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Abstract. Non-contiguous subsequence pattern queries search for sym-
bol instances in a long sequence that satisfy some soft temporal con-
straints. In this paper, we propose a methodology that indexes long se-
quences, in order to efficiently process such queries. The sequence data
are decomposed into tables and queries are evaluated as multiway joins
between them. We describe non-blocking join operators and provide
query preprocessing and optimization techniques that tighten the join
predicates and suggest a good join order plan. As opposed to previous
approaches, our method can efficiently handle a broader range of queries
and can be easily supported by existing DBMS. Its efficiency is evaluated
by experimentation on synthetic and real data.

1 Introduction

Time-series and biological database applications require the efficient manage-
ment of long sequences. A sequence can be defined by a series of symbol instances
(e.g., events) over a long timeline. Various types of queries are applied by the
data analyst to recover interesting patterns and trends from the data. The most
common type is referred to as “subsequence matching”. Given a long sequence
T , a subsequence query q asks for all segments in T that match q. Unlike other
data types (e.g., relational, spatial, etc.), queries on sequence data are usually
approximate, since (i) it is highly unlikely for exact matching to return results
and (ii) relaxed constraints can better represent the user requests.

Previous work on subsequence matching has mainly focused on (exact) re-
trieval of subsequences in T that contain or match all symbols of a query sub-
sequence q [5,10]. A popular type of approximate retrieval, used mainly by bi-
ologists, is based on the edit distance [11,8]. In these queries, the user is usually
interested in retrieving contiguous subsequences that approximately match con-
tiguous queries. Recently, the problem of evaluating non-contiguous queries has
been addressed [13]; some applications require retrieving a specific ordering of
events (with exact or approximate gaps between them), without caring about the
events which interleave them in the actual sequence. An example of such a query
would be “find all subsequences where event a was transmitted approximately
10 seconds before b, which appeared approximately 20 seconds before c”. Here,
“approximately” can be expressed by an interval τ of allowed distances (e.g.,



τa,b = [9, 11] seconds), which may be of different length for different query com-
ponents (e.g., τa,b = [9, 11] sec., τb,c = [18, 21] sec.). For such queries, traditional
distance measures (e.g., Euclidean distance, edit distance) may not be appro-
priate for search, since they apply on contiguous sequences with fixed distances
between consecutive symbols (e.g., strings).

In this paper, we deal with the problem of indexing long sequences in or-
der to efficiently evaluate such non-contiguous pattern queries. In contrast to a
previous solution [13], we propose a much simpler organization of the sequence
elements, which, paired with query optimization techniques, allows us to solve
the problem, using off-the-shelf database technology. In our framework, the se-
quence is decomposed into multiple tables, one for each symbol that appears in
it. A query is then evaluated as a series of temporal joins between these tables.
We employ temporal inference rules to tighten the constraints in order to speed-
up query processing. Moreover, appropriate binary join operators are proposed
for this problem. An important feature of these operators is that they are non-
blocking; in other words, their results can be consumed at production time and
temporary files are avoided during query processing. We provide selectivity and
cost models for temporal joins, which are used by the query optimizer to define
a good join order for each query.

The rest of the paper is organized as follows. Section 2 formally defines the
problem and discusses related work. We present our methodology in Section 3.
Section 4 describes a query preprocessing technique and provides selectivity and
cost models for temporal joins. The application of our methodology to variants
of the problem is discussed in Section 5. Section 6 includes an experimental
evaluation of our methods. Finally, Section 7 concludes the paper.

2 Problem Definition and Related Work

2.1 Problem definition
Definition 1. Let S be a set of symbols (e.g., event types). A sequence T is
defined by a series of (s, t) pairs, where s is a symbol in S and t is a real-valued
timestamp.

As an example, consider an application that collects event transmissions from
sensors. The set of event types defines S. The sequence T is the collection of
all transmissions over a long time. Figure 1 illustrates such a sequence. Here,
S = {a, b, c, d, e, f} and T = 〈(a, 1.5), (c, 3), (d, 4.12), . . . , (b, 32.14)〉. Note that
the definition is generic enough to include non-timestamped strings, where the
distance between consecutive symbols is fixed. Given a long sequence T , an
analyst might want to retrieve the occurrences of interesting temporal patterns:

Definition 2. Let T be a sequence defined over a set of symbols S. A sub-
sequence query pattern is defined by a connected directed graph Q(V,E).
Each node ni ∈ V is labeled with a symbol l(ni) from S. Each (directed) edge
〈ni → nj〉 in E is labeled by a temporal constraint τi,j modeling the allowed
temporal distance t(nj)−t(ni) between ni and nj in a query result. τi,j is defined
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Fig. 1. A data sequence and a query

by an interval [ai,j , bi,j ] of allowed values for t(nj)− t(ni). The length |τi,j | of
a temporal constraint τi,j is defined by the length of the corresponding temporal
interval.

Notice that a temporal constraint τi,j implies an equivalent τj,i (with the
reverse direction), however, only one is usually defined by the user. A query
example, illustrated in Figure 1, is n1 → n2 → n3, l(n1) = c, l(n2) = d, l(n2) = a,
τ1,2 = [7.5, 9.5], τ2,3 = [1, 2]. The lengths of τ1,2 and τ2,3 are 9.5 − 7.5 = 2 and
2− 1 = 1 respectively.1 This query asks for instances of c, followed by instances
of d with time difference in the range [7.5, 9.5], followed by instances of a with
time difference in the range [1, 2]. Formally, a query result is defined as follows:

Definition 3. Given a query Q(V,E) with N vertices and a data sequence
T , a result of Q in T is defined by an instantiation {n1 ← (s1, t1), n2 ←
(s2, t2), . . . nN ← (sN , tN )} such that ∀1 ≤ i ≤ N : (si, ti) ∈ T ∧ l(ni) = si and
∀〈ni → nj〉 ∈ E : tj − ti ∈ τi,j.

Figure 1 shows graphically the results of the example query in the data
sequence (notice that they include non-contiguous event patterns). It is possible
(not shown in the current example) that two results share some common events.
In other words, an event (or combination of events) may appear in more than
one results. The sequence patterns search problem can be formally defined as
follows:

Definition 4. (problem definition) Given a query Q(V,E) and a data se-
quence T , the subsequence pattern retrieval problem asks for all results of
Q in T .

Definition 2 is more generic than the corresponding query definition in [13],
allowing the specification of binary temporal constraints between any pair of
symbol instances. However, the graph should be connected, otherwise multiple
queries (one for each connected component) are implied. As we will see in Section

1 We note here that the length of a constraint τi,j = [ai,j , bi,j ] in a discrete integer
temporal domain is defined by bi,j − ai,j + 1.



4.1, additional temporal constraints can be derived for non-existing edges, and
the existing ones can be further tightened using a temporal constraint network
minimization technique. This allows for efficient query processing and optimiza-
tion.

2.2 Related work

The subsequence matching problem has been extensively studied in time-series
and biological databases, but for contiguous query subsequences [11,5,10]. The
common approach is to slide a window of length w along the long sequence
and index the subsequence defined by each position of the window. For time-
series databases, the subsequences are transformed to high dimensional points
in a Euclidean space and indexed by spatial access methods (e.g., R–trees). For
biological sequences and string databases, more complex measures, like the edit
distance are used. These approaches cannot be applied to our problem, since
we are interested in non-contiguous patterns. In addition, search in our case is
approximate; the distances between symbols in the query are not exact.

Wang et al. [13] were the first to deal with non-contiguous pattern queries.
However, the problem definition there is narrower, covering only a subset of the
queries defined in the previous section. Specifically, the temporal constraints are
always between the first query component and the remaining ones (i.e., arbitrary
binary constraints are not defined). In addition, the approximate distances are
defined by an exact distance and a tolerance (e.g., a is 20 ± 1 seconds before
b), as opposed to our interval-based definition. Although the interval-based and
tolerance based definitions are equivalent, we prefer the interval-based one in our
model, because inference operations can easily be defined, as we will see later.

[13] slide a temporal window of length ξ along the data sequence T . Each
symbol s0 ∈ T defines a window position. The window at s0 defines a string of
pairs starting by (s0, 0) and containing (s, f) pairs, where s is a symbol and f is
its distance from the previous symbol. The length of the string at s0 is controlled
by ξ; only symbols s with t(s) − t(s0) < ξ are included in it. Figure 2a shows
an example sequence and the resulting strings after sliding a window of length
ξ = 5.

The strings are inserted into a prefix tree structure (i.e., trie), which com-
presses their occurrences of the corresponding subsequences in T . Each leaf of
this trie stores a list of the positions in T , where the corresponding subsequence
exists; if most of the subsequences occur frequently in T , a lot of space can be
saved. The nodes of the trie are then labeled by a preorder traversal; node v is
assigned a pair (vs, vm), where vs is the preorder ID and vm is the maximum
preorder ID under the subtree rooted at v. From this trie, a set of iso-depth
lists (one for each (s, d) pair, where s is a symbol and d is its offset from the
beginning of the subsequence) are extracted. Figure 2b shows how the example
strings are inserted into the trie and the iso-depth links for pair (b, 3). These
links are organized into consecutive arrays, which are used for pattern search-
ing (see Figure 2c). For example, assume that we want to retrieve the results of
query τ(c, a) = [1, 1] and τ(c, b) = [3, 3]. We can use the ISO-Depth index to first



find the ID range of node (c, 0), which is (7, 9). Then, we issue a containment
query to find the ID ranges of (a, 1) within (7, 9). For each qualifying range,
(8, 9) in the example, we issue a second containment query on (b, 3) to retrieve
the ID range of the result and the corresponding offset list. In this example, we
get (9, 9), which accesses in the right table of Fig. 2c the resulting offset 7. If
some temporal constraints are approximate (e.g., τ(c, a) = [1,2]), in the next
list a query is issued for each exact value in the approximate range (assuming a
discrete temporal domain).
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Fig. 2. Example of the ISO-Depth index [13]

This complex ISO-Depth index is shown in [13] to perform better than naive,
exhaustive-search approaches. It can be adapted to solve our problem, as defined
in Section 2.1. However, it has certain limitations. First, it is only suitable for star
query graphs, where (i) the first symbol is temporally before all other symbols
in the query and (ii) the only temporal constraints are between the first symbol
and all others. Furthermore, there should be a total temporal order between the
symbols of the query. For example, constraint τa,b = [−1, 1], implies that a can
be before or after b in the query result. If we want to process this query using the
ISO-Depth index, we need to decompose it to two queries: τa,b = [0, 1] and τb,a =
[1, 1], and process them separately. If there are multiple such constraints, the
number of queries that we need to issue may increase significantly. In the worst
case, we have to issue N ! queries, where N is the number of vertices in the query
graph. An additional limitation of the ISO-Depth index is that the temporal
domain has to be discrete and coarse for trie compression to be effective. If
the time domain is continuous, it is highly unlikely that any subsequence will
appear exactly in T more than once. Finally, the temporal difference between
two symbols in a query is restricted by ξ, limiting the use of the index. In
this paper, we propose an alternative and much simpler method for storing and
indexing long sequences, in order to efficiently process arbitrary non-contiguous
subsequence pattern queries.

3 Methodology

In this section, we describe the data decomposition scheme proposed in this pa-
per and a simple indexing scheme for it. We provide a methodology for query



evaluation and describe non-blocking join algorithms, which are used as compo-
nents in it.

3.1 Storage organization
Since the queries search for relative positions of symbols in the data sequence
T , it is convenient to decompose T by creating one table Ts for each symbol
s. The table stores the (ordered) positions of the symbol in the database. A
sparse B+–tree Bs is then built on top of it to accelerate range queries. The
construction of the tables and indexes can be performed by scanning T once. At
index construction, for each table Ts we need to allocate (i) one page for the file
that stores Ts and (ii) one page for each level of its corresponding index Bs. The
construction of Ta and Ba for symbol a can be illustrated in Figure 3 (the rest
of the symbols are handled concurrently). While scanning T , we can insert the
symbol positions into the table. When a page becomes full, it is written to disk
and a new pointer is added to the current page at the B+–tree leaf page. When
a B+–tree node becomes full, it is flushed to disk and, in turn, a new entry is
added at the upper level.

table for a: 1.4 11.3 12.8 18.2 19.8 26.3 31 34.5 39.2 40.1 42 53.2 55.2 57.1 58 60.1

19.8 39.2 65.1

65.1 65.2 ...

55.2

index for a:

pages currently
in memory:

Fig. 3. Construction of the table and index for symbol a

Formally, the memory requirements for decomposing and indexing the data
with a single scan of the sequence are 1 +

∑
∀s∈S (1 + h(Bs)), where h(Bs) is

the height of the tree Bs that indexes Ts. For each symbol s, we only need to
keep one page for each level of Bs plus one page of Ts. We also need one buffer
page for the input. If the number of symbols is not extremely large, the system
memory should be enough for this process. In a different case, the bulk-loading
of indexes can be postponed and constructed at a second pass of each Ts.

3.2 Query evaluation
A pattern query can be easily transformed to a multiway join query between the
corresponding symbol tables. For instance, to evaluate τc,d = [7.5, 9.5] ∧ τd,a =
[1, 2] we can first join table Tc with Td using the predicate τc,d = [7.5, 9.5] and
then the results with Ta using the predicate τd,a = [1, 2]. This evaluation plan
can be expressed by a tree (Tc 1τc,d Td) 1τd,a Ta. Depending on the order and
the algorithms used for the binary joins, there might be numerous query evalua-
tion plans [12]. Following the traditional database query optimization approach,



we can transform the query to a tree of binary joins, where the intermediate
results of each operator are fed to the next one [7]. Therefore, join operators
are implemented as iterators that consume intermediate results from underlying
joins and produce results for the next ones.

Like multiway spatial joins [9], our queries have a common join attribute in
all tables (i.e., the temporal positions of the symbols). As we will see in Section
4.1, for each query, temporal constraints are inferred between every pair of nodes
in the query graph. In other words, the query graph is complete. Therefore, the
join operators also validate the temporal constraints that are not part of the
binary join, but connect symbols from the left input with ones in the right one.
For example, whenever the operator that joins (Tc 1τc,d Td) with Ta using τd,a
computes a result, it also validates constraint τc,a, so that the result passed to
the operator above satisfies all constraints between a,c, and d.

For the binary joins, the optimizer selects between two operators. The first
is index nested loops join (INLJ). Since B+–trees index the tables, this operator
can be applied for all joins, where at least one of the joined inputs is a leaf of the
evaluation plan. INLJ scans the left (outer) join input once and for each symbol
instance applies a selection (range) query on the index of the right (inner) input
according to the temporal constraint. For instance, consider the join Tc 1 Td
with τc,d = [7.5, 9.5] and the instance c = 3. The range query applied on the
index of d is [10.5, 12.5]. INLJ is most suitable when the left input is significantly
smaller than the right one. In this case, many I/Os can be saved by avoiding
accessing irrelevant data from the right input. This algorithm is non-blocking;
it does not need to have the whole left input until it starts join processing.
Therefore, join results can be produced before the whole input is available.

The second operator is merge join (MJ). MJ merges two sorted inputs and
operates like the merging phase of external merge-sort algorithm [12]. The sym-
bol tables are always sorted, therefore MJ can directly be applied for leaves
of the evaluation plan. In our implementation of MJ, the output is produced
sorted on the left input. The effect of this is that both INLJ and MJ produce
results sorted on the symbol from the left input that is involved in the join pred-
icate. Due to this property, MJ is also applicable for joining intermediate results,
subject to memory availability, without blocking. The rationale is that joined
inputs, produced by underlying operators, are not completely unsorted on their
join symbol. A bound for the difference between consecutive values of their join
symbol can be defined by the temporal constraints of the query.

More specifically, assume that MJ performs the join L 1 R according to
predicate τx,y, where x is a symbol from the left input L and y is from the
right input R. Assume also that L and R are sorted with respect to symbols
lL and lR, respectively. Let p1

L and p2
L be two consecutive tuples in L. Due to

constraint τx,lL , we know that p2
L[x] ≥ p1

L[x]− |τx,lL |, or else the next value of x
that appears in L cannot be smaller than the previous one decremented by the
length of constraint τx,lL . Similarly, the difference between two values of y in R
is bounded by |τy,lR |. Consider the example query of Figure 1 and assume that
INLJ is used to process Tc 1 Td. For each instance xc of c in Tc, a range query



[xc + 7.5, xc + 9.5] is applied on Td to retrieve the qualifying instances of d. The
join results (xc, xd) will be totally sorted only on xc. Moreover, once we find a
value xd in the join result, we know that we cannot find any value smaller than
xd − |τc,d|, next.

We use this bound to implement a non-blocking version of MJ, as follows.
The next() iterator function to an input of MJ (e.g., L) keeps fetching results
from it in a buffer until we know that the smallest value of the join key (e.g., x)
currently in memory cannot be found in the next result (i.e., using the bound
|τx,lL |, described above). Then, this smallest value is considered as the next item
to be processed by the merge-join function, since it is guaranteed to be sorted.

If the binary join has low selectivity, or when the inputs have similar size,
MJ is typically better than INLJ. Note that, since both INLJ and MJ are
non-blocking, temporary results are avoided and the query processing cost is
greatly reduced. For our problem, we do not consider hash-join methods (like
the partitioned-band join algorithm of [4]), since the join inputs are (partially
or totally) sorted, which makes merge-join algorithms superior.

An interesting property of MJ is that it can be extended to a multiway
merge algorithm that joins all inputs synchronously [9]. The multiway algorithm
can produce on-line results by scanning all inputs just once (for high-selective
queries), however, it is expected to be slower than a combination of binary
algorithms, since it may unnecessarily access parts of some inputs.

4 Query Transformation and Optimization

In order to minimize the cost of a non-contiguous pattern query, we need to
consider several factors. The first is how to exploit inference rules of tempo-
ral constraints to tighten the join predicates and infer new, potentially useful
ones for query optimization. The second is how to find a query evaluation plan
that combines the join inputs in an optimal way, using the most appropriate
algorithms.

4.1 Query transformation
A query, as defined in Section 2.1, is a connected graph, which may not be
complete. Having a complete graph of temporal constraints between symbol
instances can be beneficial for query optimization. Given a query, we can apply
temporal inference rules to (i) derive implied temporal constraints between nodes
of the query graph, (ii) tighten existing constraints, and even (iii) prove that the
query cannot have any results, if the set of constraints is inconistent.

Inference of temporal constraints is a well-studied subject in Artificial In-
telligence. Dechter et. al [3] provide a comprehensive study on solving temporal
constraint satisfaction problems (TCSPs). Our query definitions 2 and 3 match
the definition of a simple TCSP, where the constraints between problem vari-
ables (i.e., graph nodes) are simple intervals. In order to transform a user query
to a minimal temporal constraint network, with no redundant constraints, we
use the following operations (from [3]):



– inversion: τi,j := τj,i. By symmetry, the inverse of a constraint τi,j is defined
by aj,i = −bi,j and bj,i = −ai,j .

– intersection: τ ∩ τ ′. The intersection of two constraints is defined by the
values allowed by both of them. For constraints τi,j and τ ′i,j on the same
edge, intersection τi,j ∩ τ ′i,j is defined by [max{ai,j , a′i,j},min{bi,j , b′i,j}].

– composition: τ ∝ τ ′. The composition of two constraints allows all values w
such that there is a value v allowed by τ , a value u allowed by τ ′ and v+u =
w. Given two constraints τi,j and τj,k, sharing node nj , their composition
τi,j ∝ τj,k is defined by [ai,j + aj,k, bi,j + bj,k]

Inversion is the simplest form of inference. Given a constraint τi,j , we can
immediately infer constraint τj,i. For example if τc,d = [7.5, 9.5], we know that
τd,c = [−9.5,−7.5]. Composition is another form of inference, which exploits
transitivity to infer constraints between nodes, which are not connected in the
original graph. For example, τc,d = [7.5, 9.5] ∧ τd,a = [1, 2] implies τ ′c,a =
[8.5, 11.5]. Finally, intersection is used to unify (i.e., minimize) the constraints
for a given pair of nodes. For example, an original constraint τc,a = [8, 10] can
be tightened to [8.5, 10], using an inferred constraint τ ′c,a = [8.5, 11.5]. After an
intersection operation, a constraint τi,j can become inconsistent if ai,j > bi,j .

A temporal constraint network (i.e., a query in our setting) is minimal if
no constraints can be tightened. It is inconsistent if it contains an inconsistent
constraint. The goal of the query transformation phase is to either minimize
the constraint network or prove it inconsistent. To achieve this goal we can
employ an adaptation of Floyd-Warshall’s all-pairs-shortest-path algorithm [6]
with O(N3) cost, N being the number of nodes in the query. The pseudocode
of this algorithm is shown in Figure 4. First, the constraints are initialized by
(i) introducing inverse temporal constraints for existing edges and (ii) assigning
“dummy” constraints to non-existing edges. The nested for-loops correspond
to Floyd-Warshall’s algorithm, which essentially finds for all pairs of nodes the
lower constraint bound (i.e., shortest path) and the upper constraint bound (i.e.,
longest path). If some constraint is found inconsistent, the algorithm terminates
and reports it. As shown in [3] and [6], the algorithm of Figure 4 computes the
minimal constraint network correctly.

4.2 Query Optimization
In order to find the optimal query evaluation plan, we need accurate join selec-
tivity formulae and cost estimation models for the individual join operators.

The selectivity of a join in our setting can be estimated by applying existing
models for spatial joins [9]. We can model the join L 1 R as a set of selections on
R, one for each symbol in L. If the distribution of the symbol instances in R is
uniform, the selectivity of each selection can be easily estimated by dividing the
temporal range of the constraint by the temporal range of the data sequence. For
non-uniform distributions, we extend techniques based on histograms. Details are
omitted due to space constraints.

Estimating the costs of INLJ and MJ is quite straightforward. First, we have
to note that a non-leaf input incurs no I/Os, since the operators are non-blocking.



boolean Query Transformation(query Q(V,E))
for each pair of nodes 〈ni, nj〉

if 〈ni → nj〉 ∈ E then τj,i := τi,j ; //inversion
if ni is not connected to nj then τi,j := τj,i := [−∞,∞];

for k := 1 to N
for i := 1 to N

for j := i+ 1 to N
τi,j := τi,j ∩ (τi,k ∝ τk,j);
if ai,j > bi,j then return false; //inconsistent query
τj,i := τi,j ;

return true; //consistent query

Fig. 4. Query transformation using Floyd-Warshall’s algorithm

Therefore, we need only estimate they I/Os by INLJ and MJ for leaf inputs of
the evaluation plan. Essentially, MJ reads both inputs once, thus its I/O cost
is equal to the size of the leaf inputs. INLJ performs a series of selections on a
B+-tree. If an LRU memory buffer is used for the join, the index pages accessed
by a selection query are expected to be in memory with high probability due
to the previous query. This, because instances of the left input are expected to
be sorted, or at least partially sorted. Therefore, we only need to consider the
number of distinct pages of R accessed by INLJ.

An important difference between MJ and INLJ is that most accesses by
MJ are sequential, whereas INLJ performs mainly random accesses. Our query
optimizer takes this under consideration. From its application, it turns out that
the best plans are left-deep plans, where the lower operators are MJ and the
upper ones INLJ. This is due to the fact that our multiway join cannot benefit
from the few intermediate results of bushy plans, since they are not materialized
(recall that the operators are non-blocking). The upper operators of a left-deep
plan have a small left input, which is best handled by INLJ.

5 Application to Problem Variants

So far, we have assumed that there is only one data sequence T and that the
indexed symbols are relatively few with a significance number of appearances in
T . In this section we discuss how to deal with more general cases with respect
to these two factors.

5.1 Indexing and querying multiple sequences

If there are multiple small sequences, we can concatenate them to a single long
sequence. The difference is that now we treat the beginning time of one sequence
as the end of the previous one. In addition, we add a long temporal gap W ,
corresponding to the maximum sequence length (plus one time unit), between



every pair of sequences in order to avoid query results, composed of symbols
that belong to different sequences.

For example, consider three sequences: T1 = 〈(b, 1), (a, 3.5), (d, 4.5), (a, 6)〉,
T2 = 〈(a, 0.5), (d, 3), (b, 9.5)〉, and T3 = 〈(c, 2), (a, 3.5), (b, 4)〉. Since the longest
sequence T2 has length 9, we can convert all of them to a single long sequence T =
〈(b, 0), (a, 2.5), (d, 3.5), (a, 5), (a, 20), (d, 22.5), (b, 29), (c, 40), (a, 41.5), (b, 42)〉.

Observe that in this conversion, we have (i) computed the maximum sequence
length and added a time unit to derive W = 10 and (ii) shifted the sequences,
so that sequence Ti begins at (i− 1) ∗ 2W . The differences between events in the
same sequence have been retained. Therefore, by setting the maximum possible
distance between any pair of symbols toW , we are able to apply the methodology
described in the previous sections for this problem. If the maximum sequence
length is unknown at index construction time (e.g., when the data are online), we
can use a large number for W that reflects the maximum anticipated sequence
length.

Alternatively, if someone wants to find patterns, where the symbols appear in
any data sequence, we can simply merge the events of all sequences treating them
as if they belonged to the same one. For example, merging the sequences T1–T3

above would result in T = 〈(a, 0.5), (b, 1), (c, 2), (d, 3), (a, 3.5), (a, 3.5), (b, 4), . . . 〉.

5.2 Handling infrequent symbols

If some symbols are not frequent in T , disk pages may be wasted after the
decomposition. However, we can treat all decomposed tables as a single one,
after determining an ordering of the symbols (e.g., alphabetical order). Then,
occurrences of all symbols are recorded in a single table, sorted first by symbol
and then by position. This table can be indexed using a B+–tree in order to
facilitate query processing. We can also use a second (header) index on top of
the sorted table, that marks the first position of each symbol. This structure
resembles the inverted file used in Information Retrieval systems [1] to record
the occurrences of index terms in documents.

5.3 Indexing and querying patterns in DBMS tables

In [13], non-contiguous sequence pattern queries have been used to assist explo-
ration of DNA Micro-arrays. A DNA micro-array is an expression matrix that
stores the expression level of genes (rows) in experimental samples (columns). It
is possible to have no result about some gene-sample combinations. Therefore,
the micro-array can be considered as a DBMS table with NULL values.

We can consider each row of this table as a sequence, where each non-NULL
value v at column s is transformed to a (s, v) pair. After sorting these pairs by
v, we derive a sequence which reflects the expression difference between pairs of
samples on the same gene. If we concatenate these sequences to a single long
one, using the method described in Section 5.1, we can formulate the problem of
finding genes with similar differences in their expression levels as a subsequence
pattern retrieval problem.



Figure 5 illustrates. The leftmost table corresponds to the original micro-
array, with the expression levels of each gene to the various samples. The middle
table shows how the rows can be converted to sequences and the sequence of Fig-
ure 5c is their concatenation. As an example, consider the query “find all genes,
where the level of sample s1 is lower than that of s2 at some value between 20
and 30, and in the level of sample s2 is lower than that of s3 at some value be-
tween 100 and 130”. This query would be expressed by the following subsequence
query pattern on the transformed data: τs1,s2 = [20, 30] ∧ τs2,s3 = [100, 130].

s1 s2 s3
g1 50 30 NULL
g2 190 NULL 120
g3 15 105 150
· · · · · · · · · · · ·

g1 〈(s2, 30), (s1, 50)〉
g2 〈(s3, 120), (s1, 150)〉
g3 〈(s1, 15), (s2, 105), (s3, 150)〉
· · · · · ·

(s2, 0), (s1, 20),
(s3, 400), (s1, 430),
(s1, 800), (s2, 890), (s3, 935)
· · ·

(a) A DBMS table (b) Transformed sequences (c) Single sequence (W = 200)

Fig. 5. Converting a DBMS table, domain=[0, 200)

6 Experimental Evaluation

Our framework, denoted by SeqJoin thereafter, and the ISO-Depth index method
were implemented in C++ and tested on a Pentium-4 2.3GHz PC. We set the
page (and B+–tree node) size to 4Kb and used an LRU buffer of 1Mb. To
smoothen the effects of randomness in the queries, all experimental results (ex-
cept from the index creation) were averaged over 50 queries with the same pa-
rameters.

For comparison purposes, we generated a number of data sequences T as
follows. The positions of events in T are integers, generated uniformly along the
sequence length; the average difference of consecutive events was controlled by
a parameter G. The symbol that labels each event was chosen among a set of S
symbols according to a Zipf distribution with a parameter θ. Synthetic datasets
are labeled by D|T |-GG-A|S|-Sθ. For instance, label D1M-G100-A10-S1 indi-
cates that the sequence has 1 million events, with 100 average gap between two
consecutive ones, 10 different symbols, whose frequencies follow a Zipf distribu-
tion with skew parameter θ = 1. Notice that θ = 0 implies that the labels for
the events are chosen uniformly at random.

We also tested the performance of the algorithms with real data. Gene ex-
pression data can be viewed as a matrix where a row represents a gene and a
column represents the condition. From [2], we obtained two gene expression ma-
trices (i) a Yeast expression matrix with 2884 rows and 17 columns, and (ii) a
Human expression matrix with 4026 rows and 96 columns. The domains of Yeast
and Human datasets are [0, 595] and [−628, 674] respectively. We converted the
above data to event sequences as described in Section 5.3 (note that [13] use the
same conversion scheme).

The generated queries are star and chain graphs connecting random sym-
bols with soft temporal constraints. Thus, in order to be fair in our comparison



with ISO-Depth, we chose to generate only queries that satisfy the restrictions
in [13]. Chain graph queries with positive constraint ranges can be converted to
star queries, after inferring all the constraints between the first symbol and the
remaining ones. On the other hand, it may not be possible to convert random
queries to star queries without inducing overlapping, non-negative constraints.
Note that these are the best settings for the ISO-Depth index, since otherwise
queries have to be transformed to a large number subqueries, one for each possi-
ble order of the symbols in the results. The distribution of symbols in a generated
query is a Zipfian one with skew parameter Sskew. In other words, some symbols
have higher probability to appear in the query according to the skew parameter.
A generated constraint has average length R and ranges from 0.5 ·R to 1.5 ·R.

6.1 Size and construction cost of the indexes

In the first set of experiments, we compare the size and construction cost of the
data structures used by the two methods (SeqJoin and ISO-Depth) as a function
of three parameters; the size of T (in millions of elements), the average gap G
between two consecutive symbols in the sequence, and the number |S| of distinct
symbols in the sequence. We used uniform symbol frequencies (θ = 0) in T and
skewed frequencies (θ = 1). Since the size and construction cost of SeqJoin is
independent of the skewness of symbols in the sequence, we compare three meth-
ods here (i) SeqJoin, (ii) simple ISO-Depth (for uniform symbol frequencies), and
(iii) ISO-Depth with reordering [13] (for skewed symbol frequencies).

Figure 6 plots the sizes of the constructed data structures after fixing two
parameter values and varying the value of the third one. Observe that ISO-Depth
with and without reordering have similar sizes on disk. Moreover, the size of the
structures depends mainly on the database size, rather on the other parameters.
The size of the ISO-Depth structures is roughly ten times larger than that of the
SeqJoin data structures. The SeqJoin structures are smaller than the original
sequence (note that one element of T occupies 8 bytes). A lot of space is saved
because the symbol instances are not repeated; only their positions are stored
and indexed. On the other hand, the ISO-Depth index stores a lot of redundant
information, since a subsequence is defined for each position of the sliding window
(note that ξ = 4 ·G for this experiment). The size difference is insensitive to the
values of the various parameters.

Figure 7 plots the construction time for the data structures used by the
two methods. The construction cost for ISO-Depth is much higher than that of
SeqJoin and further increases when reordering is employed. The costs for both
methods increase proportionally to the database size, as expected. However,
observe that the cost for SeqJoin is almost insensitive to the average gap between
symbols and to the number of distinct symbols in the sequence. On the other
hand, there is an obvious cost increase in the cost of ISO-Depth with G due to
the low compression the trie achieves for large gaps between symbols. There is
also an increase with the number of distinct symbols, due to the same reason.

Table 1 shows the corresponding index size and construction cost for the real
datasets used in the experiments. Observe that the difference between the two
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Fig. 6. Index size on disk (synthetic data)
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Fig. 7. Index construction time (synthetic data)

methods is even higher compared to the synthetic data case. The large construc-
tion cost is a significant disadvantage of the ISO-Depth index, which adds to the
fact that it cannot be dynamically updated. If the data sequence is frequently
updated (e.g., consider on-line streaming data from sensor transmissions), the
index has to be built from scratch with significant overhead. On the other hand,
our symbol tables Ts and B+–trees can be efficiently updated incrementally. The
new event instances are just appended to the corresponding tables. Also, in the
worst case only the rightmost paths of the indexes are affected by an incremental
change (see Section 3.1).

Dataset Method Index Size (Mb) Construction time (s)

Yeast SeqJoin 0.3 0.4

ISO-Depth 5.5 4.2

Human SeqJoin 2.14 3.1

ISO-Depth 251 416.2

Table 1. Index size and construction time (real data)

6.2 Experiments with synthetic data

In this paragraph, we compare the search performance of the two methods on
generated synthetic data. Unless otherwise stated, the dataset used is D2M-
G100-A10-S0, the default parameters for queries are R = 50, Sskew = 0, and
the number N of nodes in the query graphs is 4.



Figure 8 shows the effect of database size on the performance of the two algo-
rithms in terms of page accesses, memory buffer requests, and overall execution
time. For each length of the data sequence we tested the algorithms on both
uniform (Sskew = 0) and Zipfian (Sskew = 1) symbol distributions. Figure 8a
shows that SeqJoin outperforms ISO-Depth in terms of I/O in most cases, except
for small datasets with skewed distribution of symbols. The reason behind this
unstable performance of ISO-Depth, is that the I/O cost of this algorithm is very
sensitive to the memory buffer. Skewed queries on small datasets access a small
part of the iso-depth lists with high locality and cache congestion is avoided.
On the other hand, for uniform symbol distributions or large datasets the huge
number of cache requests by ISO-Depth (see Figure 8b), incur excessive I/O.
Figure 8c plots the overall execution cost of the algorithms; SeqJoin is one to
two orders of magnitude faster than ISO-Depth. Due to the relaxed nature of
the constraints, ISO-Depth has to perform a huge number of searches.2
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Fig. 8. Performance with respect to the data sequence length

Figure 9 compares the performance of the two methods with respect to several
system, data, and query parameters. Figure 9a shows the effect of cache size (i.e.,
memory buffer size) on the I/O cost of the two algorithms. Observe that the I/O
cost of SeqJoin is almost constant, while the number of page accesses by ISO-
Depth drops as the cache size increases. ISO-Depth performs a huge number of
searches in the iso-depth lists, with high locality between them. Therefore, it is
favored by large memory buffers. On the other hand, SeqJoin is insensitive to the
available memory (subject to a non-trivial buffer) because the join algorithms
scan the position tables and indexes at most once. Even though ISO-Depth
outperforms SeqJoin in terms of I/O for large buffers, its excessive computational
cost (which is almost insensitive to memory availability) dominates the overall
execution time. Moreover, most of the page accesses of ISO-Depth are random,
whereas the algorithm that accesses most of the pages for SeqJoin is MJ (at the
lower parts of the evaluation plan), which performs mainly sequential accesses.

2 In fact, the cost of ISO-Depth for this class of approximate queries is even higher
than that of a simple linear scan algorithm, as we have seen in our experiments.



Figure 9b plots the execution cost of SeqJoin and ISO-Depth as a function of
the number of symbols in the query. For trivial 2-symbol queries, both methods
have similar performance. However, for larger queries the cost of ISO-Depth
explodes, due to the excessive number of iso-depth list accesses it has to perform.
For an average constraint length R, the worst-case number of accesses is R

N−1
,

where N is the number of symbols in the query. Since the selectivity of the
queries is high, the majority of the searches for the third query symbol fail, and
this is the reason why the cost does not increase much for queries with more
than three symbols.

Figure 9c shows how the average constraint length R affects the cost of the
algorithms. The cost of SeqJoin is almost independent of this factor. However,
the cost of ISO-Depth increases superlinearly, since the worst-case number of
accesses is R

N−1
, as explained above. We note that for this class of queries the

cost of ISO-Depth in fact increases quadratically, since most of the searches after
the third symbol fail. Figure 9d shows how Sskew affects the cost of the two
methods, for star queries. The cost difference is maintained for a wide range
of symbol frequency distributions. In general, the efficiency of both algorithms
increases as the symbol occurrence becomes more skewed for different reasons.
SeqJoin manages to find a good join ordering, by joining the smallest symbol
tables first. ISO-Depth exploits the symbol frequencies in the trie construction
to minimize the potential search paths for a given query, as also shown in [13].
The fluctuations are due to the randomness of the queries. Figure 9e shows the
effect of the number of distinct symbols in the data sequence. When the number
of symbols increases the selectivity of the query becomes higher and the cost of
both methods decreases; ISO-Depth has fewer paths to search and SeqJoin has
smaller tables to join. SeqJoin maintains its advantage over ISO-Depth, however,
the cost difference decreases slightly.

Finally, Figure 9f shows the effect of the average gap between consecutive
symbol instances in the sequence. In this experiment, we set the average con-
straint length R in the queries equal to G/2 in order to maintain the same query
selectivity for the various values of G. The cost of SeqJoin is insensitive to this
parameter, since the size of the joined tables and the selectivity of the query
is maintained with the change of G. On the other hand, the performance of
ISO-Depth varies significantly for two reasons. First, for datasets with small val-
ues of G, ISO-Depth achieves higher compression, as the probability for a given
subsequence to appear multiple times in T increases. Higher compression ratio
results in a smaller index and lower execution cost. Second, the number of search
paths for ISO-Depth increase significantly with G, because of the increase of R
with the same rate. In summary, ISO-Depth can only have competitive perfor-
mance to SeqJoin for small gaps between symbols and small lengths of the query
constraints.

6.3 Experiments with real data
Figure 10 shows the performance of SeqJoin and ISO-Depth on real datasets.
In both Yeast and Human datasets, SeqJoin has significantly low cost, in terms
of I/Os, cache requests, and execution time. For these real datasets, we need to



 100

 1000

 10000

 100000

 1e+06

 0  50  100 150 200 250 300 350 400 450 500 550

P
ag

e 
ac

ce
ss

es

Cache size

SeqJoin
ISO-Depth

 0.01

 0.1

 1

 10

 2  2.5  3  3.5  4  4.5  5

E
xe

cu
tio

n 
tim

e(
s)

Query size

SeqJoin,Star
ISO-Depth,Star
SeqJoin,Chain

ISO-Depth,Chain

 0.1

 1

 10

 100

 30  35  40  45  50  55  60  65  70

E
xe

cu
tio

n 
tim

e(
s)

Average constraint range

SeqJoin,Star
ISO-Depth,Star
SeqJoin,Chain

ISO-Depth,Chain

(a) Memory Buffer (b) Query size (c) Average constraint range

 0.01

 0.1

 1

 10

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

E
xe

cu
tio

n 
tim

e(
s)

Skewness of query symbols

SeqJoin,Zipf
ISO-Depth,Zipf,Reordering

 0.01

 0.1

 1

 10

 10  20  30  40  50  60  70  80

E
xe

cu
tio

n 
tim

e(
s)

Number of symbols

SeqJoin
ISO-Depth

 0.1

 1

 10

 100

 0  50  100  150  200  250  300  350  400

E
xe

cu
tio

n 
tim

e(
s)

Average gap size in dataset

SeqJoin
ISO-Depth

(d) Skewness of query symbols (e) Number |S| of symbols (f) Average symbols gap G

Fig. 9. Performance comparison under various factors

slide a window ξ as long as the largest difference between a pair of values in the
same row. In other words, the indexed rows of the expression matrices have an
average length of |S|+1

2 . Thus, for these real datasets, the ISO-Depth index could
not achieve high compression. For instance, the converted weighted sequence
from Human dataset only has 360K elements but it has a ISO-Depth index of
comparable size as that of synthetic data with 8M elements. In addition, the
approximate queries (generated according to the settings of Section 6.2) follow
a large number of search paths in the ISO-Depth index.
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Fig. 10. Random queries against real datasets

7 Conclusions and Future Work

In this paper, we presented a methodology of decomposing, indexing and search-
ing long symbol sequences for non-contiguous sequence pattern queries. SeqJoin
has significant advantages over ISO-Depth [13], a previously proposed method
for this problem, including:



– It can be easily implemented in a DBMS, utilizing many existing modules.
– The tables and indexes are much smaller than the original sequence and they

can be incrementally updated.
– It is very appropriate for queries with approximate constraints. On the other

hand, the ISO-Depth index generates a large number of search paths, one
for each exact query included in the approximation.

– It is more general since (i) it can deal with real-valued timestamped events,
(ii) it can handle queries with approximate constraints between any pair of
objects, and (iii) the maximum difference between any pair of query symbols
is not bounded.

The contributions of this paper also include the modeling of a non-contiguous
pattern query as a graph, which can be refined using temporal inference, and the
introduction of a non-blocking merge-join algorithm, which can be used by the
query processor for this problem. In the future, we plan to study the evaluation
of this class of queries on unbounded and continuous event sequences from a
stream in a limited memory buffer.
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