests before the package was released.

In a typical development project, when changes are
made to existing software, regression testing is normally
performed by running “old” test cases created for
previous versions. This is to ensure that the changes
do not harm the existing functionality. Following this
practice, we tried to apply old test suites to newer
versions of the SUT to address the “no failure” problem
described above. However, we found that this approach
could not detect any failure either. This is because newer
versions of the SUT must have already gone through
regression testing and passed all of the test cases before
they were released.

When no failures could be detected, researchers in
software testing typically seed artificial defects into the
SUT [3]. However, in the present research, our objective is
to investigate real-life projects with real-life test suites that
can detect real failures. In empirical software engineering
research, the subjects and objects must be representative
of the population [36]. Therefore, instead of seeding
artificial faults into the SUT, we decide to use the
following strategy: If no failure can be detected, then
the test suite will be applied to an earlier version of
the SUT. We find that this strategy can produce failures
and that this is probably the best solution if one wants
to experiment without seeding artificial faults. This
treatment is valid as TCP techniques can be applied
in many different scenarios that include but are not

limited to regression testing—for instance, when the
testing objective is program comprehension or change impact
analysis by means of dynamic analysis with test cases [37],
or to find behavioral differences between different versions
of the SUT [38], [39].

Generally speaking, applying a test suite to a different
version of the SUT could have compatibility problems
during test case executions. In this research, we have
carefully considered the compatibility issue and managed
to select compatible SUT and test suite versions so that
the experiments can be successfully carried out.

Using the same test suite to test different versions
of the SUT is also a basic technique and requirement in
order to measure APFD [15], which imposes another (and
greater) challenge. The measurement of APFD requires
that a number of different versions of the SUT be tested
using the same test suite, but in some practical situations
this turned out to be impossible due to compatibility
problems between the test suite and multiple versions
of the SUT (such as abortion of execution caused by
unrecognized parameters). As a result, APFD was not
applied to such programs, listed in rows #1 to #11 in
Table 1.

4.3.4 Subject packages
The following is a brief introduction of the projects

listed in Table 1. Readers may refer to the project websites,
as given in the table, for more information. Our host
machine runs Microsoft Windows 7 Ultimate, on top of
which we use a virtual machine (VMware Workstation)
to run Ubuntu. On this platform the SUTs are installed.

The first project, SQLite (row #1), is claimed to be
“the most widely deployed SQL database engine in the
world.” The test suites of SQLite meet many adequacy
criteria such as “100% branch test coverage,” “boundary
value tests,” and so on [40]. SQLite has three independent
test harnesses. We were able to download one of them,
namely, the TCL Tests, which is in the public domain.
The test suite consists of 787,530 test cases, many of
which can run multiple times with different parameters
to generate several million more test cases. In this study,
we focus on the original 787,530 test cases only (where
the test oracle is embedded). Note that the size of the
test suite (that is, the number of test cases) of SQLite is
much larger than the size of the SUT measured in SLOC
(140,603). Readers may refer to related literature [18], [24]
for more discussions about the importance of using large
test suites in empirical studies of test case prioritization
techniques.

Rows #2 to #6 list five projects. They are sub-projects
of the GNU Compiler Collection (GCC), where g++ and
gcc have emphases on compiling C++ and C programs,
respectively, gfortran is a Fortran compiler, libmudflap is
a runtime library, and libstdc++ is a standard C++ Library.
The total size of GCC (containing all of the above five
projects) is 4,781,336 SLOC. For these five projects, the
test suites and the SUTs are of the same version, namely,
GCC v4.8.0.
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GCC provides a test driver to run test cases. The test
driver has an automated oracle to verify the output of
each test case execution, in terms of “expected pass” (this
is the result yielded by the majority of the test cases),
“expected failure,” “unexpected failure,” “unexpected
pass,” “unresolved,” and “unsupported.” In this research,
we treat both “expected pass” and “expected failure” as
a passed test because they are both expected behavior,
and “unexpected failure” and “unexpected pass” as a
detected failure because they are both unexpected behavior.
An “unexpected failure” or “unexpected pass” may not
necessarily indicate a fault of the SUT. Instead, they are
more likely related to the environmental issues of the
platform. Further discussion on the causes of the failures
is beyond the scope of the paper. Readers may refer to the
GCC website for more information. The small number of
“unresolved” and “unsupported” test cases were excluded
from the study.

The test oracles of projects listed from row #7 to row
#26 are also embedded in their test suites. Rows #7 and
#8 list the Apache software projects Commons Lang and
Commons Math. The former provides extra methods for
the manipulation of core Java classes. The latter is a
library of lightweight, self-contained mathematics and
statistics components. JFreeChart in row #9 is a Java
chart library for developers to display professional quality
charts in their applications. Joda-Time in row #10 provides
a quality replacement for the Java date and time classes.

Firefox in row #11 is a popular web browser. It is
free and open source software. The Firefox package
includes several test suites, and we used the largest one,
named “mochitest-plain,” to conduct experiments. Firefox
provides a test driver to run all test cases in the test suite,
together with an automated test oracle to verify each
and every test result in terms of pass, known failure,
unexpected failure, and unexpected pass. Similar to the
case of GCC, we treat both “pass” and “known failure” as
a passed test, and “unexpected failure” and “unexpected
pass” as a detected failure.

Autoconf (rows #12 to #16) is, according to its website,
“an extensible package of M4 macros that produce
shell scripts to automatically configure software source
code packages. These scripts can adapt the packages to
many kinds of UNIX-like systems without manual user
intervention.” We were able to run the same test suite on
five versions of Autoconf to calculate APFD. Automake
(rows #17 to #21) is a tool for “automatically generat-
ing Makefile.in files compliant with the GNU Coding
Standards. Automake requires the use of Autoconf.” We
were able to run the same test suite on five versions of
Automake. Rows #22 to #26 list five versions of MySQL
(Community Server), which is claimed to be “a freely
downloadable version of the world’s most popular open
source database that is supported by an active community
of open source developers and enthusiasts.” We were
able to run the same test suite on five versions of MySQL.

The last project is Space (rows #27 to #43), downloaded
from SIR [41], [42]. The Space program was developed

by Ingegneria Dei Sistemi, Pisa, Italy for the European
Space Agency [43]. The program consists of about 6,199
SLOC written in C, and works as an interpreter for
an array definition language (ADL). The downloaded
package includes a base version and 38 faulty versions.
Each faulty version contains a real fault discovered
during the development of the program. In addition,
the downloaded package contains a pool of 13, 551 test
cases. According to SIR [42], the test pool was constructed
in two stages: An initial pool of 10, 000 test cases was
created using a test case generator, capable of generating
“random” ADL input files [43]. Then more test cases were
added to the pool so that each executable statement of
the base program or edge of its control flow graph would
be exercised by at least 30 test cases. In our empirical
study with Space, the testing objective is to detect failures
of the faulty versions as quickly as possible by running
test cases from the existing test suite. In order to detect
failures, the base version (not shown in Table 1) was
used as a test oracle: Every time a test case is run, the
output of the faulty version is compared with that of the
base version, and any discrepancy means a failure. 4 It
was found that, out of the 38 faulty versions, some were
equivalent to the base version for all the test cases and,
hence, they were excluded from the study. Furthermore,
we excluded those faulty versions whose failure rate
is higher than 5%. This is because, from the practicing
testers’ perspective, programs with small failure rates are
more interesting than those with high failure rates, as
failures of the latter can be detected easily by any testing
technique. As a result, only 17 faulty Space versions with
failure rates between 0 and 5% were included in our
study. The failure rate threshold was set to 5% because “1
in 20” is normally considered a small probability, which
forms the basis of modern statistics [44].

4.4 Deciding the order of test cases

The computation of the natural distance depends on
the position of the test cases in the test suite, that is,
the order of the test cases. Section 3 described several
approaches to identifying such an order, and some of
these approaches have been applied to our subject test
suites.

For SQLite (row #1 of Table 1), test case executions
are performed by a set of test scripts spread over 707
files. We found that seven files do not contain their
own test cases, 12 files do not print proper test results,
and one file is unstable in the sense that it executes a
different number of test cases every time. These files
were, therefore, excluded from the study. As a result,
a total of 687 files were used to run a total of 787,530
test cases. For test cases within a test script file, their
order is defined by their execution order, whereas the

4. In controlled experiments where different testing techniques are
compared, it is a common practice to use the base version as an oracle
to enable quick verification of large amounts of outputs of the faulty
versions.



11

Purpose: To decide the order of test cases. 
Begin Procedure 
1. If (there is no test driver file) then
2. use the alphanumeric order of the test case files;

/*This is because, for our subject packages, the original file creation dates 
  are unknown.*/ 

3. return;
4. Endif;
5. If (there is only one test driver file) then /*So, there is only one test suite.*/
6. use the test case execution order given by the test driver;
7. return;
8. Endif;

/*Now there are multiple test driver files (hence multiple test suites), each of which
runs a number of test cases. This is the case of SQLite.*/ 

9. set the between-group order (the order of test suites) to be the alphanumeric order of
the test driver filenames;

10. set the within-group order (the order of test cases within a test suite) to be the test
case execution order given by the respective test driver;

11. return;
End of Procedure 

Fig. 5: Deciding the order of test cases for each subject package used in our empirical studies.

order of test script files is defined by the alphanumeric
order of their filenames. The alphanumeric order that we
adopted is similar to alphabetical order except that the
latter simply sorts the values left to right, character by
character, whereas the former recognizes numeric values
in filenames. For example, we used the alphanumeric
order (a.test, a1.test, a2.test, a100.test) rather than the
alphabetical order (a.test, a1.test, a100.test, a2.test). It is
our intuition that the alphanumeric order of filenames
carries useful information about the similarity among test
script files. For instance, “corrupt8.test,” “corrupt9.test,”
“delete2.test,” and “delete3.test” are some of the file-
names of real test scripts. Intuitively, “corrupt8.test” and
“corrupt9.test” should have some similarity in certain
ways (such as the testing purpose); “delete2.test” and
“delete3.test” should also be similar in certain ways (such
as in the operations performed by the test cases). The
same treatment was also applied to the Space package
(rows #27 to #43). Each test case of the Space program is
an ADL file, and the alphanumeric order of the filenames
was taken as the order of the test cases.

The alphanumeric order of filenames was also used
to list the test case files for Automake (rows #17 to #21).
Each of these files is a test script with a filename extension
“.sh.”

It is straightforward to identify the order of the test
cases for projects listed from row #2 to row #16 and from
row #22 to row #26 because these projects have a test
driver and, therefore, the sequence used by the driver to
execute the test cases is directly taken as the order of the
test cases.

The procedure of deciding the order of test cases for
the above subject packages is summarized in Fig. 5.

5 EMPIRICAL RESULTS

We first compare our test case prioritization approach
(DBP) with random prioritization (RP) in Section 5.1, and

then with the additional algorithm in Section 5.2.

5.1 Comparing DBP with random prioritization (RP)
The research question RQ1 raised in Section 1 identified

four aspects of a test case prioritization method. We
first look at applicability. DBP and RP have the same
applicability, and both these two techniques are applicable
to all 43 subject programs. This is because both DBP and
RP can be applied whenever an original sequence of test
cases—(t0, t1, . . ., tn−1), as shown in Fig. 4—is given.

We next discuss effectiveness, efficiency, and execution
time for failure detection.

5.1.1 Effectiveness
We first present the F-measure results and then the

APFD results.
5.1.1.1 The F-measure results: Empirical results of

testing effectiveness are summarized in Table 2. Columns
#3 and #4 show the F-measures of random prioritization
(F.RP) and DBP (F.DBP), respectively (out of 10, 000 trials
each). To compare these two scores, the ratio F.DBP
÷ F.RP is calculated and listed in column #5. When
the ratio is smaller than 1, F.DBP is better. When it is
greater than 1, F.RP is better. To conduct statistically
meaningful comparisons, independent-samples t-tests at
a significance level of 5% are performed and the (two-
tailed) p-values are listed in column #6, together with
the respective effect size (Cohen’s d) [45]: d is the absolute
value of the difference of the two means divided by the
square root of the mean of the two variances. A p-value
below 0.05 indicates that the difference between F.RP and
F.DBP is statistically significant, and a p-value above 0.05
indicates that these two F-measures are equal (that is,
there is no statistically significant difference). For ease of
reading, the corresponding cells in columns #5, #6, #8, #9,
and #10 are highlighted when the respective p-values are
below 0.05—in this way, all statistically significant results
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TABLE 2
F-measure and APFD results. F.RP: F-measure of random prioritization (RP) out of 10,000 trials; F.DBP: F-measure of
dispersity-based prioritization (DBP) out of 10,000 trials; F.Add: F-measure of the additional algorithm; APFD.RP: mean

APFD of RP out of 10,000 trials; APFD.DBP: mean APFD of DBP out of 10,000 trials; APFD.Add: APFD of the
additional algorithm. Where there is a statistically significant difference between the RP and DBP means (with a
p-value below 0.05), the corresponding cells are highlighted. “p=0.000” means p<0.0005. Where the effect size

(Cohen’s d) is 0.10 or larger, the corresponding cells are starred (*). “d=0.00” means d<0.005.

are highlighted. While the p-value measures the statistical
significance, the effect size (d) measures the practical
significance and should be judged in context [46]. In the
context of comparing test case prioritization techniques,
a d value of 0.1 or above can be considered nontrivial
[47]. Therefore, in columns #6 and #10 of Table 2, cells
with d ≥ 0.10 are marked with an asterisk (*).

A total of 23 cells are highlighted in columns #5 of
Table 2, and the values of these 23 cells are all below 1.
This means that DBP outperformed RP in the F-measure
across all 23 statistically significant cases. Furthermore,
all 10 starred cells in column #6 (indicating a practical
significance) fall within these 23 cases.

For the remaining 20 subject programs, the F-measures

of RP and DBP can be considered equal. In the best
case, the ratio F.DBP ÷ F.RP can be as low as 0.42 (row
#2), which means that, on average, DBP used 58% fewer
test cases than RP, or RP used 2.4 (= 363.36 ÷ 151.51)
times as many test cases as DBP, to detect the first failure.
This indicates that DBP achieved a saving that is both
statistically significant and practically significant. In the
worst case, the ratio F.DBP ÷ F.RP is 1.02 (row #9). This
means that, even in the worst case, DBP used on average
only 2% more test cases than RP to detect the first failure,
and this difference was neither statistically nor practically
significant (and hence can be ignored). The above results
prove Hypothesis I.

It would be useful to look further into the different
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TABLE 3
Execution time results (time to the first failure, in seconds). T.RP: mean time to the first failure by RP, out of 10,000 trials
(= test case selection time + test case execution time); T.DBP: mean time to the first failure by DBP, out of 10,000 trials
(= test case selection time + test case execution time); Exe.Add: time to the first failure by the additional algorithm (=
test case selection time + test case execution time); Preprocessing.Add: preprocessing time taken by the additional
algorithm to collect test case coverage data. Where there is a statistically significant difference between the RP and
DBP means (with a p-value below 0.05), the corresponding cells are highlighted (light gray: DBP outperformed RP;

dark gray: RP outperformed DBP). “p=0.000” means p<0.0005. Where the effect size (Cohen’s d) is 0.10 or larger, the
corresponding cells are starred (*). “d=0.00” means d<0.005.

orders of test case executions. Consider SQLite, for ex-
ample. We first ordered the 687 test script files according
to their filenames, and then the test cases within each
file according to their execution order. Do either or both
of these two strategies play an important role? We find
that both these two strategies have contributed to the test
case prioritization. If we apply DBP/RP to prioritize the
687 test script files only and then the test cases within
each file are still executed sequentially, then there is no
significant difference between the F-measures of DBP
and RP. This is because the 13 failure-causing test cases

of SQLite are distributed over three test script files and
these three files are not clustered (that is, they are not
neighbors in the test file sequence). It is known that, for
non-clustered failure patterns, ART and RT have similar
F-measures [48]. Likewise, if we execute the 687 test
script files sequentially and apply DBP/RP to the test
cases within each test script file only, then there is no
significant difference between the F-measures of DBP and
RP either. This is because the first test script file in the
sequence to fail SQLite includes only one failure-causing
test case and, therefore, applying either DBP or RP to
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the test cases within this file makes no difference. Due
to the sheer size and complexity of the real-world test
suites involved in our experiments, this research will
not attempt to further investigate the inner workings
of the different orderings of test case executions—such
an investigation would require a separate study that is
beyond the scope of this paper.

5.1.1.2 The APFD results: As explained previously,
APFD was not applied to programs listed in rows #1 to
#11 of Table 2 because of compatibility problems of the
real-world test suites across multiple versions of the SUT.
This observation indicates that the APFD metric may not
be as applicable as the F-measure metric.

For RP and DBP, available mean APFD scores are given
in rows #12 to #43 of columns #8 and #9 of Table 2 for
four projects. In all four projects, DBP outperformed RP
with a constantly higher mean APFD score. Furthermore,
as shown in column #10, the APFD differences between
RP and DBP were statistically significant across all four
projects and, therefore, the relevant cells are highlighted.
Furthermore, two of these four projects are starred as
they had a nontrivial d value (as shown in column #10).

While we report that DBP outperformed RP in APFD
with a statistical significance across all four projects
and with a practical significance in two of these four
projects, we also wish to point out that all observed
APFD scores are very large and that the differences
between APFD.RP and APFD.DBP are very small. This
observation does not mean that RP and DBP have
little difference in TCP effectiveness, because their F-
measures differ a lot. This phenomenon of large APFD
scores associated with large test suites was first reported
by Zhou et al. [18], where it was suggested that “APFD
may not necessarily be a suitable effectiveness measure
or may need to be adjusted in certain situations, such
as when the test suites are very large.” Nevertheless,
the outcomes of the APFD comparisons and those of the
F-measure comparisons have been quite consistent: Both
these metrics show that DBP outperformed RP with a
statistical significance in testing effectiveness, and that 43
to 50 percent of these statistically significant cases were
also practically significant.

5.1.2 Efficiency

DBP and RP have the same order of computational
complexity, O(n), where n is the number of test cases
prioritized. Further comparison of their efficiency is
presented in Section 6.

5.1.3 Execution time for failure detection

We next compare their actual execution times for the
detection of the first failure. The empirical results are
shown in Table 3. T.RP (column #3) and T.DBP (column
#4) are the mean execution times (out of 10, 000 trials)
spent by RP and DBP, respectively, to detect the first
failure, including the SUT execution time and the test
case selection time.

To compare T.RP and T.DBP, the ratio T.DBP ÷ T.RP
is calculated and listed in column #5. When the ratio
is smaller than 1, T.DBP is better. When it is greater
than 1, T.RP is better. To conduct statistically meaningful
comparisons, independent-samples t-tests at a signifi-
cance level of 5% are performed and the (two-tailed)
p-values are listed in column #6. Cells in columns #5 and
#6 are highlighted when their respective p-values are
below 0.05, indicating statistically significant differences.
The cells highlighted in light gray indicate that DBP
outperformed RP with a statistical significance, and that
highlighted in dark gray indicates that RP outperformed
DBP with a statistical significance. Cells in column #6 are
starred when their respective d values are 0.10 or larger,
indicating a nontrivial practical significance.

A total of 23 cells are highlighted in column #5 of
Table 3, including 22 in light gray and only one in dark
gray (in row #37). A total of 9 cells are starred, all of
which fall within the 22 light gray cases.

The above results indicate that DBP outperformed
RP in terms of spending less time to detect the first
failure, quite consistent with the F-measure results. For
the remaining 20 subject programs, the mean execution
times of RP and DBP can be considered equal. In the
best case, the ratio T.DBP ÷ T.RP can be as low as 0.45
(row #2), hence a saving of 55%. In the worst case, the
ratio is 1.04 (row #37), indicating only 4% extra time.

5.1.4 Summary
In summary, DBP has the same applicability and the

same order of computational complexity as RP, but
significantly outperformed RP in both effectiveness (in
terms of the F-measure and APFD) and execution time
for failure detection. DBP often achieved large savings in
both the F-measure and the execution time. Overall, its F-
measure performance (in terms of the F.DBP ÷ F.RP ratio)
was slightly better than its execution time performance (in
terms of the T.DBP ÷ T.RP ratio), and this was expected
because the DBP test case selection algorithm involves
more computations than RP although they are both linear
algorithms. Nevertheless, it is interesting to observe that,
for some programs, such as Autoconf and Automake,
DBP’s execution time performance was better than its
F-measure performance. This was because DBP selected
test cases that consumed less execution time than those
selected by RP.

5.2 Comparing DBP with the additional algorithm
This section addresses the research question RQ2.

5.2.1 Applicability
While DBP was applicable to all the subject programs,

we found that the additional algorithm has limitations in
its applicability. This is because the additional algorithm
requires that the test case coverage data be known prior
to test case prioritization. In the context of regression
testing, if a test suite was used in the past on a previous
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version of the SUT, then the previous test coverage data
could be used by the additional algorithm, in order to
prioritize the test cases for the new version of the SUT
[15]. We found that such a strategy has its limitations
when applied to our real-world subject programs. As
explained previously, for packages listed from row #1
to row #11 in Table 2, the same test suites could not
run across multiple SUT versions due to compatibility
problems. Therefore, the additional algorithm could not be
applied to these packages. Furthermore, for the packages
Autoconf and MySQL, test case coverage data could not
be obtained (such as by using gcov, a standard utility used
in concert with GCC). As a result, we were only able to
apply the additional algorithm to the Automake programs
(rows #17 to #21) and the Space programs (rows #27 to
#43).

For Automake, we managed to run the test suite on a
previous version of the SUT, namely, v1.12.6, to collect
coverage data so that the additional algorithm could be
applied. For Space, the base version Space program was
used to collect the test case coverage data so that the
additional algorithm could be applied to the faulty Space
versions.

5.2.2 Effectiveness

The effectiveness of the test case prioritization methods
was evaluated using the F-measure and APFD. For the
Automake package, the additional algorithm had a perfect
F-measure of 1 across all five versions of the SUT (see the
F.Add scores in column #7 of rows #17 to #21, Table 2),
as well as the best APFD (column #11).

For the Space package, the results are more involved.
On the one hand, out of the 17 faulty versions of the
SUT, the additional algorithm outperformed DBP in the
F-measure for 11 versions, whereas DBP outperformed
the additional algorithm for only six versions; in the best
case, the additional algorithm again achieved a perfect
F-measure of 1 (row #42). On the other hand, DBP
outperformed the additional algorithm in terms of APFD:
the APFD of DBP (column #9) is 0.990271, which is the
best among all three algorithms. As mentioned previously,
it is our observation that, when the test suites are large,
the APFD scores of different TCP techniques are very
close, and therefore APFD may not necessarily be a
suitable effectiveness measure in this situation. In any
case, in terms of effectiveness, the additional algorithm had
better F-measures than DBP in the majority of cases. This
is because the additional algorithm makes use of test case
coverage information, whereas DBP does not use such
information.

It should be noted that t-tests were not performed for
comparisons with the additional algorithm. This is because,
as a reminder, additional is basically a deterministic
algorithm and, therefore, only one trial was run for each
version of the SUT; in contrast, 10,000 trials of DBP were
run and a mean was calculated.

5.2.3 Efficiency

As mentioned previously, the (branch-coverage-based)
additional algorithm has a time complexity of O(n2m),
where n is the number of test cases in the test suite and
m is the number of branches of the SUT. In comparison,
DBP has a linear complexity O(n), where n is the number
of prioritized test cases.

5.2.4 Execution time for failure detection

Exe.Add (column #7 of Table 3) is the execution time
spent by the additional algorithm to detect the first failure,
which includes the SUT execution time and the test case
selection time.

Furthermore, as explained previously, the additional
algorithm requires that the test case coverage data be
made available prior to test case prioritization, as thus
we collected such data by running all the test cases on
a previous (instrumented) version of the SUT, and the
time taken is shown as Preprocessing.Add in column
#8 (it may not necessarily be counted as a cost of the
additional algorithm as we assume that such information
is available before the start of the TCP process). For
Automake, each of its test case files allowed the user
to either enable or disable the test coverage generation
feature. To collect T.RP and T.DBP, we disabled this
feature in order to run the test cases as fast as possible; to
collect Preprocessing.Add, we enabled this feature and,
subsequently, the system generated a total of 1,313 HTML
files corresponding to the coverage profiles of the 1,313
individual test cases, at a cost of 9,269 seconds as shown
in Table 3. Note that this does not include the execution
time of our own code that read the 1,313 HTML files to
extract the branch coverage data. For the Space program,
we used the gcov tool to collect the test coverage data.
The time (5 seconds) shown in Table 3 does not include
the execution time of our own code that processed the
intermediate system files to extract the branch coverage
data after each test case execution. Even if we do not
consider this Preprocessing.Add, DBP still outperformed
the additional algorithm very obviously across all subject
programs except on Automake v1.13.3 and v1.13.4 (rows
#20 and #21), where the two Exe.Add scores are printed
in bold.

5.2.5 Summary

In summary, the empirical results show that DBP
strongly outperformed the additional algorithm with
respect to applicability and execution time for failure de-
tection, in addition to efficiency. On the other hand, it is
hardly surprising from the results that the heavyweight
additional algorithm was generally more effective than our
lightweight approach. In any case, it is pleasing to find
that DBP was more effective than the additional algorithm
in 27.3% (= 6÷ (5+17)) of the situations where the latter
was applicable.
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6 FURTHER COMPARISON OF TEST CASE PRI-
ORITIZATION EFFICIENCY BETWEEN RP AND
DBP

Although DBP has the same order of computational
complexity as RP, the former involves more steps in
selecting a test case. In this section, therefore, we compare
the execution times of the DBP and RP algorithms for
prioritizing the same number of test cases, without
involving actual test suites, SUTs, or failure detections.
We considered the following test suite sizes: 1000, 10, 000,
100, 000, 1, 000, 000, and 10, 000, 000. For each test suite
size, we ran the RP and DBP algorithms to prioritize
the entire test suite 5 and recorded the times taken. For
each test suite size and each algorithm, 1000 trials were
conducted. The mean values of the execution times are
compared as shown in Table 4. They are named “driver
time” because the results do not involve any actual SUT
execution.

The results of Table 4 indicate that RP can be up to 63
times faster than DBP to prioritize the same number of
test cases. However, if we compare Tables 2 and 3, we
can see that this advantage of RP does not help much
with its overall failure-detection time as compared with
DBP. This is because, for real-world large and complex
software, the time consumed by the linear-complexity
RP and DBP test drivers for test case selection is trivial
when compared with the time spent for the actual test
case execution.

More formally, let x be the average time consumed by
the RP test driver to select a test case, then, according
to Table 4, that of DBP can be up to 63x. Let y and z be
the average time to execute a test case and to verify a
test result, respectively. The total time consumed by RP
and DBP to process a test case is, therefore, x + y + z
and 63x+ y + z, respectively. Let k be the F-measure of
RP. According to the “avg” result shown in Table 2, the
F-measure of DBP can be estimated as 0.9k. For RP to
more quickly detect a failure than DBP, the following
relation must be satisfied: k(x+y+z) < 0.9k(63x+y+z),
which gives y+ z < 557x. This means that, if, on average,
the total time of executing a test case and verifying a test
result is smaller than 557x (which is mainly the time of
generating 557 random numbers), then RP will detect a
failure more quickly; otherwise, DBP will detect a failure
more quickly. For real-world large and complex programs,
the test case execution time plus the result verification
time is generally far longer than the time of generating
557 random numbers. In these situations, therefore, DBP
can be used to replace RP. For instance, in our platform, it
takes 0.0000088 seconds to generate 557 random numbers.
We have also calculated the mean time of executing a
test case for each of the 43 programs under test. Of these
43 mean results, the minimum, maximum, and average

5. It should be noted that no actual test suites were involved in the
experiment, because to apply the DBP and RP algorithms does not
need to access the actual test cases.

are 0.0001507 (= 0.0000088× 17.125) seconds, 2.7974794
seconds, and 0.4333023 seconds, respectively.

7 THREATS TO VALIDITY

With regard to the internal validity of this study, which
refers to whether causal relations are properly examined,
the main concern is the correctness of the software tools
that we developed to conduct the experiments. To avoid
faults in these software tools, their code has been carefully
reviewed and tested. Furthermore, all the resulting F-
measures of random prioritization have been checked
against the mathematical expectations of F-measures (for
random sampling without replacement) calculated using
the approach developed by Zhou [17, Equation (2)]. The
discrepancies are very small and can be ignored. All
the intermediate and final empirical data have also been
carefully checked for correctness and consistency.

In this research, when performing a t-test, we calculated
the p-value and the effect size, but did not analyze the
power [45]. This is because, when the sample size is large,
the observed effect size is a good estimator of the true
effect size, but there is no guarantee that the observed power
is a good estimator of the true power—Yuan and Maxwell
[49] provided a detailed examination of the post hoc power
(the observed power) and concluded that the observed
power typically provides little useful information about
the true power of a single study.

Independent-samples t-tests have some basic assump-
tions. First, the observations must be independent. By
examining the designs of the experiments, we confirm
that this assumption is satisfied. Second, the populations
from which the samples are taken should be normally
distributed [50]. Note that “it is not in fact necessary
for the distribution of the observed data to be normal,
but rather the sample values should be compatible with
the population (which they represent) having a normal
distribution” [51]. If the sample data are approximately
normal, then the sampling distribution will be normal,
too [50]. Furthermore, according to the central limit
theorem, the sampling distribution will tend to be normal
regardless of the population distribution if the sample size
is above 30; in other words, in big samples the sampling
distribution tends to be normal anyway regardless of the
shape of the data that are actually collected [44]. This
means that “if we have samples consisting of hundreds
of observations, we can ignore the distribution of the
data” [50]. As the sample size used in our experiments
(Tables 2 and 3) was 10,000, the assumption of normality
is satisfied. The third assumption is homogeneity of variance,
that is, variances in groups should be approximately
equal. We found that our experimental data do not
perfectly satisfy this assumption. Nevertheless, for a large
number of different situations the t-test is robust enough
even if the assumption of homogeneity of variance is
untenable [52]. This includes situations, for example,
where sample sizes are large (above 25 or 30) and equal
or nearly equal, and two-tailed hypothesis is considered
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[52]–[54]. In the present research, all sample sizes are
equal and large, and two-tailed hypothesis has been used.
Furthermore, in situations where equal variances are not
assumed in a t-test, the SPSS software package provides
users with an alternative t-value which compensates for
the fact that the variances are not the same [55].

With regard to external validity, which is concerned
with the ability to generalize the findings, it should be
noted that all the subject programs used in our empirical
studies have been taken from the public domain. To
enhance external validity, further studies with programs
from other sources will be needed. This will require
collaboration work with industry.

8 RELATED WORK

As pointed out earlier in this paper, the present research
is fundamentally different from adaptive random testing
(ART) because we do not consider the input domain.
Nevertheless, it is worthwhile to review some of the
research results reported in the ART literature, which
may help us to gain a deeper understanding of our TCP
approach that generates a sequence of test case IDs based
on an ART algorithm (Fig. 4).

ART [28], [29], [56] was developed as an enhancement
of random testing (RT). The key intuition of ART is to
evenly spread test cases throughout the input domain.
To implement the concept of “even spread,” various
approaches have been proposed [29], some of which are
summarized as follows: (1) Selection of the best candidate
from a set of candidates, such as FSCS-ART; (2) Exclusion
[57], which defines exclusion zones around previously
executed test cases (that have not detected any failure)
to restrict the regions from which the next test case is to
be generated. Random inputs are generated one by one
until one falls outside of all the exclusion zones and that
input is taken as the next test case; (3) Partitioning [58],
[59], which divides the input domain into partitions and
then selects a partition from which the next test case is
to be generated; (4) Test profile [60], which achieves an
even spread of test cases using a specially designed and
dynamically adjusted test profile (which is different from
the uniform test profile of RT); and (5) Metric-driven [61],
which uses distribution metrics (that measure the degree
of even distribution of a set of points) as criteria for test
case selection.

To compare the effectiveness of ART and RT, the F-
measure has been the most widely used metric. Various
studies have proven that ART is superior to RT in the
F-measure and that this advantage of ART “is quite
significant and is in no way diminished by any potential
challenge to previous experiments’ validity” [29].

Our TCP approach shown in Fig. 4 uses the FSCS-
ART (with forgetting) algorithm to generate a sequence
of test case IDs, where the ART algorithm essentially
works on a 1-dimensional input space of integers (namely,
[0, n − 1]). With respect to the 1-dimensional input
space and the F-measure, previous research [48] revealed

that (1) the smaller the failure rate is, the more the
FSCS-ART outperforms RT, (2) FSCS-ART has better
performance for lower-dimensional input spaces (and
the best performance for the 1-dimensional input space),
and (3) even in the worst case, the F-measure of FSCS-
ART is still very close to that of RT.

9 DISCUSSIONS

In this section, we revisit the motivation of our research,
summarize the findings, present the limitations of our
study, and answer several potential questions concerning
the validity and completeness of our work.

9.1 Revisit of motivation
While various test case prioritization (TCP) techniques

(including input-based ones [21]) have been developed
and reported in the literature, their applicability to real-
world software projects are limited. This is because, first,
different techniques require different types of information
and/or dissimilarity metrics on the input values, test
cases, or the SUT prior to their application, but in practice
such details may not be available. For example, Yoo and
Harman [3] pointed out that “component-based software
development method tends to result in the use of many
black-box components, often adopted from a third party.
Any change in the third-party components may interfere
with the rest of the software system, yet it is hard to
perform regression testing because the internals of the
third-party components are not known to their users.”

Secondly, the complexity of sophisticated TCP tech-
niques and their computational overhead may be too
high for real-life utilization. For example, we have made
attempts to use O(n2) TCP algorithms in SQLite (row
#1 of Table 1) but found the execution times to be
prohibitive. Yoo and Harman [3] also pointed out that
“the shorter life-cycle of software development, such as the
one suggested by the agile programming discipline, also
imposes restrictions and constraints on how regression
testing can be performed within limited resources.”

One may argue that the time complexity of TCP
algorithms is not too important because test cases are only
ordered once and then applied to all subsequent versions
of the SUT, so that any excessive time spent in TCP is
not an issue. This concept is not valid for the following
reasons: First, as reported earlier, we have found that
when a test suite contains hundreds of thousands of
test cases, the computational overhead of conventional
nonlinear TCP algorithms may be prohibitive. Second,
test suites are updated throughout the course of software
evolution, and hence TCP is not a one-off activity; rather,
it is repeated regularly. Finally, if test cases are always
prioritized in exactly the same (deterministic) order, some
lowly ranked test cases may never be run unless the entire
test suite is executed. Therefore, some randomness in TCP
techniques is desirable.

In fact, random prioritization (RP) is considered to be
one of the most practical solutions in vast majority of
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TABLE 4
Comparing the DBP and RP test driver execution times for prioritizing the same number of test cases (1000 trials per

algorithm with respect to various test suite sizes). Actual SUTs and failure detections are not involved.

real-life situations, as it is simplest in concept, easiest and
cheapest to implement, and most importantly, requires
no precondition for adoption. This explains why RP is
used as the de facto benchmark in test case prioritization
studies.

9.2 Summary of findings

In this research, we raised a challenging question,
namely, whether a test case prioritization method can
be developed to enhance RP. To achieve this goal, the
technique must simultaneously satisfy all the following
four requirements as stated in research question RQ1:
It should be (i) more effective than RP, (ii) quicker to
detect failures than RP, (iii) as efficient as RP, and (iv)
as readily applicable as RP. We reiterate that none of the
existing techniques in the literature can simultaneously satisfy
all these four requirements.

To address the above research question, we have
proposed a solution using the concept of natural dis-
tance for real-world test suites, and proposed a simple
dispersity-based prioritization (DBP) algorithm. Our
method does not require any knowledge regarding the
software requirements, the SUT, the test history, the test
coverage, or even the values of the test cases. Thus, DBP
is non-execution-based and non-input-based, and hence is
as applicable as RP.

A series of empirical studies have been conducted
with 43 real-world programs collected from the public
domain. The results show that our method significantly
outperforms RP in effectiveness (in terms of both APFD
and the F-measure) and the execution time to detect the
first failure. Even in the worst case, the performance
of DBP is still close to that of RP, and this observation
is consistent with previous research results in the ART
literature [48]. It is also shown in Table 2 that the F-
measure appears to be a more suitable effectiveness
metric than APFD when the test suite is large, as it
more clearly shows the differences among different TCP
techniques.

In terms of efficiency, it is obvious that the RP
algorithm involves fewer computation steps than DBP:
To select a test case, the former only needs to generate
a random number, whereas the latter needs to generate
10 random numbers and conduct 10× 10 = 100 distance

computations. Nevertheless, both of these algorithms
have the same order of computational complexity, namely,
the linear complexity. Note that we are concerned with
the testing of large and complex real-world systems. The
SUT execution time, together with the result verification
time, is generally far longer than the DBP driver time
consumed for test case selection 6. Hence, the difference in
computation times between the RP and DBP algorithms
has little impact on their relative overall execution times.
This explains why the comparative results of effectiveness
and execution times are similar.

The additional algorithm is recognized as one of the
best traditional TCP algorithms. We have, therefore,
compared it with DBP in research question RQ2. We have
shown that DBP outperforms the additional algorithm in
applicability, execution time for failure detection, and
efficiency. In terms of effectiveness, it is not surprising
to find that our lightweight approach cannot guarantee
better effectiveness than the heavyweight additional
algorithm. It should be noted that the execution time and
effectiveness comparisons with the additional algorithm
have been performed on only two of 15 projects. Further
investigations with more subject programs are warranted
in future research.

The comparative results are further summarized in
Table 5. In short, with respect to research question
RQ1, DBP is shown to simultaneously satisfy all four
requirements, and can therefore be considered to be a
promising enhancement of RP. In actual practice, testers
or developers may often estimate the average time to
execute a test case, and such information will be helpful
in deciding whether DBP or RP should be used. Our
findings further suggest that DBP should be considered
as a reference benchmark for the evaluation of new test
case prioritization techniques. With respect to research
question RQ2, our case studies have also produced useful
comparative results.

9.3 Limitations
We have indicated in Observation II that it is not

difficult to decide on the order among test cases in a real-
world test suite. Nevertheless, we have not presented a

6. This is because DBP is a linear algorithm. For nonlinear TCP
algorithms, the situation may be very different.
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TABLE 5
Summary of results.

systematic methodology. Indeed, some of the discussions
in this paper may be slightly oversimplified. For instance,
the naming convention for test cases varies consider-
ably among different programming languages, projects,
frameworks, and organizations. We have not studied the
naming patterns or their implications. In fact, test case
priority determined by different heuristics may result in
distinctive performances. In future research, we plan to
improve the DBP strategy by leveraging the structural
information of test suites. For example, it is common
in Java projects to have one test suite per class with
multiple method invocations with the same naming as
the source methods. So the tester can easily incorporate
such knowledge into their partitioning heuristic without
affecting the complexity of the algorithm.

Second, in some frameworks, the order of execution of
a test suite is not necessarily sequential. For instance, the
default test case execution order of JUnit is unpredictable.
As such, it may not be straightforward for users of such
a framework to directly adopt DBP to prioritize their test
cases; however, developers of the framework can implement
DBP in the platform as an alternative to their original
ordering algorithm.

9.4 Why did we not compare DBP with other TCP
techniques?

Further comparisons between DBP and various other
TCP algorithms are beyond the scope of this paper, as
our main research question is RQ1. Such comparisons
would actually be unfair because DBP does not require
the extra information used by other TCP techniques—it
does not even need to know the values of the test cases.
Similarly, we have not compared DBP with other TCP
techniques reported to perform equally well or better
than the additional algorithm [6], [18], [19], [24], [62], [63].

In fact, we have attempted to use some of the existing
TCP algorithms that have a quadratic time complexity,
only to find that when the test suite is large, the test-case-
generation time is not only much longer than the test-
case-execution time but also prohibitive for any practical
purpose. This confirms the finding of Miranda et al. [24]
that “some TCP approaches [soon become] inefficient
even for small-medium size benchmarks.”

9.5 Why did we not report further validations of
Observation I?

Observation I is the cornerstone of DBP. We have given
an illustrative example in Figs. 1 and 2 to support this
observation.

It should be noted that the test cases in Fig. 2 have been
generated automatically by a tool. Test suites generated by
human developers may be different. In some companies,
for instance, failure-causing test cases can be added to
a regression test suite after a reported bug has been
fixed. In other situations, the developers may skip related
scenarios. It is thus desirable to have Observation I
backed by further empirical evidence, such as through
a comprehensive examination of both manual and tool-
generated real-world test suites. We have inspected in
detail some of the test suites in our empirical studies,
and have indeed found obvious similarities among
neighboring test cases. However, owing to the sheer
size and complexity of real-world test suites and test
scripts, and also owing to the subjectivity of assessing
similarities in test case semantics, it is beyond the scope
of this exploratory paper to present a thorough empirical
investigation of Observation I. Such an investigation is
clearly warranted in future research.

It should be noted, however, that intuitions and small-
scale observations often come before a systematic and
large-scale investigation. For example, DeMillo et al. [64]
made the intuitive assumption of a “coupling effect”
of program mutations in their seminal work in 1978.
Yet, a comprehensive investigation on the validity of
the coupling effect was only reported more than ten
years later, at which time Offutt [65] pointed out that
“Even though the coupling effect has been mentioned
by numerous researchers, there has been little effort to
verify or disprove the effect.” We therefore envisage more
empirical investigations into Observation I from both
industry and academia in the future, to either support it
or produce counterexamples.

The effectiveness of DBP and RP will become similar
when Observation I is violated, that is, when neighboring
test cases do not have any similarity (in terms of features
tested, code coverage, or failure-detection capability, etc.).
This may happen if, for example, all the test cases have
been randomly generated/sampled, or added to the
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test suite by different anonymous contributors working
simultaneously on different parts of the project (in this
situation, the ordering information may be unavailable
or unreliable, and hence DBP should not be applied).
Furthermore, DBP will not be applicable if test case
IDs cannot be used—this may happen if the test driver
cannot be edited, for example, if the test driver is a binary
executable file or is provided as a black-box component
by a third party (in this situation, all TCP techniques,
except the sequential ordering, will be inapplicable). In
addition, sometimes certain test cases may be given a
higher priority—in this situation, DBP (as well as any
other TCP technique) can only be applied to prioritize the
test cases that have the same level of priority. An in-depth
investigation into the above scenarios and development
of further solutions is warranted in future research.

9.6 During test case prioritization, is it appropriate
to consider all the available test cases?

In TCP literature, researchers typically construct a set
of test suites, each containing a small number of test
cases selected from a large test pool created for the
research project. Contrary to this research practice, in
our present work, we advocate that TCP experiments
should be conducted using real-life packages, where test
suites are large—after all, if the test suites were small,
there would be no need for test case prioritization. Test
suites with millions of test cases have been extensively
reported in the industry (by Microsoft [66], IBM [67], and
Google [68], to name a few), and has drawn researchers’
attention in recent years [18]. In fact, Miranda et al. [24]
noted that most TCP techniques “do not scale up to
handle the many thousands or even some millions test
suite sizes of modern industrial systems.”

9.7 Is DBP really effective for the detection of mean-
ingful software issues?

The experiments conducted in this study involve
testing but not debugging. In other words, we have not
gone further to investigate the root causes for the failures
detected. The debugging process is not included in this
study because of the sheer size and complexity of the real-
life SUTs and their test cases. Nevertheless, it is known
that the failures of all 17 faulty Space programs (in rows
#27 to #43 of Table 1) have been caused by genuine
bugs collected during the real-life development of the
software. Furthermore, all five GNU Compiler Collection
programs listed in rows #2 to #6 of Table 1 (namely,
g++, gcc, gfortran, libmudflap, and libstdc++) have been
tested using test suite v4.8.0, the same version as the
SUTs. This means that failures detected for these five
GNU Compiler Collection programs have revealed real
and meaningful software issues. In addition, Firefox (row
#11 of Table 1), the largest SUT of our study, which
contains 6, 177, 736 source lines of code, has also been
tested using a test suite that is of the same version as

the SUT (namely, v31.0) and, therefore, its failures also
indicate real and meaningful software issues.

Apart from the above programs, there are eight subject
packages where a newer version of test suite has been
used to test an older version of SUT. As listed in Table 1,
these packages are: SQLite in row #1, commons-lang
in row #7, commons-math in row #8, jfreechart in row
#9, joda-time in row #10, Autoconf in rows #12 to #16,
Automake in rows #17 to #21, and MySQL in rows #22
to #26.

One may argue that the “failures” detected in this
study for the above eight packages may not necessarily
indicate any defect in the SUT or any problem in the
environment because these failures might have been
caused by compatibility issues (such as the old version
SUT not supporting a new input parameter or a new
component being absent in the old version) and that
such a testing practice is meaningless with respect to fault
detection. It should be noted, however, that the purpose of
our testing activities with the above eight packages is not
direct detection of defects. As explained in Section 4.3.3,
there could be various other testing objectives in running
a newer test suite on an older SUT. These objectives
include program comprehension, change impact analysis,
or to find behavioral differences (which may or may not
be caused by software faults) between two versions of
the software, among others [38], [39], [69]–[71].

Consider the results shown in Table 2. We can divide
the table into two sub-tables: The first sub-table consists
of all 17 faulty Space programs (in rows #27 to #43),
which includes genuine bugs, and all five GNU Compiler
Collection programs listed in rows #2 to #6 (namely, g++,
gcc, gfortran, libmudflap, and libstdc++), for which the
SUT and the test suite are of the same version, as well as
row #11 (Firefox, the largest SUT of our study), which has
also been tested using the same version of test suite. The
second sub-table consists of all the remaining programs,
that is, the eight subject packages where a newer test
suite has been applied to an older SUT (namely, SQLite
in row #1, commons-lang in row #7, commons-math
in row #8, jfreechart in row #9, joda-time in row #10,
Autoconf in rows #12 to #16, Automake in rows #17
to #21, and MySQL in rows #22 to #26).

Examining the respective test results for these two
sub-tables reveals that the first sub-table results are
much better than those of the second sub-table. Consider
column #5 (F.DBP÷F.RP), for example, the first sub-table
has mean, maximum, and minimum values of 0.84, 1.01,
and 0.42, respectively, whereas the respective statistics
of the second sub-table are 0.97, 1.02, and 0.89, which
means that the former is the dominating factor for the
observed superior performance of DBP over RP.

When designing the experiments, we also tried to
apply the old test suites to the new versions of the SUTs.
However, no failures could be detected. As explained in
Section 4.3.3, this is because the new SUT versions must
have already gone through regression testing and passed
all of the old test cases before they were released.
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TABLE 6
Results of a supplemental experiment with the Replace
program. F.RP: F-measure of random prioritization (RP)

out of 10,000 trials; F.DBP: F-measure of dispersity-based
prioritization (DBP) out of 10,000 trials. Where there is a

statistically significant difference between the RP and
DBP means (with a p-value below 0.05), the

corresponding cells are highlighted (light gray: DBP
outperformed RP; dark gray: RP outperformed DBP).
“p=0.000” means p<0.0005. Where the effect size

(Cohen’s d) is 0.10 or larger, the corresponding cells are
starred (*). “d=0.00” means d<0.005.

To further confirm the finding that DBP is more
effective than RP for the detection of software faults,
we have conducted a supplemental experiment using the
Replace program of the Siemens suite of programs [72] down-
loaded from SIR [41]. According to SIR documentation,
the Siemens suite of programs were initially assembled
by Tom Ostrand and colleagues at Siemens Corporate
Research for a study of the fault detection capabilities of
control-flow and data-flow coverage criteria [72] and then
modified by other researchers for further studies [73]. The
Siemens suite of programs have long been used by the
testing community for benchmarking testing strategies
[74]. Among all seven Siemens programs, the Replace
program, which performs regular expression matching
and substitutions, is the most complex; despite having
only 512 SLOC in C, it covers the most varieties of
logic errors [75]. The Replace package includes a test
driver that runs 5, 542 test cases. The order of test case

executions in the test driver is therefore used as the
order of the test cases in our experiment. The package
contains a base version, which is used as the test oracle,
and a total of 32 faulty versions—although the faults
are created manually, the Siemens researchers have made
them as realistic as possible [72]. Of the 32 faulty versions,
22 have recorded a failure rate below 5%. These 22
faulty versions, therefore, are used in our experiment. As
with the previous experiments, for each faulty version,
we have conducted 10, 000 trials of DBP and 10, 000
trials of RP to estimate their respective F-measures. The
experimental results are given in Table 6, which clearly
show that DBP has outperformed RP. These results are
consistent with those collected from genuine real-life
packages presented earlier in this paper.

10 CONCLUSIONS

The most important contribution of this research is the
discovery of Observation I, a very simple but important
property of real-world test suites that can support test
case prioritization. More specifically, we observe that
neighboring test cases in real-world test suites often
have similarities in certain ways. As indicated earlier, the
validity of this observation should be further examined
in future research, by inspecting many more software
projects and their test suites.

Based on Observation I, we have proposed an ex-
tremely simple approach to prioritizing test cases. The
algorithm itself is not novel, as it is a direct application
of ART. The novelty lies in the dispersity metric, which
makes use of test case IDs (which are readily available)
rather than concrete input values (of which the distance
may not be easy to measure) or test case coverage data
(which may not be available).

Our results are consistent with recent studies sug-
gesting that diversity (and therefore dissimilarity) is a
key concept underlying the foundations of successful
software testing strategies [28], [76]. Our proposed DBP
algorithm generates a sequence of test case IDs by using
the “FSCS-ART with forgetting” method. Other linear
ART algorithms [29] can also be adopted to replace “FSCS-
ART with forgetting.” An empirical evaluation of these
other algorithms in the context of text case prioritization
and test case selection using the natural distance is a
future research topic.

Our research has shown that DBP is more applicable
than the additional algorithm. But even when conventional
TCP techniques are applicable, DBP can still be a
better choice—especially if the test suite is very large,
resulting in a high computational overhead. The proposed
approach, therefore, provides an innovative direction and
practical hints for testing engineers dealing with large
test suites. It can be a very simple and yet useful solution
to the test case prioritization problem in real life.

In real-world projects, the original order of test cases
may be generated according to very different rules,
and not all test cases are logically generated by tools.
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Furthermore, during software evolution, many new test
cases are added to the test suite, making the test order
different. However, as reported earlier in this paper, even
in such circumstances, applying DBP will do no harm to
the test effectiveness and efficiency.
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