
XML Data Integration using Fragment Join

Jian Gong, David W. Cheung, Nikos Mamoulis, and Ben Kao

Department of Computer Science, The University of Hong Kong
Pokfulam, Hong Kong, China

{jgong,dcheung,nikos,kao}@cs.hku.hk

Abstract. We study the problem of answering XML queries over multiple data
sources under a schema-independent scenario where XML schemas and schema
mappings are unavailable. We develop the fragment join operator — a general op-
erator that merges two XML fragments based on their overlapping components.
We formally define the operator and propose an efficient algorithm for imple-
menting it. We define schema-independent query processing over multiple data
sources and propose a novel framework to solve this problem. We provide theo-
retical analysis and experimental results that show that our approaches are both
effective and efficient.

1 Introduction

Data integration allows global queries to be answered by data that is distributed among
multiple heterogeneous data sources [1]. Through a unified query interface, global dis-
tributed queries are processed as if they were done on a single integrated data source.
To achieve data integration, a schema mapping is often used, which consists of a set
of mapping rules that define the semantic relationship between the global schema and
the local schemas (at the data sources). In these systems, such as Clio [2], processing a
global query typically involves two steps: query rewriting, and data merging.

While much work has been done on query rewriting, very little has been done on
data merging. In most existing approaches, data merging is mostly an ad hoc compu-
tation — a special data merging routine is custom-coded for each mapping rule. This
approach leads to inflexible system design. In this paper we propose a schema indepen-
dent framework that allows data merging be processed without referring to any specific
schema mapping rules.

Let us illustrate our idea by an example. Figure 1(a) shows two XML documents
taken from UA Cinema website and IMDB website, respectively. Both UA and IMDB
contain the title and the director of each movie. In addition, UA contains venue and
price, while IMDB contains the movie’s reviews. Consider a user who wants to find out
the title, director, price, and review for each movie. This is expressed by the twig pattern
query shown in Figure 1(b). Note that neither UA nor IMDB can answer the query alone
because UA lacks reviews and IMDB lacks pricing information. The (global) query thus
has to be broken into two query fragments, one for each site. The returned results from
the two sites should then be merged based on their common components. Figure 1(c)
shows an example of the query result. Our goal is to answer such twig pattern queries
in a schema-independent fashion where mapping rules are not needed.

“The
Godfather”

“The
Godfather”

movie

title review
price

movie

title reviewprice

movie

title price

movie

title review

(e) Join XML fragments to obtain the query result

movie

title reviewprice

(b) A query twig pattern (c) Sample match of the query

movie

title venue

“UA Times
Square”

price

“50”

UA

...

movie

title reviews

review

“very good
movie”

...

IMDB

...

(a) Sample XML documents

director

director

director

director

director

“Francis
Coppola”

director director

movie

title price

(d) Projected queries

director

movie

title
reviewdirector

d1

d2

q f q1 q2

f'f1 f2

“The
Godfather”

“Francis
Coppola”

“50”

“The
Godfather”

“Francis
Coppola”

“very good
movie”

“Francis
Coppola”

“50” “very good
movie”

“The
Godfather”

“Francis
Coppola”

“The
Godfather”

“Francis
Coppola”

“50” “very good
movie”

Fig. 1. Query on sample XML documents and the results.

In our approach, we join data fragments based on their overlapping content in order
to answer queries. For example, we first project the global query on the two XML doc-
uments and obtain two local queries (Figure 1(d)). Then, we retrieve XML fragments
m(t, d, p) from UA and m(t, d, r) from IMDB. Afterward, we join these fragments
based on their overlapping parts, which are title (t) and director (d) (Figure 1(e)).

2 Preliminaries

An XML document D is a rooted, node-labeled tree D = 〈N,E, r〉, wherein N is a
node set, E ⊆ N ×N is an edge set, and r ∈ N is the root node. Each node in an XML
document has a label and may contain some text. The vocabulary of an XML document
d, denoted by v(d), is the set of distinct node labels of d.

Definition 1. (XML FRAGMENT) An XML fragment f is an edge-labeled XML docu-
ment, where each edge is labeled by either “/” (parent-child edge) or “//” (ancestor-
descendant edge). An XML fragment f is a fragment of an XML document d, denoted
as f v d, if there exists an injective mapping λ : f.N → d.N , such that: (i) ∀n ∈ f.N ,
n = λ(n), and (ii) ∀e(n1, n2) ∈ f.E labeled as “/” (resp., “//”), λ(n1) is the parent
(resp., ancestor) of λ(n2).

Definition 2. (TWIG PATTERN AND MATCH) A twig pattern is an XML fragment,
where the text content of the nodes is disregarded. A fragment f is a match to a twig
pattern q, denoted as f ` q , if there exists a mapping γ : q.N → f.N , such that the
node labels and edges of q are preserved in f . A fragment f1 is contained in another
fragment f2, denoted as f1 � f2, if all the nodes and edges of f1 are contained in f2.

Definition 3. (PROJECTION) Given a fragment f and a vocabulary v(d) of a document
d, the projection of f on v(d), denoted as ρv(d)(f), is obtained by removing from f all
the nodes whose labels are not in v(d) and the corresponding connecting edges.

3 The fragment join operator

Definition 4. (FRAGMENT JOIN) Given a set of of fragments f1, ..., fn (n ≥ 2), a
fragment f is a join of f1, ..., fn, denoted as (f1, ..., fn) ./→ f , if ∃f ′

1 � f, ..., f ′
n � f ,

a

b

a c

a

b d

a

?

a

b

a c

a

b d

a

a

b d
a c

a

b

a c

a

b d

a

a

b d

a

b

a c

a

b

a c

a

b d

a

a

b d

a a

a

b

a c

a

b d

a

a

b d

a c

a

b

a c

a

b d

a

a

b

a c

b d

a

a
b

a c

a

b

a c

r

... a
b d

a

r
...

f1 f2

d2d1

(a) The fragment f1 of d1, f2 of d2 (b) Joint nodes and corresponding join results

d

b

a

c
f1f2

f1 f2

Fig. 2. XML fragment join on different joint sub-trees.

such that: 1) f ′
i = fi, 1 ≤ i ≤ n, 2) ∀n ∈ f.N , n ∈ f ′

1.N ∪ ... ∪ f ′
n.N , and 3)

∀e ∈ f.E, e ∈ f ′
1.E ∪ ... ∪ f ′

n.E.
In addition, the join set of f1, ..., fn is a set of fragments F = {f |(f1, ..., fn) ./→ f},

denoted as (f1, ..., fn) ./⇒ F .

Definition 5. (JOINT SUB-TREE) Given two fragments f1 and f2, a subtree js is a
joint sub-tree of f1 and f2 if (1) js � f1, js � f2, (2) the root of js = the root of f2.

Figure 2(b) shows the five results of the fragment join between f1 and f2 shown in
Figure 2(a). Each of these results is based on a joint sub-tree, whose nodes are pointed
by double-arrowed dashed lines in the two fragments.

We propose Algorithm 1 for evaluating the fragment join of two fragments f1 and
f2. For example, consider the first join result shown in Figure 2(b). The joint-subtree
for this join result consists of a lone node a. The boundary nodes are the children of
the root node a in f2, which are labeled b and d (underlined). The subtrees of these
boundary nodes are attached to the matching node a in f1 forming the join result.

4 Schema-independent, query-based data integration

Our research problem is formally stated as following: given XML documents d1 and d2,
and a twig pattern query q, compute F = {f |f ` q; (f1, f2)

./→ f ; f1 v d1; f2 v d2}.
Our approach to solve this problem consists of the following phases.

Projection. The twig query q is rewritten into local queries q1 = ρv(d1)(q) and
q2 = ρv(d2)(q) using the project operator (Section 2). We then apply the fragment join
operator on q1 and q2 to find a joint sub-tree js for which the join result is q.

Matching. Two sets of fragmentsF1 andF2 are returned, which contains all matches
to the local query q1 in d1 and all matches to the local query q2 in d2, respectively 1 .

Join. For each pair of fragments (f1, f2) ∈ F1 ×F2, we compute the fragment join
of f1 and f2 using the joint-subtree obtained in the projection phase. The join results
are returned as the query’s answer.

1 We thank the authors of [3] for providing us with the implementation of TwigList, used as a
module for evaluating twig queries in our work.

Algorithm 1 The join evaluation algorithm
Input: XML fragments f1 and f2

Output: a set of XML fragments F , with the join sub-trees used for each f ∈ F

1: JS ← enumerateJointSubtrees(f1, f2)
2: for all js ∈ JS do
3: f ← join(f1, f2, js)
4: output (f, js)
5: end for
6: repeat 1-6 with f1 and f2 exchanged, if necessary

function join(f1, f2, js)

1: f ← copy(f1)
2: for all x ∈ js.N do
3: let x1, x2 be the corresponding nodes of x in f1 and f2, respectively
4: for all x2’s child c do
5: if c /∈ js.N then
6: sf ← constructFragment(f2, c)
7: addChild(f1, x1, sf)
8: end if
9: end for

10: end for
11: return f

Figure 3 illustrates our approach (the found joint sub-tree contains the underlined
nodes). We note that projecting a global query onto local sources so that one single
local query is applied to each source may not be sufficient to retrieve the complete
set of query results. For example, consider again query q in Figure 3. We observe that
joining q11, a sub-twig pattern of q1 containing nodes b and c and the edge between
them, with q2 also gives us q (using the joint sub-tree b) . Therefore, in order to ensure
that all valid query results are found, we should consider all pairs of sub-twig patterns
of q1 and q2 that can form q.

Definition 6. (RECOVERABILITY) Given a twig pattern q, a pair of twig patterns (qi,
qj) is recoverable for q, denoted as (qi, qj)

r
; q, if (qi, qj)

./→ q using some joint

sub-tree js; else, (qi, qj) is non-recoverable for q, denoted as (qi, qj)
r

6; q.

We add two more schema-level phases to the Projection-Matching-Join framework,
in order to ensure completeness of the query results.

Decomposition. After the projection phase in which local queries q1 and q2 are
derived, the decomposition phase returns: Q1 = {qi|qi � q1}, and Q2 = {qj |qj � q2}.

Recoverability checking. After the decomposition phase, this phase returns: {(qi, qj)
|(qi, qj) ∈ Q1 ×Q2 ∧ (qi, qj)

r
; q}.

5 Experimental evaluation and conclusion

We use DBLP and CiteSeer datasets in our experiments. The raw CiteSeer data are in
plain text BibTeX format. We converted them into an XML file having similar schema

a

b

a c

a

b d

a

a
b

a c

a

b

a c

r

...

a
b d

a

r
...

q1

q2

d2

d1

a

b

a c

q

d

a

b
a c

a
b d

a

“a1” “c1”

“a1”

“c3”“a2”“c2”“a1”

“a2”

“d2”

a
b

a c

a

b

a c

a

b

a c
“a1” “c1” “c3”“a2”“c2”“a1”

f11 f12 f13

f22f21

“d1”

a
b d

a

a
b d

a
“a1” “a2”

“d2”
“d1”

a
b

a c
“a1” “c1”

d
“d1”

a

b

a c
“c2”“a1”

d
“d1”

a
b

a c
“c3”“a2”

d
“d2”

Projection

Matching
Join

(a) Two XML documents (b) The twig pattern query and Projection-Matching-Join query answering process

Fig. 3. Query answering from multiple data sources: projection, matching, and join.

5

10

15

20

Ti
m

e(
s)

fragment join
twig query

15
30
45
60
75

Ti
m

e(
s)

fragment join
twig query

10
20
30
40
50

Ti
m

e(
s)

fragment join
twig query

5

10

15

20

Ti
m

e(
s)

fragment join
twig query

Q1 Q2 Q3 Q4

0
1 2 3 4 5

0
1 2 3 4 5

0
1 2 3 4 5

0
1 2 3 4 5

Fig. 4. Overall performance of PDRMJ for all queries and datasets.

to that of DBLP data. The size of Citeseer dataset is 15MB. We randomly sample the
original DBLP (130MB) dataset to extract the publication records and attributes, and
obtain five DBLP datasets, whose sizes are: 1MB, 10MB, 20MB, 40MB, and 80MB,
respectively. Thus, we have five pairs of datasets used for the queries, each consisting
of the Citeseer dataset plus one of the sampled DBLP datasets.

We manually created four test twig pattern queries, named Q1-Q4, each of which
queries on a set of atrributes of papers, such as title. All these queries can only be
answered using both DBLP and Citeseer datasets (but not one of the two datasets alone)
by fragment join in our framework.

The overall performance of our complete, optimized approach (PDRMJ) is tested in
Figure 4 for all queries Q1-Q7 on all datasets. The overall response time is broken down
to two parts: (i) the time spent by all sub-twig pattern queries issued against the different
sources, and (ii) the time spent by the fragment joins. We observe that the performance
for all queries scales roughly linearly to the size of the DBLP dataset (recall that the
size of the CiteSeer dataset is fixed). In addition, nearly half of the cost is due to the
twig pattern queries against the sources.

In conclusion, we developed a fragment join operator for query-based data inte-
gration from multiple sources. We studied the problem of schema-independent data
integration based on this operator. We conducted experiments to show the effectiveness
of our approaches.

References
1. Lenzerini, M.: Data integration: a theoretical perspective. In: PODS. (2002)
2. Yu, C., Popa, L.: Constraint-based XML query rewriting for data integration. In: SIGMOD.

(2004)
3. Qin, L., Yu, J.X., Ding, B.: TwigList: make twig pattern matching fast. In: DASFFA. (2007)

