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Abstract

A spatial preference query ranks objects based on the qual-
ities of features in their spatial neighborhood. For example,
consider a real estate agency office that holds a database
with available flats for lease. A customer may want to rank
the flats with respect to the appropriateness of their loca-
tion, defined after aggregating the qualities of other features
(e.g., restaurants, cafes, hospital, market, etc.) within a dis-
tance range from them. In this paper, we formally define
spatial preference queries and propose appropriate index-
ing techniques and search algorithms for them. Our meth-
ods are experimentally evaluated for a wide range of prob-
lem settings.

1 Introduction
Spatial database systems manage large collections of ge-

ographic entities, which apart from spatial attributes con-
tain non-spatial information (e.g., name, size, type, price,
etc.). In this paper, we study an interesting type of prefer-
ence queries, which select the best spatial location with re-
spect to the quality of facilities in its spatial neighborhood.

Given a set D of interesting objects (e.g., candidate loca-
tions), a top-k spatial preference query retrieves the k ob-
jects in D with the highest scores. The score of an object is
defined by the quality of features (e.g., facilities or services)
in its spatial neighborhood. As a motivating example, con-
sider a real estate agency office that holds a database with
available flats for lease. A customer may want to rank the
contents of this database with respect to the quality of their
locations, quantized by aggregating non-spatial character-
istics of other features1 (e.g., restaurants, cafes, hospital,
market, etc.) in the spatial neighborhood of the flat (defined
by a spatial range around it). Quality may be subjective and
query-parametric. For example, a user may define quality
with respect to non-spatial attributes of restaurants around

∗Work supported by grant 7160/05E from Hong Kong RGC.
1Here “feature” denotes a class of objects in a spatial map such as spe-

cific facilities or services.

it (e.g., whether they serve seafood, price range, etc.).
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(a) Range score (within 0.2 km) (b) Nearest neighbor score

Figure 1. Examples of top-k spatial prefer-
ence queries

The white points of Figure 1a are an exemplary object
dataset D (e.g., hotels). In the figure, there are also two
feature datasets; the gray points of F1 (restaurants) and
the black points of F2 (cafes). Feature points are labeled
by non-spatial (quality) values (e.g., available from rating
providers, like http://www.zagat.com/). A tourist may be
interested in the hotel p that maximizes a score τ(p), de-
fined as the sum of maximum restaurant quality and max-
imum cafe quality in the neighborhood of p (e.g, dotted
circle at p with radius of 0.2 km). For instance, the max-
imum quality of gray and black points within the circle
of p1 are 0.7 and 0.5 respectively, so the score of p1 is
τ(p1) = 0.7 + 0.5 = 1.2. Since there are no black points
within the range of p2, we have τ(p2) = 0.9 + 0 = 0.9.
Similarly, we obtain τ(p3) = 0.4 + 0 = 0.4. Hence, the
hotel p1 is returned as the top result to the user. As an
alternative example, Figure 1b illustrates the case where
the score τ(p) of a hotel is taken as the sum of qualities
of its nearest restaurant and cafe (indicated by connecting
line segments). Hence, we have τ(p1) = 0.2 + 0.5 = 0.7,
τ(p2) = 0.9 + 0.6 = 1.5, and τ(p3) = 0.4 + 0.8 = 1.2.
The best hotel in this case is p2.

Traditionally, there are two basic ways for ranking ob-
jects: (i) spatial ranking, which orders the objects according
to their distance from a reference point, and (ii) non-spatial



ranking, which orders the objects by an aggregate function
on their non-spatial values. Our top-k spatial preference
query integrates these two types of ranking in an intuitive
way. As indicated by our examples, this new query has a
wide range of applications in service recommendation and
decision support systems.

Despite the usefulness of the top-k spatial preference
query, to our knowledge, it has not been studied in the past.
A brute-force approach (to be elaborated in Section 3.1) for
evaluating it is to compute the scores of all objects in D and
select the top-k ones. This method, however, is expected
to be very expensive for large input datasets. In this paper,
we propose alternative techniques that aim at minimizing
the I/O accesses to the object and feature datasets, while
being also computationally efficient. Our techniques apply
on spatial-partitioning access methods and compute upper
score bounds for the objects indexed by them, which are
used to effectively prune the search space.

The rest of this paper is structured as follows. In Section
2 we provide background on basic and advanced queries on
spatial databases, as well as top-k query evaluation in rela-
tional databases. Section 3 models the queries that we study
in this paper and presents the suggested solutions. In Sec-
tion 4, our query algorithms are experimentally evaluated
with real and synthetic data. Section 5 discusses some ex-
tensions of the problem. Finally, Section 6 concludes the
paper with future research directions.

2 Background and Related Work
Object ranking is a popular retrieval task in various ap-

plications. In relational databases, we often want to rank
tuples using an aggregate score function on their attribute
values [5]. For example, consider a database of a real es-
tate agency, containing information about flats available for
rent. A potential customer may want to view the top-10 flats
with the largest sizes and lowest prices. The score of each
flat in this case is expressed by the sum of two individual
scores: size and price, after they have been scaled to the
same range (e.g., between 0 and 1, where 1 indicates the
highest preference; highest possible size and lowest possi-
ble price).

Another popular object ranking application is document
ranking based on the relevance of the keywords (terms) they
contain to a user query (also expressed by a set of terms).
This problem has been the primary research in information
retrieval (IR) for over two decades [1]. The ranking func-
tion in this problem is again an aggregation of the relevance
of the query terms with the document, often enriched with
some global ranking scores of the documents according to
their popularity [4].

In spatial databases, ranking is often associated to near-
est neighbor (NN) retrieval. Given a query location, we are
often interested in retrieving the set of nearest objects to it

that qualify a condition (e.g., restaurants). Assuming that
the set of interesting objects is indexed by a hierarchical
spatial access method (e.g., the R-tree [9]), we can use dis-
tance bounds while traversing the index to derive the an-
swer in a branch-and-bound fashion [10]. Tao et al. [17]
noted that top-k queries can be modeled as (weighted) near-
est neighbor queries, in the multi-dimensional space defined
by the involved attribute domains, where the query point is
formed by taking the maximum value of each dimension.
Motivated by this observation, they adapted the algorithm
of [10] for this problem.

Nevertheless, it is not always possible to use multi-
dimensional indexes for top-k retrieval. First, such indexes
usually break-down in high dimensional spaces [18, 3].
Second, top-k queries may involve an arbitrary set of at-
tributes (e.g., size and price) from a set of possible ones
(e.g., size, price, distance to the beach, number of bed-
rooms, floor, etc.) and indexes may not be available for
all possible attribute combinations (i.e., they are too expen-
sive to create and maintain). Third, information for differ-
ent rankings to be combined (i.e., for different attributes)
could appear in different databases (in a distributed database
scenario) and unified indexes may not exist for them. A
stream of research [8, 5, 11, 12] for top-k queries has fo-
cused on the efficient merging of object rankings that may
arrive from different (distributed) sources. The motivation
of these methods is to minimize the number of accesses to
the input rankings until the objects with the top-k aggre-
gate scores have been identified. To achieve this, upper
and lower bounds for the objects seen so far are maintained
while traversing the sorted lists.

In the next paragraphs, we first review the R-tree, which
is the most popular spatial access method and the NN search
algorithm of [10] and survey recent research of feature-
based spatial queries.

2.1 Spatial Query Evaluation on R-trees

The most popular spatial access method is the R-tree [9],
which indexes minimum bounding rectangles (MBRs) of
objects. Figure 2 shows a collection R = {p1, . . . , p8} of
spatial objects (e.g., points) and an R-tree structure that in-
dexes them.

R-trees can efficiently process main spatial query types,
including spatial range queries, nearest neighbor queries,
and spatial joins. Given a spatial region W , a spatial range
query retrieves from R the objects that intersect W . For
instance, consider a range query that asks for all objects
within distance 3 from q, corresponding to the shaded area
in Figure 2. Starting from the root of the tree, the query
is processed by recursively following entries, having MBRs
that intersect the query region. For instance, e1 does not
intersect the query region, thus the subtree pointed by e1
cannot contain any query result. In contrast, e2 is followed



by the search algorithm and the points in the corresponding
node are examined recursively to find the query result p7.

p1

p2 p3

p4

p5
p6

p7

p8

x

y

(0.1)

(0.3)

(0.5)
(0.2)

(0.2)

(0.5)

(0.1)
(0.9)

q p2 p3 p1 p8 p7 p4 p5 p6

e1 e2 e3

 
 

p1

p2 p3

p4

p5
p6

p7

p8

x

y

q p2 p3 p1 p8 p7 p4 p5 p6

e1 e2 e3

5 10 15

5

10

15

e .MBR2

e .MBR1

e .MBR3

 

Figure 2. Spatial queries on R-trees

A nearest neighbor (NN) query takes as input a query ob-
ject q and returns the closest object in R to q. For instance,
the nearest neighbor of q in Figure 2 is p7. A popular gen-
eralization is the k-NN query, which returns the k closest
objects to q, given a positive integer k. NN (and k-NN)
queries can be efficiently processed using the best-first (BF)
algorithm of [10], provided that R is indexed by an R-tree.
A priority queue PQ which organizes R-tree entries based
on the (minimum) distance of their MBRs to q is initialized
with the root entries. In order to find the NN of q in Fig-
ure 2, BF first inserts to PQ entries e1, e2, e3, and their dis-
tances to q. Then the nearest entry e2 is retrieved from PQ
and objects p1, p7, p8 are inserted to PQ. The next nearest
entry in PQ is p7, which is the nearest neighbor of q. In
terms of I/O, the BF algorithm is shown to be no worse than
any NN algorithm that applies on the same R-tree [10]. A
less efficient approach is the depth first (DF) algorithm [16],
which traverses the tree in the depth-first fashion. As shown
in [10], DF can be more I/O consuming than BF; however,
DF requires only bounded memory and at most a single tree
path resides in memory during search.

The aggregate R-tree (aR-tree) [15] is a variant of the
R-tree, where each non-leaf entry augments an aggregate
measure for some attribute value (measure) of all points
in its subtree. As an example, the tree shown in Figure
2 can be upgraded to a MAX aR-tree over the point set,
if entries e1, e2, e3 contain the maximum measure values
of sets {p2, p3}, {p1, p8, p7}, {p4, p5, p6}, respectively. As-
sume that the measure values of p4, p5, p6 are 0.2, 0.1, 0.4,
respectively. In this case, the aggregate measure augmented
in e3 would be max{0.2, 0.1, 0.4} = 0.4. In Section 3,
we will illustrate how MAX aR-trees, indexing the feature
datasets (e.g., restaurants), can be used to accelerate the pro-
cessing of top-k spatial preference queries.

2.2 Feature-based Spatial Queries

Recently, [19] solved the problem of finding top-k sites
(e.g., restaurants) based on their influence on feature points
(e.g., residential buildings). As an example, Figure 3 shows
a set of sites (white points), a set of features (black points

with weights), such that each dotted line links a feature
point to its nearest site. The influence of a site pi is defined
by the sum of weights of feature points having pi as their
closest site. For instance, the score of p1 is 0.9+0.5=1.4.
Similarly, the scores of p2 and p3 are 1.5 and 1.2 respec-
tively. Hence, p2 is returned as the top-1 influential site.
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Figure 3. Top-k influential sites

Related to top-k influential sites query are the optimal
location queries studied in [7, 20]. The goal is to find the
location in space (not chosen from a specific set of sites)
that minimizes an objective function. In Figures 4a and
4b, feature points and existing sites are shown as black and
gray points respectively. Assume that all feature points have
the same quality. The maximum influence optimal loca-
tion query [7] finds the location (to insert to the existing set
of sites) with the maximum influence (as defined in [19]),
whereas the minimum distance optimal location query [20]
searches for the location that minimizes the average dis-
tance from each feature point to its nearest site. The op-
timal locations for both queries are marked as white points
in Figures 4a,b respectively.

max-influence

 

min-dist

 
(a) Max-influence (b) Min-distance

Figure 4. Optimal location queries

The techniques proposed in [19, 7, 20] are specific to
the particular query types described above and cannot be
extended for the class of top-k spatial preference queries,
which we study in this paper. Also, they deal with a sin-
gle feature dataset whereas our queries consider multiple
feature datasets. Another piece of related work to ours is a
web-search engine for evaluating textual geographic queries
by considering also the spatial context of the searched doc-
uments [6].



3 Algorithms for Spatial Preference Queries
A top-k spatial preference query retrieves the k points in

an object dataset D (i.e., set of interesting points) with the
highest score. Given an object point p ∈ D and m feature
datasets F1, · · · ,Fm, the score of p is defined as

τθ(p) = agg{ τθ
c (p) | c ∈ [1,m] } (1)

where agg is a monotone aggregate operator and τθ
c (p) is

the (c-th) component score of p with respect to the neigh-
borhood condition θ and the (c-th) feature dataset Fc. Typi-
cal examples of the aggregate function agg are: SUM, MIN,
MAX. In practice, θ models the spatial neighborhood region
of a point p ∈ D. Two intuitive choices for the component
score function τθ

c (p) are:

• the range score2 τ rng
c (p), taken as the maximum qual-

ity ω(s) of points s ∈ Fc that are within a given pa-
rameter distance εc from p, or 0 if no such point exists.

• the nearest neighbor (NN) score τnn
c (p), taken as the

quality ω(s) of s; the NN of p in Fc.

The quality ω(s) of a feature object (e.g., restaurant) may
correspond to a known value from a ratings provider. Al-
though in this paper we study τ rng

c (p) and τnn
c (p) scoring

functions as test cases, other user-defined aggregate func-
tions can be integrated into our framework.

For simplicity, we assume that the quality ω(s) of a fea-
ture point s lies within the interval [0, 1]. Thus, for a point
p ∈ D, where not all its component scores are known, its
upper bound score τθ

+(p) is defined as:

τθ
+(p)=agg m

c=1

{
τθ
c (p) if τθ

c (p) is known
1 otherwise (2)

Note that, for any monotone aggregate operator agg, it is
guaranteed that the bound τθ

+(p) is greater than or equal to
the actual score τθ(p).

In the remainder of the paper, we assume that the object
dataset D is indexed by an R-tree and each feature dataset
Fc is indexed by an MAX aR-tree, where each non-leaf entry
augments the maximum quality (of features) in its subtree.
Nevertheless, our solutions are generic and can be adapted
for the cases where the datasets are indexed by other hierar-
chical spatial indexes (e.g., point quad-trees). The rationale
of indexing different feature datasets by separate aR-trees
is that: (i) a user queries for only few features (e.g., restau-
rants and cafes) out of all possible features (e.g., restaurants,
cafes, hospital, market, etc.), and (ii) different users may
consider different subsets of features.

Based on the above indexing scheme, we develop various
algorithms for processing top-k spatial preference queries.

2The value εc is an implicit parameter for the range score τrng
c (p).

For the ease of discussion, we assume the aggregate opera-
tor agg to be SUM, although our techniques can directly be
applied for arbitrary monotone aggregate functions. When-
ever the context is clear, the condition θ is dropped.

3.1 Probing Algorithms

We first introduce a brute-force solution that computes
the score of every point p ∈ D in order to obtain the query
results. Then, we propose a group evaluation technique that
computes the scores of multiple points concurrently.

Algorithm 1 Simple Probing Algorithm (SP)
algorithm SP(Node N )

1: for all entries e ∈ N do
2: if N is non-leaf then
3: read the child node N ′ pointed by e;
4: SP(N ′);
5: else
6: for c:=1 to m do
7: if τ+(e) > γ then . upper bound score
8: compute τc(e) by using the tree Fc;
9: if τ(e) > γ then

10: update Wk (and γ) by e;

Algorithm 1 is a pseudo-code of the simple probing al-
gorithm (SP), which retrieves the query results by comput-
ing the score of every object point. The algorithm uses two
global variables: Wk is a min-heap for managing the top-k
results and γ represents the top-k score so far (i.e., low-
est score in Wk). Initially, the algorithm is invoked at the
root node of the object tree (i.e., N = D.root). The pro-
cedure is recursively applied (at Line 4) on tree nodes until
a leaf node is accessed. When a leaf node is reached, the
component score τc(e) (at Line 8) is computed by execut-
ing a range search (NN search) on the feature tree Fc for
range score (NN score) queries. Lines 6-8 describe an in-
cremental computation technique, for reducing unnecessary
component score computations. In particular, the point e is
ignored as soon as its upper bound score τ+(e) (see Equa-
tion 2) cannot be greater than the best-k score γ. On the
other hand, Wk and γ are updated when the actual score
τ(e) is greater than γ.

Group Probing Algorithm Due to separate score com-
putations for different objects, SP is inefficient for large ob-
ject datasets. In view of this, we propose the group probing
algorithm (GP), a variant of SP, that reduces I/O cost by
computing scores of objects in the same leaf node of the
R-tree concurrently. In GP, when a leaf node is visited, its
points are first stored in a set V and then their component
scores are computed concurrently at a single traversal of the
Fc tree.

Algorithm 2 shows the procedure for computing the c-th
component score for a group of points. Consider a sub-
set V of D for which we want to compute their τ rng

c (p)



score at feature tree Fc. Initially, the procedure is called
with N being the root node of Fc. If e is a non-leaf en-
try and its mindist3 from some point p ∈ V is within
the range εc, then the procedure is applied recursively on
the child node of e, since the sub-tree of Fc rooted at e
may contribute to the component score of p. In case e is
a leaf entry (i.e., a feature point), the scores of points in
V are updated if they are within distance εc from e. An
additional optimization (for range score computation only)
is to replace the condition at Line 3 by a stronger one:
“∃p ∈ V, mindist(p, e) ≤ εc ∧ ω(e) > τc(p)”, in which
the quality ω(e) is stored in the current aR-tree node N . In
other words, even when e may contain feature points within
distance εc from p, if it cannot improve the component score
of p, then its child node N ′ needs not be visited.
Algorithm 2 Group Range Score Algorithm

algorithm Group Range(Node N , Set V , Value c, εc)
1: for all entry e ∈ N do
2: if N is non-leaf then
3: if ∃p ∈ V, mindist(p, e) ≤ εc then
4: read the child node N ′ pointed by e;
5: Group Range(N ′,V ,c,εc);
6: else
7: for all p ∈ V such that dist(p, e) ≤ εc do
8: τc(p):=max{τc(p), ω(e)};

We now discuss how Algorithm 2 can be modified for
computing NN scores. Instead of using a single range εc,
we associate each point p ∈ V with p.εc; its nearest dis-
tance to feature points in Fc found so far (p.εc is initialized
to ∞). In addition, at Lines 7-8, we check whether e re-
places the NN of a p ∈ V and if so, we set τc(p) := ω(e)
and p.εc := dist(p, e). Before Line 1, we sort the entries
e ∈ N in ascending order of mindist(V , e), where V is
the centroid of all points in V . In this way, entries closer
to points in V are visited earlier and fewer tree nodes in Fc

are accessed. Note that the above algorithm traverses the
tree in a depth-first manner [16]. Its I/O cost can be reduced
by traversing the tree in a best-first manner [10]. For this, a
global priority queue PQ is used for organizing visited tree
entries in ascending order of their distance from V .

3.2 Branch and Bound Algorithm

GP is still expensive as it examines all objects in D and
computes their component scores. We now propose an al-
gorithm that can significantly reduce the number of objects
to be examined. The key idea is to compute, for non-leaf
entries e in the object tree D, an upper bound T (e) (but
not τ(e)) of the score for any point in the subtree of e. If

3Given a point p and an MBR e, mindist(p, e) (maxdist(p, e)) [10]
denotes the minimum (maximum) possible distance between p and a point
in e. Similarly, mindist(ea, eb) (maxdist(ea, eb)) denotes the mini-
mum (maximum) possible distance between a point in MBR ea and a point
in MBR eb.

T (e) ≤ γ, then we need not access the subtree of e (and
also save numerous score computations).

Algorithm 3 is a pseudo-code of our branch and bound
algorithm (BB), based on this idea. BB is called with N
being the root node of D. If N is a non-leaf node, Lines
3-5 compute the scores T (e) for non-leaf entries e concur-
rently. Recall that T (e) is an upper bound score for any
point in e. The techniques for computing T (e) will be dis-
cussed shortly. Like Equation 2, with the component scores
Tc(e) known so far, we can derive T+(e), an upper bound
of T (e). If T+(e) ≤ γ, then the subtree of e cannot contain
better results than those in Wk and it is removed from V . In
order to obtain points with high scores early, we sort the en-
tries in descending order of T (e) before invoking the above
procedure recursively on the child nodes pointed by the en-
tries in V . If N is a leaf node, we compute the scores for all
points of N concurrently and then update the set Wk of the
top-k results. Since both Wk and γ are global variables, the
value of γ is updated during recursive call of BB.
Algorithm 3 Branch and Bound Algorithm (BB)

Wk:=new min-heap of size k (initially empty);
γ:=0; . k-th score in Wk

algorithm BB(Node N )
1: V :={e|e ∈ N};
2: if N is non-leaf then
3: for c:=1 to m do
4: compute Tc(e) for all e ∈ V concurrently;
5: remove entries e in V such that T+(e) ≤ γ;
6: sort entries e ∈ V in descending order of T (e);
7: for all entry e ∈ V such that T (e) > γ do
8: read the child node N ′ pointed by e;
9: BB(N ′);

10: else
11: for c:=1 to m do
12: compute τc(e) for all e ∈ V concurrently;
13: remove entries e in V such that τ+(e) ≤ γ;
14: update Wk (and γ) by entries in V ;
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Figure 5. Deriving upper bound scores
It remains to clarify how the (upper bound) scores of

non-leaf entries (within the same node N ) can be computed



concurrently (at Line 4). Our goal is to compute these upper
bound scores with low I/O cost and the bounds not to be too
loose, in order for pruning to be effective. For this, we uti-
lize only level-1 entries (i.e., lowest level non-leaf entries)
in Fc for deriving upper bound scores because: (i) there are
much fewer level-1 entries than leaf entries, and (ii) high
level entries in Fc cannot provide tight bounds. Algorithm
2 can be used for this purpose (where input V corresponds
to a set of non-leaf entries), after changing Line 2 to check
whether child nodes of N are above the leaf level.

The following example illustrates how upper bound
range scores are derived. In Figure 5a, v1 and v2 are non-
leaf entries in the object tree D and the others are level-1
entries in the feature tree Fc. For the entry v1, we first de-
fine its Minkowski region [2] (i.e., gray region around v1),
the area whose mindist from v1 is within εc. Observe that
only entries ei intersecting the Minkowski region of v1 can
contribute to the score of some point in v1. Thus, the up-
per bound score Tc(v1) is simply the maximum quality of
entries e1, e5, e6, e7. Similarly, Tc(v2) is computed as the
maximum quality of entries e2, e3, e4, e8. Assuming that v1
and v2 are entries in the same tree node of D, their upper
bounds are computed concurrently to reduce I/O cost.

Upper bound NN scores for the entries v1, v2 of Figure
5b can be derived as follows. For v1, we first find the level-1
entry in Fc with the smallest maxdist from v1. This corre-
sponds to entry e5. It is guaranteed that the NN of any p ∈
v1 must intersect the Minkowski region covering the area
whosemindist from v1 is within v1.εc = maxdist(v1, e5).
Thus, the upper bound Tc(v1) is taken as the maximum
quality of the entries e1, e2, e3, e5, e6, e7. In fact, the two
steps above are combined to a single traversal of the tree on
Fc. Again, group computation is performed for non-leaf en-
tries (e.g., v1 and v2) located in the same node of the object
tree D, as follows: (i) for each level-1 entry encountered (in
the tree on Fc), update each vi.εc and insert the entry into a
list Φ, (ii) prune an entry if it does not fall in the Minkowski
region for all vi, and (iii) after the tree traversal, derive the
upper bound for each vi from the (relevant) entries in Φ.

3.3 Feature Join Algorithm

An alternative method for evaluating a top-k spatial pref-
erence query is to perform a multi-way spatial join [13] on
the feature trees F1,F2, · · · ,Fm to obtain combinations of
feature points which can be in the neighborhood of some
object from D. Spatial regions which correspond to com-
binations of high scores are then examined, in order to find
data objects in D having the corresponding feature combi-
nation in their neighborhood. In this section, we first intro-
duce the concept of a combination, then discuss the condi-
tions for a combination to be pruned, and finally elaborate
the algorithm used to progressively identify the combina-
tions that correspond to query results.
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Figure 6. Qualified combinations for the join

Tuple 〈f1, f2, · · · , fm〉 is a combination if, for any c ∈
[1,m], fc is an entry (either leaf or non-leaf) in the feature
tree Fc. The score of the combination is defined by:

τ(〈f1, f2, · · · , fm〉) = agg m
c=1 ω(fc) (3)

For a non-leaf entry fc, ω(fc) is the MAX of all feature qual-
ities in its subtree (stored with fc, since Fc is an aR-tree).
A combination disqualifies a range score query if:

∃ (i 6= j ∧ i, j ∈ [1,m]), mindist(fi, fj) > εi + εj (4)

When such a condition holds, it is impossible to have a point
in D whose mindist from fi and fj are within εi and εj re-
spectively. The above validity check acts as a multiway join
condition that significantly reduces the number of combina-
tions to be examined.

Figure 6a shows graphically the condition for a pair of
entries (e.g., non-leaf combination 〈A1, B2〉, leaf combina-
tion 〈a3, b4〉) to be a candidate combination for a range pref-
erence query. Figure 6b illustrates the corresponding condi-
tion for the case of NN preference queries. The dotted poly-
gon around the point a3 (of F1) corresponds to its Voronoi
cell [14] in F1; it is guaranteed that any point p ∈ D lo-
cated in the Voronoi cell of a3 must have a3 as its nearest
feature point in F1. The same holds for other points (e.g.,
the feature point b4 of F2).

We can use feature trees Fc that index the Voronoi
cells (together with the feature points), to accelerate pro-
cessing of NN score queries. In specific, a combination
〈f1, f2, · · · , fm〉 disqualifies such a query if:⋂

c∈[1,m]

fc = ∅ (5)

Algorithm 4 is a pseudo-code of our feature join (FJ) al-
gorithm (used for range and NN preference queries). The
algorithm employs a max-heap H for managing combina-
tions of feature entries in descending order of their combi-
nation scores. The score of a combination 〈f1, f2, · · · , fm〉



Algorithm 4 Feature Join Algorithm (FJ)
Wk:=new min-heap of size k (initially empty);
γ:=0; . k-th score in Wk

algorithm FJ(Tree D,Trees F1,F2, · · · ,Fm)
1: H:=new max-heap (combination score as the key);
2: insert 〈F1.root,F2.root, · · · ,Fm.root〉 into H;
3: while H is not empty do
4: deheap 〈f1, f2, · · · , fm〉 from H;
5: if ∀ c ∈ [1,m], fc points to a leaf node then
6: for c:=1 to m do
7: read the child node Lc pointed by fc;
8: Find Result(D.root, L1, · · · , Lm);
9: else

10: fc:=highest level entry among f1, f2, · · · , fm;
11: read the child node Nc pointed by fc;
12: for all entry ec ∈ Nc do
13: insert 〈f1, f2, · · · , ec, · · · , fm〉 into H if its

score is greater than γ and it qualifies the query;

algorithm Find Result(Node N , Nodes L1, · · · , Lm)
1: for all entries e ∈ N do
2: if N is non-leaf then
3: compute T (e) by entries in L1, · · · , Lm;
4: if T (e) > γ then
5: read the child node N ′ pointed by e;
6: Find Result(N ′, L1, · · · , Lm);
7: else
8: compute τ(e) by entries in L1, · · · , Lm;
9: update Wk (and γ) by e (when necessary);

as defined in Equation 3 is an upper bound of the scores
of all combinations 〈s1, s2, · · · , sm〉 of feature points, such
that sc is located in the subtree of fc for each c ∈ [1,m].
Initially, the combination with the root pointers of all fea-
ture trees is enheaped. We progressively deheap the com-
bination with the largest score. If all its entries point to
leaf nodes, then we load these nodes L1, · · · , Lm and call
Find Result to traverse the object R-tree D and find poten-
tial results. Find Result is a variant of the BB algorithm,
with the following differences: (i) L1, · · · , Lm are viewed
as m tiny feature trees (each with one node) and accesses
to them incur no extra I/O cost, and (ii) for the case of NN
score, if the entry e does not intersect any qualified combi-
nation formed by feature entries in L1, · · · , Lm, then T (e)
(at Line 3) and τ(e) (at Line 8) are set to 0.

In case not all entries of the deheaped combination point
to leaf nodes (Line 9 of FJ), we select the one at the highest
level, access its child node Nc and then form new combina-
tions with the entries in Nc. A new combination is inserted
intoH for further processing if its score is higher than γ and

it qualifies the query. The loop (at Line 3) continues until
H becomes empty.

4 Experimental Evaluation
In this section, we compare the efficiency of the pro-

posed algorithms using real and synthetic datasets. Each
dataset is indexed by an aR-tree with 4K bytes page size.
We used an LRU memory buffer whose default size is set
to 0.5% of the sum of tree sizes (for the object and feature
trees used). Our algorithms were implemented in C++ and
experiments were run on a Pentium IV 2.3GHz PC with 512
MB of RAM. In all experiments, we measure only the I/O
cost (i.e., number of page faults) of the algorithms as their
CPU costs follow similar trends. Section 4.1 describes the
experimental settings, while Section 4.2 presents our exper-
imental findings.

4.1 Experimental Settings

We used both real and synthetic data for the experiments.
For each synthetic dataset, the coordinates of points are ran-
dom values uniformly and independently generated for dif-
ferent dimensions. By default, an object dataset contains
200K points and a feature dataset contains 100K points.
The real datasets are described in Table 1. All of them
are geographical datasets of China, available at the Digi-
tal Chart of the World, http://www.maproom.psu.edu/dcw/.
The point coordinates of all (real and synthetic) datasets are
normalized to the 2D space [0, 10000]× [0, 10000].

ID Contents Data cardinality
PO Political/Ocean 37945
PP Populated Places 14581
RD Roads 327561
RR Railroads 44746
UT Utilities 18708

Table 1. Real datasets of China
For a feature dataset Fc, we generated qualities for its

points such that they simulate a real world scenario: fa-
cilities close to (far from) a town center often have high
(low) quality. For this, a single anchor point s? is selected
such that its neighborhood region contains high number of
points. Let distmin (distmax) be the minimum (maximum)
distance of a point in Fc from the anchor s?. Then, the
quality of a feature point s is generated as:

ω(s) = (
distmax − dist(s, s?)
distmax − distmin

)λ (6)

where dist(s, s?) stands for the distance between s and s?,
and λ controls the skewness of quality distribution. In this
way, the qualities of points in Fc lie in [0, 1] and the points
closer to the anchor have higher qualities. Also, the quality
distribution is highly skewed for large values of λ.

We study the performance of our algorithms with respect
to various parameters, which are displayed in Table 2 (their



default values are shown in bold). In each experiment, only
one parameter varies while the others are fixed to their de-
fault values. Note that the parameter ε is applicable to range
score queries only and query ranges for different feature
datasets share the same ε.

Parameter Values
Buffer size (%) 0.1, 0.2, 0.5, 1, 2, 5, 10

Object data size, |D| (×1000) 100, 200, 400, 800, 1600
Feature data size, |F| (×1000) 50, 100, 200, 400, 800

Quality skewness, λ 0.5, 1.0, 1.5, 2.0, 2.5
Number of results, k 1, 2, 4, 8, 16, 32, 64

Number of features, m 1, 2, 3, 4, 5
Query range, ε 10, 20, 50, 100, 200

Table 2. Range of parameter values

4.2 Performance Study
Objects Features I/O

SP GP BB FJ
UT RD, RR 9254 3329 303 306
RR RD, UT 38804 4961 1100 1074
RD RR, UT 1022582 15162 5434 216
RR RD, PO, UT 132267 6139 3409 30097
RR RD, PO, UT, PP 190939 7087 3692 90313

Table 3. Range score queries on China
datasets

Objects Features I/O
SP GP BB FJ

UT RD, RR 10031 3363 527 52
RR RD, UT 38852 4755 2152 1615
RD RR, UT 1693053 21462 12579 227
RR RD, PO, UT 243004 7147 4108 13194
RR RD, PO, UT, PP 328862 8323 5391 69615

Table 4. NN score queries on China datasets
In the first experiment, we show the effect of data dis-

tribution on the cost of the algorithms, by choosing differ-
ent combinations of the object dataset and feature datasets.
Table 3 shows the cost of the algorithms for range score
queries. Observe that SP, GP and BB follow the same trend,
while FJ shows a different trend, because the I/O cost of
methods SP, GP and BB heavily depends on the size of D,
while that of method FJ mainly depends on the sizes of the
feature sets and the distribution of the qualities. For the
cases of only two feature trees, FJ outperforms all the other
methods, while for the cases where more than two feature
trees are considered, FJ is more expensive than BB and GP.
Table 4 shows the case for NN score queries, where the
costs of the algorithms follow a similar trend as for range
score queries.

In subsequent experiments, we compare the cost of the
algorithms on synthetic datasets with respect to different pa-
rameters. Figure 7 plots the cost of the algorithms as a func-
tion of the buffer size. As the buffer size increases, the cost
of all algorithms drops and their performance gap shrinks.
At low buffer sizes, GP is cheaper than SP because GP com-
putes the scores of points within the same leaf node concur-
rently; however, it is more expensive than BB, since BB

reduces score computation of points in leaf nodes by prun-
ing non-leaf entries with upper bound scores smaller than
γ. FJ outperforms its competitors as it discovers qualified
combination of feature entries early.
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Figure 7. Effect of buffer size

Figure 8 compares the cost of the algorithms with respect
to the object data size |D|. Since the cost of FJ is dominated
by the cost of joining feature datasets, it is insensitive to
|D|. On the other hand, the cost of the other methods (SP,
GP, BB) increases with |D|, as score computations need to
be performed for more objects in D.
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Figure 9. Effect of |F|

Figure 9a,b (9c,d) plot the I/O cost (node accesses) of
the algorithms with respect to the feature data size |F| (of
each feature dataset). As |F| increases, the number of node
accesses of all algorithms increases. On the other hand, the



memory buffer size also increases (since it is fixed to 0.5%
of the sum of tree sizes), so the algorithms have smaller I/O
increase or even cost reduction.

Figure 10 shows the cost of the algorithms as a function
of the quality skewness λ. As we see, the costs of SP, GP
and BB do not decrease a lot compared to that of FJ; for
higher values of λ, FJ manages to locate the combinations
that contribute to the top-k results early and easily prune
high-level combinations that cover other regions of very low
scores.
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Figure 10. Effect of λ

Figure 11 compares the cost of the algorithms by varying
the distance between anchor points in feature datasets F1

and F2. The costs for all the methods increases with the
distance, because the scores of the top-k results decrease
and these results are spread to wider spatial regions; thus,
more accesses are required to retrieve the results.
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Figure 11. Effect of anchor distance

Figure 12 shows the cost of the algorithms as a func-
tion of the number k of requested results. Since SP and GP
compute the scores for all objects in D, their performance
is independent of k. As k increases, both BB and FJ have
weaker pruning power and their cost increases slightly.
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Figure 12. Effect of k

Figure 13 plots the cost of the algorithms with respect
to the number m of feature datasets. The costs of SP, GP

and BB increase slowly as m increases because they ap-
ply the incremental computation technique (see Section 3.1)
to reduce the number of component score computations.
Thus, disqualified points can be pruned without computing
all their component scores. On the other hand, the cost of
FJ increases significantly with m, because the number of
qualified combinations of entries is exponential to m.
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Finally, Figure 14 shows the cost of the algorithms for
range score queries, when varying the query range ε. As ε
increases, SP accesses more nodes in feature trees to com-
pute the scores of the points. Although the same happens for
the other methods, they have lower I/O cost, as the buffer
absorbs better the effect of ε. Summing up, FJ is the best
method for two or fewer feature sets, while BB should be
used for more than two features in the query.
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5 Discussion
The top-k spatial preference queries we studied in this

paper can be generalized to include additional components
that could be useful in practice. First, in the definition of
τθ
c (p), we can use a weighted version of ω(s), based on
dist(p, s). In range score computation, the quality ω(s) of
a feature s is multiplied by the weight ψ = 1 − dist(p,s)

εc
,

and the feature with the maximum weighted quality is con-
sidered in the component distance. Note that the weight ψ
is always a value in the interval [0, 1]. In NN score compu-
tation, we weigh based on a maximum acceptable distance
of a nearest neighbor. Thus, data objects with very close
nearest neighbor of moderate quality may be preferable to
objects with a far nearest neighbor, even if it has a higher
quality. Our algorithms can directly be applied for such ex-
tended preference queries. A simple optimization applica-
ble for these queries is to prune non-leaf entries at feature



trees, if they are closer than εc, but cannot improve γ, due
to the distance of their MBRs to the examined objects.

Another extension of our queries include preferences
also on the data objects. For instance, assume that we are
looking for flats that are cheap, big, and close to vegetarian
restaurants. There are several ways to process such queries.
First, our algorithms can be used for this purpose if the ob-
ject tree is also an aR-tree, where the non-spatial attributes
(e.g., price, size) are aggregated accordingly. BB can be
optimized to prioritize the examination of data in D, based
on preferences on the object attributes and prune subtrees
that cannot lead to better results than the ones currently
found. Another method is to search primarily on the non-
spatial preferences, with the use of a top-k algorithm [12]
and probe the feature sets for the spatial preference compo-
nent, as long as the current top-k results can be improved.
In the future, we plan to study in detail the optimization of
such queries.

6 Conclusion
In this paper, we studied top-k spatial preference queries,

which provides a novel type of ranking for spatial objects
based on qualities of features in their neighborhood. We
presented several algorithms for processing top-k spatial
preference queries. First, we introduced a baseline algo-
rithm SP that computes the scores of every object by per-
forming spatial queries on feature datasets. SP is optimized
by an incremental computation technique that reduces the
number of component score computations for the objects.
Next, we presented the GP, a variant of SP that reduces
I/O cost by computing scores of objects in the same leaf
node concurrently. Based on GP, we developed algorithm
BB, which prunes non-leaf entries in the object tree that
cannot lead to better results. For this, we developed tech-
niques for deriving upper bound scores for non-leaf entries
in the object tree by accessing feature trees. Finally, we
propose algorithm FJ, which performs a multi-way join on
feature trees to obtain combinations of feature points that
commonly affect a spatial region and then search for the
objects (in the object tree) affected by these combinations.

Our experimental results show that BB outperforms SP
and GP, since SP and GP examine every object in the ob-
ject tree, whereas BB applies pruning techniques to reduce
the number of objects to be examined (and thus their score
computations). FJ is more efficient than BB for two or less
feature sets, because FJ effectively discovers combinations
of features that may lead to results with high scores. BB
and FJ mainly access object data and feature data, respec-
tively. Thus, BB is the best method when the object dataset
is small whereas FJ is the best algorithm when there are few
and small feature datasets.

Apart from the problem variants discussed in Section 5,
in the future, we plan to design a cost model for BB and FJ

so that the query optimizer is able to decide the best query
algorithm (either BB or FJ) for a particular problem input.
Another interesting research direction is to investigate effi-
cient processing of top-k spatial preference queries on non-
indexed data.

References
[1] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Infor-

mation Retrieval. ACM Press / Addison-Wesley, 1999.

[2] S. Berchtold, C. Boehm, D. Keim, and H. Kriegel. A Cost
Model for Nearest Neighbor Search in High-Dimensional
Data Space. In PODS, 1997.

[3] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft.
When is “nearest neighbor” meaningful? In ICDT, 1999.

[4] S. Brin and L. Page. The Anatomy of a Large-scale Hyper-
texual Web Search Engine. In WWW, 1998.

[5] N. Bruno, L. Gravano, and A. Marian. Evaluating Top-k
Queries over Web-accessible Databases. In ICDE, 2002.

[6] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient Query Pro-
cessing in Geographic Web Search Engines. In SIGMOD,
2006.

[7] Y. Du, D. Zhang, and T. Xia. The Optimal-Location Query.
In SSTD, 2005.

[8] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation Al-
gorithms for Middleware. In PODS, 2001.

[9] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. In SIGMOD, 1984.

[10] G. R. Hjaltason and H. Samet. Distance Browsing in Spatial
Databases. TODS, 24(2):265–318, 1999.

[11] I. F. Ilyas, W. G. Aref, and A. Elmagarmid. Supporting Top-k
Join Queries in Relational Databases. In VLDB, 2003.

[12] N. Mamoulis, K. H. Cheng, M. L. Yiu, and D. W. Cheung.
Efficient Aggregation of Ranked Inputs. In ICDE, 2006.

[13] N. Mamoulis and D. Papadias. Multiway Spatial Joins.
TODS, 26(4):424–475, 2001.

[14] A. Okabe, B. Boots, K. Sugihara, and S. Chiu. Spatial Tes-
sellations : Concepts and Applications of Voronoi Diagrams.
Wiley, second edition, 2000.

[15] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP
Operations in Spatial Data Warehouses. In SSTD, 2001.

[16] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest Neigh-
bor Queries. In SIGMOD, 1995.

[17] Y. Tao, V. Hristidis, D. Papadias, and Y. Papakonstantinou.
Branch-and-Bound Processing of Ranked Queries. Informa-
tion Systems, to appear.

[18] R. Weber, H.-J. Schek, and S. Blott. A quantitative analy-
sis and performance study for similarity-search methods in
high-dimensional spaces. In VLDB, 1998.

[19] T. Xia, D. Zhang, E. Kanoulas, and Y. Du. On Computing
Top-t Most Influential Spatial Sites. In VLDB, 2005.

[20] D. Zhang, Y. Du, T. Xia, and Y. Tao. Progessive Computation
of The Min-Dist Optimal-Location Query. In VLDB, 2006.


