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Abstract—Adaptive random testing (ART) was developed as an
enhanced version of random testing to increase the effectiveness
of detecting failures in programs by spreading the test cases
evenly over the input space. However, heavy computation may
be incurred. In this paper, three enhanced algorithms for fixed-
size-candidate-set ART (FSCS-ART) are proposed based on the
k-dimensional tree (KD-tree) structure. The first algorithm Naive-
KDFC constructs a KD-tree by splitting the input space with
respect to every dimension successively in a round-robin fashion.
The second algorithm SemiBal-KDFC improves the balance
of the KD-tree by prioritizing the splitting according to the
spread in each dimension. In order to control the number of
traversed nodes in backtracking, the third algorithm LimBal-
KDFC introduces an upper bound for the nodes involved. Sim-
ulation and empirical studies have been conducted to investigate
the efficiency and effectiveness of the three algorithms. The
experimental results show that these algorithms significantly
reduce the computation time of the original FSCS-ART for
low dimensions and for the case of high dimensions with low
failure rates. The efficiency of SemiBal-KDFC is better than
that of Naive-KDFC when the dimension is no more than 8, but
LimBal-KDFC is the most efficient of all three. Although limited
backtracking leads only to an approximate nearest neighbor in
LimBal-KDFC, its failure-detection effectiveness is, in fact, better
than FSCS-ART in high-dimensional input spaces and has no
significant deterioration in low-dimensional spaces.

Index Terms—Adaptive random testing, KD-tree, test case
generation, software testing, computation time, efficiency, effec-
tiveness.

I. INTRODUCTION

SOFTWARE testing has shown great potential in detecting
program failures, thus assuring software quality. It is

regarded as an essential activity in the software development
life-cycle [1], [2]. In particular, random testing (RT) [3] is a
basic black-box testing method that can easily be implemented
in practice and has a wide variety of applications [4]. It
is simple and cost-effective because it does not require any
information about the software specification, program code,
or likely failure regions. Echoing classical findings [5], [6],
Ciupa et al. [7] have pointed out that “Counter to what
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intuition suggests, random strategies for selecting test inputs
have proved remarkably effective”. Based on theoretical and
simulation studies, Arcuri et al. [8] reported that there are
practical circumstances where RT should be recommended
as the first option to apply. Currently, RT is commonly used
as a baseline technique for empirical studies for new testing
approaches.

On the other hand, RT has been criticized for not making
use of the clustering of failure regions [9]. Chen et al. have
proposed adaptive random testing (ART) to address the issue
[10]. The underlying principle is to spread the test cases as
evenly as possible over the input space of the program under
test. The diversity of test cases can obviously be enhanced
[11]. As a result, it can achieve a better failure-detection
capability than RT [12].

Quite a number of ART methods have been proposed.
Among them, the fixed-size-candidate-set algorithm of ART
(FSCS-ART) [13] exhibits better failure-detection effective-
ness for programs with numeric inputs and has been wide-
ly applied. However, using the direct implementation, this
method has to calculate the distances from every candidate
to all the executed test cases, thus leading to a quadratic com-
putational overhead. Hence, some doubts about its efficiency
have been raised [14]. It is therefore necessary to reduce the
computational overhead of FSCS-ART without compromising
the effectiveness of failure detection.

As mentioned above, the overhead of FSCS-ART is mainly
caused by the distance computation for each candidate to find
its nearest neighbor from all the executed test cases. To solve
this problem, it is necessary to find a smarter search process
for the nearest neighbor of each candidate. Intuitively, a more
efficient implementation of FSCS-ART should ignore some
of the distance computation when determining the nearest
neighbor of each candidate. In essence, the executed test cases
that are far away from the candidates can be excluded from
the distance computation.

In this paper, we propose a KD-tree approach to improve the
efficiency of the FSCS-ART algorithm for programs with nu-
meric inputs. We will call it the KD-tree-enhanced Fixed-size-
Candidate-set ART (KDFC-ART).1 A KD-tree [15], which
stands for k-dimensional tree, is a space-partitioning struc-
ture commonly used in computational geometry and spatial
databases [16]. It can eliminate quite a number of points in the
space when querying the nearest neighbor for a given point.

1KDFC is the radio home of San Francisco Symphony and San Francis-
co Opera, supporting diversities in performing art. We apologize for any
unintended pun.
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Thus, the data structure is very helpful in speeding up the
nearest neighbor queries in FSCS-ART.

A standard KD-tree is normally used to encode an existing
static data set as a tree structure. In other words, the data set
is defined before the construction of the KD-tree. However, in
adaptive random testing, test cases are incrementally generated
as the testing progresses. Thus, we need to reformulate the
construction method of KD-trees so as to incorporate incre-
mentally added test cases into a dynamically growing tree
structure.

In order to realize the incremental construction of KD-
trees, we need to develop a strategy for inserting nodes, which
determines whether they belong to the left or right branch of
a subtree. Essentially, we need a good procedure to split each
level of input subspaces into two parts.

a) First, we use a naive strategy to split the input space with
respect to every dimension successively in a round-robin
manner. However, the resulting tree may induce high
overheads in subsequent queries because the arbitrary
splitting process may generate some search paths that are
excessively long.

b) In order to address the above deficiency, a semi-balanced
splitting strategy is proposed. When selecting the next
dimension to split, we compute the possible spread of
points for every dimension and pick the one with the
maximum spread. On the other hand, for efficient in-
cremental selection of test cases, we do not follow the
normal practice of using the median point as the splitting
location. The balance of the tree is guaranteed as much
as possible by an adaptive selection strategy of splitting
dimension, in which the spread in each dimension is
taken into consideration. The resulting semi-balanced tree
can achieve much better balancing effect than the tree
produced by the naive strategy.

c) The worst case scenario for finding the nearest neighbor
in a semi-balanced tree may involve traversing all the
nodes. In particular, for high-dimensional input spaces,
only a few nodes are pruned during the search [16]. Thus,
an approximate nearest neighbor query may be more
efficient. Restricted backtracking is further proposed to
control the distance computation cost of nearest neighbor
queries. Empirical results show that the effectiveness is
not compromised in most cases, but is improved in some
cases.

The main contribution of this paper is threefold:
1) To the best of our knowledge, this is the first paper that

proposes a KD-tree approach to enhance the performance
of adaptive random testing.

2) The proposed algorithms significantly improve the effi-
ciency of the original FSCS-ART for low-dimensional
input spaces and for high-dimensional spaces with low
failure rates.

3) The proposed Naive-KDFC and SemiBal-KDFC algo-
rithms have the same effectiveness as the original FSCS-
ART. The LimBal-KDFC algorithm, in fact, improves the
effectiveness of FSCS-ART for high-dimensional input s-

paces and has no significant deterioration in effectiveness
for low-dimensional spaces.

The rest of the paper is organized as follows: Section II
summarizes the existing FSCS-ART algorithm and introduces
the basic concepts of KD-trees. Section III presents a KD-tree-
based framework to enhance FSCS-ART, and then proposes
three algorithms for this purpose. A simulation analysis of the
algorithms is presented in Section IV, followed by an empirical
investigation in Section V. Section VI discusses the threats to
validity in our study. Related work is discussed in Section
VII. Finally, we conclude the paper and give future research
directions in Section VIII.

II. BACKGROUND

A. The Original FSCS-ART Method

In software testing, information about failure patterns can
be used to guide test cases selection. Generally speaking,
relatively regular failure-causing input regions and programs
with relatively higher failure rates require relatively fewer test
cases to expose failures. As usual, the failure rate refers to
the ratio between the number of failure-causing inputs and
the number of all possible inputs of a program [13], [17].2

Without loss of generality, failure patterns can be classified
into three categories according to the failure clustering effects:
block patterns, strip patterns, and point patterns [18]. For the
block pattern, the failure-causing inputs amalgamate into one
or a few contiguous regions in the input space. It describes
the failures that are often triggered by computational errors,
such as when the computational expression in an assignment
statement is incorrect. For the strip pattern, the failure-causing
inputs are clustered in the shape of a narrow strip. Its failures
are attributed to domain errors [19] and are usually caused by
predicate faults in a branch. For the point pattern, the failure-
causing inputs are standalone points or small groups of points
in the input space.

Previous empirical studies have pointed out that failure-
causing inputs are often clustered in contiguous regions [20],
[21], [22]. In other words, blocks and strips are the pre-
dominant failure patterns. In order to achieve a higher fault-
detection probability, test cases need to be far apart, and
thus diversified over the input space [10], [11]. The adaptive
random testing (ART) approach was developed by Chen et
al. [10], [11], [13] based on this concept. It aims to achieve a
better even spreading of test cases over the input space than
random testing. Various ART algorithms have been developed
according to different even-spreading principles. Among them,
the fixed-size-candidate-set algorithm of ART (FSCS-ART)
is the most popular [13] partly because it was the first one
proposed and partly because of its high effectiveness.

2The failure rate of a program affects the effectiveness and efficiency of test
case selection much more than the program size. It is, therefore, recognized as
an important decision factor in the choice of testing techniques. Unfortunately,
it is virtually impossible to exhaustively execute all the possible inputs for
a nontrivial program to find the failure rate. Furthermore, the exhaustive
execution of all inputs defeats the purpose of test case selection. Thus, the
exact failure rate as per the formal definition above is only used in research
studies. In practice, testers have to rely on an estimated failure rate. Still,
the failure rate is useful in practice to answer “what if” questions during the
decision-making process for an appropriate testing technique.
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FSCS-ART is a selection-based ART method [10] using
the max-min distance criterion, which is the most common
selection criterion. The test case generation process by FSCS-
ART can be described as follows: Let E be the set of
test cases already generated. Initially, E is empty. The first
test case is randomly selected from the input space and
added to E. Given a non-empty E, a fixed number of inputs
Cand = {cand1,cand2, . . . ,cands} are randomly generated as
candidates for the next test case. The candidate candbest with
the maximum distance from its nearest element in E is then
selected as the next test case, that is:

|E|
min
j=1

dist(candbest, tc j)≥
|E|

min
j=1

dist(candk, tc j) (1)

where tc j ( j ∈ {1,2, . . . , |E|}) is a test case in E, candbest
and candk (k ∈ {1,2, . . . ,s}) are elements of the candidate set
Cand, and dist refers to the Euclidean distance for numeric
inputs. The above process of test case selection is repeated
until the termination condition is satisfied. In the rest of
this paper, the original FSCS-ART algorithm will simply be
referred to as FSCS-ART when there is no ambiguity.

For each candidate, the FSCS-ART algorithm has to com-
pute the distances from all previously executed test cases.
Hence, its complexity is O(FSCS-ART) = ∑n−1

j=1 js = O(sn2),
where s is the size of the candidate set and n is the number
of test cases. In other words, FSCS-ART takes quadratic
computation time to generate test cases. Theoretically, when
the total size of all failure regions in a program is very small,
the number of test cases needed to detect a failure will be huge.
In such a case, the FSCS-ART algorithm requires a substantial
amount of time to generate test cases [14]. Especially for
programs consuming little execution time, this disadvantage
will become more prominent and will make FSCS-ART less
cost-effective than RT. Therefore, the computation time for
test case generation has become an important factor that may
restrict the practical application of FSCS-ART.

B. Preliminaries of KD-Trees

Given a set of points in a d-dimensional space, a KD-tree
(also known as a k-dimensional tree) [15] is a useful data struc-
ture for organizing the points through space partitioning.3 A
KD-tree is a special case of binary space partitioning trees such
that every node is a d-dimensional point. This data structure
helps reduce unnecessary distance computations during the
search for the nearest neighbor. It has extensive applications
in computational geometry [16], spatial information processing
[23], and computer graphics [24], [25].

In general, a KD-tree is constructed by recursively splitting
a subset at each level into two smaller subsets at the next level,
thus progressing from the root to the leaves in a level-by-level
manner. Various authors have proposed effective and efficient
strategies to select the next dimension to split and the location
of the splitting hyperplane for each dimension. Round robin
was the original strategy proposed by Bentley [15]. It simply

3Following standard practice in KD-tree literature, we use d (rather than
k) to denote the number of dimensions in the given space and the KD-tree.
In other words, k is never used except in the formal name of KD-trees.

selects the split dimensions one by one sequentially. The max-
imum range (or maximum spread) is another typical strategy,
which was originally proposed by Friedman et al. [26]. Minor
variations have also been proposed by others [27] but they are
similar in idea to the original.

Consider a set of points {(1,6), (3,8), (4,3), (6,5), (8,2),
(9,4)} in a 2-dimensional space as an example. The KD-tree-
based subspace partitioning process is illustrated by Figure
1(a) and the corresponding data structure is illustrated by
Figure 1(b). Since the X-coordinates of the set of points have
the largest variance, the X-dimension is chosen for the first
splitting. The splitting hyperplane is x = 6 because 6 is the
median of all the X-coordinates. Point (6,5) is the resulting
root node. The process is repeated until all the points are
represented as nodes, as shown in Figure 1(b).
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(a) KD-tree-based partitioning
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Fig. 1. Example of KD-tree-based partitioning and its storage structure

The main advantage of KD-trees is that it can efficiently
perform nearest neighbor queries. Given a tree and a query
point, the query process can be described as follows: First,
locate the smallest subspace that contains the query point. It
is represented by a node in the tree. The localization starts
with the root node and moves down the tree recursively.
The localization direction (namely, going to the left or right
branch) depends on whether the query point’s coordinate is
not greater than or greater than the value of the current
tree node. Once the localization process reaches the node
standing for the smallest subspace, the latter is regarded as
the temporary nearest neighbor of the query node. The reason
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why the KD-tree implements an efficient nearest neighbor
query is its effective pruning ability. It only needs the distance
calculations from the query point to some of the nodes in the
tree. During the backtracking process, if the current nearest
distance is less than the distance between the query point and
the splitting hyperplane associated with an ancestor or sibling
node, the other branch can be pruned from backtracking.
Owing to effective pruning, we can avoid a great deal of
distance computations when locating the nearest neighbor in
KD-trees. On the other hand, for some extreme cases in high-
dimensional spaces, we still need to traverse nearly all the
nodes in the tree.

We give two examples in Figure 2 to explain the backtrack-
ing process for finding the nearest neighbor. The point set and
its KD-tree are the same as those in Figure 1. Suppose the
given query point is Q1 = (2.5,2), as shown in Figure 2(a). It
is easy to locate the corresponding potential parent node in the
KD-tree for the query point, namely, the point Q1 lying in the
subregion containing the leaf node (4,3). Consequently, node
(4,3) is taken to be the temporary nearest neighbor of Q1. The
distance between Q1 and note (4,3), which is

√
3.25, is taken

to be the current nearest distance. As the next step, consider
the parent of node (4,3). We first compute the distance from
the query point Q1 to the splitting line y = 6. Because this
distance (which is 4) is larger than the current nearest distance,
the associated parent node (1,6) and all the nodes above the
line y = 6 can be ignored in the distance computation. Thus,
the search backtracks to the parent of node (1,6), which is
the root node (6,5). Similarly, because the distance from Q1
to the splitting line x = 6 (which is 3.5) is also larger than the
current nearest distance, all the nodes on the right of x = 6
are pruned from the query. As a result, backtracking will be
terminated.

The query point Q2 = (2,5) in Figure 2(b) illustrates a
more complex situation. First, Q2 is identified to be within
the subregion containing the leaf node (4,3). Consequently,
node (4,3) is taken to be the temporary nearest neighbor
with a current nearest distance of 2

√
2. Next, consider the

splitting line y = 6 associated with the parent of node (4,3).
Because the distance from Q2 to the splitting line y= 6 (which
is 1) is smaller than the current nearest distance, the parent
and sibling nodes of (4,3) should also be considered during
backtracking. First, the distance between Q2 and node (1,6)
is further calculated to be

√
2. This distance is less than that

between Q2 and node (4,3), and hence (1,6) is updated as the
temporary nearest neighbor. Subsequently, the distance from
Q2 to the splitting line x = 3 is calculated. Since the result
is 1 and less than the current nearest distance, the distance
between Q2 and node (3,8) will then be computed. The latter
is

√
10 and larger than the distance between Q2 and node

(1,6). Hence, (1,6) is still the temporary nearest neighbor.
Subsequently, the backtracking process reaches the root node
(6,5). The distance from the given query point Q2 to the
splitting line x= 6 is 4, which is larger than the current nearest
distance. As a result, node (6,5) and all the nodes on its right
are pruned from the distance computation and the backtracking
process is terminated.

For a balanced KD-tree, the order of steps of inserting
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(a) Query point Q1 = (2.5,2)
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(b) Query point Q2 = (2,5)

Fig. 2. Examples of nearest neighbor query in KD-tree

a node into the tree is the height of tree, which is the
logarithm of the node number of the current tree in general.
Thus, to construct a KD-tree with n nodes, the corresponding
overhead order is O(n logn). To find the nearest neighbor of
a given query point, only a few nodes in the KD-tree may
be visited during the backtracking process, as demonstrated in
the above examples. Therefore, the computational overhead
of the nearest neighbor query is usually in the order of a
small number of nodes. At worst, the overhead of each time
of querying is in the order of O(n).

III. THE PROPOSED KDFC-ART APPROACH BASED ON
KD-TREES

A. The Framework

A major criticism of the original FSCS-ART algorithm lies
in the relatively expensive generation of test cases. In this
paper, we adopt the KD-tree structure to alleviate this problem
in the FSCS-ART algorithm. The improvement is mainly due
to a novel strategy to store the already executed test cases in
a KD-tree. In RT or its variants, test cases are incrementally
generated. Thus, the tree should be dynamically updated to
store the incrementally selected test cases. Consequently, the
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nearest neighbor query for a candidate should be conducted
on the most updated KD-tree.

randomly generate the first test case 

and view it as the root of KD-tree

the termination 

condition is satisfied?

randomly generate 

s candidates
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nearest neighbor in E (or KD-tree)
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find the nearest neighbor 

through backtracking
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to the nearest neighbor is the largest

update the KD-tree by inserting 
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Fig. 3. Flowchart of KDFC-ART

The whole process is illustrated in Figure 3. Initially, the
first test case is randomly generated and considered as the root
of KD-tree (step 1). The subsequent test cases are generated
one by one through an iterative procedure. In each round
of iterations, a fixed-size candidate set with s candidates is
randomly generated from the input space (step 2). Then, for
each candidate, the algorithm finds its nearest neighbor from
the executed test set E (or the current KD-tree). Specifically,
the action of finding the nearest neighbor can be divided
into two steps: In step 3, our method locates the subspace
(i.e., potential parent node in the tree) containing the current
candidate downward from the root node according to its
coordinates. Then, the corresponding potential parent node is
regarded as a temporary neighbor nearest to the candidate.
Subsequently, step 4 further queries the nearest neighbor of the
candidate by the backward traversal from the potential parent
node. If the backtracking is not bounded, the queried nearest
neighbor is the actual one, otherwise not necessarily the actual
nearest neighbor. After finding out the nearest neighbors of all
s candidates, the candidate with the farthest nearest neighbor
distance is selected as the next test case (step 5). Once the
next test case (i.e., the selected candidate) is determined, it
should be executed and inserted into the storage structure of
the executed test set E, i.e. KD-tree. This action is shown in
step 6 of Figure 3. Furthermore, it is to check the termination
condition of test case generation. In general, the condition
could be set as follows: (1) at least one fault in the program
under test has been detected or (2) the number of executed
test cases reaches a predefined ceiling. When the termination
condition is met, the test case generation process will stop and
report the test results (step 7).

It is not hard to find that the following three steps in the test
case generation process involve relatively heavy computational
overheads: Both steps 3 and 6 need to find a position for
a query point which is actually an element of the candidate
set, in the tree through the binary search. The query cost is
in the order of the height of KD-tree. For the balanced tree
with n nodes, the cost is about logn for each query. If the
tree is unbalanced, in the worst case, the cost of each query
may be proportional to number of nodes in the tree, that is,
O(n). Therefore, in order to reduce the query cost in these
two steps, KD-tree should be kept as balanced as possible.
Another computationally expensive step is the backtracking for
finding the nearest neighbor of each candidate. Although the
number of nodes traversed in practice is usually quite small,
the worst case may need to traverse nearly all nodes. Hence,
it is better to have a strategy to control the number of nodes
in backtracking in order to set an upper bound on the time to
be spent on searching for the nearest neighbor.

Based on the above analysis, we have modified the original
FSCS-ART to form the KDFC-ART algorithms in the follow-
ing three directions. (1) Improve FSCS-ART using the KD-
tree structure to store the generated (or executed) test cases so
as to speed up the nearest neighbor query for candidates. (2)
Improve FSCS-ART by using a heuristic strategy to construct a
KD-tree with better balance. (3) Further improve the efficiency
of FSCS-ART by limiting the number of backtrackings. Of
course, the nearest neighbor found in this way may only be
approximately nearest.

B. KDFC-ART Based on Round-Robin Strategy

Normally, KD-tree is constructed for a static data set of
a given size. Since the data set is known beforehand, the
partitioning in the space (i.e., the splitting of the nodes of in
the tree) can be conducted by referring to the known variance
and the known median of the points in each dimension.
The dimension with the maximum variance of data points’
coordinates will be split using the hyperplane at the median
point. In RT and its variants, test cases in the input space can
be generated in parallel with the testing process. As a result,
the variance and median change continuously. We need to look
for alternative strategies to construct a KD-tree incrementally
to store test cases. This section presents the first option.

In order to implement the dynamic updating of a KD-tree,
we first propose a naive strategy as the priority of splitting.
Take the 2-dimensional input space in Figure 4 as an example.
For the root node at the first level, we select dimension X to
split. Then, we choose dimension Y to split for the children.
It is followed by splitting dimension X again for all the
grandchildren, followed by splitting dimension Y again for
all the great-grandchildren, and so on.

Specifically, for the dynamic generation of test cases, the
splitting hyperplane of the new-coming test case can be
determined as follows: Once a candidate is identified as the
next test case tc, we need to determine the smallest subspace
that contains it. This subspace is represented by a potential
parent node in the KD-tree. Then, tc should be added as a
left or right child node of the potential parent. Suppose the
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Fig. 4. Example of applying the round-robin strategy to split the input space
(d = 2)

subspace represented by the potential parent should be split
with respect to the ith dimension (i ∈ {1,2, . . . ,d}). Then, the
new subspace represented by tc should be split with respect to
the (i+1)th dimension if i < d. Of course, if i = d, it should
be split with respect to the 1st dimension.

Based on the above analysis, we can enhance FSCS-ART
using a round-robin KD-tree strategy. Its pseudocode is listed
in the Naive-KDFC algorithm. In addition to the input space
information and the number of test cases, a termination con-
dition is also accepted as an input. In general, the termination
condition can be set to a maximum number of test cases
generated, or when the first failure of the program has been
found. In the algorithm, the generated test cases are stored in
TCset and the corresponding structure is captured in KDtree.
The former is used for the final output while the latter is to
support fast queries of nearest neighbors. Line 1 initializes
the KD-tree and the set of test cases. Lines 2–3 randomly
generate the first test case and insert it into the KD-tree as
the root node. Lines 4–7 split the input space with respect
to the first coordinate of the test case. We then enter an
iteration of processes for subsequence test cases as long as
the termination condition has not been reached (line 8). First,
randomly generate s different candidates (line 9), and then find
the one farthest away from its nearest neighbor as the next test
case tc (lines 10–15).

In particular, given a candidate, there are two steps to find
the nearest neighbor in KDtree. The first step is to locate
the potential parent node representing the smallest subspace
containing the candidate (line 11). The second step is to
incrementally update the temporary nearest neighbor through
searching and backtracking until the true nearest neighbor is
found (line 12). (In the worst case, this second process may
cover nearly the whole input space, or nearly all the nodes
in the KD-tree, before finding the nearest neighbor.) After the
nearest neighbors of all candidates are found, the candidate
with the farthest distance from its nearest neighbor is taken as
the next test case tc (lines 14–15).

Next, locate the potential parent for node tc (line 16) and
insert tc as a left or right child node (lines 17–22). Meanwhile,
update the round-robin counter of splitting dimensions (lines
23–27). For the recently inserted node tc, set the splitting
dimension, the splitting hyperplane, and perform the splitting
accordingly (lines 28–30). Finally, insert tc into TCset for
output purpose (line 31).

Algorithm 1. Naive-KDFC
Inputs: (a) The size s of every candidate set, where s > 1;

(b) The number of dimensions d in the program input space;
(c) The termination condition for the test case generation pro-
cess;

Output: The set of test cases TCset;
1. Set KDtree = {} and TCset = {};
2. Randomly select a test case tc from the input space;
3. Insert tc into KDtree as the root node;
4. Set m = 1;
5. Set the splitting dimension of node tc = m;
6. Set the splitting hyperplane of this dimension at the value of the

mth coordinate of tc;
7. Split the input space according to this hyperplane;
8. while (termination condition is not satisfied) do
9. Randomly select s candidates cand1,cand2, . . . ,cands from

the input space;
10. for each candidate candk (k = 1,2, . . . ,s) do
11. Find the smallest subspace containing candk and hence find

the potential parent of node candk in KDtree;
12. Starting from the potential parent of node candk, find the

nearest neighbor of candk through searching and backtrack-
ing in KDtree;

13. end for
14. Find candbest from cand1,cand2, . . . ,cands having the maxi-

mum distance from its nearest neighbor;
15. Set tc = candbest;

// Note that the smallest subspace containing tc is the same
as the smallest subspace containing candbest

16. Set node parenttc = the potential parent of node candbest;
17. Set m = the splitting dimension of node parenttc;
18. if the value of the mth coordinate of tc ≤ the value of the

mth coordinate of parenttc then
19. Insert tc into KDtree as a left child of node parenttc;
20. else
21. Insert tc into KDtree as a right child of node parenttc;
22. end if
23. if m < d then
24. Set m = m+1;
25. else
26. Set m = 1;
27. end if
28. Set the splitting dimension of node tc = m;
29. Set the splitting hyperplane of this dimension at the value of

the mth coordinate of tc;
30. Split the subspace according to this hyperplane;
31. Insert tc into TCset;
32. end while
33. return TCset;

Briefly speaking, the Naive-KDFC algorithm takes turns to
use each dimension (from 1 to d) as a hyperplane criterion for
splitting. This method can be easily implemented, but cannot
guarantee the delivery of an unbiased KD-tree. In general,
if the tree is heavily skewed, it will incur expensive node
insertion, node query, and backtracking to find the nearest
neighbor. It is therefore necessary to further improve the
construction process of the KD-tree.

C. KDFC-ART Based on Semi-Balanced Strategy
As already mentioned, the naive algorithm Naive-KDFC

may lead to a skewed KD-tree, which will in turn incur
expensive node localizations and nearest neighbor queries. In
order to improve the balance of the target KD-tree, let us look
deeper into issue.
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As illustrated in Figure 5, suppose node tc j lies in the
smallest subspace shown by the square region. It is the turn
to use the X-axis to split the subspace. Here, the splitting
hyperplane is represented by x = x j. Accordingly, the whole
area is divided into two parts: the left subregion L in which the
X-coordinates of all the points ≤ x j, and the right subregion
R where the X-coordinates of all the points > x j. With regard
to the corresponding tree, the points in the left subregion
L belong to the left subtree of node n j, and all the points
in the right subregion R are in the right subtree. Intuitively
speaking, the number of nodes in the left (right) subtree
is proportional to the area of the corresponding left (right)
subregion. Thus, if we want to make the KD-tree unskewed,
the ranges of the two subtrees after splitting need to be as
equal as possible. Obviously, the naive method cannot ensure
an unskewed KD-tree. As a consequence, it is necessary to
apply another strategy to split the input space.

Fig. 5. Example of unbalanced splitting of input (sub)space

Given a d-dimensional Euclidean space X = X1×X2×·· ·×
Xd , the range ℓi for dimension Xi (i ∈ {1,2, . . . ,d}) is defined
as the length between the maximum and minimum values in
Xi. For example, given a 2-dimensional space [1,10]× [−5,5],
the ranges for the first and second dimensions are 9 and 10,
respectively.

Let X1,X2, . . . ,Xd be the dimensions of the input space.
Suppose that we would like to add a test case to an existing test
set (represented by a KD-tree). We may recall that the range ℓi
of dimension Xi of the subspace containing the test case is the
distance between the minimum and maximum possible values
of the Xi components of the points in the subspace. The test
case can divide every dimension into two parts. We denote the
resulting ranges of these two parts by ℓi1 and ℓi2, respectively,
where ℓi1 + ℓi2 = ℓi. Then, we define the spread of dimension
Xi as follows:

spread(i) = ℓi gini(ℓi1, ℓi2), (2)

gini(ℓi1, ℓi2) = 1−
(ℓi1

ℓi

)2 −
(ℓi2

ℓi

)2 (3)

where gini(ℓi1, ℓi2) is the Gini coefficient [28] of the ranges
ℓi1 and ℓi2 of the two parts i1 and i2 (i ∈ {1,2, . . . ,d}), named
after Gini [29] in 1912. Out of the d dimensions, the SemiBal-
KDFC algorithm selects dimension Xi with the largest value
of spread(i) to split.

Let us consider two examples in 2-dimensional input spaces
to explain the priority of splitting. In Figure 6(a), the ranges
of the two dimensions X and Y are equal, but gini(ℓx1, ℓx2)>
gini(ℓy1, ℓy2) according to (3), giving spread(X)> spread(Y ).
As a result, we select dimension X to split. In Figure 6(b),
the range of dimension Y is greater than that of dimension X .
Although the Gini coefficient of dimension X is the same as
that of dimension Y (gini(ℓx1, ℓx2) = gini(ℓy1, ℓy2)), the spread
of dimension Y is relatively higher (spread(Y )> spread(X)).
Thus, we choose to split dimension Y in this case.

(a) equal dimensions (b) unequal dimensions

Fig. 6. Examples of selecting the splitting dimension

Based on these two examples, it is easy to see that our
proposed splitting criterion mainly emphasizes the following
two aspects: (1) The dimension on which the splitting is
relatively more balanced will be a likely choice for splitting.
(2) The dimension with a greater range will also be a likely
choice for splitting. Since the test cases are randomly selected
from input space, the space or subspace is divided more
balanced usually means that the numbers of nodes in the
corresponding left and right subtrees are more likely to be
the same. Intuitively, the preferred division on the relatively
long dimension usually can reduce the range of backtracking
traversal. Accordingly, the distance computation cost can be
reduced to some extent.

Here, we refer to the enhanced version of FSCS-ART based
on a more balanced KD-tree as the SemiBal-KDFC algorithm.
Compared with the Naive-KDFC algorithm, SemiBal-KDFC
can build an improved KD-tree by applying the splitting strate-
gy introduced earlier in this section. In essence, we replace the
round-robin strategy of Naive-KDFC by the following concept
in the SemiBal-KDFC algorithm: Identify the next dimension
to split as the one having the maximum spread according to
equations (2) and (3). More details are listed in the pseudocode
below. Since a more balanced KD-tree can be produced by
the revised splitting strategy, SemiBal-KDFC can reduce the
computation time of node insertion and nearest neighbor query.

D. KDFC-ART Based on Semi-Balanced and Restricted Back-
tracking Strategy

The efficiency of FSCS-ART method is mainly dominated
by the distance computation of finding the nearest neighbor
for each candidate. With the KD-tree representation of test
cases, the search process for a candidate’s nearest neighbor
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Algorithm 2. SemiBal-KDFC
Inputs: (a) The size s of every candidate set, where s > 1;

(b) The number of dimensions d in the program input space
:::
and

::
the

::::::::
minimum

:::
and

::::::::
maximum

::::::
possible

:::::
values

:::
of

:::
each

::::::::
dimension;

(c) The termination condition for the test case generation pro-
cess;

Output: The set of test cases TCset;
1. Set KDtree = {} and TCset = {};
2. Randomly select a test case tc from the input space;
3. Insert tc into KDtree as the root node;
4.

::
Set

::
m
::

=
:::
the

::::
next

::::::::
dimension

::
to

::::
split

::::::::
according

::
to

:::::::
equations

:::
(2)

:::
and

:::
(3);

5. Set the splitting dimension of node tc = m;
6. Set the splitting hyperplane of this dimension at the value of the

mth coordinate of tc;
7. Split the input space according to this hyperplane;
8. while (termination condition is not satisfied) do
9. Randomly select s candidates cand1,cand2, . . . ,cands from

the input space;
10. for each candidate candk (k = 1,2, . . . ,s) do
11. Find the smallest subspace containing candk and hence find

the potential parent of node candk in KDtree;
12. Starting from the potential parent of node candk, find the

nearest neighbor of candk through searching and backtrack-
ing in KDtree;

13. end for
14. Find candbest from cand1,cand2, . . . ,cands having the maxi-

mum distance from its nearest neighbor;
15. Set tc = candbest;

// Note that the smallest subspace containing tc is the same
as the smallest subspace containing candbest

16. Set node parenttc = the potential parent of node candbest;
17. Set m = the splitting dimension of node parenttc;
18. if the value of the mth coordinate of tc ≤ the value of the

mth coordinate of parenttc then
19. Insert tc into KDtree as a left child of node parenttc;
20. else
21. Insert tc into KDtree as a right child of node parenttc;
22. end if
23.

::
Set

::
m
::

=
:::

the
::::

next
::::::::
dimension

::
to
::::

split
::::::::

according
::

to
::::::::

equations
::
(2)

:::
and

::::
(3);

24. Set the splitting dimension of node tc = m;
25. Set the splitting hyperplane of this dimension at the value of

the mth coordinate of tc;
26. Split the subspace according to this hyperplane;
27. Insert tc into TCset;
28. end while
29. return TCset;

can be described as below: Once a candidate is located into
a subspace (i.e. the potential parent node of the candidate in
KD-tree), the test case represented by the potential parent node
is viewed as the temporary nearest neighbor of the candidate.
Then, a backtracking process is used to find the actual nearest
neighbor among the test set (i.e. the nodes in the tree). Here,
the backtracking is conducted along with a path which starts
from the located potential parent node to the root of KD-tree.
For each node in the backtracking path, the distance from
the candidate to the splitting hyperplane, which is represented
by the equation attached to the node (such as x = 7 in Figure
1(b)), is calculated first. If this distance is less than the current
nearest distance, the other branch of the node with respect to
the backtracking branch should be further searched. Otherwise,
the backtracking process will go backward to the node in the

upper level.
Since the nodes involved with backtracking search can be

pruned according to the distance from the candidate to the
splitting hyperplane, the distance computation overhead in
Naive-KDFC and SemiBal-KDFC algorithms can obviously
be reduced. The improvement in efficiency is quite significant
for low-dimensional input spaces. In general, the number of
traversed nodes during the backtracking process is usually
quite small compared with the size of the test set. Specifically,
finding the nearest neighbor in a balanced KD-tree with ran-
domly distributed points takes O(logn) time on average [26].
However, the backtracking search may traverse unexpectedly
many nodes in the worst scenario. In particular, in the case
of high-dimensional input spaces, the curse of dimensionality
causes the algorithm to visit many more branches than in
low-dimensional spaces. Thus, the test cases involved in the
backtracking and distance computation for each candidate may
be a large portion of the executed test cases. For d = 10, for
instance, it has to query 97 nodes on average in order to find
the nearest neighbor from a KD-tree with 100 nodes. For trees
with 1000 and 5000 nodes, the average numbers of the queried
nodes are 804 and 2227, respectively. Based on the above
analysis, it may be cost-effective if we can limit the number
of nodes to be queried in the backtracking search. We can find
the following clues based on experiments similar to the above
example: (1) A tree with more branches has more chance of
pruning in backtracking search; (2) KDFC-ART algorithms are
more favorable (in terms of efficiency) than FSCS-ART when
the failure rate is low but not when it is high.

In our method, an upper bound is set to limit the number
of backtrackings as follows:

bound( j+1) =
1
2
(
d +

1
d

)2 log j (4)

where d is the dimension of the input space of the program
and j is the ordinal number of the test case. That is to say,
to generate the ( j + 1)th test case, the number of nodes for
distance computation in the backtracking search should be
limited to less than bound( j+1). It is important to note that
the distance computation mentioned here includes both the
distance from the candidate to a splitting hyperplane and the
distance from the candidate to an executed test case (that is,
a node in the tree).

According to the above ideas, we can further improve the
SemiBal-KDFC algorithm using limited backtracking. We will
refer to this algorithm as LimBal-KDFC. The corresponding
pseudo code is listed below. Compared with Naive-KDFC
algorithm, SemiBal-KDFC algorithm attempts to strike a better
balance between two split subspaces. This strategy is also
employed in LimBal-KDFC algorithm. Furthermore, in the
LimBal-KDFC algorithm, only a limited number of back-
trackings can be applied (see line 12). Based on this limit,
LimBal-KDFC can further reduce the distance computation
time. Of course, the distance between a given candidate and
its nearest neighbor is only approximate rather than precisely
calculated. On the other hand, as shown in the results of the
follow-up experiments, such an approximation does not induce
significant deterioration of the failure-detection effectiveness.
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Algorithm 3. LimBal-KDFC

. . .
12. Starting from the current potential parent of node candk,

find the nearest neighbor of candk through searching and
backtracking in KDtree,

::::
where

:::
the

::::::::::
backtracking

::::::
process

::
is

:::::
limited

:::
by

:::
the

:::::
bound

::
in

:::::::
equation

::
(4);

. . .

E. Summary of the Three KDFC-ART Algorithms

For the above three enhanced versions of FSCS-ART, we
summarize their characteristics from the five aspects in Table
I. For the sake of a fair choice among various dimension-
s during KD-tree construction, the Naive-KDFC algorithm
adopts a round-robin technique, in which each dimension is
successively selected for splitting when partitioning the input
space. SemiBal-KDFC and LimBal-KDFC utilize a dynamic
balancing strategy to adaptively select the dimension with the
maximum spread of points as the next dimension to split based
on equations (2) and (3). With respect to the backtracking
strategy, there is no limit in the backtracking steps in both
Naive-KDFC and SemiBal-KDFC. On the contrary, in the
LimBal-KDFC algorithm, the backtracking steps are limited
under the upper bound defined in equation (4). As a result,
the overheads of distance computations between candidates
and the executed test cases will be limited. Of course, this
mechanism has an adverse effect that the “nearest neighbor”
of a candidate test case may not be truly nearest. By contrast,
Naive-KDFC and SemiBal-KDFC guarantee the identification
of the actual nearest neighbor for the candidate. However,
unlimited backtracking may require a large number of distance
computations, especially for high-dimensional input spaces.

As stated in Section III-A, the time complexity of KD-tree-
based FSCS-ART algorithms mainly involves the following
two parts. The first part is the computation of locating a test
case or a candidate to a node of KD-tree. Since all three
algorithms adopt KD-tree structure to store the executed test
cases and the test cases are randomly selected from the whole
input space, the heights of the trees built by the above three
algorithms are basically in the order of log j, where j is the
number of nodes in the KD-tree. Although SemiBal-KDFC
and LimBal-KDFC can construct more balanced KD-trees than
Naive-KDFC, the tree heights in three algorithms are roughly
at the same order of magnitude. Thus, for a test set of n test
cases, the computations of three algorithms to localize all test
cases in the tree are the order of O(n logn). Similarly, the
localization computations of all s candidates for generating n
test cases are the order of O(sn logn).

The second part is the computation of nearest neighbor
query by backtracking in KD-tree. On average, finding the
nearest neighbor in the KD-tree whose nodes are randomly dis-
tributed points takes O(logn) time [26]. Therefore, to generate
a test set with n test cases, the average overheads of distance
computation in all three algorithms are the order of O(sn logn).
However, in the worst case, the backtracking in Naive-KDFC
and SemiBal-KDFC may traverse almost all nodes in the
tree. Thus, the worst complexities of distance computation
in Naive-KDFC and SemiBal-KDFC are the order of O(sn2).

Because the backtracking in LimBal-KDFC is limited within
the bound of 1

2 (d+
1
d )

2 log j, its worst complexity of distance
computation is still the order of O(d2sn logn).

In a word, the average time complexities of three enhanced
algorithms are the order of O(sn logn). The worst time com-
plexities of Naive-KDFC and SemiBal-KDFC are the order of
O(sn2), but the worst complexity of LimBal-KDFC is the order
of O(d2sn logn), where n is number of test cases, and d and s
are two constants, which are the dimension of the program’s
input space and the fixed size of candidate set, respectively.

IV. SIMULATION STUDIES

A. Experimental Setup and Evaluation Metrics

The aim of this research is to improve the efficiency of the
popular FSCS-ART algorithm. Hence, it is very necessary to
confirm whether our enhanced algorithms can reduce the test
case generation time. In this paper, we use the execution time
of generating test cases as an efficiency metric for comparison
analysis. The Wilcoxon rank-sum test [30] (or equivalently
the Mann-Whitney U test [31]) is used to verify whether
there are differences in efficiency among the investigated ART
algorithms. Meanwhile, effect size [32] is used to measure the
magnitudes of the differences among ART algorithms. The
effect size for the Wilcoxon rank-sum test [33] is given by the
correlation coefficient

r =
|z|√

n1 +n2
(5)

where z is the z-value in rank-sum test results, and n1 and
n2 represent the number of observations in two populations.
According to the guidelines given by Cohen [34], a rough
interpretation of effect size is that r = 0.5 represents a large
effect, r = 0.3 represents a medium effect, and r = 0.1 repre-
sents a small effect.

For each candidate, both Naive-KDFC and SemiBal-KDFC
can find the exact nearest neighbor, which is the same as
FSCS-ART because they generate the same set of test cases.
As a consequence, the failure-detection capabilities of these
two enhanced algorithms are identical to that of FSCS-ART.
Hence, it is unnecessary to perform the comparisons of failure-
detection effectiveness among Naive-KDFC, SemiBal-KDFC,
and the original FSCS-ART. However, the backtracking steps
are limited in LimBal-KDFC, it is necessary to carry out an
in-depth analysis and comparison on its effectiveness. In this
section, we mainly report the simulation results.

As described earlier, failure patterns in programs can be
classified into three categories: block patterns, strip patterns,
and point patterns. These three regular failure patterns are
used in the simulation of failure-causing input regions of a
program. Once a test case is selected inside such a region,
a program failure is deemed to have occurred. To simulate a
block pattern in the experiments, we used a hypercube having
sides of equal lengths (such as a square or a cube in 2- or
3-dimensional spaces) as the failure region. Only one such
region was randomly placed in the input space. To simulate
a strip pattern, a strip at any angle was treated as the failure
region. Since the strips near the corners of the input space
will be “fat” rather than real strips, these cases were excluded
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TABLE I
CHARACTERISTICS OF THE THREE KDFC-ART ALGORITHMS

Property Naive-KDFC SemiBal-KDFC LimBal-KDFC

Balancing
strategy

Round robin: splitting each
dimension iteratively from 1 to d

Semi-balancing strategy: considering
the range and Gini coefficient

incrementally for each test case

Semi-balancing strategy
as per SemiBal-KDFC

Backtracking
strategy No limit on number of steps No limit on number of steps Limited number of steps

Nearest neighbor
query

Exact result, test cases
the same as FSCS-ART

Exact result, test cases
the same as FSCS-ART

Approximate result, test cases
different from FSCS-ART

Average
complexity O(sn logn) O(sn logn) O(sn logn)

Worst case
complexity O(sn2) O(sn2) O(d2sn logn)

from the strip pattern simulation. For the point pattern, 25 non-
overlapping little squares or cubes were randomly generated
from the input space according to the corresponding failure
rate setting.

Automated test oracles are assumed as follows: In simu-
lation studies, the simulated failure patterns act as the test
oracles, and in empirical studies in the next section, the
original versions of the subject programs are used as the test
oracles for their mutants. In the context of software testing,
the expected number of test cases to detect the first failure is
usually defined as an effectiveness metric, namely, F-measure
[13], [35]. In addition, another metric (known as F-ratio) for
adaptive random testing can be further defined as follows:
F-ratio=FART/FRT, where FART and FRT are the F-measures of
the ART method and the RT method, respectively. The value
of FRT in the simulation studies can be directly computed from
the failure rate using the formula FRT = 1/θ. Here, θ is the
failure rate of the program, computed as the ratio of the total
area (or volume) of the failure-causing regions to the total area
(or volume) of the input domain in the simulation study.

The experiments were conducted using a desktop PC with
i7 CPU at 3.6 GHz and 8 GB RAM running under the 64-
bit Windows 7 operating system. All the algorithms were
implemented in Java4 and executed on the Eclipse platform
with JDK 1.8.

In this study, our aim is to improve the efficiency perfor-
mance of a special ART algorithm, namely FSCS-ART, which
is the first proposed ART algorithm and is also known as one
of ART methods that have the best failure-detection capability.
Therefore, we focus on the comparison with FSCS-ART in the
following studies.

B. Study of Naive-KDFC Algorithm

The main motivation of the project is to reduce the com-
putation time of the original FSCS-ART algorithm. In this
section, we conduct efficiency comparisons between Naive-
KDFC and FSCS-ART. The study attempts to answer the
following research question:

4The implementation of our three algorithms is available at https://github.
com/maochy/kdfc-art.

RQ1. Does Naive-KDFC spend less time than FSCS-ART
in generating the same number of test cases?

In the comparison analysis, for each test set size, Naive-
KDFC and FSCS-ART are both repeated in 1000 trials and
their execution times are recorded to obtain the mean values,
effect sizes, and p-values in rank-sum tests. The results are
listed in Tables II and III. For 2-dimensional input spaces
(under the column d = 2), the test case generation time by
Naive-KDFC is slightly less than that by FSCS-ART when
n ≤ 200. When the number of test cases increases to 500,
the advantage of our Naive-KDFC algorithm becomes more
obvious. After that, the generation time by Naive-KDFC is
always markedly less than that of FSCS-ART as the number
of test cases increases. For 3-dimensional input spaces (under
d = 3), Naive-KDFC is slower than FSCS-ART when n≤ 100.
Although the gap is quite small (only 0.08 ms), the differ-
ence is statistically significant. The underlying reason of this
phenomenon is that the pruning effect for finding the nearest
neighbor is not prominent when there are fewer nodes in the
KD-tree, especially for high-dimensional spaces. On the other
hand, Naive-KDFC requires a certain computational cost to
build the KD-tree and additional cost to compute the distances
from the candidates to the splitting hyperplanes. When n goes
beyond 100, the test case generation time for Naive-KDFC is
significantly less than that of FSCS-ART because of the large
effect size and because p-value ≪ 0.05.

In the case of d = 5, Naive-KDFC is significantly slower
than FSCS-ART when the number of test cases n is less than
500. However, when n ≥ 500, the test case generation time of
Naive-KDFC is always less than that of the original FSCS-
ART and the amount of improvement is large and statistically
significant. When the d = 10, the range of degradation of
Naive-KDFC becomes wider. Here, Naive-KDFC is efficient
only when n ≥ 5000. The above phenomena show that the
efficiency of the Naive-KDFC algorithm is reduced in the case
of high-dimensional input spaces, but can still be effective
when the number of test cases is large.

The trends of execution times for these two algorithms with
respect to the number of test cases are demonstrated in Figure
7. The computation time of the original FSCS-ART algorithm
increases dramatically with the growing number of test cases.
As analyzed in Section II.A, the time complexity of the FSCS-
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TABLE II
WILCOXON RANK-SUM TEST AND EFFECT SIZE ANALYSIS ON RUNNING TIME BETWEEN NAIVE-KDFC AND FSCS-ART FOR d = 2 AND d = 3

No. of test
cases n

d = 2 d = 3
Mean of running times (ms) p-value Effect

size
Mean of running times (ms) p-value Effect

sizeFSCS-ART Naive-KDFC FSCS-ART Naive-KDFC
100 0.33 0.31 0.0000 0.4574 0.40 0.48 0.0000 0.6644
200 1.07 0.67 0.0000 0.8216 1.29 1.17 0.0000 0.5632
500 6.84 2.04 0.0000 0.8658 7.84 3.64 0.0000 0.8546
1000 28.20 4.41 0.0000 0.8658 32.05 8.42 0.0000 0.8658
2000 123.54 10.48 0.0000 0.8658 148.47 20.22 0.0000 0.8658
5000 868.35 31.15 0.0000 0.8658 1007.23 61.57 0.0000 0.8658
10000 3480.89 68.68 0.0000 0.8658 4047.33 138.89 0.0000 0.8658
15000 7763.46 109.89 0.0000 0.8658 9045.80 220.81 0.0000 0.8658
20000 13575.36 150.94 0.0000 0.8658 16554.91 306.21 0.0000 0.8658

TABLE III
WILCOXON RANK-SUM TEST AND EFFECT SIZE ANALYSIS ON RUNNING TIME BETWEEN NAIVE-KDFC AND FSCS-ART FOR d = 5 AND d = 10

No. of test
cases n

d = 5 d = 10
Mean of running times (ms) p-value Effect

size
Mean of running times (ms) p-value Effect

sizeFSCS-ART Naive-KDFC FSCS-ART Naive-KDFC
100 0.47 0.89 0.0000 0.8550 0.77 1.54 0.0000 0.8546
200 1.61 2.49 0.0000 0.8506 2.65 5.73 0.0000 0.8658
500 10.06 9.54 0.0000 0.5256 16.21 32.72 0.0000 0.8658
1000 43.71 25.22 0.0000 0.8658 66.11 114.50 0.0000 0.8658
2000 197.57 65.20 0.0000 0.8658 313.64 343.45 0.0000 0.8205
5000 1319.66 212.93 0.0000 0.8658 2257.42 1709.48 0.0000 0.8529
10000 5569.60 491.69 0.0000 0.8658 9827.84 5681.22 0.0000 0.8658
15000 12355.94 793.39 0.0000 0.8658 22178.47 11189.24 0.0000 0.8658
20000 22739.61 1119.45 0.0000 0.8658 39481.15 17340.57 0.0000 0.8658

ART algorithm is quadratic with respect to the number of test
cases. Thus, we use a quadratic curve to fit the graph for the
execution times of the FSCS-ART algorithm, as represented by
the dashed curve in Figure 7(a). Taking d = 2 as an example,
the relationship between time (t) and the number of test cases
(n) is t = 0.00003303∗n2+0.020648∗n−25.721, and the sum
of squared errors (SSE) of the fitted curve is 5412.6. For the
other three cases, the fitted curves and the corresponding errors
are shown in Figures 7(b)–(d). By contrast, for the case of low
dimensions with d ≤ 5, the computation time of the Naive-
KDFC algorithm increases very slowly as the number of test
cases increases. For the case of high dimensions, the execution
time of Naive-KDFC observably increases as the number of
test cases increase, and may be larger than that of FSCS-ART
even for medium number of test cases (such as n = 2000 for
d = 10). However, it still shows obvious advantage over FSCS-
ART in the case of a large number of test cases. In addition,
for each test case size, the variance of the running times of
the Naive-KDFC algorithm is significantly smaller than that
of the FSCS-ART algorithm. This means that Naive-KDFC is
more stable than FSCS-ART.

Answer to RQ1: Based on the above observations, we
conclude that the Naive-KDFC algorithm can reduce the
computation time of the original FSCS-ART in the case of
low-dimensional input spaces. It can also have an advantage
in the case of high-dimensional spaces when the number of

test cases is large.

C. Study of SemiBal-KDFC Algorithm

SemiBal-KDFC is a further enhancement of Naive-KDFC
by applying a more balanced splitting strategy with a view to
producing a tree with shorter path lengths. In order to validate
the effect of the balancing strategy, we need to investigate the
following two research questions.

RQ2. Is the tree constructed by SemiBal-KDFC significant-
ly more balanced than that by Naive-KDFC?

RQ3. Can SemiBal-KDFC further improve the efficiency of
test case generation?

1) Investigation into the Balancing Effects of the Splitting
Strategies: In order to compare the effects of the two splitting
strategies in Naive-KDFC and SemiBal-KDFC respectively,
we need to investigate the difference of the trees constructed
by these two methods. Given a tree, its balance can be mea-
sured by the two indicators, namely, the maximum depth and
the average depth of the subtrees. At each trial of experiments,
the same point set is used to build KD-trees by applying
algorithms Naive-KDFC and SemiBal-KDFC, respectively. In
this study, the trial times were set to 1000. At the same
time, the number of nodes in the tree varied from 500 to
10000, and 2-dimensional and 10-dimensional input spaces
were taken into consideration. The Wilcoxon rank-sum test
was also employed on the above repeated experimental results



12

0 0.5 1 1.5 2

x 10
4

0

2

4

6

8

10

12

14

Number of Test Cases

T
im

e 
(m

s)

 

Naive−KDFC
FSCS−ART
Fitted Curve

t = 0.00003303 ∗ n2 + 0.020648 ∗ n − 25.721

x 103

SSE = 5412.6

(a) d = 2

0 0.5 1 1.5 2

x 10
4

0

2

4

6

8

10

12

14

16

18

Number of Test Cases

T
im

e 
(m

s)

 

Naive−KDFC
FSCS−ART
Fitted Curve

t = 0.000042683 ∗ n2
− 0.030204 ∗ n + 28.306

x 103

SSE = 28835.1

(b) d = 3

0 0.5 1 1.5 2

x 10
4

0

5

10

15

20

25

Number of Test Cases

T
im

e 
(m

s)

 

Naive−KDFC
FSCS−ART
Fitted Curve

x 103

t = 0.000058989 ∗ n2
− 0.049268 ∗ n + 40.683

SSE = 75252.5

(c) d = 5

0 0.5 1 1.5 2

x 10
4

0

5

10

15

20

25

30

35

40

45

Number of Test Cases

T
im

e 
(m

s)

 

Naive−KDFC
FSCS−ART
Fitted Curve

x 103

SSE = 21984.8

t = 0.000099768 ∗ n2
− 0.018529 ∗ n − 26.979

(d) d = 10

Fig. 7. Execution times for generating test cases for various test suite sizes

to evaluate the significance of the difference between Naive-
KDFC and SemiBal-KDFC. The corresponding mean values
(Mean), standard deviations (Std. Dev.), p-values, and effect
sizes about the above two metrics are listed in Tables IV and
V.

While considering the maximum depth of subtrees, in the
2-dimensional input space, the amount of improvement of
SemiBal-KDFC over Naive-KDFC is sizable and the corre-
sponding confidence level of statistical tests is always high. As
shown in Table IV, the difference is about 3 when the number
of nodes n in the tree is 500. Subsequently, the difference
gradually increases as the number of nodes increases. When
n increases to 10000, the difference in depths can reach 6. On
the other hand, SemiBal-KDFC is more stable than Naive-
KDFC, that is, the standard deviations of SemiBal-KDFC are
always less than those of Naive-KDFC regardless of the size
of the tree.

The average depths of the subtrees built by the SemiBal-
KDFC algorithm are always less than those of the Naive-
KDFC algorithm. The advantage of SemiBal-KDFC is also
very obvious by referring to the p-values and effect sizes in

Table V. The improvement also gradually increases with the
increase in tree size. The standard deviations of the Naive-
KDFC algorithm in the 2-dimensional and 10-dimensional
input spaces have no observable difference, and are about 0.65
for all kinds of tree sizes. Based on comparison analysis on the
experimental results in Table V, we can find that both mean
value and standard deviation of the KD-tree average depths
in the SemiBal-KDFC algorithm reduce with an increase of
dimensionality. This observation indicates that SemiBal-KDFC
becomes more effective and more stable as the dimension of
the input space increases.

Furthermore, we also investigated the changes of above
two metrics along with the increase of the dimension. The
experimental results are shown in Figure 8. For the metric
“maximum depth of tree”, the distributions of results for the
Naive-KDFC algorithm remain similar for various numbers of
dimensions. However, for the SemiBal-KDFC algorithm, the
distributions of maximum depths gradually decrease as the
number of dimensions increases. More importantly, the distri-
butions of maximum depths for Naive-KDFC are always larger
than those for SemiBal-KDFC. For the metric of the average
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TABLE IV
COMPARISONS OF MAXIMUM DEPTHS OF SUBTREES BETWEEN NAIVE-KDFC AND SEMIBAL-KDFC FOR d = 2 AND d = 10

No. of
nodes

n

d = 2 d = 10
Maximum depth

p-value Effect
size

Maximum depth

p-value Effect
size

Naive-KDFC SemiBal-KDFC Naive-KDFC SemiBal-KDFC

Mean Std.
Dev. Mean Std.

Dev. Mean Std.
Dev. Mean Std.

Dev.
500 19.46 1.90 16.11 1.17 0.0000 0.7755 19.37 1.86 12.78 0.65 0.0000 0.8792
1000 21.97 1.90 18.22 1.19 0.0000 0.8053 22.03 1.87 14.33 0.58 0.0000 0.8833
2000 24.80 2.01 20.35 1.28 0.0000 0.8270 24.74 1.98 15.88 0.61 0.0000 0.8818
5000 28.41 2.00 23.05 1.30 0.0000 0.8522 28.50 1.99 17.89 0.60 0.0000 0.8830
10000 31.24 2.02 25.23 1.28 0.0000 0.8637 31.18 1.98 19.41 0.61 0.0000 0.8808

TABLE V
COMPARISONS OF AVERAGE DEPTHS OF SUBTREES BETWEEN NAIVE-KDFC AND SEMIBAL-KDFC FOR d = 2 AND d = 10

No. of
nodes

n

d = 2 d = 10
Average depth

p-value Effect
size

Average depth

p-value Effect
size

Naive-KDFC SemiBal-KDFC Naive-KDFC SemiBal-KDFC

Mean Std.
Dev. Mean Std.

Dev. Mean Std.
Dev. Mean Std.

Dev.
500 10.64 0.67 9.48 0.32 0.0000 0.8052 10.60 0.62 8.42 0.05 0.0000 0.8658
1000 11.96 0.62 10.67 0.32 0.0000 0.8332 11.97 0.63 9.48 0.05 0.0000 0.8658
2000 13.37 0.64 11.88 0.33 0.0000 0.8484 13.37 0.66 10.54 0.04 0.0000 0.8658
5000 15.19 0.62 13.44 0.32 0.0000 0.8609 15.21 0.63 11.94 0.04 0.0000 0.8658
10000 16.59 0.64 14.69 0.34 0.0000 0.8621 16.56 0.64 13.01 0.04 0.0000 0.8658

depth of tree, the advantage of the SemiBal-KDFC algorithm is
more obvious than that of the Naive-KDFC algorithm. That is,
the distributions of average depths for Naive-KDFC are similar
to one another while those for SemiBal-KDFC observably
decrease as the number of dimensions increases.

Answer to RQ2: Based on the above results, SemiBal-
KDFC can construct a more balanced KD-tree than Naive-
KDFC. The statistical significance and the effect size of the
difference become more profound as the number of dimensions
of the input space increases.

2) Investigation into the Efficiency of SemiBal-KDFC:
Intuitively, a more balanced KD-tree can help to query the
nearest neighbor at a lower computational cost. Although
the above experimental results have confirmed that SemiBal-
KDFC can build a more balanced KD-tree than Naive-KDFC,
here we still investigate whether SemiBal-KDFC can further
improve the efficiency of test case generation.

As shown in Tables VI and VII, in the cases of d = 2, d = 3,
and d = 5, the test case generation time of SemiBal-KDFC is
always less than that of Naive-KDFC. When the number of test
cases is small (such as when n = 100 or 200), the difference
in computation time between the above two algorithms is
small. The advantage of SemiBal-KDFC over Naive-KDFC
in efficiency becomes more observable with the growing
number of test cases. When n ≥ 500, the corresponding effect
size of the difference between the two algorithms is always
greater than 0.4. However, for 10-dimensional input spaces, the
computation time of SemiBal-KDFC is always significantly
greater than that of Naive-KDFC. This phenomenon shows
that, when the dimension increases to a certain extent (namely,

d ≥ 9 in our experiments), SemiBal-KDFC takes quite a bit of
time to compute the spread according to equation (2). Thus,
the gains derived from an enhanced balancing strategy are
offset by the extra computation cost. Hence, for the case
of high dimensions, the strategy in SemiBal-KDFC is not
recommended.

Answer to RQ3: The above experimental results confirm
that SemiBal-KDFC can further improve the efficiency of test
case generation in the case of low dimensions with d ≤ 8.

D. Study of LimBal-KDFC Algorithm

The Naive-KDFC and SemiBal-KDFC algorithms can sig-
nificantly reduce the computation time in finding the nearest
neighbor for a given candidate for the case of low dimensions.
In most situations, they only need to traverse about logn nodes
to find the nearest neighbor for a candidate in a tree with n
nodes [26]. However, the worst case may result in traversing
almost all the nodes in the tree. Furthermore, the performance
of the nearest neighbor query in Naive-KDFC and SemiBal-
KDFC will decrease as the dimension increases. In view of
the above observations, a third LimBal-KDFC algorithm is
proposed to limit the number of backtrackings during the
nearest neighbor query.

Obviously, limited backtracking may lead to approximate
rather than exact nearest neighbors for the ART candidates.
Hence, we need to investigate the following two questions
about the test efficiency and effectiveness of the LimBal-
KDFC algorithm.

RQ4. Can LimBal-KDFC further reduce the test case gen-
eration time (especially in the case of high dimensions)?
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Fig. 8. The distribution of KD-tree depths for different dimensions

TABLE VI
WILCOXON RANK-SUM TEST AND EFFECT SIZE ANALYSIS ON RUNNING TIME BETWEEN NAIVE-KDFC AND SEMIBAL-KDFC FOR GENERATING TEST

CASES FOR d = 2 AND d = 3

No. of test
cases n

d = 2 d = 3
Mean of running times (ms) p-value Effect

size
Mean of running times (ms) p-value Effect

sizeNaive-KDFC SemiBal-KDFC Naive-KDFC SemiBal-KDFC
100 0.31 0.29 0.0000 0.2443 0.48 0.46 0.0000 0.1553
200 0.67 0.63 0.0000 0.3460 1.17 1.07 0.0000 0.3401
500 2.04 1.83 0.0000 0.6037 3.64 3.02 0.0000 0.7361
1000 4.41 3.98 0.0000 0.6659 8.42 6.92 0.0000 0.8267
2000 10.48 9.06 0.0000 0.8203 20.22 16.43 0.0000 0.8264
5000 31.15 26.81 0.0000 0.6587 61.57 49.34 0.0000 0.8131

10000 68.68 60.38 0.0000 0.4474 138.89 109.30 0.0000 0.7965
15000 109.89 97.43 0.0000 0.4290 220.81 175.73 0.0000 0.8008
20000 150.94 133.22 0.0000 0.4581 306.21 243.72 0.0000 0.7876

RQ5. Does limited backtracking in LimBal-KDFC result in
significant degradation of the failure-detection capability?

1) Investigation into the Efficiency of LimBal-KDFC: We
first compare the efficiencies between LimBal-KDFC and
SemiBal-KDFC. The comparison results are shown in Table
VIII. For the case of d = 2, the test case generation time by the
SemiBal-KDFC algorithm is slightly less than that by LimBal-
KDFC in most cases, but the effect sizes of the differences are
very small in most cases. On the contrary, when n ≥ 10000,
the time for LimBal-KDFC is reduced by about 1% in relation
to the time for SemiBal-KDFC, but again the difference is
not significant. For the case of d = 3, the mean values of
computation times of these two algorithm are nearly identical
when n ≤ 1000. Although sometimes the p-value of the rank-
sum test is less than 0.05, usually the effect size is very small.
When the number of test cases exceeds 1000, the time for
LimBal-KDFC is less than that for SemiBal-KDFC, but the
effect sizes of the differences between the two algorithms are
still very small in most cases.

Moreover, we further investigated the experimental results
in the cases of d = 5 and d = 10. As shown in Table IX,
the computation time of LimBal-KDFC algorithm is almost
always less than that of SemiBal-KDFC algorithm. At the

same time, the difference between the two algorithms grad-
ually enlarges as the number of test cases increases. When
the number of test cases is small (namely, when n ≤ 200
in d = 5 and n ≤ 500 in d = 10), the effect size of the
difference is small. The difference becomes sizable when n is
large. Furthermore, the difference observably increases with
the increase of the number of dimensions.

Let us also compare LimBal-KDFC with FSCS-ART and
Naive-KDFC (in Table III) for the cases of d = 5 and d = 10.
For d = 5, LimBal-KDFC algorithm is more efficient than both
FSCS-ART and Naive-KDFC when n ≥ 500. The advantage
becomes more notable as the number of test cases increases.
For d = 10, the advantage of LimBal-KDFC in computation
time is shown only when n ≥ 2000. However, for high dimen-
sions with a large number of test cases, LimBal-KDFC can
markedly reduce the computation time.

In addition, we also investigated the trend of the difference
between LimBal-KDFC and FSCS-ART as the number of
dimensions increases. As shown in Figure 9(a), when the
number of test cases n = 500, LimBal-KDFC is more efficient
than FSCS-ART for low dimensions (namely, when d ≤ 5).
When n = 1000 (Figure 9(b)), the demarcation point of d
with respect to the dominance relation of LimBal-KDFC and
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TABLE VII
WILCOXON RANK-SUM TEST AND EFFECT SIZE ANALYSIS ON RUNNING TIME BETWEEN NAIVE-KDFC AND SEMIBAL-KDFC FOR GENERATING TEST

CASES FOR d = 5 AND d = 10

No. of test
cases n

d = 5 d = 10
Mean of running times (ms) p-value Effect

size
Mean of running times (ms) p-value Effect

sizeNaive-KDFC SemiBal-KDFC Naive-KDFC SemiBal-KDFC
100 0.89 0.87 0.6479 0.0102 1.54 1.63 0.0000 0.2760
200 2.49 2.38 0.0000 0.3350 5.73 6.27 0.0000 0.7143
500 9.54 8.37 0.0000 0.7850 32.72 38.00 0.0000 0.8324
1000 25.22 21.21 0.0000 0.8431 114.50 144.10 0.0000 0.8633
2000 65.20 53.86 0.0000 0.6715 343.45 495.19 0.0000 0.8658
5000 212.93 173.10 0.0000 0.7946 1709.48 2487.87 0.0000 0.8658

10000 491.69 407.53 0.0000 0.7975 5681.22 7597.75 0.0000 0.8658
15000 793.39 664.39 0.0000 0.8254 11189.24 14134.76 0.0000 0.8658
20000 1119.45 924.01 0.0000 0.3251 17340.57 24187.78 0.0000 0.8658

TABLE VIII
WILCOXON RANK-SUM TEST AND EFFECT SIZE ANALYSIS ON RUNNING TIME BETWEEN SEMIBAL-KDFC AND LIMBAL-KDFC FOR GENERATING TEST

CASES FOR d = 2 AND d = 3

No. of test
cases n

d = 2 d = 3
Mean of running times (ms) p-value Effect

size
Mean of running times (ms) p-value Effect

sizeSemiBal-KDFC LimBal-KDFC SemiBal-KDFC LimBal-KDFC
100 0.29 0.29 0.4162 0.0182 0.46 0.48 0.4249 0.0178
200 0.63 0.66 0.0019 0.0695 1.07 1.09 0.0000 0.1625
500 1.83 1.85 0.0000 0.1280 3.02 3.03 0.0010 0.0738
1000 3.98 4.04 0.0147 0.0546 6.92 6.90 0.0150 0.0544
2000 9.06 9.11 0.0074 0.0599 16.43 16.14 0.0000 0.2123
5000 26.81 27.18 0.0000 0.1360 49.34 49.15 0.0688 0.0407
10000 60.38 59.35 0.0000 0.1168 109.30 108.82 0.3216 0.0222
15000 97.43 96.81 0.3219 0.0222 175.73 173.31 0.0007 0.0756
20000 133.77 132.98 0.0580 0.0424 243.72 242.33 0.1425 0.0328

FSCS-ART increases to 7. In other words, for d ≤ 7, LimBal-
KDFC outperforms FSCS-ART in terms of efficiency whereas
for d > 7, the dominance relation is reversed. When n = 2000
(Figure 9(c)), LimBal-KDFC is more efficient than FSCS-
ART for all the cases of d ≤ 10. Furthermore, when n = 5000
(Figure 9(d)), the computation time of LimBal-KDFC is less
than half of FSCS-ART even for the case of d = 10.

Answer to RQ4: The test case generation time of LimBal-
KDFC is comparable to that of SemiBal-KDFC in the case of
low dimensions (with d ≤ 4), but is observably less than that
of SemiBal-KDFC for higher dimensions. Compared with the
original FSCS-ART, LimBal-KDFC is more efficient in the
case of low dimensions and the case of high dimensions with
a large test set.

2) Investigation into the Failure-Detection Effectiveness of
LimBal-KDFC: As mentioned earlier, both Naive-KDFC and
SemiBal-KDFC find the exact nearest neighbor of a given
candidate. Hence, the test cases generated by these two al-
gorithms are the same as those from the original FSCS-ART
algorithm. As a result, the failure-detection effectiveness of the
above three algorithms are identical. By contrast, since limited
backtracking is applied in LimBal-KDFC, the nearest neighbor
found by LimBal-KDFC for the candidate is an approximate
one, and hence LimBal-KDFC has a different set of test case
as compared with the other algorithms. For this reason, it is

necessary to validate whether the approximate treatment in
LimBal-KDFC has a negative effect on its failure-detection
capability.

Here, the effects of FSCS-ART and LimBal-KDFC for
detecting failures in three kinds of patterns are deeply studied.
The experiment for each kind of failure regions was repeated
in 10000 trials. In each trial, the failure region was randomly
placed in the input space, and was used for FSCS-ART and
LimBal-KDFC, respectively. In the experiment, we also adopt-
ed the Wilcoxon rank-sum test to investigate the difference in
F-ratios between these two algorithms.

In the case of d = 2, the F-ratio of LimBal-KDFC is always
similar to that of FSCS-ART in all kinds of failure patterns
and failure rates (see Table X). The p-values of the rank-sum
tests in all cases are far greater than 0.05, and the effect sizes
are always very small (namely, ≤ 0.01). The results show that
LimBal-KDFC has no significant deterioration to FSCS-ART
in failure-detection capability. Meanwhile, the change trend
of the F-ratio of LimBal-KDFC for the change of failure rate
is also very consistent with that of FSCS-ART. In the other
two cases of d = 3 and d = 4, the p-values are also greater
than 0.05 and the effect sizes are always very small, that is,
LimBal-KDFC still has no significant deterioration of failure-
detection capability when compared with FSCS-ART. Besides,
the change trends of the F-ratios of these two algorithms
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TABLE IX
WILCOXON RANK-SUM TEST AND EFFECT SIZE ANALYSIS ON RUNNING TIME BETWEEN SEMIBAL-KDFC AND LIMBAL-KDFC FOR GENERATING TEST

CASES FOR d = 5 AND d = 10

No. of test
cases n

d = 5 d = 10
Mean of running times (ms) p-value Effect

size
Mean of running times (ms) p-value Effect

sizeSemiBal-KDFC LimBal-KDFC SemiBal-KDFC LimBal-KDFC
100 0.87 0.89 0.0000 0.1079 1.63 1.62 0.0176 0.0531
200 2.38 2.37 0.0000 0.1421 6.27 6.23 0.0000 0.1774
500 8.37 8.11 0.0000 0.3780 38.00 37.80 0.0207 0.0517
1000 21.21 19.98 0.0000 0.6213 144.10 119.15 0.0000 0.8591
2000 53.86 49.97 0.0000 0.3942 495.19 289.07 0.0000 0.8658
5000 173.10 160.48 0.0000 0.5322 2487.87 922.05 0.0000 0.8658
10000 407.53 374.03 0.0000 0.5760 7597.75 2151.56 0.0000 0.8658
15000 664.39 616.48 0.0000 0.6022 14134.76 3603.84 0.0000 0.8658
20000 924.01 864.85 0.0000 0.6473 24187.78 5679.24 0.0000 0.8658

TABLE X
WILCOXON RANK-SUM TEST AND EFFECT SIZE ANALYSIS ON F -ratios BETWEEN LIMBAL-KDFC AND FSCS-ART

Dim.
Failure
Rate

θ

Block Patterns Strip Patterns Point Patterns
F-ratio (%)

p-value Effect
size

F-ratio (%)
p-value Effect

size

F-ratio (%)
p-value Effect

sizeFSCS-
ART

LimBal-
KDFC

FSCS-
ART

LimBal-
KDFC

FSCS-
ART

LimBal-
KDFC

d = 2

0.0100 67.77 67.19 0.7565 0.0022 92.71 92.12 0.2221 0.0086 98.83 99.05 0.5850 0.0039
0.0050 65.96 66.32 0.7168 0.0026 94.49 93.85 0.7124 0.0026 98.19 98.76 0.7345 0.0024
0.0020 63.85 64.45 0.3313 0.0069 96.61 95.32 0.2989 0.0073 98.45 98.64 0.9718 0.0002
0.0010 63.00 63.39 0.5514 0.0042 96.17 97.45 0.3710 0.0063 97.76 96.56 0.2161 0.0087
0.0005 63.79 63.88 0.8052 0.0017 97.98 97.06 0.6274 0.0034 96.22 95.93 0.4775 0.0050
0.0002 62.81 62.09 0.2900 0.0075 98.60 97.40 0.1587 0.0100 95.03 94.85 0.7648 0.0021
0.0001 62.12 62.30 0.9955 0.0000 97.71 98.43 0.9529 0.0004 95.73 96.14 0.9964 0.0000

d = 3

0.0100 83.60 84.31 0.9563 0.0004 97.06 97.53 0.4008 0.0059 110.75 110.36 0.3296 0.0069
0.0050 80.41 79.76 0.4820 0.0050 98.61 99.29 0.5445 0.0043 108.37 108.46 0.6764 0.0030
0.0020 77.53 77.04 0.8420 0.0014 98.52 98.00 0.8957 0.0009 105.76 105.14 0.3684 0.0064
0.0010 75.41 74.00 0.0742 0.0126 100.90 100.51 0.7831 0.0019 102.07 102.73 0.5089 0.0047
0.0005 73.34 73.91 0.5088 0.0047 100.01 100.23 0.7637 0.0021 101.52 102.22 0.8122 0.0017
0.0002 72.60 72.97 0.5354 0.0044 99.84 100.33 0.7191 0.0025 99.73 98.05 0.2574 0.0080
0.0001 71.89 71.78 0.7705 0.0021 100.57 99.92 0.7215 0.0025 98.66 98.71 0.9229 0.0007

d = 4

0.0100 106.44 104.71 0.2866 0.0075 99.84 99.20 0.3953 0.0060 128.47 126.87 0.6644 0.0031
0.0050 98.66 97.28 0.1957 0.0091 99.14 98.86 0.6061 0.0036 122.59 120.67 0.6677 0.0030
0.0020 92.53 91.56 0.2322 0.0084 100.11 100.29 0.8266 0.0015 117.99 116.55 0.4010 0.0059
0.0010 90.73 88.73 0.2195 0.0087 100.12 100.36 0.5928 0.0038 114.24 113.47 0.7692 0.0021
0.0005 85.23 86.40 0.3862 0.0061 99.56 99.38 0.1928 0.0092 109.66 109.54 0.5423 0.0043
0.0002 85.39 83.55 0.0761 0.0125 100.63 100.22 0.5033 0.0047 107.05 107.35 0.8673 0.0012
0.0001 83.35 81.84 0.1137 0.0112 100.83 101.83 0.5635 0.0041 105.25 104.65 0.8100 0.0017

are also consistent. LimBal-KDFC and FSCS-ART have an
obvious rise in the F-ratio along with the increase of the
number of dimensions.

The failure-detection effectiveness of LimBal-KDFC for
d = 5 and d = 10 is further explored. The corresponding
experimental results are shown in Table XI. For block failure
patterns, the failure-detection effectiveness of our LimBal-
KDFC algorithm is always better than that of the original
FSCS-ART for both values of d. The p-values of the rank-sum
tests in F-ratios between these two algorithms are always less
than 0.05 when θ ≤ 0.02. The effect sizes of the differences
between the two algorithms are very small in most cases,
but it exceeds 0.1 when the failure rate drops to 0.0005 or
below. Meanwhile, the difference increases as the number of
dimensions increases. For strip patterns, the F-ratios of these
two algorithms do not have significant difference for both
values of d. For point patterns, the F-ratio of LimBal-KDFC

is also always less than that of FSCS-ART. Similar to the
results in block failure patterns, the p-values are always less
than 0.05 and the effect sizes are still very small in most cases.
However, the experimental results show that the effect size of
the difference gradually increases as the failure rate decreases
or as the number of dimensions increases. For example, when
the failure rate drops to 0.0002 in the case of d = 10, the
effect size is over 0.1. Based on these observations, it is clear
that LimBal-KDFC can alleviate the degradation problem of
FSCS-ART in detecting failures in block or point patterns for
programs with high-dimensional input spaces.

In the original FSCS-ART, test cases are selected strictly
according to the max-min distance criterion in equation (1).
This test case selection criterion usually incurs a boundary
effect [36], and the effect becomes more notable as the num-
ber of dimensions increases [37]. However, the approximate
nearest neighbor query in our LimBal-KDFC algorithm can
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Fig. 9. Execution times for generating test cases for various dimensions of the input space

reduce the “boundary effect”, so the advantage of LimBal-
KDFC over FSCS-ART in failure-detection effectiveness is
exhibited in the case of high-dimensional input spaces.

Answer to RQ5: Although LimBal-KDFC only realizes
the nearest neighbor query approximately, its failure-detection
capability has no significant deterioration compared with the
original FSCS-ART for low-dimensional input spaces (with
d ≤ 4). More importantly, it exhibits a better performance
in failure-detection effectiveness than FSCS-ART for higher-
dimensional spaces.

E. Summary and Discussions on Simulation Study

1) Summary on Simulation Study: Based on the above
simulation studies, we can confirm that the three KDFC-
ART algorithms have realized improvements in efficiency
over the original FSCS-ART algorithm in the following two
situations: (1) low-dimensional input spaces and (2) large test
set sizes (with a small failure rate in the program under test).
Specifically, Naive-KDFC stores test cases incrementally to a
KD-tree by splitting the input space dimension by dimension
in a round-robin fashion. It requires less computation time to

generate test cases than the original FSCS-ART for the case of
low-dimensional input spaces (with d ≤ 5) or when the number
of test cases is large for high-dimensional spaces, such as
n≥ 5000 for d = 10. SemiBal-KDFC constructs semi-balanced
trees by dynamically balancing the dimension splitting. The
experimental results show that it can further improve the effi-
ciency of Naive-KDFC for low-dimensional spaces. However,
the computation cost for balancing will notably increase as
the dimension increases. For d > 8, the efficiency of SemiBal-
KDFC becomes worse than that of Naive-KDFC. We further
find from the experimental results that the Naive-KDFC and
SemiBal-KDFC algorithms have better efficiency only when
the number of test cases n ≫ 2d . When the dimension reaches
a limited extent, these two algorithms are useful only when
the number of test cases is large. It is, therefore, necessary to
further accelerate nearest neighbor queries by applying some
limits in backtracking.

LimBal-KDFC is the most efficient among our three KDFC-
ART algorithms. It improves the efficiency by imposing a
bound on the steps of backtracking for searching the nearest
neighbor. For d ≤ 4, LimBal-KDFC is as efficient as SemiBal-
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TABLE XI
WILCOXON RANK-SUM TEST AND EFFECT SIZE ANALYSIS ON F -ratios BETWEEN LIMBAL-KDFC AND FSCS-ART IN HIGH-DIMENSIONAL INPUT SPACES

Dim.
Failure
Rate

θ

Block Patterns Strip Patterns Point Patterns
F-ratio (%)

p-value Effect
size

F-ratio (%)
p-value Effect

size

F-ratio (%)
p-value Effect

sizeFSCS-
ART

LimBal-
KDFC

FSCS-
ART

LimBal-
KDFC

FSCS-
ART

LimBal-
KDFC

d = 5

0.0100 132.59 127.11 0.0506 0.0138 99.70 99.01 0.6561 0.0031 153.30 148.99 0.0742 0.0126
0.0050 123.95 119.26 0.0563 0.0135 99.82 98.79 0.0704 0.0128 145.66 141.12 0.1818 0.0094
0.0020 114.74 109.16 0.0003 0.0258 99.74 101.02 0.7584 0.0022 134.35 129.19 0.0345 0.0149
0.0010 109.28 104.06 0.0002 0.0261 98.81 98.39 0.8309 0.0015 129.18 123.23 0.0008 0.0238
0.0005 105.37 99.74 0.0006 0.0242 99.88 101.43 0.5756 0.0040 124.91 118.21 0.0004 0.0253
0.0002 99.89 95.10 0.0006 0.0244 101.40 101.43 0.8391 0.0014 120.70 115.46 0.0021 0.0217
0.0001 98.78 94.17 0.0001 0.0276 100.06 100.54 0.6835 0.0037 117.33 112.15 0.0059 0.0195

d = 10

0.0100 392.36 380.96 0.0219 0.0162 100.06 100.84 0.4434 0.0054 256.87 241.85 0.0128 0.0244
0.0050 360.77 339.64 0.0580 0.0134 100.90 100.51 0.5906 0.0038 284.11 265.91 0.0000 0.0470
0.0020 314.08 271.30 0.0000 0.0591 101.99 101.88 0.7806 0.0020 289.26 265.38 0.0003 0.0358
0.0010 284.39 232.34 0.0000 0.0821 99.98 100.64 0.5317 0.0044 281.67 248.12 0.0000 0.0624
0.0005 261.65 205.26 0.0000 0.1446 99.05 99.87 0.6059 0.0036 266.75 231.38 0.0000 0.0751
0.0002 244.61 182.01 0.0000 0.1975 101.73 100.69 0.4165 0.0057 242.80 200.97 0.0000 0.1046
0.0001 222.18 166.75 0.0000 0.1849 101.70 100.87 0.6645 0.0031 236.35 191.36 0.0000 0.1391

KDFC. For high dimensions, LimBal-KDFC is more efficient
than Naive-KDFC and SemiBal-KDFC. LimBal-KDFC has
noticeably alleviated the curse of dimensionality. For example,
for the case of d = 10, the computation time of LimBal-KDFC
is less than that of FSCS-ART when n ≥ 2000. In addition,
since the balancing strategy no longer brings good effect for
d > 8, LimBal-KDFC can be further speeded up by omitting
the balancing strategy in its implementation in the case of high
dimensions.

With regard to the failure-detection effectiveness, both
Naive-KDFC and SemiBal-KDFC search the exact nearest
neighbor for each candidate as FSCS-ART algorithm, so these
three algorithms have the same failure-detection capability in
theory. Although LimBal-KDFC only finds an approximate
nearest neighbor, its failure-detection effectiveness has no
significant deterioration compared with the original FSCS-
ART. For the case of high dimensions, in fact, LimBal-KDFC
exhibits a stronger ability in detecting failures in block and
point patterns.

2) Applications of the Algorithms: The adaptive random
testing (ART) approach represents a family of algorithm-
s aiming to enhance the failure-detection effectiveness of
random testing. Many such algorithms have been developed
based on different intuitions to evenly spread the random test
cases. These ART algorithms have their distinct effectiveness
performance, efficiency performance and characteristics [1].
As a consequence, each ART algorithm has its own favorable
and unfavorable scenarios for its application.

The paper by Arcuri and Briand [14] casts doubt on the
cost-effectiveness of ART. It points out that the FSCS-ART
algorithm requires a considerable amount of time to generate
test cases even for very simple programs. In fact, the subject
programs in their study have very small failure rates, require
large numbers of test cases to detect failures, and the program
execution time for each test case is short. It is not appropriate
to apply FSCS-ART in such scenarios because of the quadratic
complexity in test case generation [13]. On the other hand,
their study underscores the need to reduce the test case gener-

ation time by FSCS-ART in practical applications, especially
when the failure rate is small and the program execution time
is short. In the present paper, we aim at taking a step in this
important research direction.

Our study reduces the computational overhead by applying
KD-trees to support rapid nearest neighbor queries. As shown
in the experimental results, the three KDFC-ART algorithms
can improve the efficiency in application scenarios involving
(1) low-dimensional input spaces and (2) high-dimensional
input spaces with low failure rates. Furthermore, in the case
of high-dimensional input spaces, LimBal-KDFC can achieve
better effectiveness in failure detection than the original FSCS-
ART algorithm.

3) Potential Extensions of the Algorithms: Although the
proposed KDFC-ART algorithms demonstrate improvements
in efficiency, there is further room for improvement in some
cases. For example, the advantages of Naive-KDFC and
SemiBal-KDFC algorithms are not significant for the case of
high-dimensional input spaces. In particular, when testing a
program with a high failure rate that requires a small number
of test cases, the efficiencies of Naive-KDFC and SemiBal-
KDFC may be worse than that of the original FSCS-ART
algorithm. In LimBal-KDFC, we adopt a limited backtracking
strategy when processing the nearest neighbor query. Although
this treatment shows an observable improvement in efficiency
for high-dimensional spaces, there are other strategies in KD-
trees that may also be adopted to alleviate the curse of
dimensionality. For example, best-bin-first search [38] is a
heuristic strategy to speed up nearest neighbor queries in
KD-trees. A priority queue is used to expedite backtracking.
Lengthy searches can also be avoided by fixing the maximum
number of leaf nodes explored. In addition, other efficient
variants of KD-trees have been proposed, such as multi-
ple randomized KD-trees [39], propagation-assisted KD-trees
[40], and randomized KD-forests [41]. These state-of-the-art
search algorithms for KD-trees can alternatively be applied
to generate test cases efficiently for high-dimensional input
spaces when the number of test cases is no more than the
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order of 2d .

V. EMPIRICAL STUDIES

A. Experimental Setup

The above simulations have demonstrated that the enhanced
FSCS-ART algorithms based on KD-tree have better efficiency
than the original FSCS-ART in most cases. Is this conclusion
applicable to programs in practice? Thus, it needs to investi-
gate the effect of the three enhanced algorithms in practical
applications.

In this section, we report our empirical results on 23
programs that are implemented in Java. The first 12 programs
have widely been used in ART studies [13], [42]. They
are based on the algorithms published in Numerical Recipes
[44] and ACM’s Collected Algorithms [43]. The programs
calDay, complex and line are taken from Ferrer et al. [45].
The programs pntLinePos, pntTrianglePos, and twoLinesPos
determine the position relationships between a point and a
line segment, a points and a triangle, and two line segments,
respectively. The triangle program classifies a triangle into
one of three categories, namely, acute, right, and obtuse. The
input parameters of the above four geometric programs are
the coordinates of points or the endpoints of line segments.
These four programs have been implemented according to
the exercises in Introduction to Java Programming and Data
Structures [46]. The program nearestDistance finds the nearest
point pair from the five points on the Euclidean plane. The
program calGCD calculates the greatest common divisor of
ten integers. The select program [47] returns the k-th largest
element from an unordered array. The final program, tcas,
is an aircraft collision avoidance system created at Siemens
[48], which is also used in the experiments of kernel density
adaptive random testing (KD-ART) [49] by Patrick et al. The
descriptive statistics of these programs are listed in Table XII.
Specifically, the dimensions of their input spaces vary from 1
to 12.

We seeded the same mutant faults into the programs for
comparing the failure-detection capabilities of the ART al-
gorithms. These faults were generated using the following
six common mutation operators [50]: arithmetic operator
replacement (AOR), relational operator replacement (ROR),
scalar variable replacement (SVR), constant replacement (CR),
statement deletion (SDL), and return statement replacement
(RSR). The fault types and the total number of faults for each
program are shown in the columns of “fault type” and “total
faults” in Table XII, respectively. The failure rate of each faulty
program was computed in the following way: A huge number
of test inputs were continuously picked up in small steps in an
almost exhaustive manner from the input domain. They were
used to run the program to see whether the execution passes
or fails. The failure rate θ could then be calculated as the
ratio of the number of failure-causing inputs to the number
of all test inputs. The failure rates of all the 23 programs
range from 0.0001 to 0.002. Since the input domains of the
programs calGCD, select, and tcas are huge, it is impossible
to determine their failure rates through exhaustive execution.
Thus, their failure rates are marked as “not available” (NA) in

Table XII. In the empirical studies, the hardware environment
was the same as the above simulation analysis, and the number
of repeated trials was set to 5000.

B. Efficiency Comparisons
For the subject programs in this study, we want to investi-

gate the following efficiency problem of three enhanced FSCS-
ART algorithms, namely, Naive-KDFC, SemiBal-KDFC and
LimBal-KDFC.

RQ6. Are these three enhanced versions of FSCS-ART still
efficient to generate test cases for the subject programs?

In the experiments, the time of testing was divided into
two parts: the time for generating test cases and the time for
executing programs. In general, for the programs under test,
the test cases are incrementally generated until revealing the
first failure of program. As mentioned earlier, the number of
generated test cases is denoted by the F-measure. Thus, the
time for generating test cases usually refers to the time of gen-
erating all F-measure test cases in the algorithm. Similarly, the
test case execution time refers to the total program execution
time for all the generated test cases.

As shown in Table XIII, the test case execution time is
extremely small and is far less than the test case generation
time. Moreover, for each of the subject programs, the test
execution times of the four ART algorithms are comparable.
From that, it can be seen that the test case generation is the
major factor for the efficiency of the whole testing activity of
the above 23 programs. That is to say, if the program execution
time is very short, it is very important to improve the test case
generation efficiency. Accordingly, the exploration in reducing
the test case generation time of FSCS-ART is particularly
necessary.

When considering the efficiency of test case generation, all
the three KDFC-ART algorithms show significant reduction
in computation time compared with the original FSCS-ART
for all the programs except nearestDistance and calGCD. The
most notable case is the program probks, in which the original
FSCS-ART algorithm has to use 1388.40 ms to generate test
cases before detecting the first failure. However, our Naive-
KDFC algorithm takes only 19.48 ms for the same task. The
input spaces for the programs nearestDistance and calGCD
are 10-dimensional. Naive-KDFC and LimBal-KDFC exhibit
better efficiencies than FSCS-ART for nearestDistance while
the execution time using SemiBal-KDFC is slightly larger than
that of FSCS-ART. Similarly, LimBal-KDFC is more efficient
than FSCS-ART in generating test cases for the program
calGCD while Naive-KDFC and SemiBal-KDFC are slower
than FSCS-ART in detecting the first failure. It is not difficult
to see that the above observations are in good agreement
with previous simulation analysis. In other words, when the
number of dimensions is less than or equal to 8, the efficiencies
of the three KDFC-ART algorithms is better than that of
FSCS-ART; in relatively higher-dimensional input domains,
the performance of Naive-KDFC and SemiBal-KDFC is lower
than that of FSCS-ART, while LimBal-KDFC can always
maintain its advantages in efficiency. Even so, in practical
applications, Naive-KDFC and SemiBal-KDFC may still be
faster than FSCS-ART, such as for programs select and tcas.
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TABLE XII
DESCRIPTIVE STATISTICS OF THE 23 SUBJECT PROGRAMS

Program Dim. Input Space Size
(LOC) Fault Types Total

Faults
Failure
RateFrom To

airy 1 –5000 5000 43 CR 1 0.000716
bessj0 1 –300000 300000 28 AOR,ROR,SVR,CR 5 0.001373
erfcc 1 –30000 30000 14 AOR,ROR,SVR,CR 4 0.000574

probks 1 –50000 50000 22 AOR,ROR,SVR,CR 4 0.000387
tanh 1 –500 500 18 AOR,ROR,SVR,CR 4 0.001817
bessj 2 (2, –1000) (300, 15000) 99 AOR,ROR,CR 4 0.000716

gammq 2 (0, 0) (1700, 40) 106 ROR,CR 4 0.000830
sncndn 2 (–5000, –5000) (5000, 5000) 64 SVR,CR 5 0.001623
golden 3 (–100, –100, –100) (60, 60, 60) 80 ROR,SVR,CR 5 0.000550
plgndr 3 (10, 0, 0) (500, 11, 1) 36 AOR,ROR,CR 5 0.000368

cel 4 (0.001, 0.001,
0.001, 0.001)

(1, 300,
10000, 1000) 49 AOR,ROR,CR 3 0.000332

el2 4 (0, 0, 0, 0) (250, 250, 250, 250) 78 AOR,ROR,SVR,CR 9 0.000690
calDay 5 (1,1,1,1,1800) (12,31,12,31,2200) 37 SDL 1 0.000632

complex 6 (-20,-20,-20,
-20,-20,-20)

(20,20,20,
20,20,20) 68 SVR 1 0.000901

pntLinePos 6 (-25,-25,-25,
-25,-25,-25)

(25,25,25,
25,25,25) 23 CR 1 0.000728

triangle 6 (-25,-25,-25,
-25,-25,-25)

(25,25,25,
25,25,25) 21 CR 1 0.000713

line 8 (-10,-10,-10,-10,
-10,-10,-10,-10)

(10,10,10,10,
10,10,10,10) 86 ROR 1 0.000303

pntTrianglePos 8 (-10,-10,-10,-10,
-10,-10,-10,-10)

(10,10,10,10,
10,10,10,10) 68 CR 1 0.000141

twoLinesPos 8 (-15,-15,-15,-15,
-15,-15,-15,-15)

(15,15,15,15,
15,15,15,15) 28 CR 1 0.000133

nearestDistance 10 (1,1,1,1,1,
1,1,1,1,1)

(15,15,15,15,15,
15,15,15,15,15) 26 CR 1 0.000256

calGCD 10 (1,1,1,1,1,
1,1,1,1,1)

(1000,1000,1000,
1000,1000,1000,

1000,1000,1000,1000)
24 AOR 1 NA

select 11 (1,1,1,1,1,
1,1,1,1,1,1)

(10,100,100,100,100,
100,100,100,100,100,100) 117 RSR,CR 2 NA

tcas 12 (0,0,0,0,0,0,
0,0,0,0,0,0)

(1000,1,1,50000,
1000,50000,3,

1000,1000,2,2,1)
182 CR 1 NA

Furthermore, the differences between Naive-KDFC,
SemiBal-KDFC, and LimBal-KDFC in efficiency are also
analyzed in the experiments. In this part of the analysis,
we divide the 23 subject programs into two categories. (1)
The first category includes programs whose input domains
resemble hypercubes, that is, the ranges of all dimensions
are equal or comparable. In particular, programs with 1-
dimensional input domains are under the first category. Since
the semi-balanced strategy is not useful in a 1-dimensional
space, and since SemiBal-KDFC and LimBal-KDFC need
additional computation costs, their efficiencies are only
similar to that of Naive-KDFC, or even a little lower than
Naive-KDFC for the case of program probks. For programs
with 2- to 6-dimensional input domains, SemiBal-KDFC and
LimBal-KDFC have an obvious advantage over Naive-KDFC.
Meanwhile, the advantage of LimBal-KDFC over SemiBal-
KDFC is not observable. LimBal-KDFC may even be a little
less efficient than SemiBal-KDFC for some programs with
2- or 3-dimensional input domains such as programs gammq

and golden. For programs with 8- or higher-dimensional input
domains, the advantage of SemiBal-KDFC over Naive-KDFC
is no longer observable. By contrast, LimBal-KDFC shows
very obvious advantages over Naive-KDFC and SemiBal-
KDFC. (2) The other category of programs, namely, bessj,
gammq, plgndr, cel, calDay, and tcas, do not have input
domains that resemble hypercubes. In other words, the
ranges of various dimensions of the input domains are quite
different. For this category of programs, the efficiencies of
SemiBal-KDFC and LimBal-KDFC have greatly improved
over that of Naive-KDFC, and the test case generation time
has been reduced by 46.1% to 96.7%, On the other hand, the
efficiencies of SemiBal-KDFC and LimBal-KDFC are very
close to each other.

For programs with input domains that do not resemble
hypercubes, an underlying reason for the great improvements
of SemiBal-KDFC and LimBal-KDFC over Naive-KDFC lies
in the semi-balanced strategy. Unlike round-robin, the semi-
balanced strategy prioritizes the long dimensions of the input
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TABLE XIII
THE TEST CASE GENERATION TIME AND EXECUTION TIME FOR DETECTING FAILURES IN THE 23 SUBJECT PROGRAMS

Program
Test Case Generation Time (ms) Test Case Execution Time (ms)

FSCS-
ART

Naive-
KDFC

SemiBal-
KDFC

LimBal-
KDFC

FSCS-
ART

Naive-
KDFC

SemiBal-
KDFC

LimBal-
KDFC

airy 21.07 1.85 1.82 1.84 0.19 0.16 0.17 0.16
bessj0 6.77 0.91 0.89 0.91 0.10 0.09 0.09 0.09
erfcc 330.86 8.54 8.45 8.36 0.84 0.82 0.85 0.85

probks 1388.40 19.48 20.14 20.30 147.65 151.16 149.17 150.18
tanh 3.16 0.58 0.58 0.59 0.03 0.02 0.03 0.02
bessj 10.12 3.74 1.46 1.39 0.46 0.46 0.45 0.43

gammq 67.33 7.81 4.16 4.21 0.37 0.36 0.37 0.38
sncndn 25.85 2.98 2.57 2.51 0.38 0.39 0.39 0.38
golden 200.77 18.28 13.76 13.93 9.14 9.10 8.87 9.04
plgndr 189.12 40.04 7.74 7.76 0.13 0.13 0.13 0.13

cel 233.54 68.34 11.50 11.17 0.15 0.15 0.15 0.15
el2 46.54 11.75 9.15 8.89 0.13 0.18 0.18 0.18

calDay 228.65 76.79 20.27 19.64 2.14 2.23 2.05 2.00
complex 175.58 64.21 57.38 51.38 0.24 0.24 0.25 0.24

pntLinePos 248.83 80.25 70.61 53.79 0.06 0.09 0.08 0.08
triangle 217.72 76.64 66.72 55.86 0.13 0.15 0.16 0.15

line 1786.56 619.62 614.76 366.45 0.23 0.25 0.23 0.23
pntTrianglePos 4038.71 1064.63 1051.80 478.43 1.17 0.90 0.87 0.75
twoLinesPos 12490.38 2439.88 2183.94 890.44 1.37 0.96 0.92 0.78

nearestDistance 743.36 531.58 760.02 324.16 0.35 0.40 0.40 0.38
calGCD 184.16 197.66 270.55 158.27 1.04 1.07 1.11 1.05

select 2215.23 1738.95 1962.32 762.24 1.93 2.10 2.13 1.97
tcas 1486.34 913.29 30.66 29.93 0.21 0.23 0.21 0.20

domains during the splitting process. For KD-trees constructed
by this strategy, much fewer nodes will be traversed when
finding the nearest neighbors, thus improving the efficiency
substantially.

Answer to RQ6: We can conclude from the results of
the empirical study that the three KDFC-ART algorithms
can significantly reduce the test case generation time for
most of the subject programs under study. We also have the
following two findings on the comparative efficiencies of the
three KDFC-ART algorithms: (1) as the number of dimensions
increases, LimBal-KDFC becomes the more obvious winner;
(2) for programs with input domains that do not resemble
hypercubes, SemiBal-KDFC and LimBal-KDFC show very
obvious advantage over Naive-KDFC in efficiency.

C. Comparisons of Failure-Detection Effectiveness

We have seen that LimBal-KDFC is more effective than
Naive-KDFC and SemiBal-KDFC in reducing the test case
generation time for the subject programs, especially for high-
dimensional input spaces. However, unlike Naive-KDFC and
SemiBal-KDFC, LimBal-KDFC adopts a limited backtracking
strategy. Thus, the nearest neighbor query for a given candidate
may not necessarily return the actual nearest neighbor. As a
consequence, it is important to investigate the failure-detection
capability of LimBal-KDFC, and to confirm the following
research question:

RQ7. Does LimBal-KDFC have a failure-detection capabil-
ity on the subject programs comparable to that of FSCS-ART?

During the experimentation, we collected the F-measures
of the original FSCS-ART and the LimBal-KDFC algorithms
in 5000 trials of the 23 subject programs. The Wilcoxon
rank-sum test and the corresponding effect size analysis were
conducted to measure the magnitude of the difference between
the two algorithms. From the results in Table XIV, we find
that the differences in F-measure between FSCS-ART and
LimBal-KDFC measure are quite small for the programs with
low-dimensional input spaces (with ≤ 4 dimensions). For
the programs with relatively higher-dimensional input spaces
(with d ≥ 5), LimBal-KDFC shows an observable advantage
over FSCS-ART in some cases.

The F-measures of the original FSCS-ART algorithm are
higher than those of LimBal-KDFC except for four programs
tanh, bessj, sncndn, and el2. For the first 14 programs, namely,
from airy to complex, the differences in F-measures are less
than 1.2%. The statistical results about p-values and effect
sizes show that there is no significant difference between the
two algorithms. For the remaining 9 programs, which involve
relatively higher-dimensional input spaces, the improvement
of LimBal-KDFC becomes observable. Especially for the
programs pntTrianglePos and twoLinesPos, the improvements
in the F-measures reach about 10%, and the advantage of
LimBal-KDFC over FSCS-ART is with high confidence (see
the p-values in these two cases). For the remaining seven
programs other than the two above, the improvement of
LimBal-KDFC relative to FSCS-ART is between 0.7% and
3.1%, and the effect sizes in these cases reflect very little
improvement.
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TABLE XIV
WILCOXON RANK-SUM TEST AND EFFECT SIZE ANALYSIS ON THE F-MEASURES OF FSCS-ART AND LIMBAL-KDFC

Program
F-measure

p-value Effect sizeFSCS-ART
(x)

LimBal-
KDFC (y)

Diff.
(x− y)

airy 805.69 802.99 2.70 0.7927 0.0026
bessj0 443.22 442.50 0.72 0.8302 0.0021
erfcc 2890.09 2876.76 13.33 0.7251 0.0035

probks 5571.31 5563.91 7.40 0.9012 0.0012
tanh 308.34 309.43 -1.09 0.9799 0.0003
bessj 446.52 446.79 -0.27 0.8254 0.0022

gammq 1074.84 1073.34 1.50 0.7407 0.0033
sncndn 628.09 633.00 -4.91 0.5993 0.0053
golden 1575.98 1567.08 8.90 0.4413 0.0077
plgndr 1622.64 1609.22 13.42 0.8337 0.0021

cel 1580.78 1567.62 13.16 0.8679 0.0017
el2 708.48 716.13 -7.65 0.7597 0.0031

calDay 1280.65 1265.96 14.69 0.4513 0.0075
complex 1141.65 1137.06 4.59 0.7645 0.0030

pntLinePos 1458.51 1416.60 41.91 0.7828 0.0028
triangle 1419.07 1374.61 44.46 0.1510 0.0144

line 3331.59 3274.84 56.75 0.2593 0.0113
pntTrianglePos 4659.32 4252.41 406.91 0.0001 0.0405
twoLinesPos 7930.68 7082.43 848.25 0.0000 0.0419

nearestDistance 1939.81 1925.87 13.94 0.3293 0.0098
calGCD 1056.18 1026.36 29.82 0.4624 0.0073
select 3292.39 3260.93 31.46 0.2054 0.0127
tcas 2481.62 2419.99 61.63 0.3209 0.0099

Answer to RQ7: Based on the results of the empirical study,
we can confirm that LimBal-KDFC has no significant deteri-
oration in failure-detection capability on the subject programs
compared with the original FSCS-ART. For some programs
with relatively higher-dimensional input spaces (with d ≥ 5),
LimBal-KDFC shows much stronger failure-detection capabil-
ity than FSCS-ART.

VI. THREATS TO VALIDITY

A. Construct Validity

Construct validity defines how well an experiment measures
up to its claims. It refers to whether the operational defi-
nition of a variable actually reflects the theoretical concept.
F-measure, P-measure, and E-measure, are three common
effectiveness metrics used in software testing literature [35].
In particular, F-measure refers to the expected number of tests
required to detect the first failure. The research topic in this
paper is the incremental generation of test cases by ART, so
F-measure is the preferred measure for comparison analysis
in our experiments. If our studies were conducted using the
other two measures, the comparative results might be different.
On the other hand, only a few mutant faults were seeded into
the programs under test in the current empirical study. It could
also be a potential threat to the validity of the test effectiveness
analysis.

Furthermore, the effectiveness of a test algorithm is usu-
ally affected by many factors in practical situations, such
as the test oracle and failure observations. The current F-
/P-/E-measures are simplified but commonly used means to

depict the effectiveness. For industrial-scale applications, the
effectiveness conclusions based on F-/P-/E-measures need to
be further validated by considering the practical factors.

B. External Validity

External validity refers to how well the results of a study
can be generalized to other situations. In this study, we have
observed that the proposed three KDFC-ART algorithms are
suitable for the case of low dimensions and the case of high
dimensions with a large test set. Only input spaces with
dimensions ≤ 10 are used in our simulation study because the
execution times for higher dimensions require more advanced
computer configurations. Further studies in higher dimensions
may strengthen the comparative results. 23 programs are used
as subject programs in the empirical study. Their failure rates
cover a wide range including very small values, but their sizes
are not large. Further use of other programs with larger sizes
may also strengthen the generalization of the experimental
results.

On the other hand, we have stated several assumptions
in this study, such as programs with numerical inputs, three
regular types of failure-causing input regions, and automated
detection of test execution failures. To make our ART algo-
rithms applicable to scenarios without the above assumptions,
the current algorithms need to be further extended and adapted
in the ongoing research.
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C. Internal Validity

Internal validity refers to how well the experiments are done.
In our study, every experiment has been repeated at least 1000
times to confirm the observations. Different parameter settings
may cause a potential threat. For instance, we have set the
upper bound for the number of backtrackings according to
equation (4). The use of another upper bound may produce
different results.

VII. RELATED WORK

As an enhancement of RT, ART can achieve high failure-
detection effectiveness through improving the degree of even
spreading of the random test cases over the input space [10],
[51]. Due to the variety of even-spreading principles, various
ART algorithms have been proposed [11]. At the same time,
the ART-based tools have been applied to the testing activities
for practical applications [52].

Among them, the Fixed-Size-Candidate-Set ART (FSCS-
ART) and Restricted Random Testing (RRT) [53] exhibit a
relatively higher capability for detecting failures. Although
they have better performance on failure detection, they both
incur additional computational overheads due to the effort to
spread test cases evenly [14], [52]. It is important to reduce
the computational overhead without significantly degrading the
performance in failure detection.

In fact, some lightweight ART algorithms have been de-
veloped. For example, in [54], two methods named Bisection
and Random Partitioning have been presented, and their time
complexities are O(n) and O(n logn), respectively [55]. How-
ever, their failure-detection capabilities are worse than those of
FSCS-ART and RRT. On the other hand, “forgetting” strategy
[56] is proposed by Chan et al. to improve the efficiency
of ART. Although the computation time of ART methods
integrated with this strategy can be reduced to the linear order,
the corresponding failure-detection effectiveness also has an
observable degradation. Recently, a linear-time ART algorithm
ARTsum is proposed by using the category-choice distance
measure and the max-sum criterion [57]. The algorithm is
mainly used for software with non-numeric inputs. In this
paper, our work mainly concerns with the programs with
numeric inputs.

Mirroring is another effective way to solve the overhead
problem [58]. Although it can significantly improve the ef-
ficiency of test case generation, its complexity is still the
order of O(n2) if used with FSCS-ART. Following a similar
thought, a divide-and-conquer technique is used to design an
efficient ART algorithm by Chow et al. [59]. The input space
is partitioned into a lot of sub-spaces, and then the original
FSCS-ART is adopted to select test cases in each sub-space.
Recently, Huang et al. introduced the “divide-and-conquer”
strategy (i.e. dynamic partitioning) into mirror ART [60].
Their approach shows comparable failure-detection capability
as the original mirror ART method while having much lower
computational overhead. It should be noted that the dynamic
partitioning in the above methods is not so natural. It may
cause a new problem that how to determine the number of
the initial sub-spaces. By contrast, in our three methods, the

input space is incrementally partitioned according the executed
test cases. More importantly, the information of test cases and
sub-spaces is stored in the KD-tree in a natural way. In other
words, our enhanced implementations of FSCS-ART do not
require any additional information including settings of initial
parameters and are more feasible in practice.

As mentioned above, partitioning is an important approach
to select test cases for ART, such as the bisection and random
partitioning in [54]. In order to facilitate the applications of
proportional sampling strategy (PSS) [61], grid partitioning
has been widely used in ART methods, and more often is
combined with other strategies to reduce the computation time
or improve the performance on failure detection [62], [63].
Typically, grid partitioning is utilized to exclude the adjacent
cells of a given candidate for selecting test cases as far away
as possible in the IP-ART algorithm [64]. This belongs to
the exclusion-based ART algorithms, and grid partitioning is
mainly used to identify the available cells (i.e., the cells have
not been occupied by test cases). Shahbazi et al. proposed
the use of centroidal Voronoi tessellations (CVT) to form a
random border CVT (RBCVT) algorithm for maximizing the
test cases coverage of the input space [9]. In the fast version
of RBCVT (known as RBCVT-Fast), grid partitioning is also
introduced to reduce the overhead to compute the centroid of
background points. There are two limitations of the RBCVT-
Fast algorithm. First, the number of test cases needs to be
specified before testing. If the specified number is too large,
test case generation time may be wasted. If it is too low
and no failure is found, a new set of test cases may need
to be generated. Second, the failure-detection capability of
RBCVT-Fast has a potential risk of instability, especially for
programs with high-dimensional input spaces. The underlying
reason is that the probability of test cases generated within
the “random border” area of the input domain depends on a
control parameter. As a result, if the parameters are not chosen
fittingly beforehand, the algorithm may not be effective [65].

In our previous work, grid partitioning is also used to
“forget” those test cases which are out of “sight” of a given
candidate, and then helps to form a linear-order ART algorithm
named DF-FSCS [65]. In the above algorithms, although grid
partitioning is similarly used to reduce the computational
overhead, the number of cells increases exponentially with
the number of dimensions in the input space. As a result, this
will cause a huge storage cost, especially for high-dimensional
input spaces. By contrast, the number of sub-spaces produced
by the enhanced ART algorithms based on KD-tree is the
same as the number of executed test cases. More importantly,
the partitioning in this work is conducted according to the
coordinates of test cases, therefore the partitioning action is
more natural and direct and can be used for the efficient
pruning during the nearest neighbor query.

In addition, quasi-random sequences have been recently
used to propose the cost-effective random testing algorithms
[42], [66]. In practice, quasi-random sequences are widely
utilized to produce low-discrepant sample points, and the low
computational cost is the primary advantage of quasi-random
testing. In our current work, the data structure of KD-tree
is adapted to efficiently realize the nearest neighbor query.
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Moreover, the basic methods of tree construction and node
backtracking are adapted here to take care of the specific
nature of the incremental generation of test cases in ART.
Of course, there are many other spatial indexing approaches
in computational geometry and computer graphics. For in-
stance, quadtree [67] is often used to recursively divide a
two-dimensional space into quadrants. Similarly, octree [68]
recursively partitions a three-dimensional space into octants.
These two tree structures can also support fast neighbor
queries. However, their operations and implementations are
more complex than KD-trees. Moreover, it is difficult to
enhance them from 2- or 3-dimensional spaces to high-
dimensional spaces. R-trees [69] are another effective tree
structure for range searches and can also accelerate nearest
neighbor queries. Compared with KD-trees, they require more
memory for storing regional information and involves more
complex insertion operations. In our study, we adapt KD-
trees as the data structure for ART based on a comprehensive
consideration of simplicity and query efficiency.

VIII. CONCLUSION

Adaptive random testing realizes a better performance than
random testing through an even spreading of random test cases
over the input space. Accordingly, it incurs additional compu-
tational overhead for the task of evenly spreading test cases. In
practice, especially for the programs whose execution time is
short, the efficiency of test case generation is as important
as the testing effectiveness. As a result, it is important to
reduce the computation time of ART without at a loss of its
failure-detection capability. In the paper, taking FSCS-ART
as an algorithm to be improved because of its popularity
and high failure detection capabilities for low dimensional
spaces, we proposed three enhanced algorithms by adopting
and adapting the KD-tree structure. First, our Naive-KDFC
algorithm inserted individual test cases incrementally to a KD-
tree by splitting the input space with respect to every dimen-
sion in a round-robin manner. Second, a balancing strategy
was designed to ensure the partitioning (i.e., the subtrees in
KD-tree) as balanced as possible (referred to as SemiBal-
KDFC). Subsequently, in order to deal with the notable
increase in the number of backtrackings in high dimensions, a
limited backtracking strategy was proposed to form the third
algorithm LimBal-KDFC. In addition, both simulation analysis
and empirical study were performed to validate the efficiencies
and effectiveness of our three enhanced algorithms.

According to the results of the simulation analysis, we found
that the computation time of FSCS-ART can be significantly
reduced through the use of KD-trees for low dimensions and
for the case of high dimensions with relatively large number of
test cases. More importantly, the Naive-KDFC and SemiBal-
KDFC algorithms can preserve the same set of executed test
cases as FSCS-ART, and hence the same degree of evenly
spreading the random test cases over the input space. At the
same time, SemiBal-KDFC can improve the balance of KD-
tree and therefore can achieve a better efficiency in test case
generation when the dimension of the input space is ≤ 8. In
addition, the failure-detection effectiveness of LimBal-KDFC

has no significant deterioration compared with FSCS-ART
for input spaces with dimensions ≤ 4, but has observable
improvement for high dimensions. Based on further empirical
results, the advantage of the three KDFC-ART algorithms
in terms of efficiency is reconfirmed. Although an approx-
imate nearest neighbor query is adopted in LimBal-KDFC,
its failure-detection capability, fortunately, is still comparable
to the original FSCS-ART, and even observably better than
FSCS-ART for some of the subject programs studied in this
paper.

Here, KD-tree has been validated as an effective data struc-
ture to alleviate the problem of expensive test case generation
for a naive implementation of FSCS-ART. There are still some
interesting and important issues that should be deeply studied
in the ongoing research. High dimensions may cause problems
to both FSCS-ART and the backtracking search in KD-
trees. Although our limited backtracking strategy has shown
encouraging results, it is worth looking into the feasibility of
better methods. On the other hand, how to effectively combine
ART with other data structures such as R-trees deserves further
investigation. In addition, enhancing the candidate strategy to
select multiple test cases in each round is also an interesting
research topic.
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