Postprint of article in IEEE Access 8: 52475-52488 (2020)

Digital Object Identifier https://doi.org/10.1109/ACCESS.2020.2977777

Exploiting the Largest Available Zone:
A Proactive Approach to
Adaptive Random Testing by Exclusion

JINFU CHEN' (Member, IEEE), QIHAO BAQ', T. H. Tse? (Senior Member, IEEE),
TSONG YUEH CHEN? (Senior Member, IEEE), JIAXIANG XI',
CHENGYING MAO* (Member, IEEE), MINJIE YU', AND RUBING HUANG' (Member, IEEE)

!School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, 202000, China

’Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong

3Department of Computer Science and Software Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia
4School of Software and IoT Engineering, Jiangxi University of Finance and Economics, Nanchang, 330013, China

Corresponding author: Jinfu Chen (e-mail: jinfuchen@ujs.edu.cn).

This work was supported in part by the National Natural Science Foundation of China [grant numbers U1836116, 61762040, and
61872167] and the project of Jiangsu provincial Six Talent Peaks [grant number XYDXXJS-016].

ABSTRACT Adaptive random testing (ART) has been proposed to enhance the effectiveness of random
testing (RT) through more even spreading of the test cases. In particular, restricted random testing (RRT) is
an ART algorithm based on the intuition of skipping all the candidate test cases that are within the
neighborhoods (or zones) of previously executed test cases. RRT has higher effectiveness than RT in terms
of failure detection but incurs a higher time cost. In this paper, we aim to further reduce the time costs for
RRT and improve the effectiveness for RT and ART methods. We propose a proactive technique known as
“RRT by largest available zone” (RRT-LAZ). Like RRT, RRT-LAZ first defines an exclusion zone around
every executed test case in order to determine the available zones. Unlike the original RRT, RRT-LAZ then
compares all the available zones to proactively pick the largest one, from which the next test case is randomly
generated. Both simulation analyses and empirical studies have been employed to investigate the efficiency
and effectiveness of RRT-LAZ in relation to RT and related ART algorithms. The results show that RRT-
LAZ has significantly lower time costs than RRT. Furthermore, RRT-LAZ is more effective than RT and
related ART methods for block failure patterns in low-dimensional input spaces. In general, since RRT-LAZ
employs a proactive technique instead of a passive one in generating next cases, it is much more cost-
effective than RRT. RRT-LAZ is also more cost-effective than RT and other ART methods that we have
studied.

INDEX TERMS Software testing, random testing, adaptive random testing, restricted random testing,
exclusion zone, largest available zone

I. BACKGROUND

The advancement of information technology has triggered an
increasing interest in the use of software applications for
various activities such as online shopping, mobile apps, and
train and taxi booking. Software has become an integral part
of people’s daily life in all aspects. By 2020, the market for
software and software-based services is estimated to be
nearly €290 billion for Europe alone [1]. While software
brings convenience to us, it also causes many problems
owing to the numerous faults that remain undetected. For
instance, the inadequacy in software testing is estimated to

cost the US 0.6 percent of its GDP [2], or $112 trillion based
on the latest World Bank statistics [3]. The quality of
software testing is, therefore, of vital importance.

Random testing (RT) is a fundamental software testing
technique [4]. It randomly selects test cases from the entire
input space and then executes them. Hence, the probability
of selecting any location in the input space as the next test
case is the same. It does not require any information other
than the data types and ranges of the inputs. It is especially
good at executing the software in unforeseen circumstances
not obvious to human testers [5]. Furthermore, previous

Chen et al.: Exploiting the largest available zone: A proactive approach to adaptive random testing by exclusion

experimental results show that RT is efficient in generating
test cases [6].

Making use of the general property that failure-causing
inputs tend to be clustered in contiguous regions, Chen et al.
have proposed an improved method known as adaptive
random testing (ART) [7]. It has subsequently been applied
to different programming languages [8]—[10]. Compared
with RT, ART requires fewer test cases to reveal program
failures, and the test cases selected by ART are more evenly
distributed throughout the input space [11]. The
effectiveness of failure detection by ART has been validated
to be better than that of RT [7]. Various ART algorithms
have been developed to further improve the diversity of test
cases based on different concepts.

ART by bisection (ART-B) [12], ART by random
partitioning (ART-RP) [12], [13], and ART by two-point
partitioning (ART-TPP) [14] are adaptive random testing
algorithms based on the idea of partitions. ART-B divides
the input space into equal-sized partitions. Test cases can
only be selected from those partitions that do not contain
previously executed test cases. When all the existing
partitions contain previously executed test cases, further
partitioning takes place. ART-RP partitions the input space
at the location of every previously executed test case and
selects the next test case from the largest region. ART-TPP
also generates the new test case from the biggest region, but
the partitioning does not occur at the locations of executed
test cases. Instead, each partitioning location is determined
from two points in the input space. The first is the location
of a previously executed test case (or a random point if no
test case has yet been executed). The second is selected
according to farthest distance criterion. Then, the current
region is partitioned at the midpoint of these two locations.

Restricted random testing (RRT) [15], [16] is an ART
algorithm based on the idea of exclusion. It generates an
exclusion zone in the input space around every previously
executed test case. Then, it repeatedly generates random test
cases until one of them is outside all the exclusion zones.
This test case will be selected as the next one to be executed.
Experimental results show that RRT performs better than RT
and previous ART algorithms. On the other hand, it has to
spend more time in test case selection by passively judging
whether each candidate case is selectable. In addition, RRT
is inappropriate in some situations, such as when the failure
rate of the program is too small.

In view of the shortcomings of RRT, we propose a
proactive algorithm known as RRT by largest available zone
(RRT-LAZ), which reduces the effort in judging whether a
candidate case is selectable. Experimental results show that
RRT-LAZ uses significantly less time to select test cases
when compared with RRT, but the effectiveness of failure
detection is preserved.

The remaining parts of the paper are organized as follows:
Section II lays the theoretical groundwork for the rest of the

paper. Section III describes the original RRT algorithm and
the RRT-LAZ algorithm. Section IV presents a set of
experiments to compare RRT-LAZ with RT and other ART
algorithms, followed by analyses of the results. Section V
investigates the threats to validity of our study. Section VI
presents selected related work. Finally, Section VII
concludes the paper.

Il. FAILURE PATTERNS

A program is said to fail if it produces an incorrect result. An
input is said to be failure-causing if it leads to a failure of the
program. Bishop [17] has observed that failure-causing
inputs tend to be clustered in contiguous failure regions.
Chan et al. [18] have further classified the patterns of failure-
causing inputs into three categories, namely, point, strip, and
block patterns. The main characteristic of the point pattern is
that the failure-causing inputs are either stand-alone points
or form many regions of very small sizes scattered over the
input space. For the strip pattern, the failure-causing inputs
form the shape of a narrow strip. A typical example is the
domain error highlighted by White and Cohen [19], where
“a specific input follows the wrong path.” For the block
pattern, the main characteristic is that the failure-causing
inputs are concentrated in a more compact form than a strip
pattern and in a small number of regions. Examples of the
three patterns are shown in Figure 1 and the relevant code is
shown in Table I. In the figure, the outer boundaries represent
the borders of the input space and the filled regions denote
failure-causing inputs.

@ (b) ©

FIGURE 1. Three patterns of failure-causing inputs. (a) Point pattern.
(b) Strip pattern. (c) Block pattern.

A straightforward improvement of RT would be to make
use of the generic information on typical failure patterns.
Intuitively, it would be more effective to select test cases far
from non-failure-causing inputs because the failure patterns
tend to be clustered. Adaptive random testing makes use of
this additional information to enhance its failure-detection
capability over random testing.

Chen et al.: Exploiting the largest available zone: A proactive approach to adaptive random testing by exclusion

TABLE I. Sample faults causing the three patterns of failure-causing
inputs.

Point Pattern Strip Pattern Block Pattern

if (x%4 =0 if (3*x—y > 10) if (x>=10
&& y%6 == 0) // Tt should be &&x<=11&&y>=10

z=x/(2*y); /1" (3*x—y > 18)" &&y<=12)
// Tt should be z=X/2%y; z =x/(2%y);
/] "z = x/2%y;" else // 1t should be
else z=x*y; "z = x/2%y;"

z=x%*y; else

z=x*y;

lll. IMPROVING THE PROACTIVENESS OF THE RRT
ALGORITHM

A. THE ORIGINAL RRT ALGORITHM

The original RRT is an ART algorithm based on exclusion.
The main idea of the RRT algorithm is as follows: First,
when there are n (> 1) previously executed test cases, RRT
defines an exclusion zone around each executed test case.
The size of an exclusion zone is determined by the size of
the input space S, the exclusion ratio R (which is set by
human testers), and the number of previously executed test
cases N. In a one-dimensional input space, the size of each
exclusion zone is set to R*s/n and the exclusion radius is
R*s/(2*n). RRT repeatedly generates candidate test cases
randomly from the input space until a candidate test case
falls outside of all the exclusion zones. Figure 2 shows a one-
dimensional input space with values from 0 to 1. We set R as
0.75 and generate the first test case randomly. The second
test case can only be selected from (0, t; —0.375*s/1) and (t;
+0.375*s/1, 1). That is, if RRT generates a point not in (0,
ti — 0.375*%s/1) or (ti + 0.375%s/1, 1), it will repeatedly
generate another point from the input space until it falls
within (0, t; — 0.375%s/1) or (t; + 0.375%s/1, 1). Similarly, as
shown in Figure 2 (b), the third test case can only be selected
from (0, t» — 0.375%s/2), (> + 0.375%*s/2, t; — 0.375*s/2), or
(t; + 0.375*s/2, 1). Hence, RRT selects candidate test cases
from the whole input domain and then discards the
candidates that are inside the exclusion regions. This is a
passive approach.

Simulation and empirical studies have shown that RRT is
more effective than RT in terms of failure detection
capability [20]. However, in order to select the nth test case,
RRT needs to generate, on average, log n candidates for each
previously executed test case [21], and in order to determine
whether the candidate test case is in the exclusion zone, RRT
needs to measure the distance between the candidate test
case and every executed test case. RRT requires O(n log n)
time to generate the nth test case, and hence the time
complexity of RRT is O(n? log n). As it can be seen, a
disadvantage of RRT is that its time overhead is too large.
An improved approach, known as RRT-LAZ, is proposed in
the next section.

4

0.75%s/1

(2)

b b

— 0.75%s/2 — 0.75%s/2

(b)

FIGURE 2. Example of applying RRT to a one-dimensional input space.
(a) Exclusion zone for one test case. (b) Exclusion zones for two test
cases

B. RRT-LAZ ALGORITHM FOR ONE-DIMENSIONAL
INPUT SPACES

RRT-LAZ is an enhanced version of the RRT algorithm. The
first test case t; is randomly selected from the input space in
the same way as RRT. When there are n (> 1) previously
executed test cases, RRT-LAZ similarly generates exclusion
zones around each executed case. The size definition of
exclusion zones is the same as that in RRT. Unlike RRT,
however, RRT-LAZ maintains the exclusion zones in
sequence of the Hilbert values of the test cases (which will
be explained in Section III-C). After determining the
exclusion zones and hence the available zones (that is, the
regions outside the exclusion zones), RRT-LAZ picks the
largest available zone, from which the next test case will be
randomly generated. This method selects test case from the
available regions and therefore no generated test cases will
be discarded, greatly saving the time it takes to select the
next test case. It represents a proactive approach that is
different from the original passive approach.

Let us determine the time complexity of the RRT-LAZ
algorithm. In each iteration, RRT-LAZ generates the nth test
case from the largest available zone. To do so, it first
computes all the available zones. It needs to traverse n-1
previously executed test cases to determine these zones,
which takes O(n—1) time. In other words, it needs O(n—1)
time to generate the nth test case. For the RRT-LAZ
algorithm for one-dimensional input spaces, the time
complexity is therefore O(n?). For multidimensional input
spaces, we should also consider the time complexity of the
Hilbert space-filling function (to be introduced in Section
[I-C). The latter time cost is only related to the dimension d
and the order of the Hilbert curve m, both of which are
constants. Hence, the time complexity of RRT-LAZ is also

Chen et al.: Exploiting the largest available zone: A proactive approach to adaptive random testing by exclusion

Algorithm 1. RRT-LAZ for One-Dimensional Input Space

Inputs. (1) Target exclusion ratio R
(2) Boundaries min and max of input space
(3) Predefined ceiling for number of test cases to be executed
. read inputs R, min, and max;
. set tcList = (); /* tcList is the list of executed test cases */
. setazlist = (); /* azList is the list of available zones */
. setn=0; /* nis the number of executed test cases */

AN AW N —

. while not (Result(Execute(tc)) = fail or n = ceiling) do

. set tc = GenRandomTC([min, max]); /* Randomly select a test case from the set [min, max] */

/* While the execution result of tc is not a failure and the number of executed test cases has not reached the predefined ceiling */

7. seth=n+1;

8. insert tc into tcList, maintaining the list in ascending order through binary search;
9. define exclusion zone for each test case in tcList; /* Length of each exclusion zone = R*(max—min)/n */
10. availableZone = FindAZ([min, tcList[1]]); /* Find an available zone between min and the first test case. Return null if not found. */

11. if (availableZone !=null) /* If found */

12. then AddtoAZlist(availableZone); /* then add it to azList */
13. endif;

14. ifn>1 then

15. fori=1ton-1do

16. set thisTC = tcList[i];

17. set nextTC = tcList[i+1];

18. availableZone = FindAZ([thisTC, nextTC]);
19. if (availableZone != null)

20. then AddtoAZlist(availableZone);

21. end if;

22. end for;

23. endif;

24. set availableZone = null;

25. availableZone = FindAZ([tcList[n], max]);
26. if (availableZone != null)

27. then AddtoAZlist(availableZone);

28. end if;

29. set LAZ = Largest(azList); /* Find the largest available zone in azList */

30. set tc = GenRandomTC(LAZ); /* Randomly select a test case from LAZ */

31. end while;
32. return;

O(n?) for multidimensional input spaces, which is more
favorable than RRT.

We will give a simple example to illustrate the RRT-LAZ
process. Consider a one-dimensional input space with values
from 0 to 1. We select the largest available zone as follows:
Set the size of the largest available zone maxlength to an
initial value of 0. The lengthstart and lengthend positions
represent, respectively, the start and end points of the largest
available zone. The size of an exclusion zone is equal to
R*s/n, where R is the exclusion ratio, S is the size of the input
space, and n is the number of previously executed test cases.
We set the initial size of the exclusion zone to 1. As in RRT,
the exclusion radius for one-dimensional input spaces is
equal to half the size of the exclusion zone. In RRT-LAZ,
the first and the last executed test cases are processed
separately. If the value of the first test case t; minus the
exclusion radius is greater than zero, it means that there is an
available zone between 0 and t; — radius. That is, lengthstart
= 0, lengthend = t; — radius, and maxlength = lengthend —
lengthstart. If the value of the last test case t, plus the radius
is less than 1, it indicates that t, + radius is still in the input
space. That is, lengthstart = t, + radius, lengthend = 1, and
maxlength = lengthend — lengthstart. When there is more

than one test case, a vital condition in the algorithm must be
satisfied. That is, the value of the current test case plus the
radius cannot be greater than the next test case minus the
radius; otherwise, there will be no available zone between
the two test cases. The maxlength can be updated only if the
above condition is met.

The implementation of the RRT-LAZ algorithm for one-
dimensional input spaces is further illustrated in Figure 3.
The actual RRT-LAZ process is shown in Algorithm 1.
Consider again the input space [0, 1]. Following Line 5 of
the algorithm, the first test case t; is randomly generated with
a value of 0.6, as shown in Figure 3(a). Following Line 9 of
the algorithm, taking R = 0.75, and based on the formula
R*s/n, the exclusion zone is computed to be [0.225, 0.975].
Following Lines 10 to 28 of the algorithm, the two available
zones are [0, 0.225] and [0.975, 1]. The size of the available
zone #1 is obviously larger than that of #2, and hence,
following Line 29 of the algorithm, the next test case should
be selected from the first available zone. This test case t; is
randomly generated to be 0.2, as shown in Figure 3(b). It
can be seen from the updated exclusion zones and available
zones that the size of available zone #3 is the largest. As a
result, the next test case is randomly generated in this zone.

Chen et al.: Exploiting the largest available zone: A proactive approach to adaptive random testing by exclusion

1

Available Exclusion Availabl
Zone #1 zone rone #2
t1:‘0.6
0 0.225 0.975
(a)
Available Exclusion Available Exclusion Available
Zone # Zone #1 Zone #2 Zone #2 Zone #3
,=0.2 t]:‘0.6
0 00125 0.3875 04125 0.7875
()

FIGURE 3. Example of applying RRT-LAZ to a one-dimensional input
space. (a) Generation of test case t1. (b) Generation of test case t2.

\0 \] \2 ’.?\ \0 \1 \2 | | | | | | | | | | | | 1‘\5
9 10
¥/ 2
4 7' 8 11
3 2 1 12
0 3
0 1 14 15
(a) (b)

FIGURE 4. Examples of Hilbert space-filling curves. (a) First-order
Hilbert curve. (b) Second-order Hilbert curve

C. RRT-LAZ ALGORITHM FOR MULTIDIMENSIONAL
INPUT SPACES

In Sections III-A and I1I-B, we have introduced the RRT and
RRT-LAZ algorithms for one-dimensional input spaces.
This section presents the algorithm for multidimensional
input spaces. We will use the Hilbert space-filling function
to convert one-dimensional inputs into multidimensional test
cases.

1) HILBERT SPACE-FILLING FUNCTION

The Hilbert space-filling function [22] can map bijectively
the points on a one-dimensional line (known as the Hilbert
space-filling curve) to the points in a multidimensional
space. Figure 4 shows how the points in a one-dimensional
space are mapped to a two-dimensional space. The square is
first divided into four sub-squares. A first-order curve is
constructed by connecting the centroids of the sub-squares
by straight edges. The sequencing of the sub-squares is so
arranged that that a common edge is always shared by a pair
of sub-squares. The number at each centroid is known as the
Hilbert value. Figure 4(b) shows the second-order curve. In

this step, each of the four sub-squares is further divided into
four new sub-squares. The first and last sub-squares need to
be rotated to ensure that a common edge is always shared by
a pair of sub-squares. There are 2!*2 = 4 Hilbert values in the
first-order curve for two-dimensional spaces, and 222 = 16
Hilbert values in the second-order curve for two-dimensional
spaces.

Let r be the Hilbert value in an m-order space-filling curve
to be converted into a d-dimensional test case. The value is
represented by a binary number consisting of m groups with
d bits in each group. The m groups are indexed by i = 1, 2,
ey M.

To initiate the dimensional conversion process, we obtain
the binary representation of the value r that needs to be
transformed. We fill in the most significant part of the
integer portion of the binary number with zeros and the least
significant part of the fractional portion with zeros, making
the length of binary number equal to d*m.

Then, the conversion process undergoes a sequence of
transformations as follows:

P] [T q t o a
r-pi=»Ji»oi->t->0q->ti»ow-a

TABLE II. Transformation operators for dimensional conversion
process in Hilbert space-filling function

Transfor-
mation Action
Operator
o Split the binary value of r into m groups p4, p, ..., P,
1

each group p; having d bits p}p?...08.

Determine the principal position J; = the last position
J inp; = plp?..pf such that p! = p@. In case that all
the bits of p; are equal, the principal position is d.
Determine o such that a{= pi, ai= pi @ pi, ...,

c ai=pl @ p4_,, where @ is the “exclusive or”
operator.

Determine 7' by first complementing o in the dth
position.

If ! is of odd parity, complement the principal
position.

Determine @ as follows:

q For i > 1, shift ¢? right circular a number of positions
equalto (Ji,— D+ G—D+..+Ji—1).

Determine t; as follows:

t For i > 1, shift t¢ right circular a number of positions
equalto i — D+ G-D+..+Ji— 1.

® Set ®; = all zeros and ;= ;| D t;_,.

o Setai= 0 ® Q.

1. We use operator p to split the binary representation of r

into M groups p1, P2, ---» Pm-
2. We perform the following processes fori=1, 2, ..., m:

a) Use operator J to record the principal position of pi.

b) Use operator ¢ to transform pj into oi.

Chen et al.: Exploiting the largest available zone: A proactive approach to adaptive random testing by exclusion

Algorithm 2. RRT-LAZ for Multidimensional Input Space

Inputs. (1) Target exclusion ratio R

(2) Dimension d

(3) Boundaries of multidimensional input space

(4) Predefined ceiling for number of test cases to be executed
. read inputs R, d, and boundaries of input space;

. setazList = (); /* azList is the list of available zones */
set n=0; /* n is the number of executed test cases */

. while not (Result(Execute(tc)) = fail or n = ceiling) do

. set hvList =(); /* hvList is the list of Hilbert values in one-to-one correspondence with the executed test cases */

. Map the multidimensional input space to [0, 1] based on Hilbert space-filling curve;
. set hv = GenRandomHV([0, 1]); /* Randomly select a Hilbert value hv from the set [0, 1] */
. set tc = HVtoTC(hv); /* Map hv to multidimensional test case tc based on Hilbert space-filling curve */

/* While the execution result of tc is not a failure and the number of executed test cases has not reached the predefined ceiling */

9. setn=n+1;

10. insert hv into hvList, maintaining the list in ascending order through binary search;
11. define exclusion zone for each Hilbert value in hvList; /* Length of each exclusion zone = R/n */
12. availableZone = FindAZ([0, hvList[1]]); /* Find an available zone between 0 and the first Hilbert value. Return null if not found. */

13. if (availableZone !=null) /* If found */

14. then AddtoAZlist(availableZone); /* then add it to azList */
15. end if;

16. ifn>1 then

17. fori=1ton-1do

18. set thisHV = hvList[i];

19. set nextHV = hvList[i+1];

20. availableZone = FindAZ([thisHV, nextHV]);
21. if (availableZone != null)

22. then AddtoAZlist(availableZone);

23. end if;

24, end for;

25. endif;

26. set availableZone = null;

27. availableZone = FindAZ([hvList[n], 1]);
28. if (availableZone != null)

29. then AddtoAZlist(availableZone);

30. end if;

31. set LAZ = Largest(azList); /* Find the largest available zone in azList */

32. set hv=GenRandomHV(LAZ); /* Randomly select a Hilbert value from LAZ */

33. settc=HVtoTC(hv);
34. end while;
35. return

c¢) Use operator T to transform o;j into 7.

d) Copy o to qi. Use operator q to transform oj into Q.
e) Copy 7 to t;. Use operator t to transform ; into t;.
f) Use operator ® to transform tj into wi.

g) Use operator a to transform g into a.

3. The result is a sequence (a1, a2, ..., dm).

The detailed actions of the transformation operators are
shown in Table II.

For example, given d = 3 and m = 4, consider a one-
dimensional point r' = (0.247314453125), =
(0.001111110101),, where {-)10 and (-)» denote the decimal
and binary representations, respectively. We have p; =
001,p, = 111,p; = 110, and py, = 101. According to
the transformation rule of the Hilbert curve, p;, p,, p3, and
pg4 are converted to two sequences (i, j2, J3, jay = (2, 3,2, 1)
and (o1, 02, 03, 04y = (001, 100, 101, 111). Applying the next
operator T, we obtain 7; = 000, 7> = 101, 73 = 110, and 74 =
110. Then, we use the operator q to transform o; into Qi to

obtain g; =001, g =010, g3 = 101, and g4 = 111. Similarly,
we have t; =000, t; = 110, t3 = 110, and t4 = 011. Applying
the next operator ®, we have @ = 000, w> = 000, w3 = 110,
and w4 = 000. Finally, applying the operator a, we obtain the
sequence {(ai, a», a3, asy = (001, 010, 011, 111). Therefore,
the three-dimensional point I* = (0.0001, 0.0111, 0.1011), =
(0.0625, 0.4375, 0.6875)10.

Previous ART researchers [23] set the order of the Hilbert
curve to 32. By further experimental analysis, we found that
32 was not large enough to ensure the precision of the
mapping. If the order of the Hilbert curve was set to 64, the
precision of the mapping was better than that of 32. Hence,
in our experiment, the order of the Hilbert curve was set to
64 based on the cost-effective analysis.

2) MULTIDIMENSIONAL RRT-LAZ ALGORITHM

We will apply the Hilbert space-filling function to support
test case generation for programs with multidimensional
input spaces. First, we generate one-dimensional Hilbert
values similar to the RRT-LAZ algorithm for one-
dimensional input spaces in Section III-B. Then, we convert

Chen et al.: Exploiting the largest available zone: A proactive approach to adaptive random testing by exclusion

these values into multidimensional test cases using the
Hilbert spacing-filling function. The specific RRT-LAZ
algorithm for multidimensional input spaces is shown in
Algorithm 2.

IV. EXPERIMENTAL EVALUATIONS

In this section, we report the comparisons of RRT-LAZ with
related algorithms by applying them to simulated and real-
life programs. Since RRT-LAZ involves two concepts,
namely, exclusion and partitioning, we only compare it with
RT, RRT (which is based on exclusion), as well as ART-B,
ART-RP, and ART-TPP (which are based on partitioning).
In our experiments, the exclusion ratio R was set according
to the original RRT paper [15]. All the experiments were
conducted on a PC with Intel Core 13-380M 2.53GHz dual
core processor and 6GB RAM running the Windows 7
operating system. We made sure that the performance of the
PC was steady in all the conducted experiments.

A. SIMULATION STUDY

We apply two metrics to compare the proposed RRT-LAZ
algorithm with RT and popular ART techniques. First, we
use the test case generation time, which does not include the
time for test case execution as this cannot be simulated
without bias. Second, we use the F-measure [7], which refers
to the expected number of executed test cases to reveal the
first failure.

1) TEST CASE GENERATION TIME

The main purpose of this part of the study is to observe and
analyze the time costs of the algorithms. We do not require
the ART algorithms to test programs, but simply use them to
produce test cases. The test case generation time is the
average of the sums of times obtained from 2000
independent tests for input spaces of all dimensions.

According to Figures 5 and 6, which illustrate the time
costs for input spaces of one and two dimensions, RRT-LAZ
spends less time to generate test cases than RRT and ART-
RP. From Figures 7 and 8, which show the time costs for
input spaces of three and four dimensions, it can further be
observed that RRT-LAZ spends less time to generate test
cases than RRT, ART-RP, and ART-TPP.

As explained before, a significant disadvantage of the
RRT algorithm is that it spends excessive time in test case
generation. RRT-LAZ clearly improves on the time cost of
its predecessor. Furthermore, RRT-LAZ uses less time than
ART-TPP as the dimension increases, because our method
does not need to handle d-dimensional points or d-
dimensional zones. On the other hand, RRT-LAZ uses more
time than RT and ART-B.

7000

6000

5000

2000

0
0

= # =RT
=-©-=RRT
=+ = ART-RP
= % = RRT-LAZ
= % = ART-TPP
- % = ART-B

1000 2000 3000 4000 5000

Number of Test Cases

6000

[AX e

*
7000 8000

FIGURE 5. Time costs of test cases in 1-dimensional input spaces.

7000

6000

5000

4000

time(ms)

3000

2000

1000

0

- &% =RT
=-©-= RRT

= 4+ = ART-RP
= % = RRT-LAZ
= % = ART-TPP
— % — ART-B

1000

2000 3000 4000 5000

Number of Test Cases

6000

7000 8000

FIGURE 6. Time costs of test cases in 2-dimensional input spaces.

3

25

time(ms)

0.5

x10%
— # =RT) 4
=-©-= RRT K
I | = 4 = ART-RP 7
= # = RRT-LAZ o
4
= ¥ = ART-TPP o
| | = % = ART-B g
'I
/
o
‘/
L "D 4
,
L K4 R
’l
o
xa
/a - +
L o ot
o -
- e x i et

0

1000 2000 3000 4000 5000

Number of Test Cases

6000

7000 8000

FIGURE 7. Time costs of test cases in 3-dimensional input spaces.

Chen et al.: Exploiting the largest available zone: A proactive approach to adaptive random testing by exclusion

4
10
7F : : : :
- % =RT
=-©-=RRT
L /-
67| = + = ART-RP 4/
- # =RRT-LAZ 4
= % = ART-TPP g
5 /
~ & = ART-B @

0 1000

2000 3000 4000 5000

Number of Test Cases

6000 7000 8000

FIGURE 8. Time costs of test cases in 4-dimensional input spaces.

2) EFFECTIVENESS OF TEST CASE GENERATION

We recall that the F-measure evaluates the expected number
of test cases to expose the first failure. Thus, a lower F-
measure indicates that an algorithm is more effective. We
conducted a simulation study of the F-measure with respect
to varying failure rates 0. A failure rate denotes the fraction
of failure-causing inputs over the entire input space. A lower
failure rate means that it will be more difficult to reveal
failures.

We used failure rates of 0.0050, 0.0020, 0.0010, and
0.0015. For each failure rate, the seed of random numbers
was set between 0 and 10000, and the interval between two
seeds was 5. Each experiment was repeated 2000 times for
each failure rate, and the average was taken as the overall

TABLE III. F-measures for 1-dimensional input spaces

result. We conducted the experiments in 1-, 2-, 3-, 4-, and
10-dimensional input spaces. As said before, there are three
main patterns of failure-causing inputs. All the three patterns
were tested in the experiments. The results of the F-measures
for testing the simulated programs with the RRT-LAZ and
other ART algorithms are shown in Tables III to VII.

It can be observed from the first four of these tables that
RRT-LAZ is better than other methods for block failure
patterns in low-dimensional input spaces. As shown in
Tables III to VII, when the dimension increases, the
effectiveness of ART algorithms decreases. RRT-LAZ is no
longer the best algorithm for block failure patterns in 10-
dimensional input spaces. Nevertheless, the F-measure of
RRT-LAZ is comparable to the best one. For strip patterns,
Tables III to VII show that RRT-LAZ is better than other
methods in some cases but worse in other cases. Considering
both the failure-detection effectiveness and overhead, we
can conclude that RRT-LAZ is more cost-effective than
other approaches. Since ART was not intended for point
failure patterns, it is not expected to show much
improvement over RT.

Figures 9 to 12 show the experimental results of various
algorithms in box plots, categorized by different failure rates
and dimensions. We have run the experiments 100 times to
obtain 100 F-measures for each algorithm before drawing
the box plots. The dispersions of the F-measures can be
observed from these figures.

It can be seen from Figures 9 to 12 that the ranges of the
boxes for RRT-LAZ are smaller than those for other ART
algorithms. This means that the dispersions of RRT-LAZ are
smaller than those of other algorithms.

Block Pattern Strip Pattern Point Pattern
failure rate | 0.0050 | 0.0020 | 0.0010 | 0.0015 | 0.0050 | 0.0020 | 0.0010 | 0.0015 | 0.0050 | 0.0020 | 0.0010 | 0.0015
RT 200.0 500.0 | 1000.0 666.7 200.0 500.0 | 1000.0 666.7 200.0 500.0 | 1000.0 666.7
RRT 117.2 297.0 603.0 404.0 117.2 297.0 603.0 404.0 1924 487.0 998.0 652.0
ART-B 125.6 308.5 628.0 411.3 125.6 308.5 628.0 411.3 199.4 497.0 | 1019.0 665.3
ART-RP 135.6 339.0 668.0 440.7 135.6 339.0 668.0 440.7 188.6 471.5 988.0 649.3
ART-TPP 130.8 319.5 638.0 420.7 130.8 319.5 638.0 420.7 193.8 482.0 972.0 640.0
RRT-LAZ 107.2 270.5 552.0 359.3 107.2 270.5 552.0 359.3 200.4 495.5 980.0 660.7

TABLE 1V. F-measures for 2-dimensional input spaces

Block Pattern Strip Pattern Point Pattern
failure rate | 0.0050 | 0.0020 | 0.0010 | 0.0015 | 0.0050 | 0.0020 | 0.0010 | 0.0015 | 0.0050 | 0.0020 | 0.0010 | 0.0015
RT 200.0 500.0 | 1000.0 666.7 200.0 500.0 | 1000.0 666.7 200.0 500.0 | 1000.0 666.7
RRT 125.2 306.0 593.0 404.7 186.2 467.0 928.0 613.3 201.6 508.5 | 1015.0 691.3
ART-B 144.2 364.5 715.0 488.7 184.4 477.0 986.0 644.7 197.4 490.0 978.0 662.7
ART-RP 151.4 387.0 786.0 522.7 182.6 475.5 961.0 644.0 197.0 498.5 989.0 664.7
ART-TPP 161.0 384.5 784.0 523.3 182.0 478.0 947.0 622.7 198.4 486.0 968.0 646.0
RRT-LAZ 124.0 305.5 591.0 401.3 188.8 473.5 942.0 634.0 190.6 496.0 | 1005.0 667.3

Chen et al.: Exploiting the largest available zone: A proactive approach to adaptive random testing by exclusion

TABLE V. F-measures for 3-dimensional input spaces

Block Pattern Strip Pattern Point Pattern
failure rate | 0.0050 | 0.0020 | 0.0010 | 0.0015 | 0.0050 | 0.0020 | 0.0010 | 0.0015 | 0.0050 | 0.0020 | 0.0010 | 0.0015
RT 200.0 500.0 | 1000.0 666.7 200.0 500.0 | 1000.0 666.7 200.0 500.0 | 1000.0 666.7
RRT 160.0 373.5 741.0 502.0 188.2 468.0 955.0 639.3 207.4 518.0 | 1009.0 686.0
ART-B 165.0 394.5 824.0 532.0 193.6 489.5 990.0 676.0 201.4 491.5 995.0 658.7
ART-RP 169.0 436.0 875.0 5773 198.8 492.5 982.0 674.7 198.4 492.5 | 1026.0 652.7
ART-TPP 171.8 434.0 859.0 582.7 189.6 494.0 955.0 656.7 195.2 505.0 | 1015.0 686.0
RRT-LAZ 157.8 360.5 736.0 496.0 186.6 464.5 953.0 644.0 201.2 496.5 993.0 667.3
TABLE VI. F-measures for 4-dimensional input spaces
Block Pattern Strip Pattern Point Pattern
failure rate | 0.0050 | 0.0020 | 0.0010 | 0.0015 | 0.0050 | 0.0020 | 0.0010 | 0.0015 | 0.0050 | 0.0020 | 0.0010 | 0.0015
RT 200.0 500.0 | 1000.0 666.7 200.0 500.0 | 1000.0 666.7 200.0 500.0 | 1000.0 666.7
RRT 186.2 453.5 868.0 591.3 182.8 460.0 918.0 610.0 198.0 502.0 | 1053.0 690.0
ART-B 180.0 444.0 883.0 580.7 188.4 464.0 868.0 577.3 201.8 516.0 | 1060.0 687.3
ART-RP 164.6 435.0 903.0 597.3 179.2 477.5 916.0 620.0 199.6 519.5 | 1045.0 689.3
ART-TPP 197.8 506.5 977.0 650.0 192.0 463.5 911.0 614.7 1974 502.0 | 1052.0 694.0
RRT-LAZ 162.2 419.0 831.0 556.0 169.0 427.5 889.0 572.0 197.8 507.0 | 1055.0 690.0
TABLE VII. F-measures for 10-dimensional input spaces
Block Pattern Strip Pattern Point Pattern
failure rate 0.0050 | 0.0020 | 0.0010 0.0015 | 0.0050 | 0.0020 | 0.0010 0.0015 | 0.0050 | 0.0020 | 0.0010 0.0015
RT 200.00 | 500.00 1000.00 | 666.67 | 200.00 | 500.00 | 1000.00 | 666.67 | 200.00 | 500.00 | 1000.00 | 666.67
RRT 27534 | 597.35 1405.60 | 905.13 | 290.14 | 672.25 1281.30 | 872.07 | 208.02 | 473.45 | 918.50 675.80
ART-B 19430 | 486.65 | 975.20 649.27 | 217.12 | 506.30 | 952.40 651.40 | 226.00 | 509.60 | 993.00 734.47
ART-RP 192.06 | 42945 | 826.40 551.00 | 219.60 | 449.10 | 971.30 660.67 | 234.48 | 533.95 1039.60 | 746.80
ART-TPP 261.84 | 555.45 1292.10 | 845.80 | 284.94 | 589.00 | 1257.70 | 843.47 | 211.54 | 485.65 | 919.30 647.53
RRT-LAZ 195.18 | 476.40 | 954.20 658.80 | 214.56 | 484.45 | 938.80 644.20 | 205.00 | 466.00 | 878.90 664.00
i 12001 i 600 [T
2000 1000 | 5000
* +
1500 I 800 + 1000
Z T + 600 | —%— ’
Fuool ! + I ;
) : + B T ’ 100 | } - h 2000 - _%_
‘ } l T T ‘ i : T T — | N +
Hoobed Heodod obidds
T 2P Y2 e 08 |Has o e
«© b R > R g . A \\\(v\“\(I‘ w o RS S} R o s . ;,\»\ Wt o RS bt RS R = A \\’V‘ N
(a) (b) ©
FIGURE 9. Box plots of F-measures of RT and ART methods for 1-di 1 input sp . (a) Failure rate 6 = 0.0020. (b) Failure rate 8 = 0.0050. (c) Failure rate 0 =
0.0015
T 1000 F N T
3500 + + 3500 *
900 | + +
3000 800 3000
+ r +
2500 700 - 2500 +
‘; 2000 + *
E 1500 +

1000
500

=)=

300
| 200 -

100

FIGURE
=0.0015

.
N £
a
- |
| 1
| |
L T

*

. T
|

s00F 1
I

o
|

€L

W

-

ALY a® < RF N b
w AR RS R v i B

(b)

1000

500

of L

-+ -

€L

3 }-Dj»———hu—w ++

&

+ +
+ +
| | -
T
| I
|
| I
E Q |
T L T
<P X o° i
R >~\"‘A\ ot

()

s

10. Box plots of F-measures of RT and ART methods for 2-dimensional input spaces. (a) Failure rate 6 = 0.0020. (b) Failure rate 6 = 0.0050. (c¢) Failure rate 6

Chen et al.

: Exploiting the largest available zone: A proactive approach to adaptive random testing by exclusion

2500

2000

1500

1000

F-measure

500

F FD]’““ H o+ o+

+
+
-
|
|
|
€L

o+

-
I
|
I
L
&

= P

(@

500

<2 4v% NP
o &\\‘"g\ Riad

1000

800 F

600 |

100 |

200

s

E FDj»AAA{ o+t

o
PO
JE

4500 |

1000

3500

3000 |

2500

E
=

2000 |

1500

1000 |

500

[

+

+
+

ha
I
|
I
I

L
o

o

(b)

= R <° AL
N a7 M\"’\\ R

¥

¥

* +

¥

M + + N +

— . t + o +

! T~ f I .
I + |

! I T T ! "

Q & g T

T T ° T g

<« wt NS ® . o & «¥° o N

()

FIGURE 11. Box plots of F-measures of RT and ART methods for 3-dimensional input spaces. (a) Failure rate 6 = 0.0020. (b) Failure rate 6 = 0.0050. (c) Failure rate

=0.0015

3500

3000

2500

2000

F-measure

1500
1000
500

¥
-
I
|
0 g

i

H
o g

&

e ®

@

S L

-

50

ES
+
+
+
|
|
|
£

| 3500 F
+ 900 +
+ + +
800 - + 3000 +
+
(0] — T .
4 + o0l F
+ + + T + +
+ 600 | . ¥ I +
© I £ 2000 |
Sso0r T % ¥ * | 1 g
2 - + 2
g I | ! - g T
N T Zaof H ! T | I & 1500 |
+ = ! I I ! =
- * | ! I | | |
I - | 300F 1 | | ! 1
| | | 1 | I 1000 |
! [200
] 500 |
100 |
] ol L 1 1 1 L T P
R o® b o 5) o ° N o
o S k S S Ria l\\“'\\ o ¥

o (B Y ~9Y
o RS RO

(©)

L
oM

FIGURE 12. Box plots of F-measures of RT and ART methods for 4-dimensional input spaces. (a) Failure rate 6 = 0.0020. (b) Failure rate 6 = 0.0050. (c) Failure rate 6

=0.0015

TABLE VIII. Input spaces and fault information of subject programs.

Input Space Seeded Faults .
Program From To AOR | ROR | SVR | CR Failure Rate
airy (=5000.0) (5000.0) 1 0.000716
bessj (2.0, —1000.0) (300.0, 15000.0) 2 1 1 0.001298
bessj0 (=300000.0) (300000.0) 2 1 1 1 0.001373
cel (0.001, 0.001, 0.001, 0.001) | (1.0,300.0, 10 000.0, 1000.0) 1 1 1 0.000332
el2 (0.0, 0.0, 0.0, 0.0) (250.0, 250.0, 250.0, 250.0) 1 3 2 3 0.000690
erfce (=30000.0) (30000.0) 1 1 1 1 0.000574
gammgq (0.0,0.0) (1700.0, 40.0) 3 1 0.000830
golden (=100.0. =100.0. =100.0) (60.0, 60.0. 60.0) 3 1 1 0.000550
plgndr (10.0.0.0. 0.0. —50000.0) (500.0, 11.0, 1.0, 5000.0) 1 2 2 0.000368
probks (=50000.0) (50000.0) 1 1 1 1 0.000387
sncndn (=5000.0. =5000.0) (5000.0, 5000.0) 4 1 0.001623
tanh (=500.0) (500.0) 1 1 1 1 0.001817
TABLE IX. F-measures for subject programs.
airy bessj bessj0 cel el2 erfee gammgq golden plgndr probks snendn tanh
RT 1398.648 | 767.416 | 738.332 | 3022.048 1437.275 | 1741.160 | 1204.819 | 1818.182 | 2717.391 | 2583.979 | 616.143 550.358
RRT 806.006 633.205 | 454.406 | 2936.747 825.362 1024.739 | 1094.337 | 1739.818 | 1689.402 | 1580.878 | 645.287 327.188
ART-B 763.687 620.108 | 495.339 | 2832.831 1435.072 | 1021.951 | 1137.710 | 1779.272 | 1904.619 | 1837.726 | 619.532 356.742
ART-RP 898.464 726.888 | 509.031 | 3491.867 1736.086 | 1161.150 | 1210.361 | 1782.000 | 3055.434 | 1790.697 | 626.186 365.768
ART-TPP 865.782 702.311 | 481.937 | 3129.518 1074.202 | 1096.690 | 1136.144 | 1780.727 | 1716.847 | 1693.023 | 619.039 364.942
RRT-LAZ 703.352 643.374 | 408.594 | 2825.301 808.841 946.168 | 1091.687 | 1735.818 | 1643.478 | 1454.521 | 618.115 | 299.835

10

Chen et al.: Exploiting the largest available zone: A proactive approach to adaptive random testing by exclusion

B. EMPIRICAL STUDY

Previous ART studies used 12 real-life programs to evaluate
the effectiveness of ART algorithms in practical situations.
These programs were extracted from Numerical Recipes [24]
and ACM’s Collected Algorithms [25]. Some faults were
seeded into the subject programs using the following 4
mutation operators [26].

1) arithmetic operator replacement (AOR);

2) relational operator replacement (ROR);

3) scalar variable for scalar variable replacement
(SVR);

4) constant replacement (CR).

The input spaces and fault information of these programs
are shown in Table VIII. Note that a hyperrectangular input
space was defined for each subject program.

We used related ART algorithms to test the subject
programs in the empirical study. Table IX shows the F-
measures of RT and related ART algorithms. All the results
in this table are averaged over 2000 test runs for each subject
program using different seeds. For 11 of the 12 real-life
subject programs (except for Program bessj), we find that
RRT-LAZ has a better F-measure than RT and related ART

techniques. As for Program bessj, since there are two seeded
faults via the AOR operator, and since its input space is two-
dimensional, RRT-LAZ does not exhibit the best F-measure.

To show the distribution of F-measures for each algorithm
in these programs, we also draw box plots of the respective
F-measures as shown in Figure 13. For each F-measure, we
ran the experiment 100 times and obtained the average value.
The dispersions of the F-measures can also be observed in
the figure. From these statistical data, we have the following
observations.

1) For the majority of the subject programs (7 out of 12,
except for Programs airy, el2, gammgq, plgndr, and
probks), the median of RRT-LAZ is smaller than
those of related approaches.

2) For the majority of the subject programs (except for

airy, bessj, el2, golden, and sncndn), the
interquartile range (the box length) and the maximum
(the top end of the whiskers) of RRT-LAZ are smaller
than those of related approaches, which shows that
RRT-LAZ has a more stable data distribution than the
others.

5000
5000
4500
1000

N 1000
3500
+

5

+

ok

£

3000
3000

2500

F-measure
F-measure

! 2000

T s

H

L ol

2000
1500
1000 1000 |

500

0

4000 |

3500

3000 |

2500

+
F-measure

2000

1500 |

1000

500

0

-

I

I

I

I

I

I

I

I

I

i

©

x10*

= ®

@

o® ¥ b
W et

©

+ 9000 +

8000 +

7000 -

6000

7 4000
=
3000 +

2000

+
£
|
|
|
| 4
Q 1000 -
1 ol

7000 |

6000

5000

4000

F-measure

3000 |

2000

1000

FD:,»AAAAA{-erL + o+ o+
—}—DAAAPFHH
}—D]——{H#wt

[

&

) «

11

6000 12000 -

5000 10000

14000

12000

¥
P, %
n _
; + i - * +]
1000 T e + ool * N + n " + 10000 | }
- + n
¢ T I ! T o + + . - !
5 | | | $ | g ¥ 80001 |
f 3000 | | | | 1 f 6000 -+ + £ | i | M +
0 ! ! } : ! T 5 \i i ¥ - M = 6000 ! + ! +
) 1 | | | 3 = | . 1 — + b
2000 I | ! | [wool ! + 1 | | | I |
| | I | | ! | -
| | | | | | 1000 | | — +
! ! ‘ ! £
1000 4 2000 | ! |
2000 - EI
ol L L L i T T | ol T T T T T ol L . T 1 E E
« e Rl gAY Peud N «% At (B PN R N « AN e Py 0% N
® NS 5 CUR L S ¥ N R IR S S b IR I e st
(2 (h) @
T T T 3500 T
+ 3500 | + +
+ +
o000} a0l +
+ 3000 * +
N +
10000 . + " 2500+
2500 | . + L
+ - + +
F) S— ® + I t ’ £ 2000
g T 2000f F | + + + g4
£ | + I - T . g -
26000 | + 2 os0l T | i ! | ! & 1500 |
= I T i = I I | ! I ! = 1
! i | T ! ! | ! | ! | + -
1000 i | i 1 A wool | | I ! 1000 | o _ 1
| | | ! | ! ! —
| |
2000 E E 1 500 | 500 - g E E| El
ol L 1 T L T 4L] ol L 1 T o 1 1 o T T 1 L T
& N a® N PNa N w8 55 5P e o N 8 8 e PN ¥ AL
R A RS ’\\\,\ v O B W AW ‘X“(RS v s B W ARY RS ‘\\\'X v © < A

FIGURE 13. Box plots of F-measures for 12 subject programs. (a) airy. (b) bessj. (c) bessj0. (d) cel. (e) el2. (f) erfcc. (g) gammgq. (h) golden.

(i) plgndr. (j) probks. (k) sncndn. (1) tanh

V. THREATS TO VALIDITY

Construct validity refers to the extent that our experimental
studies evaluate the actual comparisons of RT and ART
techniques. We have adopted the F-measure and the test case
generation time as the effectiveness and efficiency metrics.
The use of other metrics may give different results.

Internal validity refers to how well our experimental
studies are conducted, especially with respect to the
dependency of the variables. We have used both simulated
and real-life programs in our studies. We have carefully
implemented and tested our evaluation tools to assure
correctness. Also, the effectiveness of the RRT and RRT-
LAZ algorithms depend on the exclusion rate R. In our
studies, we have set the value of R to be the same for both
algorithms. Setting distinct values of R may produce
different results.

External validity refers to the degree that our experimental
studies can be generalized. We have used 12 subject
programs from Numerical Recipes and ACM’s Collected
Algorithms. While they are commonly adopted in other ART
studies, the use of other programs may produce different
results. Having more subject programs with larger sizes can
strengthen the generalization.

12

VI. FURTHER DISCUSSIONS ON RELATED WORK
Numerous adaptive random testing algorithms have been
developed by various authors. It is practically impossible to
compare a new ART approach with all existing algorithms
experimentally.

We have compared RRT-LAZ with RT because the latter
is the original technique that adaptive random testing
targeted to improve.

RRT-LAZ involves two concepts, namely, exclusion and
partitioning. It is, therefore, appropriate to compare it with
RRT (which is based on exclusion) as well as ART-B, ART-
RP, and ART-TPP (which are based on partitioning).

The fixed-size-candidate-set (FSCS) algorithm using the
max-min candidate selection criterion [7] is based on the
idea of distances. It first generates a fixed number of
candidate test cases and calculates the minimum distance
between each candidate and all the previously executed test
cases. Then, the candidate with the maximum distance
among all the computed minimum distances is selected as
the next test case. As we have explained, it is unrealistic to
compare a new ART approach with all existing algorithms.
Since FSCS is not related to the three basic concepts in RRT-
LAZ, we have not included it in our experimental studies.

Chen et al. [27] proposed a mirror adaptive random testing
(MART) approach. First, it partitions the given input space
into m equivalent disjoint subspaces. It picks one of the

Chen et al.: Exploiting the largest available zone: A proactive approach to adaptive random testing by exclusion

subspaces and applies an ART algorithm (say, RRT) to
select a test case. It then uses the mirroring function to
generate a test case for each of the remaining m—1 subspaces
without the need to apply RRT again. MART exhibits the
same F-measure as the RRT algorithm but needs only 1/m?
of the time for distance computation using RRT.

Chan et al. [28] recommended the concept of forgetting
for enhancing adaptive random testing. It restricts the
execution of an ART algorithm (say, RRT) to a limited
number of previously executed test cases. In this way, the
time complexity can be improved.

ART with dynamic non-uniform candidate distribution
(ART-DNC) [29] is another attempt to improve adaptive
random testing by the use of failure-driven test profiles. It
reduces the time cost by tuning the process according to the
test case distribution in each dimension.

The enhancement of RRT by mirroring, forgetting, and
dynamic non-uniform candidate distribution are orthogonal
to the enhancement of RRT through the largest available
zone. In other words, RRT-LAZ can also be further
improved by mirroring, forgetting, or DNC.

Shahbazi and others [30], [31] presented another
alternative approach to random testing. They use centroidal
Voronoi tessellations to maximize the test case coverage of
the input space and presented an RBCVT-Fast algorithm
with a time complexity of O(n). However, testers need to
specify the target number of test cases (n) at the beginning.
If testers overestimate N, they will waste a lot of time in test
case generation. On the other hand, if testers underestimate
n, after executing the first batch of targets, another set of n
evenly spread test cases will need to be generated without
taking the first set into consideration. Our algorithm does not
need to assume the target number of test cases prior to
testing. There is no problem related to overestimation or
underestimation.

Recently, ART algorithms have also been proposed for
non-numerical inputs. For instance, a linear-time ARTsum
algorithm was recommended by Barus et al. [32] using the
concepts of categories and choices in category-partition
testing. Ciupa et al. [8] and Chen et al. [9] introduced the
ARTOO and the OMISS metrics for modeling the distances
between objects and between method innovation sequences.
We have not compared RRT-LAZ with these algorithms
experimentally because they cater for non-numerical inputs.

VII. CONCLUSION AND FUTURE WORK

Adaptive random testing enhances the effectiveness of
random testing by making use of the failure distribution
properties of most programs under test. Restricted random
testing makes use of exclusion zones around previously
executed test cases and selects the next test case outside these
zones. A major shortcoming of RRT lies in the time
overhead due to the generation of candidate cases, which
may or may not be outside the exclusion zones. To alleviate

the problem, we propose in this paper an RRT-LAZ
approach that proactively determines the largest available
zone from which the next test case is randomly selected.
Compared with RRT, the RRT-LAZ algorithm significantly
reduces the time cost while preserving the effectiveness of
failure detection. Further experimental results show that, for
block failure patterns in low-dimensional input spaces, RRT-
LAZ is more effective than RT and the related ART
techniques that we have studied. By considering the time
cost of test cases, RRT-LAZ is more cost-effective than the
other approaches for both block and stripe failure patterns in
the input spaces for all dimensions

As future work, we will extend our empirical study to
higher-dimensional input spaces. We will test larger-scale
programs with RRT-LAZ. We will also customize our
RRT-LAZ tool to support the testing of OO software.

REFERENCES

[1] “The Economic and Social Impact of Software & Services on
Competitiveness and Innovation (SMART 2015/0015): Final Study
Report,” European Commission, 2015.

[2] “The Economic Impacts of Inadequate Infrastructure for Software
Testing: Final Report,” National Institute of Standards and
Technology, Gaithersburg, MD, 2002.

[3] GDP, The World Bank. [Online]. Available:
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD/.

[4] T.Y.Chen and R. G. Merkel, “An upper bound on software testing
effectiveness,” ACM Trans. Softw. Eng. Methodol., vol. 17, no. 3, pp.
16:1-16:27, 2008.

[5] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse, “Adaptive
random testing: The ART of test case diversity,” J. Syst. Softw., vol.
83, no. 1, pp. 6066, 2010.

[6] W.J. Gutjahr, “Partition testing vs. random testing: The influence of
uncertainty,” IEEE Trans. Softw. Eng., vol. 25, no. 5, pp. 661-674,
1999.

[7] T.Y.Chen, H. Leung, and 1. K. Mak, “Adaptive random testing,” in
Advances in Computer Science: Proc. 9th Asian Comput. Sci. Conf.
(ASIAN) (Lecture Notes in Computer Science 3321), 2004, pp. 320—
329.

[8] L Ciupa, A. Leitner, M. Oriol, and B. Meyer, “ARTOO: Adaptive
random testing for object-oriented software,” in Proc. 30th Int. Conf.
Softw. Eng. (ICSE), 2008, pp. 71-80.

[91 J. Chen, F.-C. Kuo, T. Y. Chen, D. Towey, C. Su, and R. Huang, “A
similarity metric for the inputs of OO programs and its application in
adaptive random testing,” IEEE Trans. Rel., vol. 66, no. 2, pp. 373—
402, 2017.

[10] Y. Lin, X. Tang, Y. Chen, and J. Zhao, “A divergence-oriented
approach to adaptive random testing of Java programs,” in Proc. 24th
IEEE/ACM Int. Conf. Autom. Softw. Eng. (ASE), 2009, pp. 221-232.

[11] T. Y. Chen, F.-C. Kuo, and H. Liu, “On test case distributions of
adaptive random testing,” in Proc. 19th Int. Conf. Softw. Eng. Knowl.
Eng. (SEKE), 2007, pp. 141-144.

[12] T. Y. Chen, G. Eddy, R. G. Merkel, and P. K. Wong, “Adaptive
random testing through dynamic partitioning,” in Proc. 4th Int. Conf.
Qual. Softw. (QSIC), 2004, pp. 79-86.

[13] H. Ackah-Arthur, J. Chen, J. Xi, M. Omari, H. Song, and R Huang,
“A cost-effective adaptive random testing approach by dynamic
restriction,” IET Softw., vol.12, no. 6, pp. 489—497,2018.

[14] C. Mao, “Adaptive random testing based on two-point partitioning,”
Informatica, vol. 36, no. 3, pp. 297-303, 2012.

[15] K.P.Chan, T. Y. Chen, and D. Towey, “Restricted random testing,”
in Proc. 7th European Conf. Softw. Qual. (ECSQ) (Lecture Notes in
Computer Science 2349), 2002, pp. 321-330.

[16] K.P.Chan, T. Y. Chen, and D. Towey, “Restricted random testing:
Adaptive random testing by exclusion,” Int. J. Softw. Eng. Knowl.

13

Eng., vol. 16, no. 4, pp. 553-584, 2006.

[17] P. G. Bishop, “The variation of software survival time for different
operational input profiles (or why you can wait a long time for a big
bug to fail),” in Dig. Papers 23rd Int. Symp. Fault-Tolerant Comput.
(FTCS), 1993, pp. 98-107.

[18] F. T. Chan, T. Y. Chen, I. K. Mak, and Y. T. Yu, “Proportional
sampling strategy: Guidelines for software testing practitioners,” Inf.
Softw. Technol., vol. 38, no. 12, pp. 775-782, 1996.

[19] L. J. White and E. I. Cohen, “A domain strategy for computer
program testing,” IEEE Trans. Softw. Eng., vol. 6, no. 3, pp. 247-257,
1980.

[20] K. P. Chan, T. Y. Chen, and D. Towey, “Normalized restricted
random testing,” in Proc. 8th Int. Conf. Rel. Softw. Technol. (Ada-
Europe) (Lecture Notes in Computer Science 2655), 2003, pp. 368—
381.

[21] J. Mayer and C. Schneckenburger, “An empirical analysis and
comparison of random testing techniques,” in Proc. 2006 ACM/IEEE
Int. Symp. Empirical Softw. Eng. (ISESE), 2006, pp. 105-114.

[22] A.R. Butz, “Alternative algorithm for Hilbert’s space-filling curve,”
IEEE Trans. Comput., vol. 20, no. 4, pp. 424-426, 1971.

[23] H. Liu, X. Xie, J. Yang, Y. Lu, and T. Y. Chen, “Adaptive random
testing by exclusion through test profile,” in Proc. 10th Int. Conf.
Qual. Softw. (QSIC), 2010, pp. 92-101.

[24] W. H. Press, Numerical Recipes 3rd Edition: The Art of Scientific
Computing, Cambridge, UK: Cambridge University Press, 2007.

[25] Collected Algorithms, ACM. [Online]. Available:
http://calgo.acm.org/.

[26] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” IEEE Comput., vol.
11, no. 4, pp. 3441, 1978.

[27] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and S. P. H. Ng, “Mirror
adaptive random testing,” Inf. Softw. Technol., vol. 46, no. 15, pp.
1001-1010, 2004.

[28] K. P. Chan, T. Y. Chen, and D. Towey, “Forgetting test cases,” in
Proc. 30th Annu. Int. Comput. Softw. Appl. Conf. (COMPSAC), 2006,
pp. 485-494.

[29] T.Y. Chen, F.-C. Kuo, and H. Liu, “Application of a failure driven
test profile in random testing,” IEEE Trans. Rel., vol. 58, no. 1, pp.
179-192, 2009.

[30] A. Shahbazi, A. F. Tappenden, and J. Miller, “Centroidal Voro-noi
tessellations: A new approach to random testing,” IEEE Trans. Softw.
Eng., vol. 39, no. 2, pp. 163-183, 2013.

[31] A. F. Tappenden and J. Miller, “A novel evolutionary approach for
adaptive random testing,” IEEE Trans. Rel., vol. 58, no. 4, pp. 619—
633, 20009.

[32] A. C. Barus, T. Y. Chen, F.-C. Kuo, H. Liu, R. G. Merkel, and G.
Rothermel, “A cost-effective random testing method for programs
with non-numeric inputs,” IEEE Trans. Comput., vol. 65, no. 12, pp.
3509-3523, 2016.

JINFU CHEN received the BE degree
in 2004 from Nanchang Hangkong
University, Nanchang, China and the PhD
degree in 2009 from Huazhong University
of Science and Technology, Wuhan, China,
both in computer science. He is currently
a full professor in the School of Computer
Science and Communication Engineering,
Jiangsu University, Zhenjiang, China. His
major research interests include software
testing, software analysis, and trusted software.

14

QIHAO BAO received the BE degree in
software engineering in 2017 from Jiangsu
University, Zhenjiang, China, where he is
currently working toward an MS degree in
the School of Computer Science and
Communication Engineering. His research
interests include software testing and
software analysis.

(RN

T.H. TSE received the PhD degree from

the London School of Economics and was

a visiting fellow at the University of

; Oxford. He is an honorary professor in

computer science at The University of

Hong Kong after retiring from the full

: professorship in 2014. His research interest

is in program testing and debugging. He is

the steering committee chair of the IEEE

International Conference on Software

Quality, Reliability, and Security, an associate editor of IEEE

Transactions on Reliability, and an editorial board member of

Software Testing, Verification and Reliability and Software:

Practice and Experience. He also served on the search committee

for the editor-in-chief of IEEE Transactions on Software

Engineering. He is a fellow of the British Computer Society. He
was awarded an MBE by The Queen of the United Kingdom.

TSONG YUEH CHEN received the
BSc and MPhil degrees from The
University of Hong Kong, the MSc degree
and DIC from the Imperial College of
Science and Technology, University of
London, UK, and the PhD degree from the
University of Melbourne, Australia. He is
N currently a professor of software
engineering in the Department of Computer Science and Software
Engineering, Swinburne University of Technology, Australia. He
is the inventor of metamorphic testing and adaptive random testing.
His current research interests include software testing, debugging,
and program repair.

JIAXTANG XI received the BE degree in
software engineering in 2015 from Jiangsu
University, Zhenjiang, China, where he is
currently working toward the master’s degree
in the School of Computer Science and
Communication Engineering. His research
interests include software testing and service
computing.

Chen et al.: Exploiting the largest available zone: A proactive approach to adaptive random testing by exclusion

CHENGYING MAO received the BE
degree in Computer Science and
Technology in 2001 from Central South
University, Changsha, China and the PhD
degree in Computer Software and Theory
in 2006 from Huazhong University of
Science and Technology, Wuhan, China.
He worked as a post-doctoral researcher in
the College of Management at Huazhong
University of Science and Technology
from 2006 to 2008. He is now a full professor in the School of
Software and IoT Engineering at Jiangxi University of Finance and
Economics, Nanchang, China. His current research interests
include software engineering and service computing. He is a
member of the ACM, IEEE, IEEE Computer Society, and CCF.

MINJIE YU received the MS degree in
software engineering in 2017 from Jiangsu
University, Zhenjiang, China. Her research
interests include software testing and
software analysis.

RUBING HUANG received the Ph.D.
degree in computer science and
technology from the Huazhong University
of Science and Technology, Wuhan, China,
in 2013. From 2016 to 2018, he was a
visiting scholar at Swinburne University
of Technology and at Monash University,
Australia. He is an associate professor in
the Department of Software Engineering,
School of Computer Science and
Communication Engineering, Jiangsu University, Zhenjiang, China.
His current research interests include software testing (including
adaptive random testing, random testing, combinatorial testing, and
regression testing), debugging, and maintenance. He has more than
50 publications in journals and proceedings, including in IEEE
Transactions on Software Engineering, IEEE Transactions on
Reliability, Journal of Systems and Software, Information and
Software Technology, IET Software, The Computer Journal,
International Journal of Software Engineering and Knowledge
Engineering, ICSE, ICST, COMPSAC, QRS, SEKE, and SAC. He
is a senior member of the China Computer Federation, and a
member of the IEEE and the ACM. More about him and his work
is available online at https://huangrubing.github.io/.

15

