
1

SCHAIN-IRAM: An Efficient and Effective
Semi-supervised Clustering Algorithm for

Attributed Heterogeneous Information Networks
Xiang Li, Yao Wu, Martin Ester, Ben Kao, Xin Wang, Yudian Zheng

Abstract—A heterogeneous information network (HIN) is one whose nodes model objects of different types and whose links model
objects’ relationships. To enrich its information, objects in an HIN are typically associated with additional attributes. We call such an
HIN an Attributed HIN or AHIN. We study the problem of clustering objects in an AHIN, taking into account objects’ similarities with
respect to both object attribute values and their structural connectedness in the network. We show how supervision signal, expressed
in the form of a must-link set and a cannot-link set, can be leveraged to improve clustering results. We put forward the SCHAIN algorithm
to solve the clustering problem, and two highly efficient variants, SCHAIN-PI and SCHAIN-IRAM, which employ the power iteration
based method and the implicitly restarted Arnoldi method respectively to compute eigenvectors of a matrix. We conduct extensive
experiments comparing SCHAIN-based algorithms with other state-of-the-art clustering algorithms. Our results show that
SCHAIN-IRAM outperforms other competitors in terms of clustering effectiveness and is highly efficient.

Index Terms—Semi-supervised clustering, attributed heterogeneous information network, object attributes, network structure

F

1 INTRODUCTION

N ETWORKS model real world entities and their relation-
ships by objects and links. A heterogeneous informa-

tion network (HIN) is a network whose objects are of dif-
ferent types and whose links represent different kinds of re-
lationships between objects. Compared with homogeneous
information networks (in which all objects/links are of one
single type), an HIN is much more expressive in capturing
complex real-world knowledge. For example, the Facebook
Open Graph contains objects that represent Facebook users
and other non-human entities, such as photos, events and
pages. To enrich the information content of an HIN, objects
are often associated with various attributes. For example,
on Facebook, a “user” object is associated with attributes
like age, gender, school, and workplace, while a “photo” object
has attributes like lat-long and date/time that record where
and when the photo was taken. We call an HIN with object
attributes an attributed HIN or AHIN for short.

Cluster analysis is a fundamental task in data analytics.
Given a set of objects, the goal is to partition them into
clusters such that objects in the same cluster are similar
among themselves, while objects from different clusters are
dissimilar. Clustering finds many interesting applications in
AHINs. For example, it can be applied to a social network to
identify user communities, based on which target marketing

• Xiang Li and Ben Kao are with the Department of Computer Science, The
University of Hong Kong, Hong Kong.
E-mail: {xli2, kao}@cs.hku.hk

• Yao Wu and Yudian Zheng are with Twitter, San Fransisco, USA.
E-mail: {yawwu51, zhydhkcws}@gmail.com

• Martin Ester is with the School of Computing Science, Simon Fraser
University, Burnaby, Canada.
E-mail: ester@cs.sfu.ca

• Xin Wang is with the Department of Computer Science and Technology,
Tsinghua University, Beijing, China.
E-mail: xin wang@tsinghua.edu.cn

can be effectively done. The key to effective clustering is
the formulation of a similarity measure between objects that
well matches the clustering objective. In some cases, such
similarity measure cannot be intuitively derived and needs
to be discovered, typically via a learning process.

The challenges of clustering in large AHINs are twofold.
(1) Objects similarity can be attribute-based or link-based.
The former refers to the similarity of two objects’ attribute
values, while the latter refers to how well two objects are
connected in the network. For AHINs, link-based similarity
can be measured by simple network distance measures or
by meta-path relations. A meta-path is a sequence of node
types that expresses a relation between two objects in an
AHIN. For example, if U and P represent “user” and “prod-
uct page” object types on Facebook, respectively, and that an
edge between a user and a product page in the network rep-
resents a fact that the user “likes” a product page, then the
meta-path U-P-U represents a relation between two users
who have liked the same product page. Meta-paths have
been shown to be very useful in many data mining tasks
in expressing the structural relations between objects in
HINs [1], [2], [3], [4]. An interesting issue is how the various
types of similarities, be they attribute-based or link-based,
be aggregated to measure the overall similarities of objects.
(2) For complex AHINs, there could be a large number of
object attributes and theoretically an unlimited number of
possible meta-paths to be considered in the formulation of a
similarity measure. In most cases, only certain attributes and
meta-paths are relevant to a clustering task. The complexity
necessitates an automatic process of selecting the best set
of attributes/meta-paths and evaluating their importance
(often captured by a weighting scheme) for deriving the best
similarity formula. One practical approach to guide such a
process is for a data analyst to provide supervision, typically
made available via examples such as a must-link set (object

Administrator
 HKU CS Tech Report TR-2020-02

2

pairs that should be put into the same clusters) and a cannot-
link set (object pairs that should not be put into the same
clusters).

In this paper we study the problem of semi-supervised
clustering on AHINs. Our main contributions include:
• We show how attribute-based similarities and link-based
similarities can be effectively aggregated via a weighting
scheme. Given a supervision constraint expressed via a
must-link set and a cannot-link set, we show how the
weighting scheme can be theoretically optimized with re-
spect to the constraint. Our approach is to solve the opti-
mization problem using an iterative mutual update process.
• We show how the mutual update process is reducible
to a trace maximization problem and a non-linear parametric
programming (NPP) problem. We prove some properties of
the NPP problem that allow us to solve it computationally.
Based on the iterative update process, we put forward the
SCHAIN [5] algorithm for clustering objects in an AHIN.
•We propose two variants of SCHAIN, namely, SCHAIN-PI
and SCHAIN-IRAM, which respectively use the power iter-
ation method and the implicitly restarted Arnoldi method
to compute eigenvectors to improve clustering efficiency.

2 RELATED WORK

Cluster analysis is a fundamental task in data mining. For
a survey on clustering algorithms for traditional relational
data, see [6]. Our goal is to cluster objects in an AHIN
given a supervision constraint expressed via a must-link set
and a cannot-link set, which are also adopted in [7]. The
clustering algorithm we seek should consist of the following
elements: (1) It considers both object attribute values and
object connectedness in measuring object similarity. (2) It
applies to networks that are heterogeneous, i.e., objects and
links can be of different types. (3) It is a semi-supervised
process which takes into account supervision constraints.
There are quite a few algorithms previously proposed to
cluster networked objects, but most of these algorithms miss
one or more elements we mentioned above. In this section
we summarize and categorize these previous algorithms.
We also briefly describe five algorithms, namely, PathSel-
Clus [1], GNetMine [8], SemiRPClus [9], FocusCO [10] and
HAN [11], and show how they could be adapted to solv-
ing our clustering problem. The performances of the five
algorithms are evaluated and compared with our SCHAIN-
based algorithms in Section 5.

[Link-based clustering] There are algorithms that cluster
objects in a network based on object linkage. While the
works presented in [12], [13], [14], [15], [16] focus on homo-
geneous information networks, RankClus [17], NetClus [18],
SI-Cluster [19] and matrix-factorization-based methods [20]
focus on heterogeneous networks. These methods are unsu-
pervised methods and they do not consider object attributes.

[Embedding-based clustering] Network embedding has
attracted much attention lately. The idea is to embed net-
work objects into low dimensional vectors, which facilitate
downstream data mining tasks, such as classification and
clustering. While embedding techniques like DeepWalk [21],
LINE [16] and node2vec [22] are based on the network
structure only, other techniques such as GCN [23], SNE [24]
and LANE [25] consider both network links and object

attributes. Moreover, metapath2vec [26] and HIN2Vec [27]
are two representative methods for embedding objects in
HINs, while HNE [28] and HAN [11] are methods espe-
cially designed for AHINs. In addition, [29] proposes a
semi-supervised graph embedding method. However, the
method is restricted to homogeneous networks.

[Unsupervised clustering] In recent years, a number of
algorithms have been proposed to cluster network objects
considering both attribute values and network links. Most
of these works apply to homogeneous networks only [30],
[31], [32], [33], [34], [35], [36]. Other more elaborate methods
that apply to HINs include [37], [38], [39], [40], [41]. All of
these algorithms are unsupervised ones.

[Semi-supervised clustering] Semi-supervised cluster-
ing algorithms on networked data include [42], [43], [44],
[45], [46], [47]. Here, we briefly describe a few representative
ones and discuss how they could be applied on AHINs.

PathSelClus [1] is a meta-path-based clustering algo-
rithm on HINs. Supervision is given by users providing seed
objects for some clusters. Given two objects, the number of
instances of a certain meta-path P connecting them reflects
how strongly the two objects are “connected” via the meta-
path relation P . Objects’ similarities via a meta-path relation
are captured by a relation matrix, which is regarded as
observations. A probabilistic model of the hidden clusters is
employed to evaluate the probabilities of the observations
(i.e., relation matrix). Each meta-path is assigned a weight.
These weights are learned by an iterative strategy that max-
imizes the consistency between the weighted relation matrix
and the clustering results as given by the seed objects. Since
PathSelClus does not consider object attribute values, when
we apply it to AHINs, the attribute values are ignored.

GNetMine [8] is a graph regularized transductive clas-
sification method for HINs. It first constructs a predictive
function f(lj |x) for each object x and object label lj . Then, it
minimizes an objective function that consists of two values:
(1) for any two linked objects xp and xq , the difference
between their predictive values f(lj |xp) and f(lj |xq), and
(2) for any labeled object, xr, the difference between its
predictive value f(lj |xr) and its true label-induced value,
which is 1 if xr’s label is lj ; 0 otherwise. The predictive
functions f(lj |x)’s are trained by optimizing the objective
function via an iterative method. Finally, labels are pre-
dicted based on the f(lj |x)’s. Even though GNetMine is a
classification algorithm, we can apply it to our clustering
problem by regarding cluster id’s as object labels. Moreover,
by assigning objects that “must-link” with the same label
and objects that “cannot-link” with different labels, we
obtain labeled objects as training data. Like PathSelClus,
GNetMine does not consider attribute values.

SemiRPClus [9] is a semi-supervised algorithm for clus-
tering objects in an HIN. Based on relation-paths (which are
subsets of meta-paths), the method derives several mea-
sures, which are linearly combined to evaluate the simi-
larities of objects in the network. An objective function is
defined to learn the weights of different measures with the
goal of maximizing intra-cluster similarity and minimizing
inter-cluster similarity. A logistic model is used to learn the
weights of the relation-paths. After the weights are learned
and a weighted similarity matrix is derived, the algorithm
resorts to traditional clustering algorithms to cluster objects.

3

SemiPRClus does not consider object attribute values.
In [10], a user-oriented clustering approach FocusCO for

homogeneous network is proposed. Given a set of user-
provided exemplar nodes, the algorithm first infers the ob-
ject attributes (and their weights) that are the most relevant
in making the exemplar nodes similar among themselves.
Then, the algorithm assigns a weight to each link in the
network based on the weighted similarity of its end-nodes’
attribute values. Next, edges with large weights are retained
and each connected component in the resulting graph forms
a core set. The core sets are then adjusted by adding or re-
moving members with the goal of decreasing the conductance
of the cores, which essentially measures how well objects in
a core are isolated from those outside the core. The resulting
cores are then regarded as clusters of interest. FocusCO con-
siders both object attributes and link information. However,
it only applies to homogeneous networks. When we apply
FocusCO to our clustering problem, we ignore object and
link types, and regard an AHIN as a simple graph.

HAN [11] is a state-of-the-art graph neural network
model for representing AHINs. It generates node embed-
dings based on a hierarchical attention mechanism, which
includes node-level and semantic-level attentions. Specifi-
cally, the node-level attention is used to learn the relative
importance of meta-path-based neighbors of a given node
while the semantic-level attention is used to learn the im-
portance of meta-paths. For each meta-path, HAN generates
node embeddings by iteratively aggregating the embed-
dings of meta-path-based neighbors. The final node embed-
ding vectors are derived by aggregating the embeddings
generated based on different meta-paths with the learned
meta-path weights taken into account. Similar to GNetMine,
we apply HAN to our semi-supervised clustering problem
by regarding cluster id’s as object labels and training it as
a classification model. The predicted labels of objects are
taken as the objects’ cluster id’s.

3 DEFINITIONS

In this section we give a formal problem definition.
Definition 1. Attributed Heterogeneous Information Net-

work (AHIN). Let T = {T1, ..., Tm} be a set of m > 1
object types. For each type Ti, let Xi be the set of objects
of type Ti and Ai be the set of attributes defined for
objects of type Ti. An object xj of type Ti is associated
with an attribute vector fj = (fj1, fj2, ..., fj|Ai|). An
AHIN is a graph G = (V,E,A), where V =

⋃m
i=1 Xi is a

set of nodes, E is a set of links (each represents a binary
relation between two objects in V), and A =

⋃m
i=1Ai. 2

Definition 2. Network schema. A network schema is the
meta template of an AHIN G = (V,E,A). Let (1) φ :
V → T be an object-type mapping that maps an object
in V into its type, and (2) ψ : E → R be a link-relation
mapping that maps a link in E into a relation in a set of
relationsR. The network schema of an AHING, denoted
by TG = (T ,R), shows how objects of different types are
related by the relations in R. TG can be represented by a
schematic graph with T and R being the node set and the
edge set, respectively. Specifically, there is an edge (Ti,
Tj) in the schematic graph iff there is a relation inR that
relates objects of type Ti to objects of type Tj . 2

M1 M2 M3 M4

A1 A3A2

D1 D2 P1 P2

(a)

M

D P

A

(b)

Fig. 1: An AHIN (a) and its schematic graph (b)

Figure 1(a) shows an example AHIN that models movie
information (attribute information is not shown). The AHIN
consists of four object types: T = { movie (3), actor(2),
director(#), producer(4) }. There are also three relations in
R, which are illustrated by the three edges in the schematic
graph (Figure 1(b)). For example, the relation between ac-
tor and movie carries the information of which actor has
acted in which movie. Actors, directors and producers have
attributes like age, gender, birthplace, while movies are
associated with attributes like release date, box office, etc.
Definition 3. Meta-path. A meta-path P is a path defined on

a schematic graph. A meta-path P : T1
R1−→ · · · Rl−→ Tl+1

defines a composite relation R = R1 ◦· · ·◦Rl that relates
objects of type T1 to objects of type Tl+1. If two objects xu
and xv are related by the composite relationR, then there
is a path, denoted by pxu;xv , that connects xu to xv inG.
Moreover, the sequence of links in pxu;xv matches the
sequence of relations R1, ..., Rl based on the link-relation
mapping ψ. We say that pxu;xv is a path instance of P ,
denoted by pxu;xv ` P . 2

As an example, the path pM1;M3 = M1 → A2 → M3
in Figure 1(a) is an instance of the meta-path Movie-Actor-
Movie (abbrev. MAM).
Definition 4. Supervision constraint. The clustering process

is supervised by a user through a constraint (M, C),
whereM and C are the must-link set and the cannot-link
set, respectively. Each is a set of object pairs (xa, xb). An
object pair in M represents that the two objects must
belong to the same cluster, while a pair in C indicates
that the pair should not be put into the same cluster. 2

Definition 5. Semi-supervised clustering in an AHIN.
Given an AHIN G = (V,E,A), a supervision constraint
(M, C), a target object type Ti, the number of clusters
k, and a set of meta-paths PS , the problem of semi-
supervised clustering of type Ti objects in G is to (1)
discover an object similarity measure S that is based on
object attributes and meta-paths, and (2) partition the
objects in Xi into k disjoint clusters C = {C1, ..., Ck}
based on the similarity measure S such that the cluster-
ing results best agree with the constraint (M, C). 2

4 ALGORITHM

In this section we present our algorithm SCHAIN
(Semi-supervised Clustering in Heterogeneous Attributed
Information Networks) and two more-efficient variants
SCHAIN-PI and SCHAIN-IRAM. SCHAIN first composes
a similarity matrix S that measures the similarity of every

4

object pair based on the objects’ attribute similarity and
network connectedness. The latter is derived based on the
meta-paths connecting the object pair. Since attributes and
meta-paths vary in their relevancy to a clustering objective,
SCHAIN assigns a weight to each object attribute and meta-
path in composing S. To take into account the supervision
constraint, SCHAIN derives a penalty function involving all
the weightings as well as objects’ cluster assignment. It then
employs an iterative, staggered 2-step learning process to
determine the optimal weights and cluster assignment as
output. Sections 4.1 and 4.2 present the similarity matrix
and the penalty function, respectively. Section 4.3 depicts
the optimization technique. In Section 4.4, we analyze the
computation cost of SCHAIN and put forward SCHAIN-PI
and SCHAIN-IRAM to accelerate the computation.

4.1 Similarity Matrix

[Attribute-based] Given two objects xu, xv of type Ti, let fu
and fv be their respective attribute vectors (see Definition 1).
Recall that Ai is the set of attributes associated with type-
Ti objects. We define an attribute weight vector ω ∈ R1×|Ai|,
whose j-th component, wj , captures the importance of the
j-th attribute in Ai for the clustering task. We define the
attribute-based similarity matrix, denoted SA, by

SA(xu, xv) =

|Ai|∑
j=1

(ωj · sim(fuj , fvj)) , (1)

where sim(fuj , fvj) can be any standard similarity function
defined over the j-th attribute of Ai [48].

[Link-based] We use meta-paths to measure the con-
nectedness of objects in the network. Given a symmetric
meta path P , SCHAIN measures the similarity between two
objects xu and xv w.r.t. P by PathSim [3]:

SP(xu, xv) =
2× |{pxu;xv : pxu;xv ` P}|

|{pxu;xu : pxu;xu ` P}|+ |{pxv;xv : pxv;xv ` P}|
,

where pxu;xv
denotes a path instance from object xu to

object xv in the network, and pxu;xv
` P denotes that the

path is an instance of the meta-path P . PathSim is shown to
be a very effective measure of meta-path-based similarity.
It compares favorably against other link-based similarity
measures, such as random walk and SimRank [3].

Given a set of meta-paths PS , each meta-path Pj ∈ PS
derives a similarity matrix SPj

and is given a weight λj . We
define the link-based similarity matrix, denoted SL, by:

SL =

|PS|∑
j=1

λjSPj
. (2)

Let λ ∈ R1×|PS| be the meta-path weight vector, whose
j-th component is λj . Finally, the overall similarity matrix S
is a weighted sum of SL and SA:

S = αSA + (1− α)SL, (3)

where α is a weighting factor that controls the relative
importance of the two similarity matrices.

4.2 Supervision Constraints
Given a clustering {Cr}kr=1 that partitions objects in Xi into
k clusters, the quality of the clustering can be measured by
how similar objects of different clusters are to each other
— the larger is the inter-cluster similarity, the worse is the
clustering quality. We measure the inter-cluster similarity
based on normalized cut [12]. Specifically, for any two clusters
Cp, Cq , define links(Cp, Cq) =

∑
xu∈Cp,xv∈Cq

S(xu, xv).
The normalized cut of a clustering {Cr}kr=1 is given by
NC =

∑k
r=1

links(Cr,Xi\Cr)
links(Cr,Xi)

. Note that NC is dependent on
S. Hence, it is a function of ω, λ, and {Cr}kr=1.

Another way to evaluate the clustering quality is to
check how well the clustering agrees with the supervision
constraint. Specifically, consider an object pair (xu, xv) in
a must-link set M. If a clustering assigns the objects to the
same cluster, the clustering agrees with the constraint, which
is an indication of good clustering quality. On the contrary,
if the object pair is in the cannot-link set C, then having the
objects in the same cluster indicates poor clustering quality.
Taking supervision constraint into consideration, we modify
NC into the following penalty function:

J (λ,ω, {Cr}kr=1) =

k∑
r=1

links(Cr,Xi\Cr)

links(Cr,Xi)
−

k∑
r=1

∑
(xu,xv)∈M

L(xu)=L(xv)=r

S(xu, xv)

links(Cr,Xi)

+

k∑
r=1

∑
(xu,xv)∈C

L(xu)=L(xv)=r

S(xu, xv)

links(Cr,Xi)
,

(4)

where L(x) denotes the assigned cluster for object x. For
convenience, we encode a clustering {Cr}kr=1 by k indicator
vectors zr’s. Each zr consists of n = |Xi| bits, such that
zr(u) = 1 if object xu ∈ Xi is assigned to cluster Cr ; 0
otherwise. We further encode the supervision constraint as
a constraint matrix W ∈ Rn×n, where W(u, v) = 1 if <
xu, xv > ∈ M; -1 if < xu, xv > ∈ C; and 0 otherwise. Let
D ∈ Rn×n be a diagonal matrix such that d(i, i) is the sum
of the entries in the i-th row of S. Eq. 4 can be rewritten as

J (λ,ω, {zr}kr=1) =

k∑
r=1

zT
r (D − S)zr
zT
r Dzr

−
k∑

r=1

zT
r W ◦ Szr
zT
r Dzr

=

k∑
r=1

zT
r (D − S −W ◦ S)zr

zT
r Dzr

,

(5)

where ◦ is the Hadamard product for two matrices.
Furthermore, to prevent overfitting, we add a regular-

ization term to Eq. 5 and get,

J (λ,ω, {zr}kr=1) =

k∑
r=1

zT
r (D − S −W ◦ S)zr

zT
r Dzr

+ γ(||λ||2 + ||ω||2).

(6)

Finally, to find the best clustering, we minimize the
penalty function J () subject to the following constraints:
(1) each object is assigned to one cluster:

∑k
r=1 zr(u) = 1;

zr(u) ∈ {0, 1}; (2) meta-path weights and attribute weights
are non-negative with their respective sums equal to 1:∑|PS|
j=1 λj = 1;

∑|Ai|
l=1 ωl = 1; λj ≥ 0 and ωl ≥ 0.

4.3 Model optimization
Our objective is to find the best clustering, or equivalently,
the indicator vectors {zr}kr=1 that minimizes the penalty

5

function J (). Note that J () is a function of λ and ω (which
are the weights of meta-paths and object attributes), whose
values need to be learned as well. SCHAIN learns these
parameters using an iterative mutual update approach. Each
iteration consists of two steps. First, given λ and ω, we find
the optimal clustering {zr}kr=1. Second, given {zr}kr=1, we
find the optimal λ and ω. SCHAIN iterates until the change
in the penalty is smaller than a threshold ε or a fixed number
of iterations have been executed. Next, we show how the
two update steps are performed.

4.3.1 Finding the optimal {zr}kr=1 given λ and ω
Given λ and ω, J () is a function of {zr}kr=1. We define a
matrix Z̃ , whose r-th column Z̃·r equals D

1
2 zr/(z

T
r Dzr)

1
2 .

Note that since Z̃T Z̃ = Ik, where Ik is the k × k identity
matrix, Z̃ is an orthonormal matrix. For fixed values of λ
and ω, minimizing J () is equivalent to minimizing:

J ′(Z̃) = trace(Z̃TD−
1
2 (D − S −W ◦ S)D−

1
2 Z̃),

= trace(Ik − Z̃TD−
1
2 (S +W ◦ S)D−

1
2 Z̃).

(7)

Since trace(Ik) is a constant, the above is equivalent to
solving the following trace maximization problem:

max
Z̃T Z̃=Ik

trace(Z̃TD−
1
2 (S +W ◦ S)D−

1
2 Z̃). (8)

Since Z̃ is a rigorous cluster indicator matrix, the optimiza-
tion problem is NP-hard [37]. To address this issue, we allow
real relaxation to Z̃ so that its entries can assume real values.
Then, according to the Ky-Fan theorem [49], the maximiza-
tion problem (8) has a closed-form solution that corresponds
to the subspace spanned by the top k eigenvectors of
K = D−

1
2 (S +W ◦ S)D− 1

2 . Since Z̃·r = D
1
2 zr/(z

T
r Dzr)

1
2 ,

we need to transform each Z̃·r back to a real-relaxed zr .
We first calculate U = D−

1
2 Z̃ and then normalize it by

column. Each column in U is a real-relaxed zr. Finally, with
the real relaxation, entries in U take on fractional values, so
the clustering is not definite. To derive a hard clustering, we
treat each row in U as a feature vector of an object. After row
normalization on U , we adopt k-means to cluster objects.

4.3.2 Finding the optimal λ and ω given {zr}kr=1

For fixed {zr}kr=1, J () is a function of λ and ω. We rewrite
Eq. 6 as:

J (λ,ω) =

k∑
r=1

zT
r Dzr − z

T
r (S +W ◦ S)zr
zT
r Dzr

+ γ(||λ||2 + ||ω||2),

= k −
k∑

r=1

zT
r (S +W ◦ S)zr

zT
r Dzr

+ γ(||λ||2 + ||ω||2).

(9)

Minimizing J (λ,ω) is equivalent to maximizing:

max
λ,ω

k∑
r=1

zTr (S +W ◦ S)zr
zTr Dzr

− γ(||λ||2 + ||ω||2). (10)

Note that the entries of matrices S and D are linear func-
tions of λ and ω. Therefore, the numerator and the de-
nominator of each term in the summation are both linear
functions of λ and ω. Hence, (10) can be rewritten as:

H(λ,ω) = max
λ,ω

f(λ,ω)

g(λ,ω)
, (11)

where f(λ,ω) and g(λ,ω) are two nonlinear multivariate
polynomial functions.

It is shown in [50] that the maximization problem with
the form shown in Eq. 11 can be solved by solving the
following related non-linear parametric programming problem:

Definition 6. [Non-linear parametric programming (NPP)]
Let f(λ,ω) and g(λ,ω) be two multivariate polynomial
functions. For a given µ, find

F (µ) = max
λ,ω

(f(λ,ω)− µg(λ,ω)) . (12)

In our context, the parameters λ and ω are subject to the
constraints listed at the end of Section 4.2. 2

In [50], the following theorem is proved.

Theorem 1. Given a fixed µ, let (λ∗,ω∗) be the optimal
solution to F (µ) (Eq. 12). (λ∗,ω∗) is also an optimal
solution to H(λ,ω) (Eq. 11) if and only if F (µ) = 0. 2

Besides Theorem 1, a few lemmas are also proved in [50]:

Lemma 1. F (µ) is convex. 2

Lemma 2. F (µ) is continuous. 2

Lemma 3. F (µ) is strictly monotonically decreasing, i.e., if
µ1 < µ2, F (µ1) > F (µ2). 2

Lemma 4. F (µ) = 0 has a unique solution. 2

Due to space limit, readers are referred to [50], [51] for the
proofs of the theorem and lemmas.

From Theorem 1, we need to find a µ∗ and its corre-
sponding (λ∗,ω∗) such that F (µ∗) = 0. SCHAIN does so by
an iterative numerical method. In each iteration, SCHAIN
computes a µ and (λ,ω). Let µi, (λi,ωi) be those computed
in the i-th iteration. SCHAIN first sets µ1 = 0 and in
each iteration, performs two steps: (Step 1:) Solve the NPP
problem (Eq. 12) for µ = µi and set (λi,ωi) to be the
solution found. (Step 2:) Set µi+1 = f(λi,ωi)/g(λi,ωi).
Next, we show theoretical properties of this update process.
Property 1: F (µ1) > 0. Without loss of generality, we
assume f(λ,ω) > 0 and g(λ,ω) > 0.1 Now, F (µ1) = F (0)
= maxλ,ω f(λ,ω) > 0.
Property 2: if F (µi) > 0 then 0 ≤ F (µi+1) < F (µi).
Since (λi,ωi) is the solution of the NPP problem for
µ = µi (Eq. 12), we have f(λi,ωi) − µig(λi,ωi) =
F (µi) > 0. Hence, µi+1 = f(λi,ωi)/g(λi,ωi) >
µi. By Lemma 3, F (µi+1) < F (µi). Also, we have
F (µi+1) = maxλ,ω(f(λ,ω) − µi+1g(λ,ω)) ≥ f(λi,ωi) −
µi+1g(λi,ωi) = 0.

From the properties, we see that SCHAIN starts with
a positive F (µ), whose value stays positive and decreases
across iterations until it reaches 0. The update procedure
thus converges to the optimal values. The SCHAIN algo-
rithm is summarized in Algorithm 1.

1. One can show that the quantity (10) is bounded below by −2γ. We
can add an arbitrary large constant to (10) to make it, and thus f(λ,ω)
and g(λ,ω), positive.

6

Algorithm 1 SCHAIN

Input: G,M, C, Ti, k, PS.
Output: C = {C1, ..., Ck}

1: Compute similarity matrices SA, SL, and S
2: t = 0, ∆J =∞, λ = (1

|PS| , ...,
1
|PS|), ω = (1

|Ai|
, ..., 1

|Ai|
)

3: while ∆J > ε or t < max iter do
4: . Step 1: Optimize {zr}kr=1 given λ and ω
5: Solve Eq. 8 to obtain real-relaxed Z̃
6: Calculate U = D−1/2Z̃ and normalize it
7: Derive {zr}kr=1 from U by k-means
8: . Step 2: Optimize λ and ω given {zr}kr=1

9: j = 1; µj = 0
10: repeat
11: Solve Eq. 12 with µ = µj to obtain λj , ωj

12: µj+1 = f(λj ,ωj)/g(λj ,ωj); j++
13: until F (µj+1) converges to 0
14: ∆J = change in J with the updated {zr}kr=1, λ, ω
15: t++
16: end while
17: Decode {Cr}kr=1 from {zr}kr=1

18: return C = {C1, ..., Ck}

4.4 Improving Efficiency

The most computationally expensive component of
SCHAIN is the eigen decomposition in solving Eq. 8, which
has a time complexity of O(n3) where n is the number of
objects to be clustered (|Xi|). To speed up, we propose two
methods to compute the eigenvectors.

4.4.1 Power iteration based method
Power iteration (PI) is an efficient technique to compute the
dominant eigenvector of a matrix. Given a matrix W , PI
starts with a random vector v0 6= 0 and iterates:

vt+1 =
Wvt
||Wvt||1

, t ≥ 0.

Suppose W has eigenvalues τ1 > τ2 > ... > τn with
associated eigenvectors η1,η2, ...,ηn. We express v0 as

v0 = c1η1 + c2η2 + ...+ cnηn,

where the c1, ..., cn are coefficients. Let R =
∏t−1
i=0‖Wvi‖1.

We have,

vt =W tv0/R

= (c1W
tη1 + c2W

tη2 + ...+ cnW
tηn)/R

= (c1τ
t
1η1 + c2τ

t
2η2 + ...+ cnτ

t
nηn)/R

=
c1τ

t
1

R

[
η1 +

c2
c1

(
τ2
τ1

)t
η2 + ...+

cn
c1

(
τn
τ1

)t
ηn

]
.

vt is a linear combination of the eigenvectors. If c1 6= 0, vt
converges to a scaled version of the dominant eigenvector
η1.

It has been shown in [52] that one can truncate the itera-
tion process to obtain an intermediate pseudo-eigenvector
vt, based on which the Power Iteration Clustering (PIC)
method is proposed. PIC takes the j-th component of vt
as the feature of object xj and applies k-means to the
feature to compute object clusters. When the number of
clusters is large, a single pseudo-eigenvector is generally
not sufficient to produce high-quality cluster. In [53], the
PIC-k method is proposed. The method runs truncated

PI multiple times to derive multiple pseudo-eigenvectors.
Compared with the standard spectral clustering methods,
PIC-k uses the k pseudo-eigenvectors to obtain an improved
clustering result. Inspired by PIC-k, we approximate the
top k eigenvectors of K = D−

1
2 (S + W ◦ S)D− 1

2 by
running truncated PI k times. The truncated PI algorithm is
summarized in Algorithm 2. When the matrix K is sparse,
the computational cost of PI is reduced to O(dn), where
d � n is the average number of nonzero entries per row in
K . The complexity of this PI-based approximation method
is O(kdn), which is substantially more efficient than the
basic O(n3) method. We call this method SCHAIN-PI.

Algorithm 2 Truncated power iteration

Input: K, k, v0.
Output: vt+1

1: repeat
2: vt+1 ← Kvt

||Kvt||1
; δt+1 ← |vt+1 − vt|; t++

3: until |δt+1 − δt| → 0
4: return vt+1

4.4.2 Implicitly restarted Arnoldi method
The power iteration method computes the dominant eigen-
vector of a matrix W . During the process, a squence of
intermediate vectors {v0,Wv0,W 2v0, ...} are generated.
This sequence is called a Krylov sequence. Although PI
discards this sequence, interestingly, the sequence is use-
ful in deriving a good approximation of the eigenvectors.
Based on the Krylov sequence, one can define Kn =
span{v0,Wv0, ...,Wn−1v0} as the n-th order Krylov sub-
space. Arnoldi Factorization derives an orthogonal projec-
tion of W onto the Krylov subspace that can be used
to approximate the eigenpairs of W . Specifically, given
W ∈ Rn×n, a k-step Arnoldi factorization of W has the
form WVk = VkHk + fke

T
k , where (1) Vk ∈ Rn×k has

orthonormal columns, (2) V Tk fk = 0, (3) Hk ∈ Rk×k is
an upper Hessenberg matrix with non-negative subdiagonal
elements, and (4) ek is a unit vector whose k-th entry is 1.
Note that Hk represents an orthogonal projection of W . An
alternative form of the factorization is

WVk = (Vk,vk+1)

(
Hk

βkeTk

)
,

where βk = ||fk||2 and vk+1 = 1
βk
fk.

Arnoldi factorization can be used to compute the eigen-
values and eigenvectors ofW from those of the small matrix
Hk. Given an eigenpair (θ, s) of Hk, i.e., Hks = sθ, the
vector x = Vks satisfies

||Wx− xθ||2 = ||(WVk − VkHk)s||2 = |βkeTk s|.

A small value of |βkeTk s| indicates that (θ, s) well approx-
imates an eigenpair of W . In particular, when ||fk||2 = 0,
|βkeTk s| = 0 and (θ,x) becomes an exact eigenpair of W .

In practice, the number of steps needed to obtain ac-
curate approximations to the eigenvectors of interest may
be large, and which is determined by the initial vector
v0. A desired v0 should contain nonzero values in the
directions of the eigenvectors to be computed without con-
taining any irrelevant components. In the Arnoldi factor-
izarion process, we would like to adaptively refine v0 and

7

restart the Arnoldi factorization with a new v0. Implicitly
restarted Arnoldi method (IRAM) [54] employs an implicit
way to update v0. Consider an m-step Arnoldi factorization
WVm = VmHm + fme

T
m, where m = k + p. It will be

repeatedly compressed to a k-step factorization that retains
the desired eigen-information through implicitly shifted QR
decomposition. Let σj be a shift and Hm − σjI = QjYj ,
where Qj is orthogonal and Yj is upper triangular. We have

WVm − VmHm = (W − σjI)Vm − Vm(Hm − σjI),
= (W − σjI)Vm − VmQjYj ,
= fme

T
m.

(13)

Hence,

W (VmQj)− (VmQj)(YjQj + σjI) = fme
T
mQj . (14)

This can be easily extended with up to p shifts applied:

WV +
m = V +

mH
+
m + fme

T
mQ̂, (15)

where V +
m = VmQ̂, H+

m = Q̂THmQ̂ and Q̂ = Q1Q2...Qp.
Due to the Hessenberg structure of the matrices Qj , the
first k − 1 entries of the vector eTmQ̂ are zero and an
updated k-step Arnoldi factorization can be derived by
equating the first k columns on both sides of Eq. 15. From
Eq. 13, each shift σj will replace the starting vector v0 with
(W − σjI)v0, so an appropriate selection of σj will filter
the unwanted eigenvector information from v0. Based on
the updated k-step Arnoldi factorization, p additional steps
will be performed to return to m-step Arnoldi factorization.
The whole process will be repeated (restarted Arnoldi) until
convergence. For more details, see [55].

We use IRAM to compute the top k eigenvectors of K
in Eq. 8. We call this method SCHAIN-IRAM. We assume
an m-step Arnoldi factorization, where m = k + p and
k < m � n. In each iteration, an eigen-decomposition
is performed on Hm with a time complexity of O(m3).
Moreover, each iteration takes p steps to update matrices
V +
m , H+

m and Q̂, with the computation cost of each step
being O(m3 + nm2). The overall cost of SCHAIN-IRAM
is O(h(m3 + p(m3 + nm2))), where h is the number of
iterations to convergence. Our experiments show that h is
practically very small.

5 EXPERIMENTS

In this section we evaluate the performance of SCHAIN,
SCHAIN-PI, and SCHAIN-IRAM2 and compare them
against 9 other algorithms by applying them to three ex-
ample clustering tasks on real data. We have also gener-
ated synthetic datasets to study the various aspects of the
algorithms. We will illustrate the importance of integrat-
ing attribute-based similarity and link-based similarity in
clustering objects in AHINs and show the effectiveness of
SCHAIN in determining the relative weights (ω and λ)
of attributes and meta-paths. We show that the weight-
learning process of SCHAIN converges quickly under the
example clustering tasks. We also perform an efficiency
study and show that SCHAIN-PI and SCHAIN-IRAM are

2. The codes of SCHAIN, SCHAIN-PI, and SCHAIN-IRAM are pub-
licly available at https://github.com/lixiang3776/SCHAIN.

much more efficient than SCHAIN. In particular, our results
show that SCHAIN-IRAM achieves high efficiency without
sacrificing clustering quality.

5.1 Algorithms for comparison
We compare 12 algorithms, which can be categorized into
four groups:
• Attribute-only: The first group of clustering algorithms
consider only object attributes. These are traditional meth-
ods which ignore the network structure of an AHIN. We
chose Spectral-Learning [46] and a semi-supervised version
of normalized cuts [44] as representatives, which are de-
noted SL and SNcuts, respectively. Both methods are spectral
clustering approaches of semi-supervised clustering. The
difference is that SL uses additive normalization while
SNcuts adopts row normalization. Since SL and SNcuts
do not learn attribute weights, we give all attributes equal
weights in constructing an attribute similarity matrix.
• Link-only: These methods utilize only the link informa-
tion of the network and they ignore object attribute values.
We chose GNetMine [8], PathSelClus [1] and SemiRPClus [9]
as representative methods of this category. These algorithms
were described in Section 2.
• Attribute+Link: Methods of this category use both at-
tribute and link information. We consider both FocusCO and
HAN, which were described in Section 2. In particular, HAN
is a state-of-the-art deep neural network model for AHINs.
• SCHAIN and its variants: We evaluate SCHAIN and four
variants: (1) SCHAIN uses meta-paths to derive the link-
based similarity matrix. An alternative measure is random
walk with restart (RWR) [56]. Specifically, for the link-based
similarity matrix SL, we set its (i, j) entry to be the steady-
state probability from object i in the network to object j.
We call this variant SCHAIN-RWR. By comparing SCHAIN
with this variant, we will learn about the importance of
meta-paths in solving the clustering problem. (2) SCHAIN
uses an iterative learning process to determine the optimal
weights of attributes and meta-paths. To study the effec-
tiveness of weight learning, we modify SCHAIN such that
it assumes certain initial values of λ and ω (see Line 3 of
Algorithm 1), finds the optimal {zr}kr=1 once, and reports
that as the final clustering. In other words, we take away the
iteration of the while-loop and retain only Lines 6-7. We call
this variant SCHAIN-NL (No weight-Learning). Moreover,
we evaluate SCHAIN-PI and SCHAIN-IRAM, which are
two variants that efficiently compute approximate top-k
eigenvectors of the matrix K (see Eq. 8).

5.2 Clustering tasks
We use two real datasets, namely, Yelp and DBLP in our
experiments. Yelp3 contains information of businesses, their
users, locations, reviews, etc. DBLP4 is a bibliographic
network dataset which captures authors/venues/keywords
information of academic publications. From these datasets,
we define three clustering tasks:
• Yelp-Business. We extracted businesses located in three
states of the US: North Carolina (NC), Wisconsin (WI),

3. http://www.yelp.com/academic dataset
4. http://dblp.uni-trier.de

8

TABLE 1: NMI comparison on Yelp-Business

Attribute-only Link-only Attribute+Link SCHAIN Variants
% seeds SL SNcuts GNM PSC SemiRPClus FocusCO HAN S-RWR S-NL S-PI S-IRAM SCHAIN

5% 0.001 0.783 0.996 0.687 0.232 0.088 0.802 1.000 0.909 1.000 1.000 1.000
10% 0.016 0.764 0.996 0.697 0.312 0.084 0.807 1.000 0.920 1.000 1.000 1.000
15% 0.011 0.672 0.996 0.730 0.356 0.084 0.827 1.000 0.968 1.000 1.000 1.000
20% 0.004 0.630 0.996 0.757 0.371 0.085 0.840 1.000 0.969 1.000 1.000 1.000
25% 0.004 0.565 0.996 0.787 0.587 0.087 0.857 1.000 0.970 1.000 1.000 1.000

TABLE 2: NMI comparison on Yelp-Restaurant

Attribute-only Link-only Attribute+Link SCHAIN Variants
% seeds SL SNcuts GNM PSC SemiRPClus FocusCO HAN S-RWR S-NL S-PI S-IRAM SCHAIN

5% 0.225 0.185 0.284 0.564 0.142 0.088 0.214 0.427 0.628 0.480 0.716 0.689
10% 0.258 0.188 0.332 0.610 0.134 0.087 0.214 0.429 0.635 0.486 0.722 0.707
15% 0.416 0.192 0.367 0.627 0.136 0.095 0.250 0.433 0.655 0.481 0.734 0.725
20% 0.425 0.198 0.379 0.635 0.132 0.087 0.243 0.426 0.678 0.485 0.740 0.738
25% 0.437 0.251 0.392 0.637 0.136 0.090 0.248 0.436 0.689 0.498 0.747 0.744

TABLE 3: NMI comparison on DBLP

Attribute-only Link-only Attribute+Link SCHAIN Variants
% seeds SL SNcuts GNM PSC SemiRPClus FocusCO HAN S-RWR S-NL S-PI S-IRAM SCHAIN

5% 0.551 0.576 0.183 0.137 0.113 0.057 0.475 0.601 0.613 0.503 0.632 0.634
10% 0.554 0.554 0.241 0.170 0.090 0.058 0.511 0.598 0.611 0.506 0.629 0.639
15% 0.558 0.540 0.284 0.216 0.084 0.059 0.526 0.595 0.614 0.511 0.633 0.633
20% 0.560 0.531 0.314 0.251 0.080 0.061 0.521 0.599 0.615 0.508 0.631 0.631
25% 0.563 0.524 0.333 0.265 0.077 0.055 0.514 0.603 0.616 0.513 0.629 0.637

Pennsylvania (PA); and in Edinburgh (EDH) of the UK.
We constructed an AHIN that comprises 10,133 business
objects (B); 73,366 user objects (U); 100 city objects (C); and
472 business sector objects (T) (such as “restaurant” and
“shopping”). Each business object is associated with several
attributes including lat-long, review count, quality star, and
parking lot (whether parking facility is provided). Links
include B-T (business and its category), U-B (customer of
a business), B-C (business located in a city). We consider
the meta-path set {BCB, BUB, BTB}. The clustering task
is to cluster business objects by state. We use the state
information provided in the dataset as the ground truth.

This clustering task is a very simple one. In particular,
either attributes or links provide reliable sources to allow
perfect clustering to be obtained. All the clustering algo-
rithms, whether they are attribute-based only, link-based
only, or both, are expected to perform well.
• Yelp-Restaurant. We extracted information related to
restaurant business objects of three sub-categories: “Fast
Food”, “Sushi Bars” and “American (New) Food”. We
constructed an AHIN of 2,614 business objects (B); 33,360
review objects (R); 1,286 user objects (U) and 82 food rele-
vant keyword objects (K). Each restaurant has 3 categorical
attributes: reservation (whether reservation is required), ser-
vice (waiter service or self service) and parking; 1 numerical
attribute: review count; and 1 ordinal attribute: quality star.
Links include B-R (business receives a review), R-U (review
written by a customer), R-K (review contains a keyword).
We consider the meta-path set {BRURB, BRKRB}. The clus-
tering task is to cluster restaurants by category.

This clustering task is slightly more difficult than
Yelp-Business because it is not totally obvious which
attributes/meta-paths are relevant to the task. It is thus
more interesting to see how the various algorithms fair
against each other, particularly in their ability to identify
the most relevant features and their appropriate weights.

• DBLP. CIKM is a conference focusing on three research
areas: Information Retrieval (IR), Data Mining (DM) and
Databases (DB). We extracted a subset of the DBLP network
that comprises 387 authors (A), 2,044 papers (P), and 2,171
key terms (T). Each of the 387 authors has published in
CIKM and has published in at least one of the conferences
SIGIR, KDD, and VLDB. For each author object, the num-
bers of his/her publications in the four conferences serve
as the object’s attribute values (i.e., 4 numerical attributes).
Links include A-P (author publishes a paper), P-T (paper
contains a key term). We consider the meta-path set: {APA,
APAPA, APTPA}. The clustering task is to cluster authors by
their research areas (IR, DM, DB). We obtained the ground
truth from the dataset dblp-4area [18], which labels each
author by his/her primary research area.

This task is the most difficult among the three tasks
because the research areas somewhat overlap. Cluster mem-
berships are therefore not as clear cut as in the other tasks.

5.3 Results
For each clustering task, we construct a supervision con-
straint (M, C) in the following way. We randomly pick a
certain percentage of the objects (to be clustered) as seeds.
Since we know the true labels of objects (the ground truth),
for each pair of seed objects xu, xv , we put (xu, xv) in M
if xu and xv share the same label; we put (xu, xv) in C
otherwise. We use Normalized Mutual Information (NMI) [57]
between a clustering result C and the clustering based on the
true objects’ labels to measure the quality of the clustering
C. NMI ranges from 0 to 1; the higher the NMI is, the more C
resembles the true clustering. NMI = 1 if C perfectly agrees
with the true clustering. Each reported NMI is an average
of 10 runs and each run uses a different set of seed objects
to construct the supervision constraint. Since HAN is a deep
neural network model, in addition to a training set, it further
needs a validation set to prevent overfitting during training.

9

In our experiments, we use an extra 10% seeds to construct a
validation set for HAN. We measure the attribute similarity
of two Yelp-Business objects xu and xv in the following
way: For a (normalized) numerical attribute j, we use the
similarity function sim(fuj , fvj) = 1−|fuj−fvj | (see Eq 1);
For a categorical attribute, sim(fuj , fvj) = 1 if fuj = fvj ; 0
otherwise. Likewise for Yelp-Restaurant objects. For DBLP,
the feature vector of an author object xu is a normalized
vector fu of four conference paper counts. The attribute
similarity of two authors xu and xv is given by the dot-
product fu · fv .

5.3.1 Clustering quality
Tables 1, 2 and 3 compare the clustering qualities of the
various algorithms on the three tasks. We use GNM and PSC
as shorthands for GNetMine and PathSelClus, respectively.
Moreover, for all SCHAIN variants, we use S as shorthand
for SCHAIN due to space limitation. The first column (%
seeds) of each table shows the percentage of objects taken as
seed objects to constructM and C. In each row, the NMI of
the best algorithm is highlighted. From the tables, we make
the following observations.
• As we have explained previously, Yelp-Business is a
relatively simple clustering task. In particular, there are at-
tributes (e.g., lat-long) and meta-paths (e.g., BCB) that indi-
vidually provide good similarity measures for the clustering
task. We therefore see algorithms that give very good quality
results. These include SNcuts (attribute-based), GNetMine
(link-based), and particularly all SCHAIN variants, which
produce perfect or almost perfect clusterings.
• As we move from Yelp-Business to Yelp-Restaurant and
then to DBLP, the clustering tasks become more challenging.
For link-based methods and the SCHAIN family, clustering
quality drops. The drop in quality for the link-based meth-
ods is very pronounced. For example, the NMI of GNetMine
(at 5% seeds) drops from 0.996 on Yelp-Business to 0.183
on DBLP. This shows that the latter tasks require attribute
information to achieve good clustering quality. From this
discussion, we see that both attribute and link information
can play important roles in object clustering, particularly for
more complex clustering tasks.
• The performance of spectral learning algorithms (SL,
SNcuts) is not very “stable”. For example, for Yelp-Business,
SL performs very poorly while SNcuts does very well. On
the other hand, SL performs better than SNcuts for Yelp-
Restaurant. As explained in [46], additive normalization can
lead to very poor performance in the presence of distant
outliers. This explains the very low NMIs of SL (which
employs additive normalization) on Yelp-Business, which
happens to contain distant outliers. SNcuts, which employs
row normalization, does not suffer from such problems. We
also see that the performance of SNcuts on Yelp-Business
and DBLP gets worse with more seeds. This is due to the fol-
lowing scaling problem. We observe from our experiment that
the values in the similarity matrices derived with SNcuts for
Yelp-Business and DBLP are generally fairly small numbers
(even for similar objects). The similarity matrices are then
modified by considering the given supervision constraint.
In particular, a pair of seed objects (xu, xv) given in a
must link set will have their similarity value set to 1, which
is relatively large in the matrix. These large values cause

SNcuts to incorrectly identify some similar object pairs as
cuts, leading to poorer clustering. For SCHAIN, a must-link
set exerts its influence via Eq. 6, which essentially doubles
(xu, xv)’s similarity (instead of setting that to 1). This avoids
the scaling problem.
• For DBLP, the NMI of SemiRPClus decreases when the
% of seeds increases. The reason for this observation is that
SemiRPClus identifies the meta-path APA (co-authorship)
as the most important meta-path by giving it the highest
weight among all meta-paths. However, APA is a sparse
relation. This is because a typical author only co-authors
with a handful of other researchers. That means APA is a
weak relation in measuring object (author) similarity. As
the percentage of seeds increases, we find that SemiRPClus
gives APA even larger weights. This adversely affects the
performance of SemiRPClus.
• Our adaptation of FocusCO performs poorly in all cases
of our experiments. Even though FocusCO is a semi-
supervised clustering algorithm that utilizes both attribute
and link information, it is designed for homogeneous net-
works. By converting an AHIN to a homogeneous one,
information about object and link types is removed. This
significantly weakens the effectiveness of FocusCO.
• Although HAN performs much better than FocusCO,
it compares unfavorably against SCHAIN-based methods.
HAN uses node-level attention and semantic-level atten-
tion to distinguish meta-path based neighbors and to learn
weights of meta-paths. However, it does not learn the rela-
tive importance of object attributes.
• SCHAIN performs better than SCHAIN-RWR. This shows
that meta-paths are more effective than random walk in
deriving objects’ link-based similarity. This observation is
consistent with other works related to mining on heteroge-
neous information networks, such as [3].
• SCHAIN performs better than SCHAIN-NL. This shows
that SCHAIN’s ability in learning and distinguishing the
weights of different attributes and meta-paths is important
in achieving good clustering quality.
• SCHAIN, SCHAIN-PI, and SCHAIN-IRAM generally per-
form the best among all algorithms. In particular, all three
registered perfect scores for Yelp-Business. The techniques
we employed in SCHAIN, namely, attribute-based simi-
larity, meta-path-based similarity, as well as weight learn-
ing, contribute effectively to the clustering tasks. For Yelp-
Restaurant and DBLP, SCHAIN and SCHAIN-IRAM signif-
icantly outperform the others. We observe that for these two
tasks SCHAIN-PI does not perform as well as SCHAIN-
IRAM. We remark that SCHAIN-PI uses power iteration to
generate k pseudo-eigenvectors to approximate the top-k
eigenvectors. Each pseudo-eigenvector is a weighted linear
combination of all the eigenvectors. In such a process, the
generated pseudo-eigenvectors could contain redundant in-
formation and may contain noise. In comparison, SCHAIN-
IRAM generates more accurate approximation to the top-
k eigenvectors. Therefore, SCHAIN-IRAM’s performance is
more stable than SCHAIN-PI.

5.3.2 Weight learning
An interesting feature of SCHAIN is its ability to learn the
weights of attributes and meta-paths. In this section we
take a closer look at the effectiveness of SCHAIN’s iterative

10

weight-learning process. We will use the three clustering
tasks as examples for illustration. We observe that SCHAIN-
IRAM has a similar weight-learning process as SCHAIN, so
we omit the details due to page limitation. In the following
discussion, we assume 5% seed objects.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

W
e

ig
h

ts

Iterations

(a) Meta Paths

BUB
BCB
BTB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5
W

e
ig

h
ts

Iterations

(b) Attributes

lat-long
review count

star
parking lot

Fig. 2: Weight learning on Yelp-Business

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

W
e

ig
h

ts

Iterations

(a) Meta Paths

BRURB
BRKRB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

W
e

ig
h

ts

Iterations

(b) Attributes

reservation
service

parking lot

review count
star

Fig. 3: Weight learning on Yelp-Restaurant

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

W
e

ig
h

ts

Iterations

(a) Meta Paths

APA
APAPA
APTPA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

W
e

ig
h

ts

Iterations

(b) Attributes

CIKM
KDD

SIGIR
VLDB

Fig. 4: Weight learning on DBLP

 1.5

 2

 2.5

 3

 0 1 2 3 4 5O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

Iterations

(a) Objective Function Value

Yelp-Business
Yelp-Restaurant

DBLP

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

N
M

I

Iterations

(b) NMI

Yelp-Business
Yelp-Restaurant

DBLP

Fig. 5: Convergence analysis

Figures 2(a) and (b) show the weights learned across it-
erations for attributes and meta-paths, respectively, on Yelp-
Business. Recall that the task is to cluster business objects
by their geographical locations. From Figure 2(a), we see
that SCHAIN correctly identifies that the meta-paths BCB
(businesses that are co-located in the same city) and BUB
(businesses that serve the same customer) give the most
relevant relations in the locality of the businesses. It also
correctly gives a 0 weight to the meta-path BTB (businesses
of the same sector), which is irrelevant to the businesses’
locations. Moreover, from Figure 2(b), we see that SCHAIN
correctly identifies lat-long to be the only relevant attribute
(which is given a weight of 1.0), and considers other at-
tributes irrelevant (which are given 0 weights).

Figure 3 shows the weight learning for Yelp-Restaurant.
Recall that the task is to cluster restaurant objects by the
kind of food served. The figure shows that SCHAIN gives a
larger weight to the meta-path BRKRB (restaurants whose
reviews share the same keyword, such as dishes) than
to the meta-path BRURB (restaurants visited by the same

TABLE 4: Eigenvectors computation time (in seconds)

Yelp-business Yelp-restaurant DBLP
SCHAIN-PI 7.89 0.19 0.02

SCHAIN-IRAM 10.04 0.21 0.04
SCHAIN 945.36 16.12 0.10

customer). This is reasonable because the same customers
can visit restaurants serving different categories of foods.
Interestingly, SCHAIN also finds that whether a restaurant
requires reservation and provides wait services are relevant
to predicting the restaurant’s category. This is because those
that do are likely higher-end restaurants, which serve more
expensive foods (such as Japanese Sushi).

Figure 4 shows the results for DBLP. We see that
SCHAIN finds all three meta-paths relevant to the cluster-
ing task, and they are given similar weights. Interestingly,
SCHAIN gives the attribute CIKM (the number of papers
one published in CIKM) a 0 weight. This is because for the
dataset we extracted, all authors have CIKM publications.
So the attribute has no discerning power for the task. Also,
SCHAIN gives more or less equal weights to the other 3
attributes because they are equally relevant in determining
the research areas of authors. From this discussion, we see
that SCHAIN is highly effective in learning the appropriate
weights of meta-paths and attributes.

5.3.3 Convergence analysis
From Figures 2, 3 and 4, we see that the weights reach their
optimal values in two to three iterations. Figures 5(a) and
(b) further show the convergence of the objective function J
and the NMI of the resulting clusterings, respectively. From
the figures, we see that SCHAIN converges very quickly.

5.3.4 Efficiency study
The major computation cost of SCHAIN is due to the
computation of the top-k eigenvectors of the matrix K
(see Eq. 8), which has a complexity of O(n3), where n
is the number of objects to be clustered. SCHAIN-PI and
SCHAIN-IRAM provide approximate solutions to speed up
the eigenvectors computation. Table 4 shows the compu-
tation costs of the three methods when they are applied
to the three clustering tasks. From the table, we see both
SCHAIN-PI and SCHAIN-IRAM are much more efficient
than SCHAIN. In particular, for Yelp-Business, which has
a much larger dataset than the other tasks, SCHAIN-PI is
about 120 times faster than SCHAIN. Although SCHAIN-
IRAM is slightly slower than SCHAIN-PI, as we have dis-
cussed in Section 5.3.1, SCHAIN-IRAM provides a better
approximation of the eigenvectors and thus it gives sim-
ilar clustering quality as that of SCHAIN. In conclusion,
SCHAIN-IRAM is an effective and efficient solution for
clustering objects in AHINs.

5.3.5 Parameter analysis
We study the sensitivity of SCHAIN-IRAM w.r.t. parameters
α and γ. Recall that α controls the relative importance
between attribute-based similarity and link-based similarity
(see Eq. 3) and γ is the regularization hyper-parameter. We
conducted an experiment with 25% seed objects. Fig. 6(a)
and 6(b) show SCHAIN-IRAM’s NMIs as α and γ vary,

11

respectively. When α = 0 (1), only link (attribute) informa-
tion is used. From Fig. 6(a), we see that SCHAIN-IRAM
provides very stable performance over the range of α values
except when α is very small. The reason behind this stable
performance is that our SCHAIN-based methods are able to
scale the importance of attribute-based and link-based infor-
mation via the weight-learning process. The mild variations
at the small-α end of the figure is due to an extreme focus on
link information. From Fig. 6(b), we see that SCHAIN-IRAM
is generally not very sensitive to γ. In practice, one can tune
the parameters for the best performance by cross-validation
with the must-link and the cannot-link sets as supervision
information.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α

0

0.5

1

N
M

I

Yelp-Business

Yelp-Restaurant

DBLP

(a)

0 0.2 0.4 0.6 0.8 1

γ

0

0.5

1

N
M

I

Yelp-Business

Yelp-Restaurant

DBLP

(b)

Fig. 6: The performance of SCHAIN-IRAM as α and γ vary

5.3.6 Synthetic datasets
To further evaluate the algorithms, we conduct experiments
on synthetic datasets. We generate our synthetic datasets
following [37]. Specifically, given the number of object types,
the generator generates three things: (1) A number of objects
of each object type. (2) Relation matrices that represent the
edges between objects of two given object types. (3) Object’s
attribute values.

As an example, here are the details of one such synthetic
dataset, which we call SYN. We then scale SYN to obtain
AHINs of various sizes (up to an order of 105 nodes) and
of various edge densities. SYN consists of three types of
nodes, namely, Ta, Tb and Tc. We generate 1,000 Ta objects,
2 Tb objects and 2 Tc objects. Each Type-Ta object is linked
with one Type-Tb and one Type-Tc object. We generate
two relation matrices, Rab and Rbc, which represent edges
between Ta and Tb objects, and those between Tb and Tc
objects, respectively. We randomly partition Type-Ta objects
into two clusters. The relation Rab is derived from a block
structure

[
1 0
0.3 0.7

]
. The i-th row in the block structure shows

the probability distribution of a Cluster-i Ta object being
connected to the two Tb objects. For example, the 2nd row
of the block structure shows that Ta objects in Cluster 2
are connected to the first and the second Tb objects with
probabilities 0.3 and 0.7, respectively. (For other synthetic
datasets, if there are g clusters of Ta objects and h Tb objects,
the block structure would be a g-by-h matrix.) Furthermore,
the block structure for deriving Rbc is

[
0.6 0.4
0.4 0.6

]
.

Objects of type Ta are associated with two binary at-
tributes, A1 and A2. Objects’ values of each attribute are
generated by a block structure. Specifically, the block struc-
ture that derives the first attribute values is

[
0.9 0.1
0 1

]
. The

i-th row in the block structure shows the probability dis-
tribution of a Cluster i Ta object’s attribute A1 value. For

example, the first row of the block structure shows that a
Cluster 1 Ta object’s A1 value is 0 or 1 with probabilities 0.9
and 0.1, respectively. The block structure for generating at-
tribute A2’s values is

[
0.8 0.2
0.3 0.7

]
. In general, with d attributes,

each with f distinct values, there are d attribute-generating
g-by-f block structures.

Table 5 shows the NMI of the 12 algorithms when
they are applied to dataset SYN with 10% seed objects for
constructing the must-link and the cannot-link sets. (For
SCHAIN-variants, we shortened their names with the prefix
“S” instead of “SCHAIN” to fit the table within the width
of page.) Recall that SCHAIN-PI and SCHAIN-IRAM are
the two efficient algorithms we put forward in this paper
to speed up the processing of SCHAIN. Also, SCHAIN-
RWR and SCHAIN-NL are two baseline SCHAIN variants
with which we evaluate different components of SCHAIN.
From the table, we see that SCHAIN-PI and SCHAIN-IRAM
achieve comparable clustering quality against SCHAIN and
all three methods greatly outperform other competitors.
Moreover, in the experiment, SCHAIN-PI and SCHAIN-
IRAM are 38.5 and 28.2 times faster than SCHAIN, re-
spectively. The results show that SCHAIN-PI and SCHAIN-
IRAM are much more efficient than SCHAIN, while they are
able to provide very comparable clustering quality.

We scale SYN to obtain larger datasets and observe
similar conclusions. In particular, for the dataset with 105

nodes, the runtimes of SCHAIN-PI and SCHAIN-IRAM
are 34.71s and 39.06s, respectively. SCHAIN, however, does
not terminate in an hour. This shows that SCHAIN-PI and
SCHAIN-IRAM are very practical for large datasets.

To investigate how the network density affects the per-
formance of our proposed methods, we generate synthetic
datasets to vary the network density by adding edges to
the network. In SYN, each type-Ta object connects with
one Type-Tb object and one Type-Tc object. We vary the
network density by randomly selecting a fraction of Type-
Ta objects and adding edges between them and all Tb and
Tc objects. In our experiment, we gradually increase this
fraction of Ta objects from 10% to 60%. At 10%, the NMI of
SCHAIN-IRAM is 0.736, which is very close to the result
given in Table 5. At 60%, the NMI decreases to 0.674.
The drop in NMI is due to the noise introduced by the
added edges. However, SCHAIN-IRAM’s performance in
terms of NMI remains close to that of SCHAIN. In terms
of runtime, SCHAIN-IRAM remains efficient; Its execution
time is around 0.03s over the range of tested values. How-
ever, since our SCHAIN-based methods employ meta-paths
to capture the link-based similarities between objects, the
network density could affect the sparsity of the derived
similarity matrices, which could in turn lower the efficiency
of our methods, especially for very large datasets.

6 CONCLUSIONS

In this paper we studied semi-supervised clustering in
attributed heterogeneous information networks. We put for-
ward a novel algorithm SCHAIN, which integrates object
attributes and meta-paths with a weighting scheme in for-
mulating a similarity matrix for object clustering. SCHAIN
takes a supervision constraint in the form of a must-link
set and a cannot-link set, and through an iterative update

12

TABLE 5: Algorithms’ NMIs on SYN

Attribute-only Link-only Attribute+Link SCHAIN Variants
% seeds SL SNcuts GNM PSC SemiRPClus FocusCO HAN S-RWR S-NL S-PI S-IRAM SCHAIN
10% 0.497 0.478 0.483 0.339 0.5425 0.033 0.654 0.505 0.678 0.733 0.734 0.735

process, optimizes the weighting scheme. To further speed
up the model, we proposed two methods SCHAIN-PI and
SCHAIN-IRAM, which respectively use power iteration
based method and implicitly restarted Arnoldi method to
compute the eigenvectors of a matrix. We conducted ex-
tensive experiments to show the effectiveness of SCHAIN
and illustrated its ability in assigning the most appropri-
ate weights to attributes and meta-paths. We also showed
that even though both SCHAIN-PI and SCHAIN-IRAM are
efficient, SCHAIN-IRAM achieves as good performance as
SCHAIN while the performance of SCHAIN-PI is unstable.

ACKNOWLEDGMENTS

This research is supported by Hong Kong Research Grants
Council GRF HKU 17254016.

REFERENCES

[1] Y. Sun et al., “Integrating meta-path selection with user-guided ob-
ject clustering in heterogeneous information networks,” in KDD,
2012.

[2] C. Wan et al., “Classification with active learning and meta-paths
in heterogeneous information networks,” in CIKM, 2015.

[3] Y. Sun et al., “Pathsim: Meta path-based top-k similarity search in
heterogeneous information networks,” PVLDB, 2011.

[4] X. Li et al., “On transductive classification in heterogeneous infor-
mation networks,” in CIKM, 2016.

[5] X. Li et al., “Semi-supervised clustering in attributed heteroge-
neous information networks,” in WWW, 2017.

[6] P. Berkhin, “A survey of clustering data mining techniques,” in
Grouping multidimensional data, 2006.

[7] X. Wang and I. Davidson, “Flexible constrained spectral cluster-
ing,” in KDD, 2010, pp. 563–572.

[8] M. Ji et al., “Graph regularized transductive classification on
heterogeneous information networks.” in ECML/PKDD, 2010.

[9] C. Luo et al., “Semi-supervised clustering on heterogeneous infor-
mation networks,” in PAKDD, 2014.

[10] B. Perozzi et al., “Focused clustering and outlier detection in large
attributed graphs,” in KDD, 2014.

[11] X. Wang et al., “Heterogeneous graph attention network,” in
WWW, 2019.

[12] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
TPAMI, 2000.

[13] M. E. Newman and M. Girvan, “Finding and evaluating commu-
nity structure in networks,” Physical review E, 2004.

[14] X. Xu et al., “Scan: a structural clustering algorithm for networks.”
in KDD, 2007.

[15] J. Yang and J. Leskovec, “Overlapping community detection at
scale: a nonnegative matrix factorization approach.” in WSDM,
2013.

[16] J. Tang et al., “Line: Large-scale information network embedding,”
in WWW, 2015.

[17] Y. Sun et al., “Rankclus: integrating clustering with ranking for
heterogeneous information network analysis.” in EDBT, 2009.

[18] Y. Sun et al., “Ranking-based clustering of heterogeneous informa-
tion networks with star network schema.” in KDD, 2009.

[19] Y. Zhou and L. Liu, “Social influence based clustering of heteroge-
neous information networks,” in KDD, 2013.

[20] F. Wang et al., “Community discovery using nonnegative matrix
factorization,” DMKD, 2011.

[21] B. Perozzi et al., “Deepwalk: Online learning of social representa-
tions,” in KDD, 2014.

[22] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in KDD, 2016.

[23] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in ICLR, 2017.

[24] L. Liao et al., “Attributed social network embedding,” TKDE, 2018.
[25] X. Huang et al., “Label informed attributed network embedding,”

in WSDM, 2017.
[26] Y. Dong et al., “metapath2vec: Scalable representation learning for

heterogeneous networks,” in KDD, 2017.
[27] T.-y. Fu et al., “Hin2vec: Explore meta-paths in heterogeneous

information networks for representation learning,” in CIKM, 2017.
[28] S. Chang et al., “Heterogeneous network embedding via deep

architectures,” in KDD, 2015.
[29] Z. Yang et al., “Revisiting semi-supervised learning with graph

embeddings,” in ICML, 2016.
[30] J. Yang et al., “Community detection in networks with node

attributes.” in ICDM, 2013.
[31] T. Yang et al., “Combining link and content for community detec-

tion: a discriminative approach.” in KDD, 2009.
[32] Z. Xu et al., “A model-based approach to attributed graph cluster-

ing.” in SIGMOD, 2012.
[33] Y. Zhou et al., “Graph clustering based on structural/attribute

similarities,” PVLDB, 2009.
[34] S. Gnnemann et al., “Subspace clustering meets dense subgraph

mining: A synthesis of two paradigms.” in ICDM, 2010.
[35] Y. Ruan et al., “Efficient community detection in large networks

using content and links.” in WWW, 2013.
[36] J. J. McAuley et al., “Learning to discover social circles in ego

networks.” in NIPS, 2012.
[37] B. Long et al., “Spectral clustering for multi-type relational data.”

in ICML, 2006.
[38] B. Long et al., “A probabilistic framework for relational cluster-

ing.” in KDD, 2007.
[39] Y. Sun et al., “Relation strength-aware clustering of heterogeneous

information networks with incomplete attributes,” PVLDB, 2012.
[40] B. Boden et al., “Density-based subspace clustering in heteroge-

neous networks,” in ECML/PKDD, 2014.
[41] X. Li et al., “Spectral clustering in heterogeneous information

networks,” in AAAI, vol. 33, 2019, pp. 4221–4228.
[42] S. Basu et al., “Semi-supervised clustering by seeding.” in ICML,

2002.
[43] S. Basu et al., “A probabilistic framework for semi-supervised

clustering.” in KDD, 2004.
[44] B. Kulis et al., “Semi-supervised graph clustering: a kernel ap-

proach.” in ICML, 2005.
[45] M. Bilenko et al., “Integrating constraints and metric learning in

semi-supervised clustering,” in ICML, 2004.
[46] S. D. Kamvar et al., “Spectral learning.” in IJCAI, 2003.
[47] X. Zhu et al., Semi-supervised learning with graphs. Carnegie Mellon

University, 2005.
[48] J. Han et al., Data mining: concepts and techniques. Elsevier, 2011.
[49] R. Bhatia, Matrix analysis. Springer-Verlag, New York, 1997.
[50] W. Dinkelbach, “On nonlinear fractional programming,” Manage-

ment Science, 1967.
[51] I. Stancu-Minasian, Fractional programming: theory, methods and

applications, 2012, vol. 409.
[52] F. Lin and W. W. Cohen, “Power iteration clustering,” in ICML,

2010.
[53] F. Lin, “Scalable methods for graph-based unsupervised and semi-

supervised learning,” Ph.D. dissertation, Carnegie Mellon Univer-
sity, 2012.

[54] R. B. Lehoucq et al., ARPACK users’ guide: solution of large-scale
eigenvalue problems with implicitly restarted Arnoldi methods. SIAM,
1998.

[55] D. C. Sorensen, “Implicit application of polynomial filters in ak-
step arnoldi method,” Siam journal on matrix analysis and applica-
tions, 1992.

[56] H. Tong et al., “Fast random walk with restart and its applica-
tions,” in ICDM, 2006.

[57] C. D. Manning et al., Introduction to Information Retrieval. Cam-
bridge University Press, 2008.

	Introduction
	Related Work
	Definitions
	Algorithm
	Similarity Matrix
	Supervision Constraints
	Model optimization
	Finding the optimal {zr}r=1k given and
	Finding the optimal and given {zr}r=1k

	Improving Efficiency
	Power iteration based method
	Implicitly restarted Arnoldi method

	Experiments
	Algorithms for comparison
	Clustering tasks
	Results
	Clustering quality
	Weight learning
	Convergence analysis
	Efficiency study
	Parameter analysis
	Synthetic datasets

	Conclusions
	References

