
Query Processing in Spatial Network Databases

Dimitris Papadias
Department of Computer Science

Hong Kong University of Science and Technology
Clearwater Bay, Hong Kong

dimitris@cs.ust.hk

Jun Zhang
Department of Computer Science

Hong Kong University of Science and Technology
Clearwater Bay, Hong Kong

zhangjun@cs.ust.hk

Nikos Mamoulis
Department of Computer Science and Information Systems

University of Hong Kong
Pokfulam Road, Hong Kong

nikos@csis.hku.hk

Yufei Tao

Department of Computer Science
City University of Hong Kong
Tat Chee Avenue, Hong Kong

taoyf@cityu.edu.hk

Abstract

Despite the importance of spatial networks in
real-life applications, most of the spatial database
literature focuses on Euclidean spaces. In this
paper we propose an architecture that integrates
network and Euclidean information, capturing
pragmatic constraints. Based on this architecture,
we develop a Euclidean restriction and a
network expansion framework that take
advantage of location and connectivity to
efficiently prune the search space. These
frameworks are successfully applied to the most
popular spatial queries, namely nearest
neighbors, range search, closest pairs and e-
distance joins, in the context of spatial network
databases.

1. Introduction
Spatial databases have been well studied in the last 20
years resulting in the development of numerous
conceptual models, multi-dimensional indexes and query
processing techniques [RSV02]. Surprisingly, most of
existing work considers Cartesian (typically, Euclidean)
spaces, where the distance between two objects is
determined solely by their relative position in space.
However, in practice, objects can usually move only on a
pre-defined set of trajectories as specified by the
underlying network (road, railway, river etc.). Thus, the
important measure is the network distance, i.e., the length
of the shortest trajectory connecting two objects, rather

than their Euclidean distance. Previous work on spatial
network databases (SNDB) is scarce and too restrictive
for emerging applications such as mobile computing and
location-based commerce. This necessitates the
development of novel and comprehensive query
processing methods for SNDB.
Every conventional spatial query type (e.g., nearest
neighbors, range search, spatial joins and closest pairs)
has a counterpart in SNDB. Consider, for instance, the
road network of Figure 1.1, where the rectangles
correspond to hotels. If a user at location q poses the
range query "find the hotels within a 15km range", the
result will contain a, b and c (the numbers in the figure
correspond to network distance). Similarly, a nearest
neighbor query will return hotel b. Note that the results of
the corresponding conventional queries are different (e.g.,
the Euclidean nearest neighbor is d, which is actually the
farthest hotel in the network). Furthermore, queries may
combine both location and network aspects, such as "find
the nearest hotel to the south" (e.g., hotel a).

 Figure 1.1: Road network query example

A crucial pre-requisite for solving these queries in SNDB
is a realistic architecture, which captures spatial entities
(e.g., hotels) and the underlying network, preserving both
Cartesian co-ordinates and connectivity. In addition, this
architecture must take into account real-life constraints,
such as unidirectional roads, “off-network” (but still
reachable) entities, etc. Furthermore, although the
network is almost static, the entities may change with
high frequencies (e.g., a new/existing hotel opens/closes).

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

It is also possible that entire entity sets are added as more
information or services become available (e.g., a new
"restaurant" dataset is incorporated in the system).
In this paper we propose a flexible architecture for SNDB,
by separating the network from the entity datasets. In
particular, we employ a disk-based network representation
that preserves connectivity and location, while spatial
entities are indexed by respective spatial access methods
for supporting Euclidean queries and dynamic updates.
Using this architecture, we develop two frameworks,
Euclidean restriction and network expansion, for
processing the most common spatial queries, namely
nearest neighbors, range search, closest pairs and distance
joins. The resulting algorithms expand conventional
processing techniques by integrating connectivity and
location information for efficient pruning of the search
space. To the best of our knowledge, this is the first work
dealing with the efficient processing of spatial queries in
SNDB.
The rest of the paper is organized as follows: Section 2
overviews related work. Section 3 describes our
architecture and its application in real-life scenarios.
Sections 4 and 5 present algorithms for nearest neighbor
and range search queries, respectively, while Sections 6
and 7 discuss closest pairs and spatial joins. Section 8
evaluates the proposed techniques with comprehensive
experiments, and Section 9 concludes the paper with a
discussion.

2. Related Work
In this section we overview previous work related to
location (Section 2.1) and connectivity (Section 2.2)
representation and processing in databases.

2.1 Spatial Query Processing in the Euclidean Space
R-trees [G84, SRF87, BKSS90] are the most popular
indexes for Euclidean query processing due to their
simplicity and efficiency. The R-tree can be viewed as a
multi-dimensional extension of the B-tree. Figure 2.1
shows an exemplary R-tree for a set of points {a,b,…,j}
assuming a capacity of three entries per node. Points that
are close in space (e.g., a,b) are clustered in the same leaf
node (E3) represented as a minimum bounding rectangle
(MBR). Nodes are then recursively grouped together
following the same principle until the top level, which
consists of a single root.

E

20 4 6 8 10

2

4

6

8

10

E f1

E2
e

b

g
E5

E4

E3

E 7

6

q mindist()E2

= mindist()E6

mindist()E3

mindist()E1

h

a

c

d

i

j

a b

Root

E3

c d

E4

e f

E5

g h

E6

i j

E7

E3 E4
E5

E6 E7

E1 E2

E1 E2

Figure 2.1: An R-tree example

R-trees (like most spatial access methods) were motivated
by the need to efficiently process range queries, where
the range usually corresponds to a rectangular window or
a circular area around a query point. The R-tree answers
the query q (shaded area) in Figure 2.1 as follows. The
root is first retrieved and the entries (e.g., E1, E2) that
intersect the range are recursively searched because they
may contain qualifying points. Non-intersecting entries
(e.g., E3) are skipped. Note that for non-point data (e.g.,
lines, polygons), the R-tree provides just a filter step to
prune non-qualifying objects. The output of this phase has
to pass through a refinement step that examines the actual
object representation to determine the actual result. The
concept of filter and refinement steps applies to all spatial
queries on non-point objects.

A nearest neighbor (NN) query retrieves the (k≥1) data
point(s) closest to a query point q. The R-tree NN
algorithm proposed in [HS99] keeps a heap with the
entries of the nodes visited so far. Initially, the heap
contains the entries of the root sorted according to their
minimum distance (mindist) from q. The entry with the
minimum mindist in the heap (E1 in Figure 2.1) is
expanded, i.e., it is removed from the heap and its
children (E3, E4, E5) are added together with their mindist.
The next entry visited is E2 (its mindist is currently the
minimum in the heap), followed by E6, where the actual
result (h) is found and the algorithm terminates, because
the mindist of all entries in the heap is greater than the
distance of h. The algorithm can be easily extended for
the retrieval of k nearest neighbors (kNN). Furthermore, it
is optimal (it visits only the nodes necessary for obtaining
the nearest neighbors) and incremental, i.e., it reports
neighbors in ascending order of their distance to the query
point, and can be applied when the number k of nearest
neighbors to be retrieved is not known in advance.
An intersection join retrieves all intersecting object pairs
(s,t) from two datasets S and T. If both S and T are
indexed by R-trees, the R-tree join algorithm [BKS93]
traverses synchronously the two trees, following entry
pairs that overlap; non-intersecting pairs cannot lead to
solutions at the lower levels. Several spatial join
algorithms have been proposed for the case where only
one of the inputs is indexed by an R-tree or no input is
indexed [RSV02]. For point datasets, where intersection
joins are meaningless, the corresponding problem is the e-
distance join, which finds all pairs of objects (s,t) s ∈ S, t
∈ T within (Euclidean) distance e from each other. R-tree
join can be applied in this case as well, the only difference
being that a pair of intermediate entries is followed if their
distance is below (or equal to) e. The intersection join can
be considered as a special case of the e-distance join,
where e=0.

Finally, a closest-pairs query outputs the (k≥1) pairs of
objects (s,t) s ∈ S, t ∈ T with the smallest (Euclidean)
distance. The algorithms for processing such queries
[CMTV00] combine spatial joins with nearest neighbor

search. In particular, assuming that both datasets are
indexed by R-trees, the trees are traversed synchronously,
following the entry pairs with the minimum distance.
Pruning is based on the mindist metric, but this time
defined between entry MBRs. As all these algorithms
apply only location-based metrics to prune the search
space, they are inapplicable for SNDB.

2.2 Disk-based Graph Representations and Algorithms
A graph is usually represented either as a 2D matrix
(where each entry corresponds to an edge between a pair
of nodes), or an adjacency list. Adjacency lists are
preferable for applications, such as road networks, where
the graphs are sparse. The main issue for adapting this
representation to secondary memory is how to cluster lists
of adjacent nodes in the same disk page, in order to take
advantage of the access locality and minimize the I/O.
The connectivity-clustered access method (CCAM)
[SL97] generates a single-dimensional ordering of the
nodes (using Z-ordering) and stores the lists of neighbor
nodes together. Figure 2.2 shows a graph example and its
CCAM structure, assuming that three adjacency lists fit in
one page. The lists of the neighboring (in the Z-order)
graph nodes n1, n3 and n5 are stored in page p1, and the
lists of the remaining ones in page p2. Each entry in the
list (e.g., l6) of a node (n6) contains an adjacent node (n2)
and the corresponding network distance (3). In order to
efficiently retrieve the adjacency list li of a node ni, the list
pages are indexed by a B+-tree on the node id. An
alternative technique for clustering graph nodes according
to their proximity in space is proposed in [HJR96].

(a) A graph example

(b) The CCAM structure

Figure 2.2: A graph example and its CCAM structure
CCAM and similar architectures only preserve
connectivity (but not location) information; thus, they are
applicable only to shortest path and other graph traversal
algorithms (but not conventional spatial query
processing). The most popular shortest path algorithm,
proposed by Dijkstra [D59], starts from the source and
expands the route towards the destination, using a priority

queue to store visited nodes (sorted according to their
distance from the source node). Several variants of this
algorithm [CLR90] differ on how they manage the
priority queue. The A* algorithm [KHI+86] applies
heuristics to prune the search space and direct the graph
expansion. Materialization techniques accelerate shortest
path processing (at the expense of space requirements) by
using pre-computed results stored in materialized views
[ADJ90, IRW93, JP96, JHR98]. The performance of
secondary-memory adaptations of shortest path
algorithms has been analyzed in [J92, SKC93].
The only existing approach that integrates spatial and
connectivity information [HJR97], uses thematic spatial
constraints to restrict the permitted paths (e.g., "find the
shortest path that passes only through rural areas") and is
inapplicable to general query processing. Finally,
[SKS02] deal with nearest neighbor queries in road
networks by transforming the problem to high
dimensional space. Their solution is approximate and
specific to this problem. On the other hand, the
architecture presented in the next section supports all the
counterparts of conventional queries in the SNDB
context.

3. Architecture
We assume a digitization process that generates a
modeling graph from an input spatial network.
Considering the road network in the introduction, the
graph nodes generated by this process are: (i) the network
junctions (e.g., the black points in Figure 3.1a), (ii) the
starting/ending point of a road segment (white), and (iii)
depending on the application, additional points (gray)
such as the ones where the curvature or speed limit
changes. The graph edges preserve the connectivity in the
original network. Figure 3.1b shows the (modeling) graph
for the network of Figure 3.1a; nodes at the boundary of
the data space and the network distance of most edges are
omitted for clarity.

(a) A road network

(b) The modeling graph

Figure 3.1: Graph modeling of the road network

In the sequel we use the term edge/segment to denote a
direct link in the graph/network. Each edge connecting
nodes ni, nj stores the network distance dN(ni,nj). For
nodes that are not directly connected, dN(ni,nj) equals the
length of the shortest path from ni to nj. If unidirectional
traffic is allowed (e.g., one-way road segments), dN(ni,nj)
is asymmetric (i.e., it is possible dN(ni,nj)≠dN(nj,ni)).
Furthermore, dE(ni,nj) ≤ dN(ni,nj), i.e., the corresponding
Euclidean distance dE(ni,nj) lower bounds dN(ni,nj)
(equality holds only if ni, nj are connected by a straight
segment). We refer to this fact as the Euclidean lower-
bound property.
Constraints, such as special traffic controls, can be
modeled by including extra nodes to the graph. As an
example, consider a road junction in Figure 3.2a, where
right turns are not permitted. The corresponding graph is
shown in Figure 3.2b, where 8 nodes in the same spatial
position are used to capture this behavior. Depending on
the application needs, additional information may be kept
for nodes (such as the type of the node, e.g., highway
junction) or the edges (speed limit, category of road
segment e.g., highway).

(a) A road junction (b) The modeling graph

Figure 3.2: Example of pragmatic constraint

In order to simplify the presentation, we describe our
architecture for the basic functionality, where nodes have
identical types and edges only store network distance. We
separate the spatial entities (e.g., hotels) from the
underlying network, by indexing each entity dataset using
an R-tree. This division has many advantages: (i) all
conventional (Euclidean) queries, which do not require
the network, can be efficiently processed by the R-trees,
(ii) as shown later, queries combining network and
Euclidean aspects are supported, (iii) dynamic updates in
each dataset are handled independently, (iv) new/existing
datasets can be added to/removed from the system easily,
and (v) specific optimizations can be applied to each
individual (network or entity) dataset.
The network storage scheme consists of three
components. The adjacency component captures the
network connectivity. The adjacency lists of the nodes
close in space (according to their Hilbert1 values) are
placed in the same disk page. In Figure 3.3 (based on
Figure 3.1b), the list l1 of n1 consists of 3 entries, one for
each of its connected nodes (n2, n3, n4) (ignoring nodes
outside the boundary). The first entry (for edge n1n2) has

1 We apply Hilbert ordering, instead of the Z-ordering used by
CCAM, because it achieves better locality.

the form <NBptr(n2), 8, MBR(n1n2), PLptr(n1n2)>, where
NBptr(n2) points to the disk page (i.e., P1) containing the
adjacency list l2 of n2. NBptr(n2) enables fast access to the
neighboring node n2, without any additional look-up
(while CCAM, as reviewed in Section 2.2, requires B-tree
accesses). The next field (8) is the network distance of
edge n1n2. MBR(n1n2) records the minimum bounding
rectangle of the actual poly-line n1n2 in the original
network, which is stored in the disk page (=P3) specified
by PLptr(n1n2). The other adjacency entries (for n3, n4)
have the same format.

Figure 3.3: Example of the proposed architecture

The poly-line component, stores the detailed poly-line
representation of each segment in the network. A poly-
line entry ninj also includes a pair of pointers to the disk
pages containing the adjacency lists of its endpoints ni, nj.
The last component is a network R-tree that indexes the
poly-lines’ MBRs and supports queries exploring the
spatial properties of the network. Each leaf entry contains
a pointer to the disk page storing the corresponding poly-
line. The architecture supports the following primitive
operations for SNDB:
(i) check_entity(seg, p) is a Boolean function that returns
true if point (entity) p lies on the network segment seg
(we say that seg covers p). In accordance with the
conventional spatial databases methodology, the MBR of
seg is used for filtering and its poly-line representation for
refinement. Due to approximation or digitization errors it
is possible that, although point p actually lies on seg, its
stored co-ordinates may deviate from the segment. This
situation can be handled by defining an (application-
dependent) threshold dT, such that if p is within distance
dT from seg, it is assumed to lie on it.
(ii) find_segment(p): outputs the segment that covers point
p by performing a point location query on the network R-
tree. If multiple segments cover p, the first one found is
returned. This function is applied whenever a query is
issued, to locate the segment on which the query point
lies. If the query point does not lie on any segment, we
can “snap” it to the closest one assuming incomplete
information (e.g., an un-recorded alley), or we can
consider it unreachable depending on the application
specifications. Although uncertainty handling in SNDB is
an interesting topic, for the sake of simplicity, in the

following discussion we assume that each entity and
query point falls on at least one network segment.
(iii) find_entities(seg): returns entities covered by segment
seg. Specifically it first finds all the candidate entities that
lie in the MBR of seg, and then eliminates the false hits
using the poly-line of seg.
(iv) compute_ND(p1,p2): returns the network distance
dN(p1,p2) of two arbitrary points p1, p2 in the network, by
applying a (secondary-memory) algorithm to compute the
shortest path from p1 to p2. Specifically, we chose to adapt
Dijkstra's algorithm because it is simple, efficient and
exhibits access locality, reducing the number of page
faults during the retrieval of adjacency lists. However,
Dijkstra's algorithm assumes that the source (i.e., query)
and the destination (i.e., data point) fall on network nodes,
while in our scenario points may fall on edges (or
assigned to edges if approximation is used).
Consider, for example, the computation of dN(p1,p2) in the
modeling graph of Figure 3.4, where n1,...,n6 denote the
nodes. The algorithm first invokes find_segment to return
the segments n1n2 covering p1, and n5n6 covering p2. Then,
it calculates the distance from p1 to n1 and n2 (5 and 12)
using the poly-line n1n2, and initiates a priority queue
Q=<(n1,5),(n2,12)>. The first entry n1 is de-queued and its
adjacent nodes (n3, n4) are inserted into Q, together with
their accumulated distance from p1, i.e., Q=<(n2,12),
(n3,13), (n4,30)>. After the expansion of n2, the queue
becomes Q=<(n3,13),(n4,25)> (the distance to n4
decreases), and after the expansion of n3, Q=<(n5,23),
(n4,25)>. Now the next node to expand is n5. Since p2 can
be reached from n5 with cost 3, we insert it, and the queue
becomes Q=<(n4,25), (p2,26)>. Similarly, after the
expansion of n4, Q=<(p2,26), (n6,29)> and the algorithm
terminates with dN(p1,p2)=26. If p1 or p2 fall on multiple
segments, then by the definition of the graph they
correspond to graph nodes, in which case the algorithm is
still applicable. The same is true for networks containing
unidirectional segments.

n
5

n
3n

1

p
1

n
2

n
4 n

6

8

p
2

12

10

5

13
2

3
25

4

Figure 3.4: Illustration of fundamental operations

Network distance computations can be facilitated by
materialization of pre-computed results (e.g., [ADJ90,
JHR98]). In Figure 3.4, for example, dN(p1,p2) can be
obtained by fetching from the materialized view
dN(n1,n5)=18, dN(n1,n6)=23, dN(n2,n5)=22, dN(n2,n6)=17,
with four disk accesses using a hash function. Although
materialization can be incorporated as an additional
module in our architecture, we chose not to include it in
the basic functionality due to the huge space requirements
for large spatial networks.

Next, we discuss all common spatial queries using this
architecture. For each query type we propose two
algorithms based on the Euclidean restriction and network
expansion frameworks, respectively. Euclidean restriction
takes advantage of the Euclidean lower-bound property to
prune the search space. On the other hand, the network
expansion framework performs query processing directly
on the network. Since our aim is to illustrate the general
methodology, we intentionally keep the algorithms simple
and only present essential optimization techniques
wherever necessary. Furthermore, we only describe the
basic query forms; as discussed in Section 9, variations
such as "find the nearest hotels to the south", can be easily
processed by the proposed techniques.

4. Nearest Neighbors in SNDB
Given a source point q and an entity dataset S, a k nearest
neighbor (kNN) query retrieves the k (≥1) objects of S
closest to q according to the network distance (e.g., find
the hotel within the shortest driving distance). Sections
4.1 and 4.2 present two algorithms for nearest neighbour
queries in SNDB, based on the Euclidean restriction and
network expansion frameworks, respectively.

4.1 Incremental Euclidean Restriction
The Incremental Euclidean Restriction (IER) algorithm
applies the multi-step kNN methodology [FRM94, SK98],
traditionally used for high-dimensional similarity
retrieval. Specifically, assuming that only one NN is
required, IER first retrieves the Euclidean nearest
neighbor pE1 of q, using an incremental kNN algorithm
(e.g., [HS99], see Section 2.1) on the entity R-tree of S.
Then, the network distance dN(q,pE1) of pE1 is computed
(by compute_ND(q,pE1)). Due to the Euclidean lower-
bound property, objects closer (to q) than pE1 in the
network, should be within Euclidean distance
dEmax=dN(q,pE1) from q, i.e., they should lie in the shaded
area of Figure 4.1a. In Figure 4.1b, the second Euclidean
NN pE2 is then retrieved (within the dEmax range). Since
dN(q,pE2)<dN(q,pE1), pE2 becomes the current NN and dEmax
is updated to dN(q,pE2), after which the search region (for
potential results) becomes smaller (the shaded area in
Figure 4.1b). Since the next Euclidean NN pE3 falls out of
the search region, the algorithm terminates with pE2 as the
final result.

q

p
E1

d
E
(q,p

E1
)

d
N
(q,p

E1
)

d
Emax

=d
N
(q,p

E1
)

(a) 1st Euclidean NN (a) 2nd Euclidean NN

Figure 4.1: Finding the NN pE2

The extension to k nearest neighbors is straightforward.
The k Euclidean NNs are first obtained using the entity R-
tree, sorted in ascending order of their network distance to
q, and dEmax is set to the distance of the kth point. Similar
to the single NN case, the subsequent Euclidean neighbors
are retrieved incrementally, while maintaining the k
(network) NNs and dEmax (except that dEmax equals the
network distance of the k-th neighbor), until the next
Euclidean NN has larger Euclidean distance than dEmax.
Figure 4.2 illustrates the pseudo-code of IER.

Algorithm IER (q, k)
/* q is the query point */
1. {p1,...,pk}=Euclidean_NN(q,k);
2. for each entity pi
3. dN(q,pi)=compute_ND(q,pi)
4. sort {p1,...,pk} in ascending order of dN(q,pi)
5. dEmax= dN(q, pk)
6. repeat
7. (p,dE(q, p))=next_Euclidean_NN(q);
8. if (dN(q,p)<dN(q,pk)) // p closer than the kth NN
9. insert p in {p1,...,pk} // remove ex-kth NN
10. dEmax = dN(q, pk)
11. until dE(q,p)>dEmax
End IER

Figure 4.2: Incremental Euclidean Restriction

4.2 Incremental Network Expansion
IER (and the Euclidean restriction framework in general)
performs well if the ranking of the data points by their
Euclidean distance is similar to that with respect to the
network distance. Otherwise, a large number of Euclidean
NNs may be inspected before the network NN is found.
Figure 4.3 shows an example where the black points
represent the nodes in the modeling graph and rectangles
denote entities. The nearest entity to the query q (white
point) is p5. The subscripts of the entities (p1,p2,...,p5) are
in ascending order of their Euclidean distance to q. Since
p5 has the largest Euclidean distance, it will be examined
after all other entities, i.e., p1 to p4 correspond to false
hits, for which the network distance computations are
redundant.

3

5

2
4

2

6
1

9
4 6

4

n1

n2
n3

n4

n5

n6

n7
n8 n9

p1p2

p3

p4

p5

q

Figure 4.3: Finding the NN p5

To remedy this problem, the Incremental Network
Expansion (INE) algorithm performs network expansion
(starting from q), and examines entities in the order they
are encountered. Specifically, INE first locates the
segment n1n2 that covers q, and retrieves all entities on

n1n2 (using the primitive operation find_entities). Since no
point is covered by n1n2, the node (n1) closest to the query
is expanded (while, the second endpoint n2 of n1n2 is
placed in a queue Q). No data point is found in n1n7 and n7
is inserted to Q=<(n2,5), (n7,12)>. The expansion of n2
reaches n4 and n3, after which Q=<(n4,7), (n3,9), (n7,12)>
and point p5 is discovered on n2n4 (while no point is found
on n2n3). The distance dN(q,p5) =6 provides a bound dNmax
to restrict the search space. The algorithm terminates now
since the next entry n4 in Q has larger distance (i.e., 7)
than dNmax. Figure 4.4 shows the pseudocode of INE.

Algorithm INE (q, k)
1. ninj=find_segment(q)
2. Scover=find_entities(ninj); // Scover is the set of entities

covered by ninj
3. {p1,...,pk}=the k (network) nearest entities in Scover

sorted in ascending order of their network distance
(pm, pm+1...,pk may be ∅ if Scover contains < k points)

4. dNmax=dN(q,pk) // if pk=∅ , dNmax=∞
5. Q = <(ni, dN(q,ni)), (nj, dN(q,nj))> //sorted on dN
6. de-queue the node n in Q with the smallest dN(q,n)
7. while (dN(q,n)<dNmax)
8. for each non-visited adjacent node nx of n
9. Scover=find_entities(nxn);
10. update {p1,...,pk} from {p1,...,pk}∪ Scover
11. dNmax=dN(q,pk)
12. en-queue (nx,dN(q,nx))
13. de-queue the next node n in Q
End INE

Figure 4.4: Incremental Network Expansion

5. Range Queries in SNDB

Given a source point q, a value e and a spatial dataset S, a
range query retrieves all objects of S that are within
network distance e from q. Section 5 applies the
Euclidean restriction and network expansion paradigms
for processing such queries.

5.1 Range Euclidean Restriction
The Range Euclidean Restriction (RER) method first
performs a range query at the entity dataset and returns
the set of objects S' within (Euclidean) distance e from q.
Assuming the Euclidean lower bound property, S' is
guaranteed to avoid false misses (i.e., dN(q,p)≤e ⇒
dE(q,p)≤e), but it may contain a large number of false hits.
In order to reduce the number of network distance
computations, RER performs network expansion only
once, examining all segments within network distance e
from q. Points of S' that fall on some segment, are
removed from S' and returned to the user. The process
terminates when all the segments in the range are
exhausted, or when S' becomes empty.
Figure 5.1 illustrates the pseudo-code of the algorithm. S'
contains the results of the Euclidean range query sorted on
some dimension. When a new segment is encountered, the

sorted list is used to efficiently check if any point falls
inside its MBR (filter step). Such points are then
compared with the poly-line representation of the segment
to determine whether they belong to the actual result
(refinement step). Part of some segments at the boundary
may exceed the query threshold e, but these segments
must be considered anyway since they may contain data
points that satisfy the query.

Algorithm RER(q, e)
/* q: query point, e: the network distance threshold */
1. result=∅
2. S' = Euclidean-range(q, e)
3. ninj=find_segment(q)
4. Q=<(ni,dN(q,ni)), (nj,dN(q,nj))>
5. de-queue the node n in Q with the smallest dN(q,n)
6. while (dN(q,n)≤e and S' ≠∅)
7. for each non-visited adjacent node nx of n
8. for each point s of S'
9. if check_entity(nxn,s)
10. result=result∪ {s}; S' =S' −{s}
11. en-queue (nx,dN(q,nx))
12. de-queue the next node n in Q
13. end while
End RER

Figure 5.1: Range Euclidean Restriction

5.2 Range Network Expansion
The Range Network Expansion (RNE) algorithm first
computes the set QS of qualifying segments within
network range e from q and then retrieves the data entities
falling on these segments. The methodology is similar to
INE, but now numerous queries, one for each qualifying
segment, are performed simultaneously (i.e., an
intersection join as discussed in Section 2.1). To illustrate
RNE, assume that QS contains the segments shown in
Figure 5.2a. Starting from the root of the object R-tree,
RNE visits nodes that intersect the MBR of at least one
segment in QS. Figure 5.2b illustrates the visited nodes
and the qualifying objects in gray.

n6

n3 n1

nq

n2

n4

n5

n7

E1

E2

E3
E4

E5

E6

a

b

d

c

n 8

a b c d

E1 E2

E3 E4 E5 E6

Root

E1
E2

E3 E4 E5 E6

(a) Network and objects (b) The object R-tree
Figure 5.2: Example of RNE

In order to avoid joining the entire QS (which may be
large) with every entry, we perform the following
optimization. QS is divided into (possibly overlapping)
sets QSi, one for each entry Ei in the current R-tree node.
A segment is assigned to all entries that intersect its MBR.
When the children of Ei are visited, they are only

compared against QSi. Thus, as RNE descends the tree,
the number of comparisons performed for each entry
drops. In Figure 5.2, the set of qualifying segments QS1 =
∅ , while for E2, QS2 consists of all segments except n1n4
and n5n8. Similarly, QS5 = {nqn2, n2n5, n2n6} and QS6 =
{nqn1, n2n6, n4n7}. When the node of E5 (E6) is visited, its
points will only be checked against the segments of QS5
(QS6).
An object can be reported more than once if it lies at the
intersections of the segments in QS. Such duplicates are
easy to remove, by sorting the results at each leaf node
before reporting them. Finally, RNE is I/O optimal (since
it only accesses R-tree nodes that overlap some qualifying
segment, and therefore, may contain results). The pseudo
code of RNE is presented in Figure 5.3. The initial
parameters of the algorithm are (root of R-tree S, QS, ∅).
To reduce the number of intersection tests, at lines 2 and 7
we apply a plane sweep algorithm [APR+98].

Algorithm RNE(node_id, QS, result)
1. if (node_id is an intermediate node)
2. compute QSi for each entry Ei in node_id // join
3. for each entry Ei in node_id
4. if (QSi ≠ ∅)
5. RNE(Ei.node_id, QSi, result)
6. else // node is a leaf node
7. resultnode_id =plane-sweep(node_id.entries, QSi)
8. sort resultnode_id to remove duplicates
9. result = result∪ resultnode_id
End RNE

Figure 5.3: Range Network Expansion

An alternative is to use the methodology suggested by
[PRS99]. In particular, the MBR of all segments in QS is
applied as a range query to the object R-tree. When a leaf
node is reached, its contents are joined with QS, using
plane-sweep. This technique performs a simple
intersection test at each visited R-tree node; however, if
the network range is large and irregular it may visit
numerous tree nodes that do not overlap any qualifying
segment (e.g., E1 in Figure 5.2).
Finally, if QS does not fit in memory, the join is
performed in a block nested loops fashion, i.e., RNE is
repeatedly applied for subsets of QS that fit in memory
and the partial results are materialized. Another approach
is to compute all qualifying segments, materialize them
and join them with the object R-tree using one of the
spatial join algorithms that are applicable in the presence
of a single tree [RSV02].

6. Closest-Pairs in SNDB
Given two datasets S, T and a value k, a closest-pairs
query retrieves the k (≥1) pairs (s,t) s ∈ S, t ∈ T that are
closest in the network (e.g., find the hotel, restaurant pair
within the smallest driving distance). This section
describes retrieval of closest pairs in SNDB.

6.1 Closest-Pairs Euclidean Restriction
Like IER, the Closest-Pairs Euclidean Restriction (CPER)
algorithm applies the multi-step kNN methodology.
Assume for instance that only the closest pair is required.
CPER performs an incremental closest-pairs query
[CMTV00] on the R-trees of S, T and retrieves the
Euclidean closest pair (s,t). The network distance dN(s,t)
provides an upper bound dEmax for all candidate pairs in
the Euclidean space. Subsequent candidate pairs are
retrieved incrementally, continuously updating the result
and dEmax, until no candidate pairs can be found within the
dEmax bound. The extension to k nearest neighbors is
similar to that of IER. Figure 6.1 illustrates the pseudo-
code of CPER algorithm.

Algorithm CPER (S,T, k)
/* S and T are two entity data sets; k is the number of
closest pairs to be retrieved*/
1. {(s1,t1),...,(sk,tk)}=Euclidean_CP(S,T,k);

// find the k Euclidean closest pairs
2. for i=1 to k
3. dN(si,ti)=compute_ND(si,ti)
4. sort (si,ti) in ascending order of their dN(si,ti)
5. dEmax=dN(sk,tk)
6. repeat
7. (s',t') = next_Euclidean_CP(S,T)
8. dN(s',t')=compute_ND(s',t')
9. if (dN(s',t')<dEmax
 // (s',t') is closer in the network than (sk,tk)
10. insert (s',t') in {(s1,t1),...,(sk,tk)}
11. dEmax=dN(sk,tk)
12. until dE(s',t')>dEmax
End CPER

Figure 6.1: Closest-Pairs Euclidean Restriction

6.2 Closest-Pairs Network Expansion
The difference between closest-pairs and the previous
query types (range search and NN) is that now there does
not exist a query point, which can be used as a source for
network expansion. Thus, the only option is to use as
sources all the data points of one dataset (the one with the
smallest cardinality). The pseudo-code for Closest-Pairs
Network Expansion (CPNE) algorithm is shown in Figure
6.2, assuming that the seeds for expansion are provided by
S. CPNE calls INE (Section 4.2) to retrieve the k nearest
neighbors t1,.., tk (∈ T) of the first object s1 of S. The
distance dN(s1,tk) provides a dNmax bound for subsequent
expansions. As closer pairs are discovered, this bound
gradually decreases.
Obviously, in most cases CPNE is expected to be
significantly more expensive than CPER. However, it is
still useful in some extreme situations (e.g., large
cardinality difference between the datasets, very high k).
Furthermore, it is the only option if the lower bound
property does not hold, in which case CPER is
inapplicable. This issue will be discussed further in
Section 9.

Algorithm CPNE (S,T,k)
1. {t1, ...,tk}=INE(s1,k)
 // retrieve kNN t1,.., tk of first entity s1 in S
2. result={(s1,t1), ..., (s1,tk)}
3. dNmax=max{dN(s1,ti)} // current kth CP distance
4. for each other point si∈ S (si≠ s1)
5. ninj=find_segment(si)
6. Tcover=find_entities(ninj); //in T
7. for every entity t in Tcover
8. if dN(si,t)<dNmax then update result and dNmax
9. Q =<(ni,dN(si,ni)), (nj,dN(si,nj))>
10. de-queue the node n in Q with the smallest dN(si,n)
11. while (dN(si,n)≤ dNmax)
12. for each non-visited adjacent node nx of n for si
13. Tcover=find_entities(nxn)
14. for each entity t in Tcover
15. if dN(si,t)<dNmax then update result and dNmax
16. en-queue (nx,dN(si,nx))
17. de-queue the next node n in Q
18. end while
End CPNE

Figure 6.2: Closest-Pairs Network Expansion

7. e-Distance Joins in SNDB
Given two spatial datasets S, T and a value e, an e-
distance join retrieves the pairs (s,t) s ∈ S, t ∈ T such that
dN(s,t)≤e (e.g., find the hotel, restaurant pairs within 10km
driving distance). Similar to the previous query types, we
present algorithms in the Euclidean restriction and
network expansion paradigms, respectively.

7.1 Join Euclidean Restriction
A straightforward way to process the e-distance join is to
perform an R-tree join and find the set of all pairs within
Euclidean distance e. Then, for each pair we compute the
network distance, filtering out the false hits. The overhead
of false hits is especially serious in this case, due to the
large output size of the Euclidean join. In order to
illustrate how the situation can be improved, consider that
the result of R-tree join contains six pairs: (s1, t1), (s1, t2),
(s1, t3), (s2, t1), (s2, t4), (s2, t5) requiring six network
distance computations. On the other hand, since there are
only two objects s1 and s2 from the first dataset, the actual
result may be obtained by expanding only these points.
Based on this observation, the Join Euclidean Restriction
(JER) algorithm first applies R-tree join and counts the
number of distinct points from each dataset that appear in
the output. The dataset with the smaller count is used to
provide the "seeds" for node expansion. The pseudo-code
of the algorithm is shown in Figure 7.1, assuming that the
dataset with the smaller number of distinct objects in the
result is S. For each such object, the network around it is
expanded and the set QS of segments within range e are
retrieved. Then, every object t ∈ T that appears with s in
some (Euclidean) join pair is tested (using the primitive
operation check_entity); if t falls on some segment of QS,

then the pair (s,t) is added to the final result. In order to
facilitate fast computation of Ts, and at the same time
achieve spatial locality between consecutive expansions,
the output of R-tree join is sorted on S using the Hilbert
space filling curve. For large Rjoin-res, the algorithm is
repeatedly applied for blocks of pairs that fit in memory.

Algorithm JER (S,T,e)
/* S and T are two entity data sets; e is the (network)
distance threshold */
1. Rjoin-res=R-tree-join(S, T);
2. sort Rjoin-res on s
3. for each distinct object s ∈ S in Rjoin-res
4. Ts= set of objects ∈ T that pair with s in Rjoin-res
5. QS=expand_point(s,e)
6. for each object t ∈ Ts
7. for each segment seg in QS
8. if check_entity(seg,t)
9. result= result∪ (s,t)
End JER

Figure 7.1: Join Euclidean Restriction

7.2 Join Network Expansion
The Join Network Expansion (JNE) algorithm expands
the network around points of the smallest dataset (let it be
S) to find the matching objects of the second dataset (T).
Obviously, as in the case of CPNE, this approach is
expected to be very expensive in most situations. In order
to reduce the cost, JNE exploits access locality. In
particular, the network is expanded around s1,.., sn (n
depends on the available memory) neighboring points of
S, producing corresponding sets of qualifying segments
QSs1,.., QSsn. Then, the RNE algorithm (Section 5.2) is
applied (on the R-tree of T) for all QSs1,..,QSsn
simultaneously. Every point t∈ T that falls on a segment
of QSsi appends a new pair (si,t) in the result. The
advantage of this approach (with respect to
straightforward network expansion) is that it saves disk
accesses for segments that appear in multiple QSsi (which,
otherwise, would generate multiple query windows on T).
In order to achieve locality of points s1,.., sn, we utilize the
R-tree structure, i.e., the points are obtained from the
same or neighboring leaf nodes in the R-tree of S.

Algorithm JNE (S,T,e)
1. result=∅
2. while S has not been exhausted
3. get next s1,.., sn points
4. for each point si
5. QSsi=expand_point(si,e)
6. let QS=the union of QSsi (for 1≤i≤n)
7. RNE(rootRtreeT, QS, result)
8. end while
End JNE

Figure 7.2: Join Network Expansion

8. Experimental Evaluation
In this section we experimentally compare all algorithms
in terms of CPU-time and I/O cost using a Pentium III,
700MHz processor, running Windows NT. We set the
page size of the data structures to 4K and employ an LRU
buffer which accommodates 10% of the road network and
10% of each R-tree participating in an experiment. In
order to simulate real-life conditions, we use a spatial
network of |N| = 179,000 segments, representing main
roads in North America [WWW], “cleaned” to form a
connected graph. For simplicity, we consider bidirectional
edges; however, this does not affect the interpretability
and value of the results. In order to control the density of
the entities, we use synthetic datasets with cardinalities in
the range 0.01⋅|N| to 10⋅|N|. The distribution of the entities
follows the network distribution. For nearest neighbor and
range search, we execute workloads of 200 queries, also
following the network distribution.

8.1 Nearest Neighbor Queries
First we compare IER (incremental Euclidean restriction)
with INE (incremental network expansion). Figures 8.1a
and 8.1b plot the performance of the two methods in
terms of I/O accesses and CPU cost, as a function of
|S|/|N| (i.e., the ratio of entity to segment cardinality), for
k=10. The I/O cost is broken to R-tree and network page
accesses.

0

20

40

60

80

0.1 0.5 1 2 10

R-trees

network
IER

INE

IER

INE IER
INE

IER
INE

IER
INE

cardinality ratio - |S|/|N|

Page Accesses

0

20

40

60

80

100

0.1 0.5 1 2 10

IER

INE

CPU time -msecs

cardinality ratio - |S|/|N|
(a) I/O accesses (b) CPU (msec)

Figure 8.1: Cost vs. |S|/|N| (k=10)

When the cardinality |S| of the entity set is small, the
Euclidean nearest neighbors are far from the query point.
As we see later this increases significantly the number of
false hits, and therefore, the unnecessary network distance
computations. The problem lessens as |S| increases, and
the performance of IER improves. On the other hand, the
I/O cost of INE is low because the range queries on the R-
tree exhibit high locality and the search path is in the
buffer with high probability. Moreover, only the
necessary network edges are visited (as ensured by the
algorithm).
Figure 8.2 shows the performance of the two methods for
various values of k, when |S|=|N|. INE consistently
outperforms IER and the gap increases with k. The
explanation is similar to the previous case, i.e., a large k
implies a high distance from the query point and,
therefore, increases the number of false hits.

0

10

20

30

40

1 5 10 15 20

R-trees

network

IER
INE

IER
INE

IER

INE

IER

INE

IER

INE

number of neighbors retrieved - k

Page Accesses

0

10

20

30

40

50

1 5 10 15 20

IER
INE

number of neighbors retrieved - k

CPU time -msecs

(a) I/O accesses (b) CPU (msec)

Figure 8.2: Cost vs. k (|S|=|N|)

Figure 8.3 unveils the ratio of false hits retrieved by IER
(i.e., the number of Euclidean NN that are not in the query
result divided by k) for the two experiments of Figures 8.1
and 8.2. The false hit ratio drops with the cardinality of S,
since the entity set becomes denser and increases the
probability to find all nearest neighbors on the edges
adjacent to the query point or in its vicinity. On the other
hand, the false hit ratio increases with k. The effects of
false hits are reflected to the processing cost of IER.

0%

50%

100%

150%

200%

0.1 0.5 1 2 10
0%

20%

40%

60%

80%

1 5 10 15 20
(a) FH ratio vs. |S|/|N| (k=10) (b) FH ratio vs. k (|S|=|N|)

Figure 8.3: False hits by IER

Concluding, INE is more efficient and robust than IER,
which suffers by the excessive network distance
computations due to false hits. Nonetheless IER could
perform better in denser, more regular networks (e.g., city
blocks), where the Euclidean distance gives a better
approximation of the travel cost. Furthermore, its cost will
drop significantly if materialization is used (so that
network distances can be computed very efficiently).

8.2 Range queries
The next set of experiments compares RER (range
Euclidean restriction) with RNE (range network
expansion). Figure 8.4 shows the cost of the algorithms as
a function of |S|/|N|, fixing the query range e to 0.01 (1%
of the data universe side length). Both algorithms perform
a single expansion of the network. Their difference is that
(i) RER first retrieves the candidate objects within the
Euclidean range e and then expands the network, while
(ii) RNE first expands and then performs the query on the
data R-tree for the actual results. This explains the fact
that the algorithms have the same network cost in all
cases. On the other hand, RER also retrieves some false
hits (i.e., objects in the Euclidean, but not in the network
range), which result in more R-tree node accesses.
Although, as shown in Figure 8.6a, the false hit ratio is
almost constant, the absolute number of false hits
increases with |S|, which is reflected in the increasing cost

difference of the algorithms as the cardinality of the entity
set grows.

0

10

20

30

0.1 0.5 1 2 10

R-tree

network

RERRNE

RER
RNE

RER
RNE

RER

RNE

RER

RNE

cardinality ratio - |S|/|N|

Page Accesses

0

10

20

30

40

50

0.1 0.5 1 2 10

RER

RNE

CPU time -msecs

cardinality ratio - |S|/|N|
(a) I/O accesses (b) CPU (ms)

Figure 8.4: Cost vs. |S|/|N| (e=0.01)

Figure 8.5 compares the performance of the methods as a
function of e, when |S|=|N|. The number of retrieved
objects (and the cost of the algorithms) increases
proportionally to the area covered by the range, i.e.,
quadratically with e. As shown in Figure 8.6b the false
hits ratio of RER increases linearly with e. Consequently,
the relative R-tree cost difference of the algorithms grows
faster with e than with |S|. Summarizing, RNE is more
efficient than RER in the current problem settings, due to
the fact that it retrieves only the required R-tree nodes.

0

50

100

150

200

250

300

350

0.001 0.005 0.01 0.05 0.1

R-tree

network

RERRNE RERRNE RERRNE

RER
RNE

RER

RNE

network range - e

Page Accesses

0

50

100

150

200

250

300

0.001 0.005 0.01 0.05 0.1

RER

RNE

network range - e

CPU time -msecs

(a) I/O accesses (b) CPU (ms)
Figure 8.5: cost vs. e (|S|=|N|)

90%

92%

94%

96%

98%

100%

0.1 0.5 1 2 10
50%

70%

90%

110%

130%

0.001 0.005 0.01 0.05 0.1
(a) FH ratio vs. |S|/|N| (e=0.01) (b) FH ratio vs. e (|S|=|N|)

Figure 8.6: False hits by RER

8.3 Closest pairs
In this section, we compare CPER (closest-pairs
Euclidean restriction) with CPNE (closest-pairs network
expansion). First, we fix k=100, |T|=0.1|N| and vary the
cardinality of S. Figure 8.7 plots the costs of the
algorithms as a function of |S|. CPER outperforms CPNE
in all cases, because CPNE expands the network around
all points of the smallest dataset, while CPER only
expands it incrementally around the Euclidean closest
pairs. Note that the I/O cost of CPNE remains almost
constant for |S| ≥ 0.1|N|, because after |S| reaches 0.1|N|,
the entities of T (|T| = 0.1|N|) are used for expansion (i.e.,
the number of expansions is independent of |S|).

0

2000

4000

6000

0.01 0.05 0.1 0.5 1

R-tree

network

CPER

CPNE

CPNE

CPER CPER

CPNE
CPNE

CPER

CPER

CPNE

Page Accesses

cardinality ratio - |S|/|N|

0

2

4

6

0.01 0.05 0.1 0.5 1

CPER

CPNE

cardinality ratio - |S|/|N|

CPU time -secs

(a) I/O accesses (b) CPU (sec)
Figure 8.7: Cost vs. |S| (k=100, |T|=0.1|N|)

Figure 8.8 shows the relative costs of the algorithms when
|S|=|T|=0.1|N| for different values of k. CPER is much
faster than CPNE for k≤1000 for the reasons explained
above. For k=10000 the cost of both algorithms explodes
for different reasons (Note that the diagrams are in
logarithmic scale). CPER now incurs numerous false hits,
since there is a huge number of object-pairs with similar
Euclidean distances, but diverge network distances. These
pairs require many expensive distance computations of
long paths, which incur extensive buffer thrashing. CPNE
performs extensive expansion, which exceeds the
available memory and causes many swaps in the buffer.
Summarizing, CPER is much faster than CPNE in our
settings, because it can utilize the Euclidean bounds to
prune large areas of the search space early.

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1 10 100 1000 10000

R-tree

network

CPER

CPNE

CPER

CPNE

CPER

CPNE

CPER

CPNE

CPER
CPNE

number of pairs retrieved - k

Page Accesses

1E-1

1E+0

1E+1

1E+2

1E+3

1 10 100 1000 10000

CPER
CPNE

number of pairs retrieved - k

CPU secs

(a) I/O accesses (b) CPU (sec)
Figure 8.8: Cost vs. k (|S|=|T|=0.1|N|)

8.4 e-Distance joins
We proceed to compare JER (join Euclidean restriction)
and JNE (join network expansion), using |T|=0.1|N| and
setting the join distance e to 0.001. Figure 8.9a (8.9b)
plots the number of disk accesses (CPU time) as a
function of |S| ranging from 0.01|N| to |N|. JER has better
I/O performance, but the difference diminishes as |S|
increases. This is because, for large datasets, the number
of object pairs qualifying the Euclidean distance join
increases considerably, making the subsequent node-
expansion (for false hit elimination) expensive. In this
case, JER consumes more CPU time, due to the expensive
sorting overhead (for selecting the “seed” for node
expansion).
In Figure 8.10a (8.10b), we set |S| to 0.1|N| and measure
the number of disk accesses (CPU cost) for different
values of e. JER is significantly faster in terms of I/O,
especially for small join distance in which case very few
object pairs satisfy the Euclidean join. Interestingly, the

relative CPU performance of JER and JNE changes at
e=0.001. Particularly, the cost of JNE is almost
independent of e, while JER incurs high CPU cost for
large e because, similar to Figure 8.9b, its sorting step
needs to process a large number of object pairs (that pass
the Euclidean join). Therefore, JER is preferred for
selective joins, while JNE should be applied otherwise.

0

2000

4000

6000

8000

0.01 0.05 0.1 0.5 1

R-tree

network

JER

JNE

JER

JNE

JER

JNE

JER

JNE
JER

JNE

cardinality ratio - |S|/|N|

Page Accesses

0

50

100

150

200

250

0.01 0.05 0.1 0.5 1

JER

JNE

cardinality ratio - |S|/|N|

CPU time secs

(a) I/O accesses (b) CPU (sec)
Figure 8.9: Cost vs. |S| (e=0.001, |T|=0.1|N|)

0

2000

4000

6000

8000

0.0001 0.0005 0.001 0.002 0.005

R-tree

network

JER

JNE

JER

JNE

JER

JNE

JER

JNE

JER

JNE

network distance - e

Page Accesses

0

20
40
60
80

100
120
140

0.0001 0.0005 0.001 0.002 0.005

JER

JNE

network distance - e

CPU time secs

(a) I/O accesses (b) CPU (sec)

Figure 8.10: Cost vs. e (|S|=|T|=0.1|N|)

9. Conclusion
This paper presents the first comprehensive approach for
query processing in spatial network databases, proposing
an architecture that preserves connectivity and location,
and several novel algorithms, based on the Euclidean
restriction and network expansion frameworks, covering
the most common processing tasks.
The Euclidean Restriction framework provides an
intuitive way to deal with spatial constraints. If for
instance, we want to "find the two nearest hotels to the
south", we only need to retrieve the Euclidean neighbors
in the area of interest using a constrained NN algorithm
[FSA+01]. On the other hand, although network
expansion is still applicable, it has limited pruning power
on queries with selective spatial conditions. Considering
again the example query, the network should be also
expanded to the north of the query point, because
subsequent nodes may lead to a nearest neighbor to the
south.
The Euclidean Restriction framework assumes the lower
bounding property, which may not always hold in
practice. If, for instance, the edge cost is defined as the
expected travel time, the Euclidean distance cannot
confine the search space (unless we make additional
assumptions, such as maximum speed). On the contrary,
network expansion permits a wide variety of costs
associated with the edges. It assumes, however, that the
cost increases monotonically with the path (i.e., a path

cannot be cheaper than one of its sub-sets), because,
otherwise there is no bound in the expansion process.
Dijkstra's algorithm is also based on the same assumption,
which is realistic for all SNDB applications.
The experimental evaluation suggests that the network
expansion framework has superior performance for range
search and nearest neighbors, while Euclidean restriction
is better for closest pairs and joins. Since, however, our
goal was to propose a complete set of algorithms for
numerous queries, we did not focus explicitly on
optimization of each method. Therefore, further
improvements are possible for the proposed algorithms. It
will also be interesting to evaluate their relative
performance in the presence of materialized network
distances.
This paper opens a door to several interesting and
practical directions for future work. For instance, a
continuous NN query [TPS02] would retrieve the two
nearest gas stations (in terms of network distance) during
the route from city A to city B. Our framework can also
be used in the context of moving object databases to
answer: "which is the closest taxi to my present location",
"towards which direction should I walk to catch the next
(moving) bus", etc. Since most real life objects move on
pre-defined spatial networks, the SNDB versions of these
queries are much more important than their Euclidean
counterparts.

Acknowledgements
This work was supported by grants HKUST 6197/02E,
HKUST 6081/01E and HKU 7380/02E from Hong Kong
RGC. We would like to thank Qiongmao Shen and Manli
Zhu for helping with the implementation.

References
[ADJ90] Agrawal, R., Dar, S., Jagadish, H. Direct

Transitive Closure Algorithms: Design and
Performance Evaluation. TODS, 15(3), 427-
458,1990.

[APR+98] Arge, L., Procopiuc, O, Ramaswamy, S., Suel,
T., Vitter, J. S. Scalable Sweeping-Based
Spatial Join. VLDB, 1998.

[BKS+90] Beckmann, N., Kriegel, H.P., Schneider, R.,
Seeger, B. The R*-tree: An Efficient and Robust
Access Method for Points and Rectangles.
SIGMOD, 1990.

[BKS93] Brinkhoff, T., Kriegel, H., Seeger, B. Efficient
Processing of Spatial Joins Using R-trees.
SIGMOD, 1993.

[CLR90] Corman, T. H., Leiserson, C. E., Riverst. R. L.
Introduction to Algorithms. MIT Press, 1990.

[CMTV00] Corral, A., Manolopoulos, Y., Theodoridis, Y.,
Vassilakopoulos, M. Closest Pair Queries in
Spatial Databases. SIGMOD, 2000.

[D59] Dijkstra, E. W. A Note on Two Problems in
Connection with Graphs. Numeriche
Mathematik, Vol. 1, 269-271, 1959.

[FRM94] Faloutsos, C., Ranganathan, M., Manolopoulos,
Y. Fast Subsequence Matching in Time-Series
Databases. SIGMOD, 1994.

[FSA+01] Ferhatosmanoglu, H., Stanoi, I., Agrawal, D., El
Abbadi, A. Constrained Nearest Neighbor
Queries. SSTD, 2001.

[G84] Guttman, A. R-trees: A Dynamic Index
Structure for Spatial Searching, SIGMOD,
1984.

[HJR96] Huang, Y., Jing, N., Rundensteiner, E. Effective
Graph Clustering for Path Queries in Digital
Map Databases. CIKM, 1996.

[HJR97] Huang, Y., Jing, N., Rundensteiner, E.
Integrated Query Processing Strategies for
Spatial Path Queries. ICDE, 1997.

[HS99] Hjaltason, G., Samet, H. Distance Browsing in
Spatial Databases. TODS, 24(2), 265-318, 1999.

[IRW93] Ioannidis, Y., Ramakrishnan, R., Winger, L.
Transitive Closure Algorithms Based on Graph
Traversal. TODS, 18(3), 512-576, 1993.

[J92] Jiang, B. I/O-Efficiency of Shortest Path
Algorithms: An Analysis. ICDE, 1992.

[JHR98] Jing, N., Huang, Y. W., Rundensteiner, E.
Hierarchical Encoded Path Views for Path
Query Processing: an Optimal Model and its
Performance Evaluation. TKDE, 19(1), 102-
119, 1997.

[JP96] Jung, S., Pramanik, S. HiTi Graph Model of
Topographical Roadmaps in Navigation
Systems. ICDE, 1996.

[KHI+86] Kung, R., Hanson, E., Ioannidis, Y., Sellis, T.,
Shapiro, L., Stonebraker, M. Heuristic Search
in Data Base Systems. Expert Database
Systems, 1986.

[PRS99] Papadopoulos A., Rigaux P., Scholl M. A
Performance Evaluation of Spatial Join
Processing Strategies. SSD, 1999.

[RSV02] Rigaux, P. Scholl, M. Voisard, A. Spatial
Databases with Application to GIS. Morgan
Kaufmann, 2002.

[SK98] Seidl, T., Kriegel, H. Optimal Multi-Step k-
Nearest Neighbor Search. SIGMOD, 1998.

[SKC93] Shekhar, S., Kohli, A., Coyle, M. Path
Computation Algorithms for Advanced
Traveler Information System (ATIS). ICDE,
1993.

[SKS02] Shahabi, C., Kolahdouzan, M., Sharifzadeh, M.
A Road Network Embedding Technique for K-
Nearest Neighbor Search in Moving Object
Databases. ACM GIS, 2002.

[SL97] Shekhar, S., Liu, D. CCAM: A Connectivity-
Clustered Access Method for Networks and
Network Computations. TKDE, 19(1), 102-119,
1997.

[SRF87] Sellis, T., Roussopoulos, N. Faloutsos, C.: The
R+-tree: a Dynamic Index for Multi-
Dimensional Objects, VLDB, 1987.

[TPS02] Tao, T., Papadias, D., Shen, Q. Continuous
Nearest Search. VLDB, 2002.

[WWW] www.maproom.psu.edu/dcw/

