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ABSTRACT
Recent research studied the problem of publishing microdata
without revealing sensitive information, leading to the pri-
vacy preserving paradigms of k-anonymity and `-diversity.
k-anonymity protects against the identification of an indi-
vidual’s record. `-diversity, in addition, safeguards against
the association of an individual with specific sensitive infor-
mation. However, existing approaches suffer from at least
one of the following drawbacks: (i) The information loss
metrics are counter-intuitive and fail to capture data inac-
curacies inflicted for the sake of privacy. (ii) `-diversity is
solved by techniques developed for the simpler k-anonymity
problem, which introduces unnecessary inaccuracies. (iii)
The anonymization process is inefficient in terms of compu-
tation and I/O cost.

In this paper we propose a framework for efficient pri-
vacy preservation that addresses these deficiencies. First,
we focus on one-dimensional (i.e., single attribute) quasi-
identifiers, and study the properties of optimal solutions
for k-anonymity and `-diversity, based on meaningful in-
formation loss metrics. Guided by these properties, we de-
velop efficient heuristics to solve the one-dimensional prob-
lems in linear time. Finally, we generalize our solutions
to multi-dimensional quasi-identifiers using space-mapping
techniques. Extensive experimental evaluation shows that
our techniques clearly outperform the state-of-the-art, in
terms of execution time and information loss.

1. INTRODUCTION
Organizations, such as hospitals, need to release micro-

data (e.g., medical records) for research and other pub-
lic benefit purposes. However, sensitive personal informa-
tion (e.g., disease of a specific person) may be revealed in
this process. Conventionally, identifying attributes, such as
name or social security number, are not disclosed in order
to protect privacy. Still, recent research [5, 17] has demon-
strated that this is not sufficient, due to the existence of
quasi-identifiers in the released microdata. Quasi-identifiers
are sets of attributes (e.g., 〈ZIP, Sex, DateOfBirth〉), which
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can be joined with information obtained from diverse sources
(e.g., public voting registration data) in order to reveal the
identity of individual records.

To address this threat, Sweeney and Samarati proposed
the k-anonymity model [16, 17]: for every record in a re-
leased table there should be at least k − 1 other records
identical to it along a set of quasi-identifying attributes.
Records with identical quasi-identifier values constitute an
equivalence class. k-anonymity is commonly achieved by
generalization (e.g., show only the area code instead of the
exact phone number) or suppression (i.e., hide some values
of the quasi-identifier), which inadvertently lead to informa-
tion loss. Still, the data should remain as informative as
possible, in order to be useful in practice. Hence a trade-off
between privacy and information loss emerges.

Recently, the concept of `-diversity [13] was introduced
to address the limitations of k-anonymity. The latter may
disclose sensitive information when there are many identical
sensitive attribute (SA) values within an equivalence class1

(e.g., all persons suffer from the same disease). `-diversity
prevents uniformity and background knowledge attacks by
ensuring that at least ` SA values are well-represented in
each equivalence class (e.g., the probability to associate a
tuple with an SA value is bounded by 1/` [20]). Ref. [13]
suggests that any k-anonymity algorithm can be adapted to
achieve `-diversity, by altering the equivalence class valida-
tion condition. However, such an approach may yield ex-
cessive information loss, as we demonstrate in the following
example.

Consider the microdata in Figure 1(a), where the combi-
nation of 〈Age, Weight〉 is the quasi-identifier and Disease
is the sensitive attribute. Let the required degree of ano-
nymity be k=4. The current state-of-the-art k-anonymity
algorithm (i.e., Mondrian [10]) sorts the data points along
each dimension (i.e., Age and Weight), and partitions across
the dimension with the widest normalized range of values.
In our example, the normalized ranges for both dimensions
are the same. Mondrian selects the first one (i.e., Age) and
splits it into segments 35−55 and 60−70 (see Figure 1(b)).
Further partitioning is not possible, because any split would
result in groups with less than 4 records. We propose a dif-
ferent approach. First we map the multi-dimensional quasi-
identifier to a 1-D value. In this example we use an 8 × 8
Hilbert space filling curve (see Section 5 for details); other

1k-anonymity remains a useful concept, suitable for cases
where the sensitive attribute is implicit or omitted (e.g., a
database containing information for convicted persons, re-
gardless of specific crimes).
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Figure 1: k-anonymity (k=4) and `-diversity (`=3) examples

mappings are also possible. The resulting sorted 1-D values
are shown in Figure 1(a) (column 1D). Next, we partition
the 1-D space. We prove that the optimal 1-D partitions are
non-overlapping and contain between k and 2k − 1 records.
We obtain 3 groups which correspond to 1-D ranges [22..31],
[33..42] and [55..63]. The resulting 2-D partitions are en-
closed by three rectangles in Figure 1(b). Note that our
method causes less information loss. For instance, there
is a 1/12 probability for a person who weighs 65kg and is
45 years old, to suffer from pneumonia (since there are 12
dataspace cells covered by the group with Age 35− 45 and
Weight 50 − 65). In contrast, according to Mondrian, the
probability is only 1/40. Clearly, our partitioning is more
accurate.

The advantages of our approach are more prominent when
applied to `-diversity. This problem is more difficult be-
cause, in order to cover a variety of SA values, the optimal
1-D partitioning may include overlapping ranges. For exam-
ple, if `=3, the second group in Figure 1(c) contains tuples
{30, 35, 56}, whereas the third group contains tuples {33,
40, 42}. Nevertheless, we prove that there exist optimal par-
titionings consisting of only consecutive ranges with respect
to each individual value of the sensitive attribute. Based
on this property, we develop a heuristic which essentially
groups together records that are close to each other in the
1-D space, but have different sensitive attribute values. The
four resulting groups are shown in Figure 1(d). From the re-
sult we can infer, for instance, that no person younger than
55 suffers from Alzheimer’s. On the other hand, if we use
Mondrian, we cannot partition the space at all, because any
possible disjoint partitioning would violate the `-diversity
property. For example, if the Age axis was split into seg-
ments 35 − 55 and 60 − 70 (i.e., same as the k-anonymity
case), then gastritis would appear in the left-side partition
with probability 3/6, which is larger than the allowed 1/3.
Since all tuples are included in the same partition, accord-
ing to Mondrian, young or old persons have the same prob-
ability to suffer from Alzheimer’s. Obviously the resulting
information loss is unacceptable.

The previous example demonstrates that k-anonymity tech-
niques, such as Mondrian, are not appropriate for the `-
diversity problem. In Section 2 we also explain that Anatomy
[20], which is an `-diversity-specific method, exhibits high
information loss, despite relaxing the privacy requirements

(i.e., it publishes the exact quasi-identifier). Moreover, while
our techniques resemble clustering, our experiments show
that existing clustering-based anonymization techniques (e.g.,
Ref. [21]) are worse in terms of information loss and they
are considerably slower.

Summarizing, in this paper we present a framework for
solving efficiently the k-anonymity and `-diversity problems,
by mapping the multi-dimensional quasi-identifiers to 1-D
space. Specifically: (i) For k-anonymity, we develop an op-
timal algorithm for 1-D quasi-identifiers with running time
linear to the size of the dataset. (ii) For the more com-
plex `-diversity problem, we study theoretically the prop-
erties of possible optimal 1-D solutions. Guided by these
properties, we propose an efficient heuristic algorithm with
linear-time complexity. (iii) We generalize our algorithms to
multi-dimensional quasi-identifiers, by mapping them to 1-D
space. Given a sorted input, the I/O cost is very low, since
our algorithms scan the data only once. As a case study,
we consider mappings based on the Hilbert [15] space-filling
curve and iDistance [23]. (iv) The experimental results show
that our algorithms clearly outperform the existing state-of-
the-art in terms of information loss and running time.

The rest of this paper is organized as follows: Section 2
contains essential definitions and surveys the related work.
Section 3 and Section 4 present our solutions for the k-
anonymity and `-diversity problem, respectively. In Sec-
tion 5 we extend our algorithms to the general case of multi-
dimensional quasi-identifiers. We present our experimental
evaluation in Section 6 and the conclusions in Section 7.

2. BACKGROUND AND RELATED WORK
In this section, we introduce the data model and termi-

nology used in the paper and present the related work.

Definition 1 (Quasi-identifier). Given a database
table T (A1, A2, . . . , An), a quasi-identifier attribute set QT =
{A1, A2, . . . , Ad} ⊆ {A1, A2, . . . , An} is a minimal set of at-
tributes, which can be joined with external information in or-
der to reveal the personal identity of individual records [17].

A set of tuples which are indistinguishable in the pro-
jection of T on QT is called equivalence class. Two com-
monly employed techniques to preserve privacy are general-
ization and suppression [17]. Generalization defines equiv-



alence classes for tuples as multi-dimensional ranges in the
QT space, and replaces their actual QT values with a rep-
resentative value of the whole range of the equivalent class
(e.g., replaces the city with the state). Generalization ranges
are usually specified by a generalization hierarchy, or taxon-
omy tree (e.g., city→state→country). Suppression excludes
some QT attributes or entire records (known as outliers)
from the microdata, altogether.

The privacy-preserving transformation of the microdata
is referred to as recoding. Two models exist: in global re-
coding, a particular detailed value must be mapped to the
same generalized value in all records. Local recoding, on the
other hand, allows the same detailed value to be mapped
to different generalized values in each equivalence class. Lo-
cal recoding is more flexible and has the potential to achieve
lower information loss [10]. The recoding process can also be
classified into single-dimensional, where the mapping is per-
formed for each attribute individually, and multi-dimensional,
which maps the Cartesian product of multiple attributes.
Multi-dimensional mappings are more accurate; nevertheless
initial research efforts focused on single-dimensional ones
due to simplicity. In this paper we develop local recoding,
multi-dimensional transformations.

All privacy-preserving transformations cause information
loss, which must be minimized in order to maintain the abil-
ity to extract meaningful information from the published
data. Below we discuss suitable information loss metrics.

2.1 Information Loss Metrics
A variety of information loss metrics have been proposed.

The Classification Metric (CM) [7] is suitable when the pur-
pose of the anonymized data is to train a classifier. Each
record is assigned a class label, and information loss is com-
puted based on the adherence of a tuple to the majority
class of its group. However, it is not clear how CM can be
extended to support general purpose applications. The Dis-
cernibility Metric (DM) [3], on the other hand, measures
the cardinality of the equivalence class. Although classes
with few records are desirable, DM does not capture the
distribution of records in the QT space. More accurate is
the Generalized Loss Metric [7] and the similar Normalized
Certainty Penalty (NCP ) [21]. The latter factors in both
the cardinality of each class and the extent in the QT space.
For numerical attributes, the NCP of an equivalence class
G is defined as:

NCPANum(G) =
maxG

ANum
−minG

ANum

maxANum −minANum

where the numerator and denominator represent the ranges
of attribute ANum for the class G and the entire table, re-
spectively. In the case of categorical attributes, where no
total order or distance function exists, NCP is defined with
respect to the taxonomy tree of the attribute:

NCPACat(G) =


0, card(u) = 1
card(u)/|ACat|, otherwise

where u is the lowest common ancestor of all ACat values
included in G, card(u) is the number of leaves (i.e., attribute
values) in the subtree of u, and |ACat| is the total number
of distinct ACat values. The NCP of class G over all quasi-

identifier attributes is:

NCP (G) =

dX
i=1

wi ·NCPAi(G) (1)

where d is the number of attributes in QT (i.e., dimension-
ality). Ai is either a numerical or categorical attribute and
has a weight wi, where

P
wi = 1.

NCP measures information loss for a single equivalence
class. Based on it we introduce a new metric, called Global
Certainty Penalty (GCP ), which measures the information
loss of the entire anonymized table. Let P be the set of all
equivalence classes in the released anonymized table. GCP
is defined as:

GCP (P) =

X
G∈P

|G| ·NCP (G)

d ·N (2)

where N denotes the number of records in the original table
(i.e., microdata) and d is the dimensionality of QT . The
advantage of this formulation is its ability to measure infor-
mation loss among tables with varying cardinality and di-
mensionality. Furthermore, GCP is between 0 and 1, where
0 signifies no information loss (i.e., the original microdata)
and 1 corresponds to total information loss (i.e., there is
only one equivalence class covering all records in the table).

2.2 k-anonymity

Definition 2 (k-anonymity). A database table T with
a quasi-identifier attribute set QT conforms to the k-anonymi-
ty property, if and only if each unique tuple in the projection
of T on QT occurs at least k times [17].

An optimal solution to the k-anonymity problem should
minimize information loss. Formally:

Problem 1. Given a table T , a quasi-identifier set QT

and a privacy bound expressed as the degree of anonymity
k, determine a partitioning P of T such that each partition
G ∈ P has at least k records, and GCP (P) is minimized.

Meyerson and Williams [14] proved that optimal k-anony-
mity for multi-dimensional quasi-identifiers is NP -hard, un-
der both the generalization and suppression models. For the
latter, they proposed an approximate algorithm that mini-
mizes the number of suppressed values; the approximation
bound is O(k · logk). Aggarwal et al. [2] improved this
bound to O(k). Several approaches limit the search space
by considering only global recoding. Ref. [3] proposes an
optimal algorithm for single-dimensional recoding with re-
spect to the CM and DM metrics. Incognito [9] introduces
a dynamic programming approach, which finds an optimal
solution for any metric by considering all possible general-
izations (only for global, single-dimensional recoding).

To address the inflexibility of single-dimensional recod-
ing, Mondrian [10] employs multi-dimensional global recod-
ing, which achieves finer granularity. Similar to kd-trees [4],
Mondrian partitions the space recursively across the dimen-
sion with the widest normalized range of values. Mondrian
can also support a limited version of local recoding: if many
points fall on the boundary of two groups, they may be di-
vided between the two groups. Because Mondrian uses space



partitioning, the data points within a group are not neces-
sarily close to each other in the QT space (e.g., points 22
and 55 in Figure 1(b)), causing high information loss.

Another family of multi-dimensional local recoding meth-
ods is based on clustering. In Ref. [1] k-anonymity is treated
as a special clustering problem, called r-cellular clustering.
A constant factor approximation of the optimal solution is
proposed, but the bound only holds for the Euclidean dis-
tance metric. Furthermore, the computation and I/O cost
may be high in practice. Ref. [21] proposes agglomerative
and divisive recursive clustering algorithms, which attempt
to minimize the NCP metric. The latter (called TopDown
in the following) is the best of the two. TopDown performs
a two-step clustering: first, all records are in one cluster,
which is recursively divided as long as there are at least 2k
records in each cluster. In the second step, the clusters with
less than k members are either grouped together, or they
borrow records from clusters with more than k records. The
complexity of TopDown is O(N2). In our experiments, we
show that TopDown is inefficient in terms of information
loss and computational cost.

2.3 `-diversity
A database table T with a quasi-identifier attribute set QT

and a Sensitive Attribute SA, conforms to the `-diversity
property, if and only if each equivalence class in T with
respect to QT has at least ` well-represented values for the
attribute. Ref. [13] proposed two interpretations of “well-
represented values”: entropy `-diversity and recursive (c,`)-
diversity. The former yields tighter privacy constraints, but
is too restrictive for practical purposes. The latter proposes
a more relaxed condition: An equivalence class G is `-diverse
if f1 < c(f` + f`+1 + .. + fm), where c is a constant, fi is
the number of occurrences of the ith most frequent value of
SA in G, and m is the number of distinct values in SA. In
order for an `-diverse partitioning to exist, the original table
T must itself satisfy the above condition, referred to as the
eligibility condition (EG).

In practice, the privacy threat to a certain database record
is expressed as the probability of associating an anonymized
record with a certain value s ∈ SA; we denote this breach
probability by Pbr. Note that, given an equivalence class G,
Pbr = #occurrences(s)/|G|. Since Pbr is directly relevant to
the privacy of records, it is desirable to have an `-diversity
formulation that can be linked to Pbr. We therefore adopt
the following `-diversity formulation from Ref. [20]:

Definition 3 (`-diversity). An equivalence class G
has the `-diversity property, if the probability of associating
a record in G with any particular sensitive attribute value is
at most 1/`.

Under this definition, the eligibility condition requires that
at most |T |/` tuples in the original table T have the same
SA value. An optimal solution to the `-diversity problem
should minimize information loss. Formally:

Problem 2. Given a table T , a quasi-identifier QT and
a privacy bound expressed as the degree of diversity `, deter-
mine a partitioning P of T such that each partition G ∈ P
satisfies the `-diversity property and GCP (P) is minimized.

Ref. [13] implements `-diversity on top of Incognito and
suggests that any k-anonymity technique can be adapted for
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Figure 2: `-diversity example. In the microdata only
the 80 years old group can suffer from Alzheimer’s.

`-diversity. However, as we demonstrate in the example of
Figure 1, k-anonymity techniques may result to unaccept-
able information loss, due to the requirement of diverse SA
values.

Anatomy [20] is an `-diversity-specific method. It hashes
records into buckets according to the SA value, and builds
partitions by randomly selecting ` records from distinct buck-
ets; the complexity is O(|T |). Anatomy has two drawbacks:
(i) It releases the exact quasi-identifiers of records. While
this does not violate the `-diversity property, it confirms that
a particular individual is included in the data. Consider for
instance a dataset containing quasi-identifiers of convicted
persons and their crime. Although Anatomy hides the exact
crime, an attacker can still conclude that a specific person
has been convicted. Therefore, Anatomy fails to provide the
very basic anonymity safeguard for which the k-anonymity
model was proposed in the first place. (ii) Anatomy does
not consider the partition’s extent in the QT space, hence
information loss may be high. Consider a medical dataset in
which all persons who suffer from Alzheimer’s are more than
80 years old; assume ` = 2. Anatomy may choose to group
together records from the [20..39] and [80..99] age intervals
(Figure 2(a)), suggesting that Alzheimer’s is equally prob-
able for young and old persons. In contrast, our approach
generates the [60..99] group (Figure 2(b)), and correctly im-
plies that Alzheimer’s is only possible for elderly patients.

Like Anatomy, Ref. [22] publishes the exact QT . It fo-
cuses on SAs with numerical values and deals with situa-
tions where these values are similar; its drawbacks are anal-
ogous to Anatomy’s. Another recent work [12] proposes
a new privacy paradigm called t-closeness, which dictates
that the table-wise distribution of SA values should be re-
produced within each anonymized group. No specific tech-
nique is proposed; instead, it is suggested to modify exist-
ing k-anonymity techniques. However, this is expected to
face the same drawbacks as the application of k-anonymity
techniques to `-diversity. Yet another model is described in
Ref. [18], where each record in the table has an individual
privacy constraint. However, in order to enforce privacy, SA
values must also be generalized. Ref. [8] proposes a method
for publishing anonymized marginals, in addition to micro-
data. Marginals are summaries of the original table that
may improve accuracy. Anonymizing the marginals is or-
thogonal to anonymizing the microdata.

3. OPTIMAL 1-D K-ANONYMITY
In this section we present an optimal solution to the k-

anonymity problem for one-dimensional quasi-identifiers. Al-



Optimal 1-D k-anonymity
Input: set R in ascending order of 1-D QT

1. for i := k to 2k − 1
2. Opt(i) = OptI([1, i])
3. prev(i) = NIL /* used to reconstruct solution*/
4. for i := 2k to N
5. for j := max{k, i− 2k + 1} to i− k
6. Opt(i) = minj {Opt(j) + OptI([j + 1, i])}
7. prev(i) = j value that minimizes Opt(i)
8. i = N /* output k-anonymized groups */
9. while (prev(i) 6= NIL)
10. output group with boundaries [prev(i) + 1, i]
11. i = prev(i)
12. output group [1, i]

Figure 3: Pseudocode for optimal 1-D k-anonymity

though the problem is NP-hard in the general case [14], we
show that the complexity is linear to the size of the input
table for 1-D quasi-identifiers2.

Let R = {ri}1≤i≤N be the set of records in table T , where
N = |T |. R is a totally ordered set according to the 1-D
quasi-identifier QT . Our goal is to compute a partitioning
of R that minimizes GCP and satisfies the k-anonymity
property.

An algorithm that computes the 1-D optimal k-anonymity
partitioning of R needs only to consider groups with records
that are consecutive in the QT space. This results immedi-
ately from the fact that if two groups with at least k records
each overlap, we can swap records between them such that,
the number of records in each group remains the same and
the overlap is eliminated, without increasing GCP .

The weighted NCP metric (which is a component of GCP )
is superadditive: Given an equivalence class G and two sub-
sets G1 and G2 such that G = G1 ∪ G2 and G1 ∩ G2 = ∅,
then |G| · NCP (G) ≥ |G1| · NCP (G1) + |G2| · NCP (G2).
This is due to the fact that the total set of records remains
the same and the extent of G1 plus G2 in the QT space
cannot exceed that of G (since there are no overlaps). It is
straightforward to show that GCP is also superadditive.

Lemma 1. Let P be the optimal k-anonymity partitioning
of a set R according to GCP . Then P does not contain
groups of more than 2k − 1 records.

Proof. Assume that a group G in P contains more than
2k− 1 records. We split G into two groups G1 and G2 of at
least k records each, such that G = G1 ∪G2, G1 ∩ G2 = ∅.
Since GCP is superadditive, GCP (P) ≥ GCP ((P�G) ∪
G1∪G2); hence information loss cannot increase. Therefore
the optimal partitioning does not need to contain groups of
cardinality larger than 2k − 1.

The 1-D k-anonymity problem under the GCP metric
can be solved with dynamic programming as follows: Let
Opt(i) be the information loss of the optimal partitioning
achieved for the prefix subset of the first i records of R; and
OptI([b, e]) = (e−b+1) ·NCP ({rb, . . . , re}) be the informa-
tion loss of the group containing all records in the interval
{rb, . . . , re}. Then:

Opt(i) = min
i−2k<j≤i−k

(Opt(j) + OptI([j + 1, i]))

2A similar solution has been independently developed in
[19] and applied for multi-dimensional quasi-identifiers, after
mapping them to the 1D space using space-filling curves

This recursive scheme selects the best out of all suffixes
of R to create the next group. Since every group should
contain between k and 2k − 1 records, it follows that the
end boundary record of the previously created group must
be in the interval [i−2k+1, i−k]. The optimal solution for all
j-prefixes of R, k ≤ j ≤ 2k− 1, is computed directly. Then,
the computation proceeds with increasing i, 2k ≤ i ≤ N .
The pseudo-code for the algorithm is given in Figure 3. The
algorithm generates an optimal partitioning P. Note that
GCP (P) = Opt(N)/N .

Complexity Analysis. The algorithm ranges through
O(k) values of j for O(N) values of i. If OptI([j + 1, i]) can
be computed in O(ω), then the time complexity is O(kNω).
The dynamic programming array has N entries; however, we
only need to access a constant fraction O(k) of the array at
any one time. After the computation ends, we must scan the
entire array (lines 9-11) at most one more time to output the
solution, unless the complete array fits in the main memory.

4. ONE-DIMENSIONAL `-DIVERSITY
In this section we study the `-diversity problem for one-

dimensional quasi-identifiers. In contrast to k-anonymity,
optimal solutions for `-diversity cannot be computed effi-
ciently even for 1-D quasi-identifiers. The inefficiency arises
from the fact that the resulting partitioning may contain
overlapping groups; therefore, numerous possible combina-
tions must be examined. In this section, we study theoreti-
cally the properties of an optimal solution. Guided by these
properties, we develop an efficient linear-time (to the size of
the input) heuristic algorithm.

To simplify our theoretical investigation, in Section 4.1 we
use a simplified information loss metric3:

IL(P) = max
G∈P

(maxG
QT

−minG
QT

) (3)

which represents the maximum extent (in the 1-D quasi-
identifier space) of any group G in partitioning P. IL is
superadditive: IL(G1 ∪G2) ≥ max(IL(G1), IL(G2)).

4.1 Properties of the Optimal Solution
Let R = {ri}1≤i≤N be the set of records in the original

table, and S the projection of R on the sensitive attribute
(SA). Denote by ri.Q the 1-D QT value of ri and by ri.S
the SA value of record ri. Let m = |S|, i.e., there are m
distinct values of SA. For a pair of records ri, rj we denote
|ri − rj | = |ri.Q− rj .Q|.

Lemma 2. Let P be an optimal `-diversity partitioning of
R according to the information loss metric IL. Then P does
not need to contain groups of more than 2`− 1 records.

Proof. Assume there is a group G in the optimal solu-
tion such that |G| ≥ 2`. We can express the cardinality of G
as |G| = c·`+r, c ≥ 2, 0 ≤ r < `. Since G is `-diverse, accord-
ing to Definition 3 every SA value in G can occur at most c
times. There are at most ` values in G with c occurrences.
We remove from G the ` records with the most frequent SA
values in G, and create group G′. By construction, G′ is
`-diverse. Let G′′ = G�G′. Any sensitive attribute value in
G′′ can occur at most c − 1 times and |G′′| = (c − 1)` + r.
Hence, G′′ is `-diverse. Furthermore, since IL is superad-
ditive, IL(P) ≥ IL((P�{G}) ∪ {G′} ∪ {G′′}). Splitting

3We discuss the GCP metric in Section 5.



G′′ recursively, we obtain a partitioning with equal or im-
proved utility compared to P, and cardinality of each group
between ` and 2`− 1.

Corollary 1. Value Singularity Property In an op-
timal `-diverse partitioning P, every group G ∈ P contains
at most one occurrence for any SA value sj ∈ S.

Proof. Assume an optimal solution P and G ∈ P such
that sj appears twice in G. Since |G| ≤ 2` − 1, it results
that G is not `-diverse, i.e., a contradiction.

Since there are only m distinct SA values, we conclude
that |G| ≤ min(2`− 1, m).
R is a totally ordered set according to QT , and each record

in R belongs to exactly one `-diverse group. Hence, the first
(i.e., bi) and last (i.e., ei) record in group Gi are defined
according to the total order in R; we call bi the begin and
ei the end record of Gi. Hence there exists a total order
of both begin and end records of the set of groups in the
optimal solution. We refer to the bi and ei records as border
elements. Note that, unlike the case of k-anonymity, a group
need not contain only consecutive records in the ordering.

Let domain Dq = {ri ∈ R|ri.S = sq}, 1 ≤ q ≤ m. Figure
4 depicts the domains Dq for a 3-diverse partitioning of R,
m = 4. Note that, the total order in the quasi-identifier
space induces a total order for each of the domains Dq.

quasi-identifier

Sensitive value
G1 G2 G3 G4

D1

D3

D2

D4

Figure 4: Sensitive Value Domains

The following lemma shows that the order of appearance
of groups in each value domain Dq is the same.

Lemma 3. Group Order Property There exists an op-
timal `-diverse partitioning P of R, producing |P| groups
G1, G2, . . . G|P|, such that the order of sets {Gq

1, G
q
2, . . . , G

q
|P|},

defined for the groups in P as they appear along each do-
main Dq, Gi = ∪qG

q
i , 1 ≤ i ≤ |P|, is consistent across

all domains Dq, 1 ≤ q ≤ m (except for the fact that some
groups may not be represented in each domain).

Proof. Assume an optimal solution in which there exist
records ri ∈ Gq

i and rj ∈ Gq
j such that ri.Q < rj .Q, and

records ti ∈ Gp
i and tj ∈ Gp

j such that tj .Q < ti.Q. Then,
for all possible relative orderings in the one-dimensional
QT , |ri − tj | + |rj − ti| ≤ |ri − ti| + |rj − tj |. Let G′i =
Gi�{ti} ∪ {tj} and G′j = Gj�{tj} ∪ {ti}. Then it results
that IL(G′i)+IL(G′j) ≤ IL(Gi)+IL(Gj), i.e. IL(P) can-
not be increased by exchanging tj and ti. Since ti and tj

have the same SA value, the `-diversity of the partitioning
is not affected by the exchange. The same reasoning can
be applied for all remaining pairs of records that violate a
given order. It follows that the order of the partitions in the
newly constructed optimal partitioning is consistent across
all domains Dq, 1 ≤ q ≤ m.

We write Gi ≺ Gj to denote that Gi precedes Gj in
the partial order defined over optimal partitioning P. As
a consequence of Lemma 3, in order to find an optimal
solution, we can build groups by assigning records from
each domain in order. This prunes significantly the search
space of the solution. Figure 5 shows an example where the
Group Order Property is violated. Let G1 = {r1, r3, r5} and
G2 = {r2, r4, r6}. G1 precedes G2 in the D3 domain, while
the opposite occurs for D2. However, the optimal solution
is G′1 = {r1, r2, r4}, G′2 = {r3, r5, r6} and G′1 ≺ G′2.
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Figure 5: Group Order Violation

The group ordering extends to the begin and end records
of groups, as proved by the following lemma:

Lemma 4. Border Order Property There exists an
optimal `-diverse partitioning P of R, producing |P| groups
G1, G2, . . . G|P| with begin records b1, b2, . . . , b|P| and end
records e1, e2, . . . , e|P|, such that the begin and end sets obey
the same order as the groups {G1, G2, . . . , G|P|} they belong
to, i.e. if Gi ≺ Gj, then bi.Q < bj .Q and ei.Q < ej .Q.

Proof. The proof is similar to that of Lemma 3.

Lemma 4 further reduces the search space by limiting the
choices of records for the currently built group based on the
begin and end records of the previously built group. Figure
6 shows an example where the Border Order Property is vio-
lated (although the Group Order Property is satisfied). Let
G1 = {r1, r2, r6} and G2 = {r3, r4, r5}. b1 (i.e., r1) precedes
b2 (i.e., r3), but e1 (i.e., r6) succeeds e2 (i.e., r5). The so-
lution is not optimal; in the optimal case, G′1 = {r1, r2, r3},
G′2 = {r4, r5, r6}, b′1 < b′2 and e′1 < e′2.
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Figure 6: Border Order Violation

Lemma 5. Cover Property There exists an optimal `-
diverse partitioning P of R with the following property: ∀Gi,
Gj ∈ P such that Gi ≺ Gj, and @Gk : Gi ≺ Gk ≺ Gj,
if there exists a pair of records r ∈ Gi, t ∈ Gj , such that
r.Q > t.Q, then there is either a record r′ ∈ Gj of the same
sensitive value as r (where, according to Lemma 3, r′.Q >
r.Q) or a record t′ ∈ Gi of the same sensitive value as t
(where, according to Lemma 3, t′.Q < t.Q), or both.



Proof. Assume there are records r ∈ Gi, t ∈ Gj such
that r.Q > t.Q, and there is neither r′ ∈ Gj with same SA
value as r, nor t′ ∈ Gi with same SA value as t. Then we
can swap r and t between Gi and Gj , without compromising
`-diversity. Furthermore, since bi.Q ≤ bj .Q ≤ t.Q ≤ r.Q ≤
ei.Q ≤ ej .Q, it follows that the swap does not increase the
information loss. Hence, we have obtained an optimal solu-
tion, where @(r ∈ Gi, t ∈ Gj) such that r.Q > t.Q.

The intuition behind the Cover Property is that if record r
can be added to any of two groups G1 and G2, then it should
be added to the group that is closer to r in the QT space.
Figure 7 shows an example where the Cover Property is
violated: consider partially completed groups G1 = {r1, r3}
and G2 = {r5, r6}. If r2 is assigned to G2 and r4 to G1,
the Cover Property does not hold; in an optimal solution,
r4 must belong to G2 and r2 to G1.
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Figure 7: Cover Property Violation

The end boundary Ei of a group Gi is a vector {e1, . . . em},
where each eq corresponds to one SA value. Intuitively, Ei

marks the position of the last record of Gi in each domain Dq

of a sensitive value sq. If Gi does not contain a record with
sensitive value sq′ , then eq′ is equal to the corresponding eq′

in the previous group Gj (Gj ≺ Gi). The delimitation lines
in Figure 4 give an intuitive interpretation of boundaries.
For the second group (G2), for instance, E2 = {1, 2, 2, 1}. As
an immediate result of Lemma 4, if two groups are ordered
as Gj ≺ Gi, then the same order is enforced for their cor-
responding end boundaries. In other words, even if groups
overlap in the QT space, their boundaries defined over the
Dq domains do not overlap.

By considering all possible boundaries, we can show that
an optimal solution can be found with O(2mNm+2) worst-
case complexity. Obviously, such an approach is prohibitive
in practice, even for small inputs, as the value of m can be
quite large.

4.2 Efficient 1-D `-diversity Heuristic
We present a heuristic 1-D `-diversity algorithm which is

inspired by the theoretical analysis of the previous section.
Given a sorted input, our algorithm exhibits linear time and
I/O cost in the size of the input table. The algorithm guar-
antees that if the original table satisfies the eligibility condi-
tion (EG, see Section 2.3) for a given ` value, then a solution
will be found, although it may not be an optimal one.

First, the records are sorted according to their QT value
and are assigned to m domains D1≤q≤m, based on their
sensitive attribute value. Subsequently, following the results
from Corollary 1 and Lemma 3 and 4, the group formation
phase attempts to form groups having between ` and m
records with distinct SA values. Let E = {e1, e2, . . . em}
be the end boundary of the previously formed group. We
denote by frontier of the search the set {rq ∈ Dq|1 ≤ q ≤

Heuristic 1-D `-diversity
Input: set R = {ri}1≤i≤N in ascending order of 1-D QT

1. split sorted records in m buckets based on SA value
2. H[i] = #records in bucket i
3. remaining = N
4. frontier F = {set of first record in each bucket}
5. while (remaining > 0)
6. count = `
7. do /*greedy step*/
8. G = {set of count records of F with lowest QT }
9. count + +
10. until (EG holds or count > m)
11. if (EG does not hold) /*fall-back step*/
12. count = `
13. do
14. G = {set of count records in F with max H value}
15. count + +
16. until (EG holds)
17. close G, update H and advance F
18. remaining = remaining − count + 1
19. output `-diverse groups

Figure 8: Heuristic 1-D `-diversity

m}, such that each rq is the successor of eq in its respective
domain. Initially, the frontier consists of the first record in
each domain Dq.

The heuristic consists of two steps: the greedy step and
the fall-back step. In the greedy step, it assigns to the cur-
rent group G the ` records on the frontier with the lowest
QT values, and checks if eligibility condition EG holds for
the remaining records. If EG is satisfied, then G is closed,
the frontier is advanced beyond the records in G, and the
algorithm starts building the next group. Otherwise, out of
the remaining unassigned records on the frontier, the record
with the lowest QT is added to G, and EG is re-evaluated.
The process continues until EG is satisfied, or all m records
on the frontier are in G.

If EG is still not satisfied, the records in G are rolled
back, and the following fall-back strategy step is executed:
` of the records on the frontier with SA values which are the
most frequent among the unassigned records are added to G
(in case of ties, the record with the lowest QT is chosen).
Then, EG is evaluated, and if it does not hold, the record
with the (`+1)th most frequent value is added, and so forth,
up to m − 1 (the case where all m records on the frontier
are chosen has been considered in the greedy step). It is
guaranteed that, by picking the most frequent records the
EG is eventually satisfied [20]; therefore, a solution can be
found. Note that, the fact that the fall-back step is executed
for the current group does not imply that it will be necessary
for the next one. The fall-back step may be necessary for
QT regions with significant variance in the density of records
with distinct SA values.

Figure 8 shows the pseudocode for the heuristic algorithm.
To evaluate EG, we maintain the counter remaining with
the number of unassigned records, and a histogram H with
the distribution of remaining records to SA values. Upon
each record assignment, remaining and H are updated. The
histogram can easily fit into memory (it contains m ele-
ments); the updates and EG evaluation cost O(m).

The presented heuristic will finalize the current group G
if it is able to find count ≤ m records such that EG holds.
However, in some cases, this approach may generate groups
with large extent. Consider the example in Figure 9, where
`=3. After picking the first three records, the algorithm
closes G at boundary 1, and r4 is grouped with r5−7. How-
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Figure 9: Heuristic Optimization, `=3

ever, if it were grouped with r1−3 (boundary 2), the extent
of the partitioning (hence, the resulting information loss)
would be considerably smaller.

As an enhancement to our heuristic, we propose the fol-
lowing optimization: after G is formed (e.g., {r1, r2, r3} in
Figure 9), we inspect records rA and rB on the frontier with
the 1st and respectively `th lowest QT value (i.e., rA ≡ r4,
rB ≡ r6 in the example). The extent of the group that con-
tains rA, .., rB is a lower bound for the extent of the group
that will contain rA. If the distance from rA to the leftmost
record in G (e.g., |r4−r1|) is smaller than the distance from
rA to rB (e.g., |r4 − r6|), and there is not already a record
with rA.S in G (e.g., no record from D2 in G), we add rA to
G, subject to EG being satisfied. In the running example,
the two obtained groups are {r1, r2, r3, r4} and {r5, r6, r7}.
This optimization aims at reducing the information loss of
`-diverse groups, and has complexity O(1).

5. GENERAL MULTI-DIMENSIONAL CASE
In this section we extend our 1-D k-anonymity and `-

diversity algorithms to multi-dimensional quasi-identifiers.
Let QT be a quasi-identifier with d attributes (i.e., d dimen-
sions). We map the d-dimensional QT to one dimension and
execute our 1-D algorithms on the transformed data. Recall
that both optimal k-anonymity and `-diversity are NP-hard
[14, 13] in the multi-dimensional case. The solutions we ob-
tain through mapping are not optimal; however, due to the
good locality properties of the space mapping techniques,
information loss is low, as we demonstrate experimentally
in Section 6. In the following, we measure the information
loss of each k-anonymous or `-diverse group using NCP ,
and the information loss over the entire partitioning using
GCP (see Section 2).

We employ two well-known space-mapping techniques: the
Hilbert space-filling curve [15] and iDistance [23]. The Hilbert
curve is a continuous fractal which maps each region of the
space to an integer. With high probability, if two points
are close in the multi-dimensional space, they will also be
close in the Hilbert transformation [15]. Figure 10(a), for
instance, shows the transformation from 2-D to 1-D for the
8 × 8 grid of the example in Section 1; the granularity of
the regions can be arbitrarily small. The data set is totally
ordered with respect to the 1-D Hilbert value.

iDistance is optimized for nearest-neighbor queries. In
iDistance, a random sample of the data is first clustered
around a fixed number of center points. The cluster centers
are ordered according to any method (e.g., Hilbert ordering).
Each data point is then assigned to its closest cluster center
according to Euclidean distance. The 1-D value of a point p
is the sum of the 1-D value of its cluster center C, plus the
distance from p to C (see Figure 10(b)).
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Figure 10: Multi-dimensional to 1-D mappings

Figure 11: Categorical Attribute Mapping

Regardless of the technique, in order to perform the data
mapping, each attribute value must be assigned to a num-
ber. For numerical attributes, we can use the attribute value
directly; furthermore, the semantic distance between two
numeric attribute values can be measured as the difference
between the two values. For categorical attributes and their
associated taxonomy tree, we adopt the labeling approach
of Ref. [3, 9], where each attribute value is assigned to a
distinct integer according to the in-order traversal of the
taxonomy tree. If an equivalence class spans across differ-
ent subtrees, it is penalized according to NCP . Figure 11
shows an example, where NCP (Italy, France) = 3/5 be-
cause their common ancestor is Europe (which has 3 leaves)
and there are 5 leaves in the entire Country domain. Also,
NCP (US, Spain) = 1 (i.e., maximum information loss), be-
cause their common ancestor is the entire Country domain.
Note that, the mapping is performed only with respect to
QT ; the sensitive attribute is not included in the mapping.

The overhead of the Hilbert mapping is O(d) per record,
hence the method is efficient. For iDistance, the mapping
involves the additional overhead of finding the c cluster cen-
ters for a random sample of the data. In our implementation,
we use 10% of the input table to determine the centers, and
we set c = 512. After selecting the centers, the overhead
of mapping is O(c) per record. Our 1-D k-anonymity and
`-diversity algorithms require the input to be sorted on QT ;
the cost is O(N log N). Assuming sorted input, our meth-
ods need to scan the data only once; therefore the I/O cost
is linear. Below, we discuss some further issues about the
extension of our 1-D algorithms to d dimensions.

5.1 k-anonymity-Specific Issues
The k-anonymity dynamic programming algorithm builds

two tables: (i) the main table with N entries, which stores at
entry i the cost of the optimal solution for the first i records,
and (ii) the auxiliary table that stores the base-case cost
(i.e., NCP ) for each sequence of consecutive k to 2k − 1
records. Since the tabulation proceeds from left to right,



Attribute Cardinality Type
Age 79 Numerical

Gender 2 Hierarchical (2)
Education Level 17 Numerical
Marital Status 6 Hierarchical (3)

Race 9 Hierarchical (2)
Work Class 10 Hierarchical (4)

Country 83 Hierarchical (3)
Occupation 50 Sensitive Value
Salary Class 50 Sensitive Value

Table 1: CENSUS Dataset Characteristics

at each step we need to look back at most 2k − 1 entries;
therefore, we do not need more than a constant fraction of
the tables in main memory. If the tables do not fit in main
memory, we need to store and then read them from the disk
once; the I/O cost is O(N).

The time required to compute the NCP for a sequence of
records is linear to the sequence length. Since the sequences
are in the form [ri−2k+2, ri] . . . [ri−k+1, ri], we optimize this
process as follows: for each sequence [ra, rb], we use the al-
ready computed cost for the sequence [ra, rb−1], and check if
rb increases the cost. The check needs constant time, if we
maintain the minimum bounding rectangle (MBR) of each
sequence. This reduces the computational cost for the auxil-
iary table from O(k2N) to O(kN). Still, updating the MBR
and recomputing the NCP costs O(d). To improve execu-
tion time, we also implement more time-efficient versions
of our algorithms, HilbFast and iDistFast, which calculate
the cost of each sequence by its extent in the 1-D space.
This variation relies on the assumption that records in close
proximity in the multi-dimensional space are also likely to be
close in the 1-D space. Hence, there is no need to maintain
an auxiliary table at all.

5.2 `-diversity-Specific Issues
During the preprocessing step, our `-diversity algorithm

partitions the input into m buckets, one for each value of the
sensitive attribute. Combined with the sorting of mapped
1-D data, the preprocessing step costs O(NlogN). Since
tabulation is not needed, the space requirement of the algo-
rithm is O(m) (i.e., constant in practice), as we only need to
access the frontier of the search at each step, and look back
at most one group; this can easily fit in memory. The NCP
computation for each `-diverse group formation is O(m).

6. EXPERIMENTAL EVALUATION
In this section, we evaluate our techniques against the

existing state-of-the-art. All algorithms are implemented in
C++ and the experiments were run on an Intel Xeon 2.8GHz
machine with 2.5GB of RAM and Linux OS.

Our workload consists mainly of the CENSUS4 dataset,
containing information of 500, 000 persons. The schema is
summarized in Table 1: there are nine attributes; the first
seven represent the quasi-identifier QT , whereas the last two
(i.e., Occupation and Salary) are the sensitive attributes
(SA) (for brevity, we only include in our evaluation the
Occupation attribute). Two of the attributes are numerical
and the rest categorical; the number of levels in the taxon-
omy trees is shown in parentheses. We generate input tables
with 50, 000 to 400, 000 records, by randomly selecting tu-
ples from the entire dataset. We also consider the ADULT

4http://www.ipums.org/
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Figure 12: Adult Dataset, variable k

dataset, used in previous work [7, 9, 10]. The dataset con-
sists of 30, 162 records with eight QT attributes, out of which
two are numerical and the rest categorical. Due to the small
size of ADULT, we use the larger (i.e., more realistic) CEN-
SUS dataset for most of our experiments.

We use the GCP metric (Section 2) to measure the infor-
mation loss. Recall that the values of GCP are in the range
[0, 1], and 0 is the best score (i.e., no information loss).

6.1 k-anonymity Evaluation
In the following experiments, we compare our 1-D op-

timal k-anonymity algorithm against the existing state-of-
the-art techniques: The multi-dimensional (Mondrian) k-
anonymity [10], and the TopDown clustering-based tech-
nique [21] (see Section 2 for details). For our optimal 1-
D algorithm, we consider both the Hilbert (with 12 bits
per dimension) and iDistance (with 512 reference points)
mappings. For each of the two mappings, we consider two
versions: (i) In the base version (i.e., Hilb and iDist), par-
titioning is guided by accurate cost estimation at the origi-
nal multi-dimensional space. As discussed in Section 5, the
amortized complexity for calculating the cost is O(d), where
d is the dimensionality of QT . (ii) In the faster variants Hilb-
Fast and iDistFast (see Section 5), the algorithm estimates
the cost at the 1-D space in O(1) time. Since this is only an
estimation of the real cost, the resulting information loss is
expected to be higher.

First, we consider the ADULT dataset and vary k between
5 and 50. We show the information loss in Figure 12(a).
Both Hilb and iDist outperform the existing methods. In
Figure 12(b) we repeat the experiment using the DM met-
ric, which was also used in the original Mondrian paper. Re-
call from Section 2 that DM is not particularly accurate to
characterize information loss; we include it in our evaluation
for illustration purposes only. Even with the DM metric,
Mondrian is one order of magnitude worse. Observe that
Hilb, iDist and TopDown restrict the partition size between
k and 2k − 1. Since DM considers only the partition size,
these methods behave similarly, although they are consider-
ably different in terms of information loss. This is another
indication that DM is not an appropriate metric.

In the next experiment we use the CENSUS dataset and
set the input size N = 200, 000 records; we vary k from
10 to 100. Figure 13 presents the results. Both Hilb and
iDist achieved lower information loss, compared to TopDown
and Mondrian, in all cases. In terms of execution time,
Mondrian was faster. However, given the superior quality of
the results, we believe that the running time of Hilb would
be acceptable in practice (it was 60sec in the worst case).
iDist is a little slower than Hilb, due to the initial phase of
selecting the reference points. Both Hilb and iDist execution
times include the data mapping and sorting phase. We also
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Figure 13: Census Dataset, variable k
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Figure 14: Census Dataset, variable size

included the fast implementations of our algorithms in the
graph (recall that they are approximating the partitioning
cost). HilbFast is better than TopDown and Mondrian in
terms of information loss. It is also very fast, achieving
the same running time as Mondrian. iDistFast is similar to
TopDown in terms of information loss; however it is much
faster. The execution time of TopDown is around 2 hours,
considerably longer than the other methods, so we do not
include it in the graph.

Subsequently, for fixed k = 50, we vary N from 50, 000 to
400, 000 records. Figure 14 shows the results. All meth-
ods manage to reduce information loss when the size of
the input increases. This is because the data density be-
comes higher and the probability of finding good partitions
increases. Hilb and iDist are better than Mondrian and Top-
Down in all cases. As expected, the running time increases
with the input size. Hilb needs only 40sec to anonymize
400,000 records, when k = 50. The execution time of Top-
Down (not included in the graph) is considerably more ex-
pensive: it ranges from 8min for 50, 000 records to 6 hours
for 400, 000 records.

In Figure 15 we set k = 50, N = 200, 000 and vary the
dimensionality d of the quasi-identifier, by projecting the
original 7-D data to fewer dimensions. Since Hilb and iDist
are optimal for d = 1, for low dimensionality their informa-
tion loss is close to 0 (note that the information loss of the
optimal solution is typically greater than 0 due to general-
ization). Interestingly, for larger dimensionality, Hilb out-
performs its competitors by a larger factor; therefore Hilb
is suitable for real-life high-dimensional data. The running
time is affected only slightly by dimensionality. Our meth-
ods face a small overhead due to the calculation of the cost
of each partition in the multi-dimensional space.

6.2 `-diversity Evaluation
We compare our linear 1-D heuristic `-diversity algorithms

(i.e., Hilb and iDist) against an `-diverse variation of Mon-
drian, which uses the original median split heuristic, and
checks for each partition whether the `-diversity property
is satisfied. We defer the comparison against Anatomy [20]
until Section 6.3, since Anatomy does not use generalization
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Figure 15: Census Dataset, variable dimensionality
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Figure 16: Census Dataset, variable `

and the GCP metric would penalize the method unfairly.
In Figure 16 we set N = 200, 000 and vary ` from 2 to 13.

Hilb is best in terms of information loss, followed closely by
iDist. The execution time of Hilb is very low and similar to
Mondrian. iDist is slower, due to the initial mapping phase.

Next (Figure 17) we set `=5 and vary N from 50, 000 to
400, 000 records. As N increases, so does the data density;
therefore, information loss decreases slightly for both Hilb
and iDist. In terms of execution time, Hilb and Mondrian
have similar performance, but Hilb is far superior in terms
of information loss. Note that in all experiments the entire
input table fits in the main memory. If the input table is
larger than the main memory, the I/O cost of Mondrian will
be much larger, since it needs to scan the input at each split.
In contrast, our methods require a single scan of the input
(excluding the sorting phase). Also observe that Mondrian
may exhibit unpredictable, non-monotonic behavior with re-
spect to ` or N . The reason is that for particular inputs,
the `-diversity property cannot be satisfied by any split.

In Figure 18 we set `=5, N = 200, 000 and vary the di-
mensionality d of QT . Hilb and iDist clearly outperform
Mondrian. Observe that Mondrian deteriorates sharply as
d increases. Also note that the execution time is virtually
unaffected by dimensionality.

Finally, in Figure 19, we vary the cardinality m of the sen-
sitive attribute (i.e., Occupation in our experiments). We
set N = 200, 000, and `=5. In order to vary m, we ag-
gregate continuous ranges of the sensitive attribute into a
single value. All methods perform better when m increases,
due to the additional freedom of choosing records with dif-
ferent sensitive attribute values in each partition. However,
execution time is not affected by m.

6.3 Accuracy of Data Analysis Queries
In addition to the general-purpose GCP metric, in this

section we employ a realistic query workload, as suggested
by Ref. [11]. We compare the `-diverse versions of Hilb and
iDist against Anatomy and `-diverse Mondrian. Anonymized
data can be used to extract statistics and assist decision-
making. Since these are typical OLAP operations, our work-
load consists of the following type of aggregation queries:
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Figure 17: Census Dataset, variable size
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Figure 18: Census Dataset, variable dimensionality

SELECT QT1, QT2,..., QTi, COUNT(*)

FROM data

WHERE SA = val

GROUP BY QT1, QT2,..., QTi

Each QTi is an attribute of the quasi-identifier (e.g., Age,
Gender), whereas SA is a sensitive attribute (e.g., Occupation).
The OLAP datacube [6] consists of all group-bys for all pos-
sible combinations of the quasi-identifier attributes. Interde-
pendencies among group-by’s are captured by the datacube
lattice. Level i of the lattice corresponds to all group-bys
over exactly i attributes (the higher the level, the finer the
granularity of the group-by). We represent the cube as a
multi-dimensional array; the cells that do not correspond to
a result tuple of the above query are set to 0.

We use the CENSUS dataset and compute the entire dat-
acube for (i) the original microdata (P cube) and (ii) the
anonymized tables (Q cube). Obviously, Q is an estimation
of P . Each cell of Q is computed as follows: For Anatomy,
which does not use generalization, the estimation is straight-
forward, since the exact quasi-identifier and the probability
of an SA value for a specific record, are given. On the
other hand, for the generalization-based methods, we take
into account the intersection of the query with each group,
assuming a uniform distribution of records within the group.

Ideally, the values of all cells in cube Q should be equal to
the values in the corresponding cells of P . Several methods
exist to measure similarity. Ref. [20] uses the relative error:
RE = |PC −QC |/PC , where PC and QC are values of a cell
in P and Q, respectively. However, this metric is undefined
for PC = 0. In our experiments, we use KL Divergence,
which has been acknowledged as a representative metric in
the data anonymization literature [8]. P and Q are modeled
as multi-dimensional probability distribution functions. The
estimation error is defined as:

KL Divergence(P, Q) =
X

∀cellC

PC log
PC

QC

In the best case (i.e., identical P , Q), KL Divergence = 0.
In Figure 20(a), we show the query accuracy for varying

` at level 2 of the datacube lattice (i.e., all group-bys with
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Figure 19: Variable SA Cardinality (m)
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Figure 20: Query Accuracy Results

two attributes); N is 200,000 records. For small `, Hilb
and iDist clearly outperform the competitors. Hilb is two
orders of magnitude better than Mondrian, and one order
of magnitude better than Anatomy, despite the fact that
Anatomy is not using generalization but publishes the exact
quasi-identifier. As ` increases, the extent of the anonymized
groups grows proportionally in all dimensions. This is a clear
disadvantage for all generalization methods; however, even
for larger ` values, our methods outperform Mondrian by an
order of magnitude, and their accuracy is only marginally
worse than Anatomy.

In Figure 20(b) we fix `=5 and show the query accuracy
for different levels of the OLAP lattice. Hilb and iDist are
better than Mondrian by up to an order of magnitude, and
also outperform Anatomy. Hilb and iDist are better at lower
levels of the lattice (i.e., coarse-grained aggregation), since
the extent of the anonymized groups is likely to be com-
pletely included in the query range. For finer granularity,
Anatomy performs equally well as our methods, since it is
favored by small query ranges.

In Figure 20(c) we focus on level 2 of the lattice, set `=5
and vary the dimensionality d of the quasi-identifier. Lower
dimensionality results to more compact `-diverse groups,
which improves accuracy. However, lower dimensionality
also creates fine-grained group-bys, which decrease accuracy.
Depending on the domains of the quasi-identifier attributes,
any of the two effects may become significant. This is why
there is an increasing trend until d = 4 and a decreasing
trend afterwards. Hilb and iDist maintain an advantage
over the competitors. Observe that Anatomy is not affected



by dimensionality, since it does not use generalization.
Finally, in Figure 20(d) we vary the size of the input N for

`=5, at level 2 of the lattice. Since the extent of the queries
is constant, but the density of data in the quasi-identifier
space increases, accuracy increases with N .

6.4 Discussion
We demonstrated that for k-anonymity our algorithms are

superior to existing techniques in terms of information loss.
Hilb is the best, but is a bit slower than Mondrian. If speed
is essential, HilbFast can be used. It is as fast as Mondrian
and its quality is only slightly worse that Hilb.

For `-diversity, Hilb is the clear winner. It is by far su-
perior in terms of information loss and accuracy for real
queries; it is also as fast as its competitors. Interestingly,
Hilb outperforms Anatomy in most cases, although Anatomy
implements a less secure model, by publishing the exact
quasi-identifiers. This happens because Anatomy ignores
the distance of the tuples in the QT space (see Section 2.3).

iDist also performed well, but slightly worse than Hilb.
We used iDist mainly to demonstrate the versatility of our
framework. For specific applications, other multi-dimensional
to 1-D mappings may be more appropriate. Any such map-
ping can be used in our framework.

Lastly, note that our methods scale well with the input
size, since the computational complexity is linear, the re-
quired memory is constant and only one scan of the data is
necessary (provided the dataset is sorted).

7. CONCLUSIONS
In this paper, we developed a framework for solving the

k-anonymity and `-diversity problems, by mapping the mul-
tidimensional quasi-identifiers to one dimension. Both prob-
lems are NP-hard in the multidimensional space. How-
ever, we identified a set of properties for the optimal 1-D
solution. Guided by these properties, we developed effi-
cient algorithms at the 1-D space. We used two popular
transformations, namely the Hilbert curve and iDistance,
to solve the multidimensional problem through 1-D map-
ping; other transformations can easily be incorporated in our
framework. The experiments demonstrate that our meth-
ods clearly outperform the existing state-of-the-art both in
terms of execution time and information loss. Moreover, our
algorithms are linear to the input size, therefore they are ap-
plicable to very large datasets. In the future we will study
the dual problem: Given a maximum allowable information
loss, identify the best possible degree of privacy (i.e., either
k or `).
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