
Motif Paths: A New Approach for Analyzing
Higher-order Semantics between Graph Nodes

Xiaodong Li†, Tsz Nam Chan†, Reynold Cheng†, Caihua Shan†, Chenhao Ma†, Kevin Chang‡
†Department of Computer Science, University of Hong Kong, Hong Kong SAR

‡Department of Computer Science, University of Illinois at Urbana-Champaign, USA
†{xdli, tnchan, ckcheng, chshan, chma2}@cs.hku.hk; ‡kcchang@illinois.edu

Abstract—Path-based solutions have been shown to be useful
for various graph analysis tasks, such as link prediction and
graph clustering. However, they are no longer adequate for
handling complex and gigantic graphs. Recently, motif-based
analysis has attracted a lot of attention. A motif, or a small
graph with a few nodes, is often considered as a fundamental unit
of a graph. Motif-based analysis captures high-order structure
between nodes, and performs better than traditional “edge-
based” solutions. In this paper, we propose motif-path, which
is conceptually a concatenation of one or more motif instances.
We find that employing the shortest motif-paths in path-based
solutions can significantly improve the accuracy of graph anal-
ysis. Because finding shortest motif-paths involves exploring an
combinatorial number of motifs, we study an efficient solution.
Experimental results on real and synthetic graphs show that our
proposed solution can efficiently find shortest motif-paths, and
the effectiveness is also better than existing path-based methods.

Index Terms—motif-path, incremental search, graph analysis

I. INTRODUCTION

Understanding the relation between two entities is an im-
portant and fundamental task in graph analytics. A common
approach is to find paths between two nodes in a network
and use the path information for graph analysis tasks like
link prediction [1] and local graph clustering [2]. Some data
analysts also find the path relation important in different
networks [3], [4].

For example, Figure 1(a) illustrates the Linkedin network,
which shows how Donald (Donald Kossmann, professor in
ETH Zurich previously) is related to Ruibang (Ruibang Luo,
assistant professor in HKU). A possible way is to find the
shortest path between them, i.e., {Donald → Eric → Ken
→ Nikos → Ruibang}. However, this path is long, and does
not give a clear intuition about how Donald and Ruibang are
connected. To have a better understanding/interpretation of the
relation between two nodes in graph, we can regard some
nodes in this graph as a group as they have a close relationship
(similar semantic meaning). For example, {Eric, Hong Va,
Ken, Jiannong} and {Ken, Ben, Ruibang, Nikos} can be
regarded as two research groups in different institutions (HKU
and HKPolyU). Therefore, instead of finding a long path, we
can conceptually “group” different segments of the path in
order to give a more intuitive explanation of the relationship
between Donald and Ruibang: {ETH Zurich research group→
HKPolyU research group→ HKU research group} (cf. Figure
1(a)), which can be easily interpreted by the users.

Ruibang

Ben Nikos

Eric

Hong Va

Carsten

Ken

Jiannong

Donald

Tim

(a)

ETH Zurich

research group

HKPolyU

research group

HKU

research group

Neu5Ac

GlcNAc
Kdo

Neu5Ac

(b)

Fig. 1: Motif-path from (a) Linkedin network with research
groups as motifs (,) and (b) glycan network with acids
as motifs (Neu5Ac, Kdo, ClcNNAc).

On the other hand, some biologists also regard the biological
compounds, e.g., branched glycan, as a path with a sequence of
subcomponents, e.g., different types of acids (cf. Figure 1(b)).
As such, finding the path, which is connected by different
subcomponents, can be used to detect some particular or even
new biological compounds, e.g., Heparin, which can identify
diseases like heart attacks [5].

Therefore, in this paper, we ask a question: how to capture
this “higher-order path” between two nodes? To answer this
question, we adopt motif, a small subgraph usually with only a
few nodes [6]–[9] (e.g. Table I) to represent the structures (cf.
Figure 1) in this path, termed motif-path. Even though motif
has been extensively studied in existing works [2], [10]–[17],
as far as we know, this is the first work to incorporate both the
concepts of motif and path to find the relationship between two
nodes. Due to the extensive use of the shortest path in existing
literatures and software (e.g., Neo4j [18]) for path-based graph
analysis, we mainly focus on finding the shortest motif-path
in this paper.

We show that the shortest motif-paths can be easily adopted
to some path-based graph analytical tasks, e.g., link prediction
[1] and local graph clustering [2]. Moreover, the effectiveness
of these tasks can be significantly improved with the use of

TABLE I: All k-node motifs ranking by number of edges, k = 2, 3, 4, 5. For each motif, nodes of same color (black, white,
dark gray and light gray) are in the same node-orbit1.

 ν1 ν2 ν3

ν4 ν5 ν6 ν7 ν8

ν9 ν10

ν11 ν12 ν13

ν14 ν15

 ν16 ν17 ν18 ν19 ν20

ν21 ν22 ν23 ν24 ν25 ν26 ν27 ν28 ν29 ν30

motif-paths. In particular, we show that finding the shortest
motif-path can achieve up to 40% and 25% improvement in
both link prediction and local graph clustering tasks respec-
tively, compared with the ordinary path-based approach.

The above ”motif-path-based” tasks require the repeated
execution of many shortest-path queries. However, retrieving
the shortest motif-path is time-consuming. We found that given
a motif, finding the shortest motif-path between two nodes
takes O

((|V |
k

)2)
time, where |V | and k denote the graph

size and the number of nodes of the motif respectively. This
high time complexity prohibits the usage of motif-path in
large graphs. To solve this problem, we propose a general
framework for finding the shortest motif-path based on a
novel index, called motif-tree. We further develop an efficient
heuristic bidirectional search algorithm to boost the efficiency
performance. Our proposed methods can efficiently find the
shortest motif-path in both real and synthetic datasets, which
can achieve at least three-order-of-magnitude faster than the
baseline method.

In this paper, we first review the related work in Section
II and introduce the preliminaries in Section III. Then, we
define the concepts of motif-path and the shortest motif-path
search problem in Section IV. Next, we develop the shortest
motif-path searching framework in Section V. We evaluate the
performance of methods in Section VI. Section VII concludes.

II. RELATED WORK

Motif-path searching problem is the generalization of path
searching problem between source and target nodes, which
involves three concepts, (1) motif search (cf. Section II-A) (2)
motif-connectivity (cf. Section II-B) and (3) path-based graph
analysis (cf. Section II-C).

A. Motif search

Motifs (e.g., Table I) are regarded as small building blocks
[6]–[9] of large and complex graphs [6], [8]. Some popular
motifs include k-path (), k-star (

), k-

cycle () and k-clique (), where k =
3, 4, 5. Due to its usefulness for a wide range of applications,
many literatures [6]–[9], [19]–[21] study the motif-discovery
problems. However, the majority of these literatures focus on
obtaining the statistics of motifs, e.g., motif counting problem,
which is further used for tasks like graph alignment [22] and

TABLE II: Summary of existing motif-connectivities

Existing motif-connectivity Motif Connectivity
k-truss [15] triangle 1 edge

k-gonal chain [27] triangle 1 node
node k-cycle connectivity [14] k-paths 1 node
edge k-cycle connectivity [14] k-paths 1 edge
k-clique connectivity [16] k-cliques k − 1 nodes
α-k-clique connectivity [16] k-cliques α nodes

motif random walk [24] d-node motifs d− 1 nodes

clustering [2]. In addition, most of them only study small
motifs (e.g., motif with 3 or 4 nodes).

Since motifs can capture the high-order structure among
the nodes, many graph mining tasks start employing motifs
to improve the effectiveness, such as node classification [17],
graph clustering [2], [13], [23], node ranking [12] and graph
embedding [10], [11].

B. Motif-connectivity

Motif-connectivity function, which is generalized from
edge-connectivity, has been utilized in existing work. Huang
et al. [15] develop the k-truss community model, which is
based on the triangle connectivity function. Cui et al. [16]
propose k-cliques connectivity to detect overlapping commu-
nities. Batagelj et al. [14] further propose edge/node k-cycle
connectivity to decompose graphs. In addition, many motif-
connectivity functions, e.g., d-node motifs connectivity, are
adopted in the literatures of the graph analysis using motif-
based random walk [24]–[26].

However, most of these works can only support a few
motifs or motif-connectivity functions, and they cannot find
a path of motifs. In this paper, we propose the generalized
framework to support a wide range of motif-connectivity
functions, including those functions in Table II.

C. Path-based Graph Analysis

Path-based methods have been extensively used for graph
analysis in existing work. In link prediction task, missing link
can be predicted by analyzing the length and number of the
paths that link the query nodes [1], [28]. In graph clustering
task, nodes can be clustered based on the shortest path distance
[29]. In this work, we show that motif-path can capture high-
order structure between two nodes, compared with traditional
path-based methods [1], [28], [29], which can achieve better
effectiveness in these two graph mining tasks.

III. PRELIMINARIES

In Section III-A, we first review motif-instance, which is
the basic element of motif-path. Then in Sections III-B we
introduce motif-connectivity, which controls the compactness
of motif-path.

A. Motif-instance

To find a motif-path, we first need to match the subgraphs
with the given motifs. In this paper we focus on node-induced
subgraph, which is a popular setup in motif discovery area [9].
Figure 2c shows an example of the node-induced subgraph of
graph G1 in Figure 2a. Observe that G3 must contain all the
edges {(0, 1), (1, 2), (2, 3), (0, 3), (1, 3)} in the original graph
G1.

Definition 1: (Node-induced subgraph) Given a graph G =
(V,E) and a set of nodes Vm ⊆ V , the node-induced subgraph
m = (Vm, Em) is the subgraph of G that (u, v) ∈ Em ⇐⇒
(u, v) ∈ E, denoted as m ∈ G.

 5

0

1

2

3

4

7

6

0

1

2

3
a

b
c

d

ef

(a) G1

 5

0

1

2

3

4

7

6

0

1

2

3
a

b
c

d

ef

(b) G2

 5

0

1

2

3

4

7

6

0

1

2

3
a

b
c

d

ef
(c) G3

Fig. 2: Examples of two graphs G1 and G2, which are two
possible ways to link two motifs and , and the corre-
sponding node-induced subgraph G3 for nodes {0, 1, 2, 3}.

Definition 2: (Graph isomorphism) Graph G1 = (V1, E1)
is isomorphic to G2, denoted as G1 ' G2, if there is an
injective mapping f : V1 → V2 such that (u, v) ∈ E1 if and
only if (fu, fv) ∈ E2.

Definition 3: (Motif-instance) [9] Given a graph G =
(V,E) and a motif ν = (Vν , Eν), the motif-instance m =
(Vm, Em) of ν is a subgraph of G, such that:

m ∈ G and m ' ν. (1)

For example, G3 ' m{a,b,c,d} in Figure 2 with mapping
{0, 1, 2, 3} → {a, b, c, d}. Also, G3 ∈ G. Thus G3 is a motif-
instance of motif .

B. Motif-connectivity

To discover a meaningful motif-path, we need to define how
two motif-instances are connected. Also, we want to propose a
generic tool to unify all the motif-connectivities mentioned in
Table II. For example, Figure 2a and 2b are two cases, which
are connected by two motifs , based on different motif-
connectivity functions.

Definition 4: (Motif-connectivity) Given the connectivity
threshold δ and two motif-instances m1 ' ν1 and m2 ' ν2,
we define cδ(m1,m2) as the motif-connectivity function to
indicate whether m1 and m2 are connected.

Some representative motif-connectivity functions include:

1) Node-based motif-connectivity [14], [16]:

cδ(m1,m2) =

{
1 if |Vm1

∩ Vm2
| ≥ δ;

0 otherwise.
(2)

2) Edge-based motif-connectivity [15]:

c̄δ(m1,m2) =

{
1 if |Em1

∩ Em2
| ≥ δ;

0 otherwise.
(3)

For example, G1 and G2 in Figures 2 are formed by
connecting two motif-instances with c1 and c̄3 respectively.
Note that this motif-connectivity function is controlled by the
connectivity threshold δ. Larger δ makes two motif-instances
connected more compactly.

IV. MOTIF-PATH

In this paper, we model motif-path as a sequence of
motif-instances from source node s to target node t, which
are isomorphic to any motifs in the given motif-set M,
while the neighboring motif-instances must satisfy the motif-
connectivity function.

Definition 5: (Motif-path) Given a graph G = (V,E), a
source node s, a target node t and parameters (M, δ), the
motif-path P is a sequence of motif-instances mi where:

1) ∃ ν ∈M, mi ' ν, i = 1, 2, ..., |P|;
2) Two endpoints s ∈ Vm1

and t ∈ Vm|P| .
3) c/c̄δ(mi,mi+1) = 1, i = 1, 2, ..., |P| − 1.
Note that the user can choose either c or c̄ for a node-

based or edge-based version. Figure 3 shows how to find the
valid motif-path between the nodes s and t, using the motif-
set M = { , } and δ = 1, which means two consecutive
motif-instances only share one node and one edge in Figure
3a and 3b respectively.

T1

s
R1

T2

R2
t

(a)

T2

R1

T4

t

T3

T1

s

(b)

Fig. 3: Examples of valid motif-path between the source node
s and target node t with (a) node-based motif-connectivity (b)
edge-based motif-connectivity with M = { , }, δ = 1.

Due to the extensive use of the shortest path in existing
literatures and software (e.g., Neo4j [18]), we focus on finding
the shortest motif-path in this paper, i.e., the motif-path with
minimum number of motif-instances, denoted as P∗s,t. We use
notation P ∗s,t as the ordinary shortest path distance from s to
t. Note that there are other interesting variants of motif-path,
where we introduce them as future work in the last section.

For example, given M = { , } and δ = 1 in Figure
4a, the node-based shortest motif-path is P∗s,t = {T1 → R1 →
R2} with |P∗s,t| = 3.

T1

T2

T3

R1 R2

c

d
f

a

b
s t

g

e

(a)

T1 R1

T3

T2

R2

s t

(b)

Fig. 4: Example of (a) a graph G and (b) its motif-graph,
where each node represents a motif-instance in G.

A. Baseline method

Even though there is no existing literature for studying how
to find the shortest motif-path between two given nodes s and
t, we can simply convert the original graph into a higher-
order view, called motif-graph, in which each node represents a
motif-instance and two nodes in this motif-graph are connected
once the corresponding motif-instances m1 and m2 satisfy the
motif-connectivity function.

Figure 4b shows the motif-graph for Figure 4a, usingM =

{ , } and node-based connectivity function with δ = 1.
Observe that we can still find the correct shortest motif-path
T1 → R1 → R2 by directly using the traditional shortest path
searching algorithm in this motif-graph. Note that there may
be several motif-instances that contain node s or t, thus it is
actually a set-to-set shortest path search problem, with source
set S = {i|s ∈ mi} and target set T = {j|t ∈ mj}.

We regard this baseline method as a two-phase algorithm:
(a) Discover all motif-instances in the graph G based on M
and find the linkages between each possible pair of motif-
instances based on c/c̄δ; (b) Run set-to-set shortest path search
on the motif-graph generated.

However, there are three major drawbacks of this approach.
First, it is time-consuming to build the motif-graph. Actually,
searching for all motif-instances in G for a given motif is
already a time-consuming process [6], [9], [24], let alone to
enumerate the linkages between all motif-instances. Second,
the users may need to discover different kinds of motif-
paths by tuning (M, δ). Then this baseline method has to
generate different motif-graphs for different queries. In our
experiments, memory overflow occurs even for graphs of
moderate size with this baseline approach. Third, the set-to-set
shortest path search is also time consuming, as the size of the
motif-graph can be much larger than the original graph.

Here, we analyze the time complexity of the shortest motif-
path searching problem. In step (a), combinational number
of k-node subgraph candidates needs to be enumerated and
checked for isomorphism, which takes O(

∑
vi∈M

(|V |
ki

)
k2
i) op-

erations, where ki = |νi|, νi ∈ M. Then, we need to check
whether each pair of motif-instances is connected based on

the motif-connectivity function, which takes O
(
a
(∑
vi∈M

(|V |ki)

2

))
operations. Here, we let a be the cost to search whether
two given motif-instances share δ nodes/edges. As a re-
mark, the space complexity of this generated motif-graph is

O
((∑

vi∈M
(|V |ki)

2

))
in the worst case. In step (b), it takes another

O((
∑

vi∈M

(|V |
ki

)
)2) operations to find a shortest path in the

generated motif-graph, by using breadth-first search method
[30]. Since the motif is usually small, e.g., k = 3, 4, 5, the
total time complexity is O(

(|V |
k̂

)2
), where k̂ = maxν∈M |ν|.

V. SMP INCREMENTAL SEARCH

Due to the complexity of constructing the motif-graph, we
search shortest motif-path incrementally. Observe that this
method does not need to explore the full motif-graph.

We show the overview of shortest motif-path search frame-
work in Figure 5. From the source node s, we iteratively
expand from a selected seed. To identify motif-instances
around the seed, we extract the patterns of motifs in M
called motif-template, and organize them into an index called
motif-tree (Section V-A and V-B). We stop expanding if the
target node is discovered by the motif-instances. Otherwise,
we select another seed and continue expanding. To make a
smart choice on the next seed and reduce the searching area,
we develop a heuristic bidirectional algorithm (Section V-C).

Motif-

tree

Detect expansive

nodes.

Construct Motif-

tree.

Extract Motif-

templates.

G, s, t

Expand nodes

from seed.

Identify m by

Motif-tree.

Cδ , M
Link neighboring

motif-instances.
Containing t

& shortest?

Shortest

Motif-path

No

Yes

Pick seed.

Build motif-tree.Query input.

Fig. 5: Overview of shortest motif-path search.

A. Search motif-instances around s

Given a source node s as well as a motif set M, we
first explore how to search for the motif-instances around s
efficiently. However, it is challenging due to the combina-
tional complexity. For example, the number of 5-node motif-
instances around the single node can be four to six magnitudes
bigger than the size of original graph [31]. Even though there
are many possible combinations, many of them are in fact
redundant. In the following, we illustrate how to efficiently
search motif-instances around the single node.

1) Identify non-redundant motif-templates: Note that each
node in the motif has the possibility to become the source node
s, and thus there are different searching patterns according to
the different positions of s in the motif. To model this process,
we introduce node-orbit [32], which can be used here to avoid
finding redundant motif-instances.

Definition 6: (Node-orbit) [32] Given a motif ν, the nodes
a ∈ Vν and b ∈ Vν are within the same node-orbit if there is
an injective mapping f : Vν → Vν with fa = b and fb = a,
such that (u, v) ∈ Eν if and only if (fu, fv) ∈ Eν .

As an example, we treat G3 in Figure 2c as the motif.
Observe that once we impose the constraint f0 = 2 and
f2 = 0, we can find the injective mapping which fulfills
Definition 6. Therefore, nodes 0 and 2 are in the same orbit.
Similarly, nodes 1 and 3 are also in the same orbit. However,
nodes 0 and 1 are not in the same orbit, since there is no
injective mapping which fulfills Definition 6. Table I shows
different colors of nodes, which represent different node-
orbits, for each motif.

Here we denote s as the first seed and regard each motif
with seed node as a motif-template, denoted as ν̄. For those
seed nodes in the same node-orbit (cf. Definition 6), the
corresponding motif-templates are redundant to each other.
For example, the seed nodes of Figure 6c and Figure 6e are
redundant since the two seeds (black nodes) are in the same
node-orbit. Therefore, it is enough to use either one of them
to search for the motif-instances around s.

ν21,1 ν21,2 ν21,3 ν21,4(a) ν̄1
ν21,1 ν21,2 ν21,3 ν21,4(b) ν̄2
ν21,1 ν21,2 ν21,3 ν21,4(c) ν̄3
ν21,1 ν21,2 ν21,3 ν21,4(d) ν̄4
ν21,1 ν21,2 ν21,3 ν21,4 (e) ν̄′3 (f) ν̄5 (g) ν̄6

Fig. 6: (a-d) All motif-templates of , with seed as black n-
ode. (e) Redundant motif-template of ν3. (f) A motif-templates
of . (g) Common sub-structures shared by ν̄1 and ν̄5.

2) Build motif-tree on top of motif-templates: After we
obtain all those non-redundant motif-templates, one basic
method is to search for all motif-instances around the seed,
i.e., we need to check if each possible candidate of motif-
instance is isomorphic to any one of the motif-template from
M. However, checking all the motif-templates one-by-one can
be time-consuming, especially for the large size of motif-set
M, which can generate large number of motif-templates.

Observe from Figure 6, once we search motif-instances for
M = { , }, two examples of motif-templates ν̄1 and
ν̄5 (Figure 6a and 6f) are generated, and they share the same
sub-structure ν̄6 (Figure 6g). As such, we can search motif-
instances m that is isomorphic to ν̄6 first, and then expand m to
find the motif-instances that is isomorphic to ν̄1 and ν̄5. In this
manner, we can avoid repeatly searching same common sub-
structure, which is shared by different motif-templates, such
that it can reduce searching time. Based on these shared motif-
substructures of different motif-templates, we can construct an
index called motif-tree.

Motif-tree is constructed in an top-down manner. From the
seed node (node s at the current stage), we check the sub-
structures of each motif-template layer by layer. The common
substructures are combined into the same branch in the motif-
tree. For example, for motif-template ν̄21,2 and ν̄14,3 in Figure
7, we find that they share the same one-layer substructures,
that is, ν̄5,1, but second-hop substructures (ν̄16,1 and ν̄9,2) are
different, so we only merge the first level in motif-tree, and
generate two branches in the following levels. Here the i-th

seed node expansive node expanding direction

g21,1 g21,3

g21,4

g14,1

g14,2

g14,3

g14,4g21,2

seed node

g16,2

g16,1

g9,1

g9,2 g9,3

g5,1 g1,1g2,1

g2,2

ν̄

ν̄ν̄ ν̄ ν̄ ν̄

ν̄

ν̄ ν̄

ν̄ ν̄

ν̄ ν̄

ν̄ ν̄ ν̄ ν̄

Fig. 7: Example of motif-tree usingM = { , } around a
single node. Here ν̄i,j denotes j-th motif-template of the i-th
motif in Table I.

layer is the set of nodes in motif-template whose shortest path
distance to seed are i.

Figure 7 shows the motif-tree for M = { , }, where
the leaf nodes are all generated motif-templates of these two
motifs. The general idea of searching motif-instances around
the seed is to explore each branch in the motif-tree and filter
the branch if there is no motif-instance that is isomorphic to
the shared sub-structure.

Using Figure 8a as an example, we aim to search for
the motif-instances around node s in Figure 4a with M =

{ , }. Observe that the common sub-structures ν̄9,1, ν̄16,2

and ν̄2,1 in Figure 7 do not match any motif-instances around
s. As such, we can safely filter these three branches, which
means that we do not need to search the child nodes of ν̄9,1,
ν̄16,2 or ν̄2,1. Compared with the basic method, which searches
for the motif-instances using all motif-templates, motif-tree
can help reduce the redundant search, thus speeding up the
searching process.

3) Efficient motif-tree traversal: During the motif-tree
traversal, we need to maintain the mapping from the motif-
templates to current possible candidates of motif-instances.
For example, one possible mapping from ν̄14,2 of Figure 8a to
graph G in Figure 4a is (α→ s, β → a, γ → b, δ → c, ε→ e).
Below we introduce how to find the mappings by an node
expanding manner.

In each iteration of motif-tree traversal, it expands one hop
from the motif-template of the parent node ν̄p to the child node
ν̄c. In this process, we search for the neighbors of nodes in m̄p

where m̄p ' ν̄p, and check if the new discovered subgraph is
isomorphic to ν̄c. If so, a new subgraph m̄c ' ν̄c is discovered.

Given m̄p ' ν̄p, we follow a two-phase algorithm to
discover the new motif-instances m̄c such that m̄c ' ν̄c, by
expanding m̄p smartly.

Phase A. First, we discover possible candidates of m̄c via
node expansion from m̄p. Given m̄p ' ν̄p, we expand m̄p

α
α

α α

β

β β

γ γ γ
δ

δ ε

α α

α

α

β
β

β
γ

γ
δ ε

ν1:

ν2:

(a)

i

i+1

...
seed0

...

1 2 2

(b)

Fig. 8: Expanding strategies. (a) Traversal of two branches of
motif-tree to find motif-template ν̄14,4 (top) and ν̄142

(bottom).
(b) Detect expansive nodes and their expansive degree by
edge-cover from i-th hop to (i+ 1)-th hop from the seed.

by searching the neighbors of nodes in m̄p. To avoid finding
duplicates of m̄c, we carefully select the nodes in m̄p that
we search for neighbors, called expansive nodes. We show in
Figure 8 about the expanding strategy.

We first rank nodes in m̄p according to its distance to the
seed. Then we only need to search for the neighbors of the
nodes at the bottom of m̄p (i-th hop in Figure 8(b)). In other
words, the expansive nodes must be the furthest nodes from
the seed in m̄p. Then, we use minimum number of edges from
these nodes to cover the nodes in mc to be discovered. For
example, we can discover all the new nodes in m̄c by the
solid lines in Figure 8(b). The end-points in m̄p of these solid
lines are the expansive nodes. They are marked as dashed pink
nodes in the paper. In this manner, this expanding strategy
does not discover motif-instance repeatedly and thus, we do
not need to check whether the discovered motif-instances are
duplicated or not, and thus time is saved.

Note that expansive nodes may have different number of
nodes to expand, denoted as expansive degree. For example,
the expansive degree of the expansive nodes in Figure 8(b) are
(1, 2, 2) respectively.

Phase B. Then, we check subgraph isomorphism on subgraph
expanded from the expansive nodes in phase A. Note that we
check the linkages for the new discovered nodes and maintain
the mappings which satisfy the graph isomorphism to ν̄c.
Then for next round expanding in this branch of motif-tree,
we expand all possible mappings maintained currently. Note
that after expansion from the expansive nodes, each mapping
should discover at least one new node, which is not discovered
yet by any motif-instance.

For example, we show the expanding steps of Figure 8a in
Table III, from node s in Figure 4a as the seed. The expansive
nodes are in bold. To save space, we denote motif-tree branch
as MTB and graph mappings as GM. As shown in the table,
we only need to enumerate eight entries following the two
branches of motif-tree in Figure 8, and two entries terminate
in the early stage. Also, several common sub-structures can
be shared between several entries and thus time is saved.

TABLE III: Expanding examples of ν̄1 and ν̄2 in Figure 8a,
with s in Figure 4a as the seed.

ν̄14,4

MTB α → αβ → αβγ → αβγδε

GM
s → sa terminate.

→ sb → sbc → sbceg
→ sbd → sbdef

ν̄14,2

MTB α → αβγ → αβγδ → αβγδε

GM

s → sab → sabc → sabce
→ sabcg

→ sabd → sabde
→ sabdf

→ sba terminate.

B. Search motif-instances around the seed

In previous section, we only focus on searching the motif-
instances around a single node s. However, as stated in Sec-
tion III-B and Table II, there are different motif-connectivity
functions in which searching motif-instances around the single
node (cf. Section V-A) is not enough to handle these cases.

For example, given a motif-instance m1 = {s, a, b, d, f},
containing the source node s in Figure 9, we aim at finding a
motif-path withM = { , }. Figure 9a and 9b shows two
cases where edge-based motif-connectivity and node-based
motif-connectivity are used respectively, both with δ = 1.
When using the node-based motif-connectivity function, as
shown in Figure 9b, the seed to be selected after node s is
node f , since the motif-instance containing f finally reaches
node t. Therefore, the algorithms in Section V-A can be reused.

However, we cannot directly apply the same process in
Figure 9a, if an edge-based connectivity function is used. A
simple adaption is to select a node from the edge as the new
seed and find motif-instances which must contain another node
of the edge. However, this method (1) finds more possible
candidates of motif-instances and (2) needs to check for the
correct results, which can incur higher computational cost. To
make the motif-instance searching process more efficient for
this case, we need to consider finding motif-instances around
a more complex seed, instead of a single node.

T1

T2

T3

R1 R2

c

d
f

a

bs t

g

e
T1

T2

T3

R1 R2

c

d
f

a

bs t

g

e

(a) Edge-based cδ

T1

T2

T3

R1 R2

c

d
f

a

bs t

g

e
T1

T2

T3

R1 R2

c

d
f

a

bs t

g

e

(b) Node-based cδ

Fig. 9: Different seed from the motif-connectivity function
with δ = 1. (a) Seed is edge (d, f). (b) Seed is node f .

In this section, we consider arbitrary number of nodes or
edges as the seed, and build the motif-tree for different types of
seeds. First, we identify the non-redundant motif-templates (cf.
Section V-A1) for a complex seed by generalizing Definition
6 into node/edge-set-orbit.

Definition 7: (Node/Edge-set-orbit) Given a motif ν, two
sets of nodes (edges) S ⊂ Vν (S ⊂ Eν) and T ⊂ Vν (T ⊂ Eν)
are within the same node-set-orbit (edge-set-orbit) if there is

an injective mapping f : Vν → Vν with ∀a ∈ S, fa = b and
fb = a, b ∈ T , and ∀b ∈ T, fb = a and fa = b, a ∈ S, such
that (u, v) ∈ Eν if and only if (fu, fv) ∈ Eν .

Then we only select one motif-template from each orbit.
For example, Figure 10 shows all motif-templates for single
edge as the seed and two-node-set as the seed. Once we obtain
the non-redundant motif-templates, we can build the motif-tree
using the same manner by checking the shared sub-structure
(cf. Section V-A2).

Fig. 10: Motif templates considering seeds (in black) of 1 edge
(top) and 2 nodes (bottom) for motif .

C. Motif-path incremental search
After we discover all possible motif-instances around the

seed, we can construct a motif-path P based on these motif-
instances. Using Figure 4a as an example, forM = { , }
and δ = 1 with node-based motif-connectivity, we first
discover motif-instance T1 containing seed s. After that, we
use another node (a or b) as next seed and discover other
motif-instances. The process is repeated until target node t is
discovered.

However, there are two drawbacks with this method. First,
it is possible to detect motif-paths containing redundant motif-
instances. Second, the incremental searching direction for the
motif-path may be far from the optimal direction, which leads
to the shortest motif-path distance.

Therefore, it will be meaningful to filter some shortest
motif-path candidates at the very first stage. In this section, we
address these two issues in Sections V-C1 and V-C2. To make
it more clear, we focus on node-based motif-connectivity, i.e.,
the seed is a single node. However, these techniques can
be easily extended to multiple edge-based motif-connectivity
by changing node-based seed selection into edge based seed
selection. We also evaluate motif-paths based on different
motif-connectivity functions in Section VI.

1) Motif-path filtering by node status: During the motif-
path searching process, we mark each node in the graph into
one of the three status: searched, discovered and undiscovered.
We call a node “searched” if it has been used as the seed
and thus all motif-instances containing this node has been
searched. A node is marked as “discovered” once this node has
been covered by any motif-instance at the current time. For
other nodes, we call it “undiscovered”. We develop following
incremental searching strategies.
c1. motif-instance containing any node with status

“searched” should not be added into any shortest
motif-path candidate;

c2. only select node with status “discovered” as next seed;
c3. only add the motif-instances with at least one “undiscov-

ered” node into the shortest motif-path candidates.
Proof: For c1, there is no need to add motif-instances

containing a “searched” node since all motif-instances around
node marked as “searched” have been found and added
into candidates for P∗s,t. For c2, for the motif-instances on
candidates for P∗s,t, there are only two status of the nodes:
“searched” and “discovered”. We only select “discovered”
node as next seed because the “searched” nodes have been
used as seed before and thus using them as next seed will
find duplicates on the candidates. For c3, in the incremental
search manner, P∗s,v is found for the “undiscovered” node v
when v is covered by any motif-instance for the first time.
Therefore, we only add motif-instances which contain at least
one node marked as “undiscovered” to push the incremental
search forward.

2) Heuristic bi-directional search: Besides the incremental
search manner described in Section V-C1, the searching direc-
tion may be far from optimal. In other words, it is essential to
develop a method to select better seeds in the next step which
may lead the motif-path to reach target node t earlier.

To reduce the search space, we generalize the bidirectional
heuristic search [33] to support shortest motif-path search. It
can speed up the searching process by selecting seed smartly
from candidates of P∗s,t.

We maintain a priority queue to store the nodes marked
as “discovered” currently, and for each node p in the priority
queue, we estimate its shortest motif-path distance to t from
s via the current “discovered” node p. Then we select the
node in the priority queue with shortest estimated motif-path
distance as the next seed, since this candidate has the biggest
probability to be be shortest motif-path.

We achieve the shortest motif-path estimation by defining
heuristic function as below. Here P∗s,p is the shortest motif-
path from s to the current “discovered” node p, which is
already found out, and h(p, t) is the heuristic function which
can estimate the lower bound of |P∗p,t|. Therefore, the shortest
motif-path via node p, denoted as Pps,t can be estimated.

|Pps,t| = |P∗s,p|+ h(p, t), h(p, t) ≤ |P∗p,t| (4)

In the following, we propose the heuristic function h(p, t),
which fulfills the requirements above. First we launch a single-
sourced shortest path search from node t and mark each node p
with its shortest path distance to target node t, that is, |P ∗t,p|.
Then every time a new node p is discovered, we check for
P ∗t,p and calculate h(p, t) =

|P∗t,p|
maxν∈M Θ(ν) . Here Θ(ν) is the

diameter of ν. This heuristic function actually uses the motif
with largest diameter to cover the shortest path distance, thus
providing a lower-bound to the shortest motif-path.

Then we launch the same process introduced above from
both node s (forward search) and t (reverse search) for bi-
directional search. The algorithm terminates when the two
searching processes meet, that is,

∃p ∈ G, |P∗s,t| = |P∗s,p|+ |P∗t,p|. (5)

From the property of unweighted bi-directional search, node p
is the first meeting point of forward search and reverse search.

VI. EVALUATIONS

In our experiments, we evaluate the efficiency and effec-
tiveness of searching motif-paths on real-world and synthetic
graphs. In Section VI-A, we test the efficiency of our proposed
motif-path searching methods. Then, we adapt two path-based
graph mining tasks, which are missing link prediction (cf.
Section VI-B) and local graph clustering (cf. Section VI-C)
into motif-path-based versions. Compared to the path-based
results, the effectiveness is significantly improved by the
motif-path-based approach.

Two kinds of real-world datasets are used: protein-protein
interaction (PPI) networks and social networks. We show the
details of these datasets in Table IV.

TABLE IV: Statistics of datasets.

Name |V | |E| Degree Diameter
GAVI 1,855 7,669 8.3 13
KCOR 2,708 7,123 5.3 11
EXTE 3,672 14,317 7.8 10
DBLP 317,080 1,049,866 6.6 23
AMAZ 334,863 925,872 5.5 47
YOUT 1,134,890 2,987,624 5.3 24
SYNT 200∼2M 400∼4M 4 10∼20

PPI networks. We use five PPI networks in which nodes
denote proteins and edges denote the interactions between
proteins. GAVI [34] is the PPI network of yeast cell. KCOR
[35] is the core PPI network of another bacterias, and EXTE
[35] is the extended interaction dataset of KCOR, which
contains less reliable interactions but its coverage is higher.

Social networks. We use three social networks with
ground-truth communities from [36]. DBLP is a co-authorship
network from computer science bibliography where two au-
thors are linked if they publish at least one paper together.
Similarly, AMAZ is a co-purchasing network from Amazon,
where each node is a product and two nodes are linked if
these two products are frequently co-purchased. YOUT is a
friendship network from Youtube, where each node denotes a
user and there is an edge if the two users are friends.

Synthetic networks. To test the scalability of the algorith-
m, we generate several synthetic graphs (SYNT in Table IV),
with the number of nodes as 2 × 10i, with i = 2, 3, 4, 5, 6.
We fix the average degree as 4 and employ Barabási-Albert
model [37], a widely used method to simulate real graphs.

TABLE V: Motif-path searching algorithms.

Algo. Techniques used. Sec.
BASE Enumerate motif-graph by VF3. IV-A
IMS Motif-tree & motif-path filtering. V-C1
HBS IMS & Heuristic bi-directional search. V-C2

A. Efficiency Evaluation

In this paper, we develop three algorithms to search
for shortest motif-paths: Motif-graph enumeration with VF3

(BASE), Incremental motif-path search (IMS) and Heuristic
bi-directional search (HBS). We summarize the technical de-
tails of them into Table V.

BASE searches for the motif-path by enumerating the motif-
graph needed. However, as introduced in Section IV-A, this
method is expensive and easy to cause memory overflows. So
we adapt VF3 [38], the state-of-the-art subgraph isomorphism
algorithm, to speed up the enumerating process. For the
following evaluations, we randomly sample 100 (s, t)-pairs
and measure the average response time.

First, we evaluate the efficiency of the three algorithms by
varying the size of M, in order to test the efficiency change
when supporting more motif types on a single motif-path.
Here, we fix δ = 1 and use the node-based connectivity
function. Motifs in Table I are added intoM in the ascending
order of their edge numbers. Observe from Figure 11(a), the
response time increases when |M| increases, since larger M
incurs longer time for searching motif-instances (more motif-
instances match with the motifs in M). The result shows that
both IMS and HBS are 3-5 magnitudes faster than BASE,
which cannot terminate when there are thousands of edges
in the graph. With motif-tree and the incremental searching
scheme, IMS and HBS largely reduce the searching space
where baseline suffers, and thus enable the usage of motif-
paths in many applications.

Then with the synthetic graphs, we show the scalability
of the three methods in Figure 11(b). Observe that both
methods can be finished in a proper response time for different
graph sizes, which means our method is scalable. In general,
the response time increases once the graph size increases.
However, since motif-path composed of dense motif-instances,
e.g., and are difficult to form long paths, which means
the searching is more likely to terminate than other motifs,
making the curve only rise a little bit, or even drop as graph
size increases.

Finally, we fix |M| = 1 and test how the motif-connectivity
functions affects the efficiency performance by evaluating
parameter δ. Here we test both node-based motif-connectivity
cδ and edge-based motif-connectivity c̄δ and vary δ from
1 to 4. Observe from Figure 12, once we increase δ, the
response time normally decreases. The main reason is that the
larger the value of δ, the harder the two motif-instances to be
concatenated (more nodes or edges need to be shared between
two motif-instances). However, bigger δ may generates more
motif-instances, thus making the red line increase first and
then drop.

B. Motif-path based Link Prediction

In this section, we utilize motif-path to predict the miss-
ing link between two nodes, by extending the widely-used
path-based methods, Katz Index and Graph Distance, into
motif-path-based versions. We also compare the effective-
ness with other methods, including motif-based methods and
embedding-based methods.

6 12 18 24 30

10
100
103
104

T
im

e(
se

c)

GAVI

6 12 18 24 30

10
100
103
104
105

T
im

e(
se

c)

KCOR

6 12 18 24 30

10
100
103
104
105
106

T
im

e(
se

c)

EXTE

6 12 18 24 30

1

10

100

T
im

e(
se

c)

DBLP

6 12 18 24 30

100

T
im

e(
se

c)

AMAZ

6 12 18 24 30

T
im

e(
se

c)

YOUT

200 20K 2M

0.01
0.1

1
10

100

T
im

e(
se

c)

200 20K 2M
0.01

0.1

1

10

100

T
im

e(
se

c)

200 20K 2M

0.1

1

10

100

T
im

e(
se

c)

200 20K 2M
0.01

0.1

1

10

100

T
im

e(
se

c)

200 20K 2M

0.1

1

10

100

T
im

e(
se

c)

200 20K 2M

0.01

0.1

1

10

100

T
im

e(
se

c)

10

103

103

100
(a)

(b)

Fig. 11: Response time of searching motif-paths on (a) real-world datasets when varying |M| (b) synthetic graphs when varying
|G|.

1 2 3 4
1

10

100

T
im

e(
se

c)

COLL

1 2 3 4

1

10

T
im

e(
se

c)

GAVI

1 2 3 4

1

10

100

T
im

e(
se

c)

KCOR

1 2 3 4
1

10
100
103

T
im

e(
se

c)

EXTE

1 2 3 4
103

104

105

T
im

e(
se

c)

YEAS

1 2 3 4

100

103

T
im

e(
se

c)

DBLP

1 2 3 4
10

100

103

T
im

e(
se

c)

AMAZ

1 2 3 4

103

104

105

T
im

e(
se

c)

YOUT

Fig. 12: Response time of searching motif-paths on real-world
graphs when varying δ from 1 to 4.

Katz Index (KI) [28] A potential missing link is likely to
have more short paths between the end nodes (x, y):

gKI(x, y) =

L∑
l=1

εl−1 · |Plx,y|, (6)

where Plx,y = {P lx,y} is the set of all length-l paths between
x and y, and ε is the weighting parameter with ε < 1.
Graph Distance (GD) [1] A potential missing link is likely
to have small shortest path distance between (x, y):

gGD(x, y) =
1

|P ∗x,y|
. (7)

Obviously, the pair with higher g value has bigger potential
to form links. Then we extend KI into Motif-path-based Katz
Index (MKI), denoted as

gMKI(x, y) =

L∑
l=1

εl−1 · |MPlx,y|, (8)

where MPlx,y = {P lx,y} is the set of motif-paths between x
and y with length l. Following the trend [39], [40], we restrict

L = 4 and ε = 0.1 for both KI and MKI. Also, we extend GD
into Motif-path-based Graph Distance (MGD), denoted as

gMGD(x, y) =
1

|P∗x,y|
. (9)

Following the setting of [1], in each iteration we randomly
pick a missing link (x+, y+) (positive sample) and a non-
existent link (x−, y−) (negative sample) in the graph and
compare their scores, denoted as g+ and g− respectively. After
c iterations, we denote c1 as the number of iterations with
g+ > g− and c2 as the number of iterations with g+ = g−.
In this section, we set the number of iterations c = 250.

Then we can utilize the standard metrics Area Under Curve
(AUC) and Accuracy (ACC) [1] to measure the effectiveness:

AUC =
2 · c1 + c2

2 · c
and ACC =

c1
c
. (10)

Following [1], we independently sample the positive and
negative pairs which come from the same shortest-path-
distance distribution. Otherwise, positive pairs will be much
nearer to each other than the negative pairs, making any
predicting method easy to obtain high effectiveness.

In Figure 13, we first evaluate the diversity of motif-
path. As shown in Figure 13(a), AUC/ACC score changes
as |M| increases. Here we use node-based motif-connectivity
with δ = 1, and employ k-cliques and k-cycles, that is,
M̄ = { , , , , }. With each |M|, we re-
port the highest AUC/ACC that MKI can achieves, de-
noted as AUC∗/ACC∗. In other words, AUC∗i /ACC∗i =
maxM⊆M̄AUCi/ACCi, |M| = i. Generally, optimal |M| ap-
pears in the middle of the curve. It may come from the fact that
two implicit friends/proteins can be linked by a few different
motifs, but too many diverse communities/complexes within
the path can damage the coherence between the corresponding
end nodes.

Note that we omit the effectiveness of GD in Figure 13 since
it always appears at the bottom of the figure, with ACC around

1 2 3 4 5

0.7

0.8

0.9
A

U
C

*

KCOR

1 2 3 4 5

0.6

0.8

A
C

C
*

KCOR

1 2 3 4 5

0.7

0.8

0.9

A
U

C
*

DBLP

1 2 3 4 5

0.6

0.8

A
C

C
*

DBLP

1 2 3 4 5

0.6

0.8

A
U

C
*

AMAZ

1 2 3 4 5

0.6

0.8

A
C

C
*

AMAZ

1 2 3 4

0.7

0.8

0.9

A
U

C

KCOR

1 2 3 4

0.5
0.6
0.7
0.8
0.9

A
C

C

KCOR

1 2 3 4
0.6

0.8

A
U

C

DBLP

1 2 3 4

0.4

0.6

0.8

A
C

C

DBLP

1 2 3 4

0.6

0.8

A
U

C

AMAZ

1 2 3 4

0.4

0.6

0.8

A
C

C

AMAZ

(a)

(b)

Fig. 13: Effectiveness of MKI and MGD when varying (a) |M| and (b) δ.

0.1 and AUC around 0.5 (see Table VI). Obviously, MKI and
MGD outperforms the ordinary path-based KI and GD in most
datasets. Also, MGD obtains higher effectiveness than MKI
in most cases, meaning that |P∗x,y| itself as an indicator is
critical in missing link prediction tasks. In general, edge-based
MKI/MGD is better than the node-based version, since edge-
based motif-path is more compact and thus can find out more
robust pairs as missing links.

Then in Figure 13(b), we fix M = { } and vary δ for
both node-based and edge-based motif-connectivity functions.
With a proper δ, motif-path can be of optimal compactness and
thus obtain best predicting results. The optimal δ sometimes
appears in the middle of the curve, since a compact motif-
path is meaningful to reveal cohesive relationship, but too
compact motif-path can be difficult to be found, thus losing
the ability to predict missing links. An interesting result is that
in AMAZ, the trend of node-based MGD (MGD-cδ) and edge-
based MGD (MGD-c̄δ) are different, which means that with
the same δ, it may not be compact enough for a node-based
motif-path, but already too compact for edge-based version.

We also compare the effectiveness of MKI with the state-
of-the-art works, which are generally divided into two class-
es. First, we evaluate the traditional missing link prediction
methods, including Common Neighbors (CN), Jaccard Co-
efficient (JC), Adaminc/Adar (AA), Preferential Attachment
(PA), Friends Measure (FM), Hitting Time (HT) and Rooted
PageRank (RPR). Following the standard setup, we use the
damping parameter α = 0.85 in RPR [41]. Theses methods
are easily to be adopted but the AUC score only varies from
0.5 to 0.7 in most cases.

Then we evaluate the complex approaches, with either
embedding features or motif-features.
Motif-based Common Neighbor (MCN) [42] is the extended
work from CN to predict missing links, with scoring function
gMCN = |Γm(x) ∩ Γm(y)|, where Γm(x) = {m|x ∈
m and m ' ν, ν ∈ M} denotes the set of motif-instance
which contains the node x. Triangle is used in this work.

TABLE VI: MKI/MGD performance with AUC reported.

Method GAVI KCOR EXTE DBLP AMAZ
CN 0.72 0.58 0.56 0.79 0.62
JC 0.70 0.51 0.48 0.55 0.52
AA 0.76 0.58 0.57 0.81 0.65
PA 0.59 0.72 0.76 0.64 0.63
FM 0.65 0.65 0.65 0.59 0.64
HT 0.60 0.62 0.70 0.64 0.59

RPR 0.61 0.52 0.51 0.76 0.62
MCN 0.67 0.63 0.62 0.58 0.61

MLP+GB 0.95 0.91 0.83 0.82 0.72
DW+GB 0.65 0.66 0.67 0.81 0.95

KI 0.66 0.65 0.64 0.66 0.66
MKI-t 0.72 0.66 0.67 0.66 0.68

MKI-cc 0.78 0.75 0.77 0.83 0.75
GD 0.50 0.50 0.50 0.50 0.50

MGD-t 0.81 0.83 0.85 0.73 0.79
MGD-cc 0.93 0.92 0.94 0.95 0.88

Motif-based Link Prediction (MLP) [41] counts the motif-
instances around the missing/non-existent link and generate
motif distribution as feature vector. All k-motifs are used
in this work, k = 3, 4, 5. Then classifiers are trained for
prediction. We choose Gradient Boosting (GB), which obtains
best effectiveness among all classifiers listed in the paper.
Deepwalk (DW) [43] is believed as an graph embedding
approach which can extract elaborate feature vectors for the
missing/non-existent links. Similarly, we train the Gradient
Boosting to obtain missing link prediction results.

As shown in Table VI, our motif-path approach can achieve
pretty high effectiveness among all the methods listed. Com-
pared with the ordinary path-based methods (KI and GD), the
effectiveness is significantly improved with affordable extra
searching time, either with a triangle (MGD-t and MKI-t) or
with k-cycles/cliques M̄ (MGD-cc and MKI-cc). Compared
with the complex approaches, our methods are also competi-
tive while avoiding the expensive training process.

C. Motif-path based Local Graph Clustering

Recently, many studies [2], [13] demonstrate that using
motifs as higher-order structure can improve the effectiveness

1 2 3 4 5

0.3

0.35
P

re
ci

si
on

GAVI

1 2 3 4 5

0.3

0.35

0.4

0.45

R
ec

al
l

GAVI

1 2 3 4 5

0.3

0.35

F
1-

sc
or

e

GAVI

1 2 3 4 5

0.15

0.2

0.25

P
re

ci
si

on

KCOR

1 2 3 4 5

0.2

0.25

0.3

R
ec

al
l

KCOR

1 2 3 4 5

0.15

0.2

0.25

F
1-

sc
or

e

KCOR

1 2 3 4 5
0.18

0.2

0.22

P
re

ci
si

on

EXTE

1 2 3 4 5

0.2

0.25
R

ec
al

l

EXTE

1 2 3 4 5
0.18

0.2

0.22

F
1-

sc
or

e

EXTE

1 2 3 4 5

0.4

0.5

0.6

P
re

ci
si

on

DBLP

1 2 3 4 5

0.2

0.25

0.3

R
ec

al
l

DBLP

1 2 3 4 5

0.4

0.5

0.6

F
1-

sc
or

e

DBLP

Fig. 14: Local graph clustering results on four real-world datasets with Precision, Recall and F1-score reported.

of graph clustering. In this section, we demonstrate that our
motif-path can improve the effectiveness of ordinary path-
based local graph clustering. In order to launch the com-
parison, we extend the widely-used Local Graph Clustering
(LGC) into a motif-path-based version, namely MLGC. LGC
aims to find the cluster for a given query node by searching
for k-nearest neighbors, so we extend LGC by finding k-
nearest neighbors with shortest motif-path distance, rather than
ordinary shortest path distance.

In this experimental setting, we aim to find the protein-
complex/author-community with a given protein/author. Sim-
ilar like the setup of link prediction, we use M̄ =

{ , , , , } and test the node-based version
(MLGC-cδ) and edge-based version (MLGC-c̄δ). Here we fix
k = 50 and δ = 1.

To evaluate the local graph clustering effectiveness, we use a
well-known protein complex dataset, called MIPS [44], as the
ground truth for PPI datasets, in which each protein complex
can be regarded as a cluster for the nodes in PPI. We also use
researcher communities as the ground-truth for DBLP [36].

In Figure 14, we report the precision, recall and F1-scorce
of the effectiveness comparison results. Normally our method
(MLGC) obtains higher effectiveness than ordinary path-based
method (LGC), since motif-path can effectively control the
searching area of k-nearest neighbor with proper compact-
ness among the cluster numbers, compared to the ordinary
path (e.g., Figure 1). Also, we notice that node-based motif-
connectivity obtains higher effectiveness, especially in DBLP.
It may come from the fact that edge-based motif-path limits
the searching area thus damages the clustering effectiveness.
Similar like the link prediction curves, the optimal |M| usually
appears in the middle, meaning that a proper diversity of motif
types on motif-path is critical in developing the clustering
effectiveness.

Observations. Within the above two graph mining tasks,
motif-path significantly improves effectiveness compared to
the ordinary path-based approaches. Also, we notice that a
single motif usually cannot obtain the optimal effectiveness,

thus the scheme we proposed is meaningful to support efficient
search with diverse motifs on a single motif-path.

Given a new graph, it will be a problem of choosing
parameters δ and M. Here we propose three observations.
First, motif-path with two or three motifs usually has better
performance than a single motif, so it would be useful to test
several combinations of motifs in a small sampled subgraph,
and then use the motif set in the graph mining task. Second, the
effectiveness is usually linked with the frequency/significance
of the motif employed [24], [42]. We also observe that the
performance of motif-path usually has strong correlation to
the frequency of motifs in the graph. For example, KCOR
and EXTE have bigger proportion of triangles than AMAZ,
and thus MKI-t and MGD-t have better effectiveness on these
networks than AMAZ in Table IV. Finally, the performance of
motif-path is usually influenced by the sparsity of the graph.
It worth trying bigger δ on dense graphs but on sparse graphs,
it may be more safe to chose a smaller δ with node-based
motif-connectivity.

VII. CONCLUSIONS

In this paper, we propose the novel concept, called motif-
path, which can discover the high-order semantics between
two nodes in graph and further propose the shortest motif-path
problem. Our accuracy experiements show that, by combining
the shortest motif-path, with different path-based graph mining
tasks, we can significantly boost the accuracy performance,
e.g., 40% and 25% improvement for link prediction and local
graph clustering respectively.

On the other hand, due to the high time and space com-
plexity for finding the shortest motif-path, we further develop
a general incremental search framework with the bidirection-
al search algorithm and a novel tree-index, motif-tree, to
significantly boost the efficiency performance. Our efficient
experiments show that our proposed methods can significantly
outperform the baseline method by at least three-order-of-
magnitude.

In the future, we plan to investigate how the concept
of motif-path can be adopted on heterogeneous information

networks. In addition, except for only finding the shortest
motif-path, we will also explore how other types of motif-
path problems (e.g., top-k shortest motif-paths) can be used
in different applications.

REFERENCES

[1] L. L and T. Zhou, “Link prediction in complex networks: A
survey,” Physica A: Statistical Mechanics and its Applications,
vol. 390, no. 6, pp. 1150 – 1170, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S037843711000991X

[2] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich, “Local higher-
order graph clustering,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2017, pp. 555–564.

[3] G. Liu, Y. Wang, and M. A. Orgun, “Optimal social trust path
selection in complex social networks,” in Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2010,
Atlanta, Georgia, USA, July 11-15, 2010, 2010. [Online]. Available:
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1751

[4] G. Liu, Y. Wang, M. A. Orgun, and E. Lim, “Finding the optimal
social trust path for the selection of trustworthy service providers
in complex social networks,” IEEE Trans. Services Computing, 2013.
[Online]. Available: https://doi.org/10.1109/TSC.2011.58

[5] P. Monagle, A. K. Chan, N. A. Goldenberg, R. N. Ichord, J. M.
Journeycake, U. Nowak-Göttl, and S. K. Vesely, “Antithrombotic ther-
apy in neonates and children: antithrombotic therapy and prevention
of thrombosis: American college of chest physicians evidence-based
clinical practice guidelines,” Chest, 2012.

[6] N. H. Tran, K. P. Choi, and L. Zhang, “Counting motifs in the human
interactome,” Nature communications, vol. 4, p. 2241, 2013.

[7] J. Ugander, L. Backstrom, and J. Kleinberg, “Subgraph frequencies:
Mapping the empirical and extremal geography of large graph collec-
tions,” in Proceedings of the 22nd international conference on World
Wide Web. ACM, 2013, pp. 1307–1318.

[8] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network motifs: simple building blocks of complex networks,”
Science, vol. 298, no. 5594, pp. 824–827, 2002.

[9] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield, “Efficient graphlet
counting for large networks,” in 2015 IEEE International Conference on
Data Mining. IEEE, 2015, pp. 1–10.

[10] R. A. Rossi, N. K. Ahmed, and E. Koh, “Higher-order network repre-
sentation learning,” in Companion of the The Web Conference 2018 on
The Web Conference 2018. International World Wide Web Conferences
Steering Committee, 2018.

[11] Y. Yu, Z. Lu, J. Liu, G. Zhao, and J. Wen, “Rum: Network representation
learning using motifs,” in 2019 IEEE 35th International Conference on
Data Engineering (ICDE), April 2019, pp. 1382–1393.

[12] H. Zhao, X. Xu, Y. Song, D. L. Lee, Z. Chen, and H. Gao, “Ranking
users in social networks with higher-order structures,” in AAAI, 2018,
pp. 232–240. [Online]. Available: https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/16122

[13] C. E. Tsourakakis, J. Pachocki, and M. Mitzenmacher, “Scalable motif-
aware graph clustering,” in Proceedings of the 26th International Confer-
ence on World Wide Web. International World Wide Web Conferences
Steering Committee, 2017, pp. 1451–1460.

[14] V. Batagelj, P. Doreian, N. Kejzar, and A. Ferligoj, Understanding large
temporal networks and spatial networks: Exploration, pattern searching,
visualization and network evolution. John Wiley & Sons, 2014, vol. 2.

[15] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-
truss community in large and dynamic graphs,” in Proceedings of the
2014 ACM SIGMOD international conference on Management of data.
ACM, 2014, pp. 1311–1322.

[16] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang, “Online search of
overlapping communities,” in SIGMOD. ACM, 2013.

[17] S. Bhagat, G. Cormode, and S. Muthukrishnan, “Node classification in
social networks,” in Social Network Data Analytics, 2011, pp. 115–148.
[Online]. Available: https://doi.org/10.1007/978-1-4419-8462-3 5

[18] N. Developers, “Neo4j,” Graph NoSQL Database [online], 2012.
[19] Y. Zhang and S. Parthasarathy, “Extracting analyzing and visualizing

triangle k-core motifs within networks,” in ICDE, 2012, pp. 1049–1060.
[Online]. Available: https://doi.org/10.1109/ICDE.2012.35

[20] C. E. Tsourakakis, “The k-clique densest subgraph problem,” in
WWW, 2015, pp. 1122–1132. [Online]. Available: https://doi.org/10.
1145/2736277.2741098

[21] J. Hu, R. Cheng, K. C.-C. Chang, A. Sankar, Y. Fang, and B. Y. Lam,
“Discovering maximal motif cliques in large heterogeneous information
networks,” in ICDE, 2019.

[22] T. Milenković, W. L. Ng, W. Hayes, and N. Pržulj, “Optimal network
alignment with graphlet degree vectors,” Cancer informatics, 2010.

[23] A. R. Benson, D. F. Gleich, and J. Leskovec, “Higher-order organization
of complex networks,” Science, vol. 353, no. 6295, pp. 163–166, 2016.

[24] X. Chen, Y. Li, P. Wang, and J. Lui, “A general framework for
estimating graphlet statistics via random walk,” Proceedings of the
VLDB Endowment, 2016.

[25] P. Wang, J. Lui, B. Ribeiro, D. Towsley, J. Zhao, and X. Guan, “Effi-
ciently estimating motif statistics of large networks,” ACM Transactions
on Knowledge Discovery from Data (TKDD), vol. 9, no. 2, p. 8, 2014.

[26] M. A. Bhuiyan, M. Rahman, M. Rahman, and M. Al Hasan, “Guise:
Uniform sampling of graphlets for large graph analysis,” in 2012 IEEE
12th International Conference on Data Mining. IEEE, 2012, pp. 91–
100.

[27] V. Batagelj and M. Zaveršnik, “Short cycle connectivity,” Discrete
Mathematics, vol. 307, no. 3-5, pp. 310–318, 2007.

[28] L. Katz, “A new status index derived from sociometric analysis,”
Psychometrika, vol. 18, no. 1, pp. 39–43, 1953.

[29] M. Maier, U. von Luxburg, and M. Hein, “Influence of graph
construction on graph-based clustering measures,” in NIPS,
2008, pp. 1025–1032. [Online]. Available: http://papers.nips.cc/paper/
3496-influence-of-graph-construction-on-graph-based-clustering-measures

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd Edition. MIT Press, 2009. [Online]. Available:
http://mitpress.mit.edu/books/introduction-algorithms

[31] A. Pinar, C. Seshadhri, and V. Vishal, “Escape: Efficiently counting all
5-vertex subgraphs,” in Proceedings of the 26th International Conference
on World Wide Web. International World Wide Web Conferences
Steering Committee, 2017, pp. 1431–1440.

[32] T. Hočevar and J. Demšar, “A combinatorial approach to graphlet
counting,” Bioinformatics, vol. 30, no. 4, pp. 559–565, 2014.

[33] R. Dechter and J. Pearl, “Generalized best-first search strategies and
the optimality of a*,” J. ACM, vol. 32, no. 3, pp. 505–536, 1985.
[Online]. Available: https://doi.org/10.1145/3828.3830

[34] A.-C. Gavin, P. Aloy, P. Grandi, R. Krause, M. Boesche, M. Marzioch,
C. Rau, L. J. Jensen, S. Bastuck, B. Dümpelfeld et al., “Proteome survey
reveals modularity of the yeast cell machinery,” Nature, vol. 440, no.
7084, p. 631, 2006.

[35] N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko,
J. Li, S. Pu, N. Datta, A. P. Tikuisis et al., “Global landscape of protein
complexes in the yeast saccharomyces cerevisiae,” Nature, 2006.

[36] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowledge and Information Systems, vol. 42,
no. 1, pp. 181–213, 2015.

[37] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” science, vol. 286, no. 5439, pp. 509–512, 1999.

[38] V. Carletti, P. Foggia, A. Saggese, and M. Vento, “Challenging the
time complexity of exact subgraph isomorphism for huge and dense
graphs with vf3,” IEEE transactions on pattern analysis and machine
intelligence, vol. 40, no. 4, pp. 804–818, 2017.

[39] L. Lü, C.-H. Jin, and T. Zhou, “Similarity index based on local paths
for link prediction of complex networks,” Physical Review E, vol. 80,
no. 4, p. 046122, 2009.

[40] Y. Yao, R. Zhang, F. Yang, J. Tang, Y. Yuan, and R. Hu, “Link prediction
in complex networks based on the interactions among paths,” Physica
A: Statistical Mechanics and its Applications, vol. 510, pp. 52–67, 2018.

[41] G. Abuoda, G. D. F. Morales, and A. Aboulnaga, “Link prediction via
higher-order motif features,” arXiv preprint arXiv:1902.06679, 2019.

[42] J. Cao, B. Li, and X. Gui, “Research on the influence of network motif
on link prediction,” DEStech Transactions on Computer Science and
Engineering, no. itms, 2016.

[43] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey
of graph embedding: Problems, techniques, and applications,” IEEE
Transactions on Knowledge and Data Engineering, 2018.

[44] H.-W. Mewes, C. Amid, R. Arnold, D. Frishman, U. Güldener,
G. Mannhaupt, M. Münsterkötter, P. Pagel, N. Strack, V. Stümpflen
et al., “Mips: analysis and annotation of proteins from whole genomes,”
Nucleic acids research, vol. 32, no. suppl 1, pp. D41–D44, 2004.

http://www.sciencedirect.com/science/article/pii/S037843711000991X
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1751
https://doi.org/10.1109/TSC.2011.58
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16122
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16122
https://doi.org/10.1007/978-1-4419-8462-3_5
https://doi.org/10.1109/ICDE.2012.35
https://doi.org/10.1145/2736277.2741098
https://doi.org/10.1145/2736277.2741098
http://papers.nips.cc/paper/3496-influence-of-graph-construction-on-graph-based-clustering-measures
http://papers.nips.cc/paper/3496-influence-of-graph-construction-on-graph-based-clustering-measures
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1145/3828.3830

	Introduction
	Related Work
	Motif search
	Motif-connectivity
	Path-based Graph Analysis

	Preliminaries
	Motif-instance
	Motif-connectivity

	Motif-path
	Baseline method

	SMP Incremental Search
	Search motif-instances around s
	Identify non-redundant motif-templates
	Build motif-tree on top of motif-templates
	Efficient motif-tree traversal

	Search motif-instances around the seed
	Motif-path incremental search
	Motif-path filtering by node status
	Heuristic bi-directional search

	Evaluations
	Efficiency Evaluation
	Motif-path based Link Prediction
	Motif-path based Local Graph Clustering

	Conclusions
	References

