
Iterative Projected Clustering
by Subspace Mining

Man Lung Yiu and Nikos Mamoulis

Abstract—Irrelevant attributes add noise to high-dimensional clusters and render traditional clustering techniques inappropriate.

Recently, several algorithms that discover projected clusters and their associated subspaces have been proposed. In this paper, we

realize the analogy between mining frequent itemsets and discovering dense projected clusters around random points. Based on this,

we propose a technique that improves the efficiency of a projected clustering algorithm (DOC). Our method is an optimized adaptation

of the frequent pattern tree growth method used for mining frequent itemsets. We propose several techniques that employ the branch

and bound paradigm to efficiently discover the projected clusters. An experimental study with synthetic and real data demonstrates that

our technique significantly improves on the accuracy and speed of previous techniques.

Index Terms—Database management, database applications, clustering, classification, and association rules.

�

1 INTRODUCTION

CLUSTERINGpartitions a collection of objects S into a set of
groups (i.e., clusters), such that the similarity between

objects of the same group is high and objects from different
groups are dissimilar. Clustering finds many applications in
marketing (e.g., customer segmentation), image analysis,
bioinformatics, document classification, indexing, etc. In
many such applications, the objects to be clustered are
represented by points in a high-dimensional space, where
each dimension corresponds to an attribute/feature and the
feature value of each object determines its coefficient in the
corresponding dimension. A distance measure (e.g., Eu-
clidean distance) between two points is used to measure the
dissimilarity between the corresponding objects.

Beyer et al. [6] have shown that the distance of any two
points in a high-dimensional space is almost the same for a
large class of common distributions. On the other hand, the
widely used distance measures are more meaningful in
subsets (i.e., projections) of the high-dimensional space,
where the object values are dense [10]. In other words, it is
more likely for the data to form dense, meaningful clusters
in a dimensional subspace [3].

Fig. 1 shows how irrelevant attributes can affect cluster-
ing. In this example, four records T1-T4 are to be clustered. If
we consider all attributes andManhattan distance (i.e.,L1) as
the similarity metric, then T2 and T3 are likely to be placed in
the same cluster, since their distance (i.e., 90) is the smallest
compared to the distances between any other pair. However,
we can see that there are two natural clusters: C1 ¼ fT1; T2g,
where fa1; a2; a3g are relevant attributes and fa4; a5g are

noise attributes, and C2 ¼ fT3; T4g, where fa3; a4; a5g are
relevant and fa1; a2g are noise.

Therefore, a new class of projected clustering methods
(also called subspace clustering methods) [1], [2], [3], [12]
have emerged, whose task is to find 1) a set of clusters C,
and 2) for each cluster Ci 2 C, the set of dimensions Di that
are relevant to Ci. For instance, the projected clusters in the
data set of Fig. 1 are ðC1; D1Þ ¼ ðfT1; T2g; fa1; a2; a3gÞ and
ðC2; D2Þ ¼ ðfT3; T4g; fa3; a4; a5gÞ. Not only do projected
clustering methods disregard the noise induced by irrele-
vant dimensions, but they also provide more sound
descriptions for the clusters. For example, the interpretation
of a cluster involving only a few dimensions is much easier
than that of a cluster with hundreds of dimensions.

CLIQUE [3] is one of the first known projected
clustering algorithms. It works in a level-wise manner,
exploring k-dimensional projected clusters after clusters of
dimensionality k� 1 have been discovered. PROCLUS [1]
is a medoid-based projected clustering algorithm that
improves the scalability of CLIQUE by selecting a number
of good candidate medoids and exploring the clusters
around them. It takes two parameters: the number k of
clusters and the average dimensionality l of each cluster.
Initially, a number (> k) of medoids, such that every pair of
medoids are far from each other in the full-dimensional
space, are greedily selected. Then, a random subset of
k medoids is picked. Points near the medoids are used to
determine the subspaces of the clusters. After the sub-
spaces have been determined, each point is assigned to the
cluster of the nearest medoid. A medoid is bad if the
corresponding cluster has a smaller size than a predefined
density threshold. Bad medoids are iteratively replaced by
other candidates until the algorithm converges to a set of
good medoids and clusters. PROCLUS can be fast, but it is
not effective when the sizes of the clusters have a large
variance, since it is likely that many medoids are chosen
from large clusters and few or no medoids are chosen from
small ones. In this case, large clusters may be split and
small clusters may be missed (i.e., regarded as “outliers”).

176 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 2, FEBRUARY 2005

. M.L. Yiu is with the Department of Computer Science and Information
Systems, University of Hong Kong, Room 504, Haking Wong Building,
Pokfulam Road, Hong Kong. E-mail: mlyiu2@csis.hku.hk.

. N. Mamoulis is with the Department of Computer Science and Information
Systems, University of Hong Kong, Room 403, Chow Yei Ching Building,
Pokfulam Road, Hong Kong. E-mail: nikos@csis.hku.hk.

Manuscript received 29 Sept. 03; revised 22 Jan. 04; accepted 18 June 04;
published online 17 Dec. 2004.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0191-0903.

1041-4347/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

Another problem with PROCLUS is that it requires the
projected clusters to have similar dimensionality (l on the
average). Even in this case, setting an appropriate value for
l is not trivial. ORCLUS [2] is an extension of PROCLUS
that can select relevant attributes from the set of arbitrarily
directed orthogonal vectors (in a transformed space).
ORCLUS can discover arbitrarily oriented clusters; how-
ever, these clusters may be difficult to interpret.

DOC [12] is an algorithm that performs iterative (greedy)
projected clustering. With this approach, a random point p
is selected from the data set S. Then, the best projected
cluster C that contains p is discovered. After this process
has been repeated for a number of times, the best medoid p
and its associated dimensional subspace D are chosen. All
points near p in the subspace D are removed from S and
added into a cluster C. The process is iteratively repeated
for the remaining points S � C until all projected clusters
have been found. DOC overcomes some deficiencies of
PROCLUS, since 1) it can automatically discover the
number k of clusters, and 2) it can discover a set of clusters
with large size differences.

A core module of DOC is the identification of the best
projected cluster around a given random point p. For this,
DOC selects a random small sample X from S and finds all
dimensionsDwhere the distance of p from all points inX is
bounded by a small number w. A candidate cluster C for p
is then defined by 1) the set of dimensions D, and 2) all
points in S within distance w from p in all dimensions D. A
good projected cluster for p is one that has many points
around p and as many as possible relevant dimensions. By
using many samples X, the best candidate cluster Cp is
chosen for p. Although with sampling we can avoid
exhaustively searching for the best projected cluster that
contains p, we may need to try a large number of samples
until we identify the cluster.

In this paper, we propose a technique that replaces this
randomized module DOC with systematic search for the
best cluster defined by a random point p. We model each
point q of S as an itemset that includes the dimensions in
which q is close to p. Intuitively, a large, frequent itemset
under this model corresponds to a projected cluster of high-
dimensionality and many points. To discover the best
cluster systematically, we adapt a mining frequent itemsets
technique [9]. A frequent itemset in our setting corresponds
to a subspace and its support corresponds to the size of the
cluster in this subspace. Since we need not discover all
itemsets, but only the one with the highest support and
dimensionality, our technique employs branch-and-bound
to prune early parts of the search space that cannot include
a better cluster to the one we have discovered so far.

Several optimization techniques are proposed for our
approach. We show the benefits of finding clusters
concurrently for many medoids. We also show how we

can combine our method for sampling in order to cope with
large data sets. Finally, we discuss several heuristics that
can refine and improve the quality of the discovered
clusters. A comparison of our method with DOC and
PROCLUS under several problem settings on synthetic and
real data sets demonstrates its effectiveness and efficiency.

The rest of the paper is organized as follows: Section 2
describes in detail projected algorithms highly relevant to
the proposed algorithm and reviews efficient techniques for
mining frequent itemsets. Our methodology is presented in
Section 3. Section 4 presents a comprehensive experimental
comparison between projected clustering techniques. Final-
ly, Section 5 concludes the paper and discusses issues for
future work.

2 BACKGROUND AND RELATED WORK

In this section, we formally define the projected clusters to
be discovered from a large collection of high-dimensional
points. We also review in detail previous work that is
highly related to this research; we describe DOC [12], an
algorithm that discovers projected clusters iteratively using
randomized techniques and an efficient method for mining
frequent itemsets [9].

2.1 Problem Definition

Let S be a collection of jSj d-dimensional points p ¼
ðp1; p2; . . . ; pdÞ in IRd. A projected cluster in S is a pair
ðC;DÞ where C is a subset of points and D is a subset of
dimensions. A projected cluster must be dense. Specifically,
the distance between every two points p and q in C in every
dimension i 2 D must be at most w, where w is a problem
parameter. Moreover, the size jCj of cluster C (i.e, number
of points in C) should be at least �jSj, where 0 � � � 1 is a
parameter. Formally:

Definition 1 (adopted from [12]). LetS be a set of points in IRd.
Given a set of points C � S, a set of dimensions D, and
parameters 0 < � � 1 andw > 0, ðC;DÞ is a projected cluster if

. jCj � �jSj,

. 8i 2 D;maxp2C pi �minq2C qi � w, and

. 8i =2 D;maxp2C pi �minq2C qi > w.

2.2 A Monte-Carlo Algorithm for Projected
Clustering

DOC [12] is a density-based algorithm that iteratively
discovers projected clusters in a data set S that conform to
Definition 1. DOC discovers one cluster at a time. At each
step, it tries to guess a good medoid for the next cluster to
be discovered. It repeatedly picks a random point p from
the database S and attempts to discover the cluster centered
at p. For this, it runs an inner loop that selects a
discriminating set X � S to determine the bounded and
unbounded dimensions for the projected cluster. A set of
dimensions D, where all points in X are within distance w
from p is selected. Then, a cluster C for X is approximated by
a bounding box Bp;D ¼ ½l1; h1� � ½l2; h2� � � � � ½ld; hd�, where
½li; hi� ¼ ½pi � w; pi þ w� for i 2 D or ½li; hi� ¼ ½�1;1� other-
wise. C is defined by the set of points from S in Bp;D. The
process is repeated for a number of random points p and
discriminating sets X for each p. Among all discovered C,

YIU AND MAMOULIS: ITERATIVE PROJECTED CLUSTERING BY SUBSPACE MINING 177

Fig. 1. Example of a projected clustering problem.

the cluster with the highest quality is finally selected. Thus,
DOC does not discover all possible clusters according to
Definition 1, but attempts to find the best ones conforming
to the definition using randomized techniques.

Definition 2 (adopted from [12]). Let a be the number of

points in a projected cluster C. Let b be the dimensionality of

C. The quality of cluster C is defined by

�ða; bÞ ¼ a � ð1=�Þb; ð1Þ

where � 2 ð0; 1� reflects the importance of the size of the

subspace over the size of the cluster.

We can realize the importance of � through the equality

�ða; bÞ ¼ �ð� � a; bþ 1Þ. Large � favors large clusters with

small subspaces over small ones of high-dimensionality and

vice-versa. This function is monotonic to both a and b. Fig. 2

(duplicated from [12]) describes the DOC algorithm. After a

cluster C is discovered, DOC is called for S � C to discover

the next cluster, and the process continues until no further

good clusters can be discovered.

In Fig. 2, the number 2=� of outer loops and the number

m ¼ ð2�Þ
r ln 4 of inner loops are tuned by the analysis in [12].

Observe that DOC can be quite expensive if the data set is

large and/or the data dimensionality is high. FASTDOC

[12] is a variant of DOC with reduced time complexity,

described in Fig. 3 (duplicated from [12]), which uses three

heuristics to reduce the search time. First, the number of

inner iterations is upper bounded by MAXITER. In [12],

MAXITER is tuned to minfd2; 106g. This value is much

smaller than the original number of iterations ð2=�Þr in

DOC; however, it is still quite large. The second heuristic is

more significant: The size of each candidate cluster is not

verified in the inner loop, thus the database needs not be

scanned in every inner iteration. Instead, from each sample,

only the cluster subspace is computed and the subspaceDM

with the largest number of dimensions is determined from

all samples. This subspace is used later (lines 12-13) to

determine the candidate cluster C by scanning the database

only once. The third optimization (lines 10-11) quits the

loops once a sufficiently large subspace (i.e., of at least

d0 dimensions, where d0 is a user threshold) has been

discovered.

Even with these optimizations, FASTDOC may still be

quite expensive, since it relies on choosing a good

discriminating set X with all its points being within

distance w in a sufficiently large number of dimensions.

The set of all possible discriminating sets is very large and

FASTDOC only examines a very small portion of it. Due to

its randomized nature, FASTDOC cannot guarantee the

subspace with highest � value can be found. Our motiva-

tion is to develop a deterministic method which can always

find the subspace with the highest � value for the projected

cluster around a medoid p. As we will discuss in Section 3,

this can be achieved by extending algorithms for mining

frequent itemsets. In the next paragraph, we review in

detail a data mining algorithm which we will adapt for our

purpose.

2.3 Mining Frequent Itemsets

Discovery of frequent itemsets in transactional databases is

a well-studied data mining topic. Given a database of

transactions D and a collection of items L, an itemset I � L
is frequent if the number of transactions in D that contain I
(i.e., the support of I) is at least min sup. Apriori [4] is a

classic algorithm for mining frequent itemsets. First, it finds

all frequent 1-itemsets.1 At each step, it generates candidate

k-itemsets by joining ðk� 1Þ-itemsets and counts the sup-

ports of them in the database. Apriori is expensive in

mining large (frequent) itemsets, where the supports of a

huge number of candidates are counted at each level.

FP-growth [9] is a mining algorithm that avoids

candidate generation and counting (i.e., the bottleneck

of Apriori) and it is especially appropriate when there are

large frequent itemsets in the database. First, the data set

is scanned once to find all frequent 1-itemsets. These are

sorted in descending order of their frequencies. Then, the

data set is scanned again to construct an FP-tree, as

shown in Fig. 4a. The FP-tree is a compact data structure

that stores all patterns which appear in the database. For

each transaction, the frequent items (in descending

frequency order) are inserted as a path in this tree,

where each node corresponds to an item and paths with

178 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 2, FEBRUARY 2005

Fig. 2. The DOC algorithm.

Fig. 3. The FASTDOC algorithm.

1. k-itemset denotes a set with k items.

common prefixes are compressed. An auxiliary structure,

called header table, is used to link nodes with the same

label. An algorithm, called FP-growth, is used to mine

frequent patterns from the FP-tree as shown in Fig. 4. At

each step, an item is picked from the table and all

frequent patterns containing it are discovered. Therefore,

we first find all patterns containing a3, then the ones that

contain a2 (but not a3, since we have already found

these), then those that contain a1, but not a2 or a3, etc.
Assume, for example, that min sup ¼ 4. First, frequent

patterns containing item a3 are extracted. For this, all paths
that end at this item (called the conditional pattern base for a3)
are retrieved from the tree and inserted into a smaller,
conditional FP-tree for a3 (see Fig. 4b). These paths are
fa0a1a2 : 2; a0a2 : 2g; a3 is included and the numbers after the
patterns correspond to the support of a3 in the correspond-
ing paths. Observe that a1 is pruned from the patterns, since
its support in all conditional patterns is smaller than
min sup. Thus, this tree has just a single path. We find all
combinations of patterns in the path and concatenate them
with the conditional itemset (that is a3). Thus, the frequent
itemsets fa3 : 4; a0a3 : 4; a2a3 : 4; a0a2a3 : 4g are generated.
Fig. 4c and Fig. 4d show the conditional FP-trees for a2 and
a1, respectively. The trivial patterns extracted from these
trees are fa2 : 4; a0a2 : 4g and fa1 : 5; a0a1 : 5g, respectively.
Finally, the first item a0 in the header table generates the
frequent itemset a0 : 10. During the whole process, four
conditional FP-trees have been created and nine frequent
itemsets are generated.

3 PROJECTED CLUSTERING BY MINING FREQUENT

ITEMSETS

In this section, we propose a method that improves the
accuracy and speed of DOC/FASTDOC. First, we discuss
how to identify the set D of relevant dimensions for a
medoid p, using techniques for mining frequent itemsets.
Next, we describe an adaptation of the FP-growth method
[9] that efficiently discovers the relevant subspaces, by
exploiting the properties of the � function. The adapted
mining technique is then combined with the Monte-Carlo
method (FASTDOC) to discover clusters. We discuss how

diffset mining algorithms can be applied for our problem
and explain how we can scale the mining methods for large
problems. Finally, we suggest ways that improve the
quality of discovered clusters.

3.1 From Projected Clustering to Mining Frequent
Itemsets

Given a random medoid p 2 S, we can transform the
problem of finding the best projected cluster containing p, to
the problem of mining frequent itemsets in transactional
databases. Fig. 5 shows a motivating example. Data set S
(Fig. 5a) contains four numerical attributes and six records.
Assume that the record marked in bold is the medoid p. If
the attribute of a record is bounded by p with respect to the
width w (here, w ¼ 2), an item for that attribute is added to
the corresponding itemset. This process constructs the
transactional table of Fig. 5b. Observe that all frequent
itemsets (i.e., combinations of dimensions) are candidate
clusters containing p. Later, we will see how the minimum
support min sup relates to the minimum density �

(described in Section 2.1).
Therefore, the problem of finding the best projected

cluster for a random medoid p can be transformed to the
problem of finding the best itemset in a transformation of S,
like the table of Fig. 5b, where goodness is defined by the
� function (described in Section 2.2). In other words, we
want to solve an optimization problem by identifying an
itemset which 1) is frequent and 2) maximizes the
� function. The FP-growth method was shown very efficient
in [9] for frequent itemset counting, therefore we chose to
extend it for our subspace mining problem. In the next
paragraphs, we describe some optimizations of the original
FP-growth method (described in Section 2.3) that use the
� function to greatly reduce the search space.

The idea of using frequent itemsets discovery in cluster-
ing has been applied before, but in a different context. Beil
et al. [5] propose a document clustering algorithm by
treating documents as itemsets of keyword terms. A data
mining algorithm is then applied to discover the frequent
itemsets and a cluster is defined as a set of documents
containing the same frequent term set. In our clustering
problem, the domains of dimensions are different (numer-
ical as opposed to binary). In addition, we adapt itemset
mining methods to be used as modules of an optimization
algorithm that finds the dimension-set that maximizes the
� function (instead of all dimension-sets above a minimum
support). Finally, our method is iterative and based on
sampling.

YIU AND MAMOULIS: ITERATIVE PROJECTED CLUSTERING BY SUBSPACE MINING 179

Fig. 4. Mining itemsets from FP-tree. (a) Global FP-tree. (b) Conditional

a3 tree. (c) Conditional a2 tree. (d) Conditional a1 tree.

Fig. 5. Transformation from data set to itemsets. (a) Original table.

(b) Corresponding itemsets.

Other related work includes pattern-based clustering

algorithms [11], [14], [15] where the problem is to find

projected clusters of points that have the same trend in the

dimensions of the subspace (rather than points close to each

other in the subspace). An example of such a cluster would

be a set of genes (points) whose expression levels have the

same behavior (e.g., if the level of one gene in the cluster

falls, then the levels of other genes also fall by the same rate)

for a subset of tested environmental conditions (dimen-

sions). A pattern-based cluster is formally defined by a set

of points C and a set of dimensions D, such that for every

pair of points p; q 2 C and pair of dimensions i; j 2 D,

jðpi � qiÞ � ðpj � qjÞj � �, where � is a distance threshold.

The pattern-based clustering problem finds all clusters for

which jCj > mino and jDj > mina, where mino and mina

define the minimum number of points and dimensions that

determine the the level of interest in a cluster. Essentially,

our task and algorithms are different than those of pattern-

based clustering, since we deal with classic clustering of

high-dimensional points based on their distances in dimen-

sional subspaces and not on the relative differences of their

dimensional values. Also, we solve the optimization

problem of finding the best cluster that contains a given

point and then iteratively find only the best overall projected

clusters that partition the space, instead of finding all (or the

maximal [11]) pattern-based clusters according to �, mino,

and mina.

3.2 Using FP-Growth with Optimizations

A brute-force application of a mining method on the

transformed space would 1) generate all frequent subspaces

and 2) find the one with the maximum � value. Instead, we

update the globally best itemset dynamically during search.

Each time a frequent itemset is generated, the best itemset is

updated if the�valueof the current frequent itemset is higher

than that of the best itemset. To find the best frequent itemset

quickly,wecanapplytwosimpleoptimizations in theoriginal

FP-growth procedure. Recall from Section 2.3 that a condi-

tional itemset is an itemset shared by all patterns generated

from a specific FP-tree. Assume that I cond is the conditional

itemset of theFP-treeandI is a frequent itemset in theFP-tree.

Then, I cond [I is the frequent itemset generated.
The first optimization is to generate only the necessary

itemsets from FP-trees with a single path. Suppose there are

n items in the path. The original FP-growth procedurewould

generate all the (2n � 1) combinations of these items con-

catenated with I cond. As we only need to find the best

combination for each dimensionality (�ða; bÞ � �ða; b0Þ
8b � b0), we need only generate the itemsets corresponding

to all prefixes of the path since these have the largest

subspaces for the same support. The second optimization is

to generate only the necessary itemsets of dimensionality

dimðI condÞ þ 1 from the table header. The original FP-growth

procedure would generate an itemset fxg [I cond for each

item x in the table header. Since �ða; bÞ � �ða0; bÞ 8a � a0, it is

only necessary to generate the itemset fx0g [I cond where

item x0 is the most frequent item in the table header. Fig. 6

illustrates an example.

3.3 The �Growth Algorithm

We will now show how the branch-and-bound paradigm
can be effectively applied for our mining problem. Assume
that I best is the itemset with the maximum � value found so
far and let dimðI bestÞ and supðI bestÞ be its dimensionality
and support, respectively. For the sake of readability, we
overload the � function and denote �ðsupðIÞ; dimðIÞÞ by
�ðIÞ. We can take advantage of this bound to avoid
generating patterns for specific entries of the header table.
Let I cond be the current conditional pattern. Its support
supðI condÞ gives an upper bound for the supports of all
generated patterns that contain it. Moreover, the dimen-
sionality of the itemsets that contain I cond and can be
generated by the current stage of FP-growth is at most
dimðI condÞ þ l, where l is the number of items above the
items in I cond in the header table. Therefore, if

�ðsupðI condÞ; dimðI condÞ þ lÞ � �ðI bestÞ; ð2Þ

we can avoid constructing the conditional FP-tree for I cond,
since it is not possible that this tree will generate a better
pattern than I best. This bound can help prune the search
space of the original mining process effectively. Consider,
for example, the problem of Fig. 4. Assume min sup ¼ 4
and � ¼ 0:1. The global FP-tree is shown in Fig. 4a. The
conditional itemset I cond of the global tree is ;. First, we use
the table header to derive an initial I best ¼ fa0g with
support 10, dimensionality 1; and �ðI bestÞ ¼ 100.

Now, we begin with the last item I cond ¼ a3 in the header
table. Its support is 4, so the maximum support for all
patterns containing a3 is 4. The maximum dimensionality of
discovered patterns is dimðI condÞ þ l ¼ 4 (i.e., the position of
a3 in the table). Given these numbers, the condition of (2)
does not hold, therefore we have to construct the conditional
FP-tree (single path) for a3 and use the method described in
the previous section to mine patterns fa0; a3g and fa0; a2; a3g
both with support 4. Now, the best pattern becomes
I best ¼ fa0; a2; a3g, with �ðI bestÞ ¼ 4; 000. Next, item I cond ¼
a2 in the header table is examined. The size of the subspaces
obtained from the conditional a2 FP-tree is at most
dimðI condÞ þ l ¼ 3 and their support at most 4. Given these
values, the condition of (2) is satisfied and we can avoid
extracting the conditional pattern base for a2 and growing
the corresponding conditional FP-tree. Finally, item I cond ¼
a1 is examined. The size of the itemsets obtained from the
conditional a1 FP-tree is at most dimðI condÞ þ l ¼ 2 and their
support at most 5. Again, the application of (2) suggests that
there is no need to grow the corresponding FP-tree. The
algorithm now terminates by creating only two FP-trees (the
ones in Fig. 4a and Fig. 4b) and generating only three
patterns, instead of the four FP-trees and nine patterns
required by the original FP-growth method.

180 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 2, FEBRUARY 2005

Fig. 6. Generating only the necessary ðjI condj þ 1Þ-itemsets from an FP-

tree’s table header. (a) FP-tree table header. (b) The itemsets.

The pseudocode of the �Growth algorithm is presented in
Fig. 7. Lines 1-9 apply the optimizations discussed in Section
3.2. Conditional FP-trees are built and mined recursively in
the for loop. The order of the for loop does not affect the final
result but it affects the running time significantly. We mine
from the least frequent item to the most frequent item in the
table header of the current FP-tree. With this search order,
potential itemsets of large sizes can be found earlier and a
high �ðI bestÞ is likely to be found earlier, which prunes a
large part of the search space. As �ða=�j; bÞ ¼ �ða; bþ jÞ, the
pruning power of large frequent subspaces is high for small
� and vice versa. Projected clustering using FASTDOC is
effective for 1=ð4dÞ � � < 1=2, as suggested in [12].

The application of �Growth incurs significant perfor-
mance savings compared to the simple optimizations
discussed in the previous section. Especially, when the
embedded cluster dimensionality is large (and the value of
� is small) the speed-up can be orders of magnitude, as
experienced with our implementation. For each p, �Growth
requires only two scans of the data set; one for constructing
the header table of the FP-tree and one for constructing the
tree itself. Then, the cluster and its associated subspace from
the FP-tree are discovered efficiently.

The �Growth mining method can be integrated into the
Monte-Carlo algorithm described in Section 2.2. We replace
the inner loop of FASTDOC, which finds a good cluster for
each p, approximately, by �Growthwhich finds the subspace
with the maximum � value, systematically. We call our
algorithm FPC, from Frequent-Pattern-based Clustering (see
Fig. 8).We denote the initial data set by S0 and the data set for

each for each invocation of FPC by S. Like FASTDOC, FPC
computes one cluster at a time. Then, the cluster will be
removed from the data set S and FPC will be invoked again.
The process is repeated until no more clusters can be
discovered. Notice that the minimum support for construct-
ing the FP-trees ensures that the discovered subspaces
correspond to �-dense projected clusters.

Observe also that FPC is a branch-and-boundmethod that
utilizes the best p and its related subspace to prune FP-trees of
the same or different ps that may not produce better
subspaces according to the �Growth principle. In other
words, if a good p is found during the first iterations, then a
lot of time can be saved for worse ps with smaller subspaces
support in subsequent iterations. Therefore, FPC can con-
verge to a good solution fast andmanyouter iterations arenot
required. On the other hand, FASTDOC fails to utilize results
from previous iterations effectively so it performs a constant
number of iterations of high cost.

The �Growth mining method can return the subspace of
the best projected cluster around point p. Note that during
FPC, we invoke �Growth for a number of medoids p, until
we determine the best p and its associated projected cluster.
In this way, the work for discovering all clusters around any
other medoid q 6¼ p is wasted. FPC has to be reinvoked in
order to rediscover these clusters, since it returns only one
cluster at a time. We could improve the performance of
clustering if we did not waste some good clusters
discovered during FPC. This is the idea behind an extension
of FPC, which we call CFPC for Concurrent Frequent-
Pattern based Clustering (see Fig. 9). Instead of returning a
single cluster, CFPC concurrently discovers and eventually
returns a set G of multiple nonoverlapping projected
clusters. At each iteration, a medoid p is randomly chosen

YIU AND MAMOULIS: ITERATIVE PROJECTED CLUSTERING BY SUBSPACE MINING 181

Fig. 7. The �Growth algorithm.

Fig. 8. Algorithm for computing a cluster.

Fig. 9. Concurrent algorithm for clusters.

(as in FPC) and �Growth is invoked to return the best
subspace D of p. CFPC inserts the new discovered ðp;DÞ
into G if �ðDÞ > �ðD0Þ for all ðp0; D0Þ 2 G overlapping with
ðp;DÞ. In this case, CFPC removes from G all ðp0; D0Þ
overlapping with ðp;DÞ. Similar to FPC, CFPC employs
branch-and-bound heuristics that utilize the best subspaces
previously discovered. Let D	 be the subspace containing
all dimensions. Observe that 8D Bp;D	 � Bp;D holds. To
discover a better subspace for a new p, its new � value must
be greater than the maximum � value of all those
hyperboxes in G overlapping with Bp;D	 . In other words,
if a good p is found during the first iterations, a lot of time
can be saved for worse p in subsequent iterations. Like FPC,
CFPC is invoked several times in order to discover all the
clusters. However, CFPC can discover multiple clusters at a
time, improving the efficiency of the clustering process.

3.4 Adapting Diffset Mining Algorithms

Depth first search (DFS) algorithms, like FP-growth, are
preferred for our problem, which is essentially an optimiza-
tion problem because large itemsets that facilitate pruning
can be found early. We have already seen how FP-growth [9]
can be adapted to a �Growth subspace mining algorithm. In
this paragraph, we discuss the adaptation of dEclat [17],
another DFS mining algorithm for this problem.

In datamining problems, there are two representations for
itemsets. The first format (used byApriori [4] and FP-growth
[9]) represents itemsets by rows of items. The second format
(used by dEclat [17]) represents itemsets by columns of
transaction IDs (i.e., TIDs). For the latter format, the support
of an itemset can be computed by intersecting different TID
sets. However, these TID sets may be too large to fit in
memory. A new vertical representation called diffset [17] was
proposed, which only maintains the set difference of the TID
set of a candidate pattern from its parents. Thus, dEclatmines
frequent itemsets fromdiffsets. Itwas shown tobe scalable for
large and high-dimensional data sets and much more
efficient than Apriori and FP-growth.

For our problem, we can extend dEclat to �dEclat, which
computes the itemset with the maximum � value. First, we
use support-based ordering to mine from more frequent
prefixes to less frequent prefixes (the reverse orderwas found
to bemuch slower). Second,we addpruning conditions (as in
the �Growth algorithm) to facilitate efficient pruning. Details
are omitted for the sake of readability.

The major cost of dEclat is the construction of the diffsets.
Apart from that, this algorithm has several advantages over
Apriori and FP-growth. First, diffsets keep shrinking at
lower search levels. Second, the size of a diffset is usually
smaller than the corresponding TID set. On the other hand,
the adapted �dEclat may not be able to compute the best
itemset as fast as the �Growth algorithm. The search space of
a DFS algorithm is a tree graph. To discover a frequent
s-itemset (subspace), �dEclat needs to visit a search path of
depth s. For this, it needs to create at least s diffsets at the
root level, s� 1 diffsets at the level under the root, and so on
until the node representing the s-itemset. As a result, at least
Oðs2Þ diffsets need to be created. Note that the paths for
similar itemsets in FP-trees can be shared but different
diffsets cannot be shared. Thus, for the case of FP-tree with a
single path, the �Growth algorithm computes all the

necessary � values efficiently. In Section 4.2, we experimen-
tally compare �Growth with �dEclat and show that the
former method is actually more efficient.

3.5 Making Mining Algorithms Scalable

Mining algorithms like FP-growth and dEclat require a
significant amount of data to be stored in main memory
structures (FP-trees or diffsets) in order for the mining
process to be efficient. Han et al. [9] and Zaki and Gouda
[17] discuss disk-based structures that make these mining
methods applicable for large problems; however, the
proposed solutions would require many I/O transfers. In
order to make our methods scalable for large problems, we
can apply mining on a sample of the database. As suggested
in [13], [18], a sample size independent of the data set size
can give accuracy guarantees. These studies also provide
experimental results, which show that in practice even a
small sample size can achieve good accuracy. It turns out
that applying our methods on a fixed-sized sample is
enough to guarantee high quality in the results.

In the worst case, the cost of the mining algorithms is
linear to the size of the database but exponential to the
number of items (i.e., the dimensionality in our case).
However, since we use branch-and-bound algorithms to
prune away the search space fast, in practice the time
complexity of our methods is much lower. Moreover, when
using a fixed sample size, the time complexity of mining is
independent to the data set size. In Section 4, we study how
the sample size affects the accuracy and the running time of
our algorithms.

3.6 Heuristics for Refining Projected Clusters

In this section, we discuss several heuristics that can
improve the quality of clusters discovered by our mining-
based clustering algorithm. We first define some measures
that can quantitatively capture the characteristics of clusters
and assist the definition of the refinement heuristics.

The spreadmeasure is used to determine the compactness
of a cluster. To define the spread of a cluster C, we first
compute its centroid XðCÞ [2], defined by XðCÞi ¼P

x2C xi=jCj for each numerical dimension i. Assuming
that D is the subspace of C, the spread RðC;DÞ of C is
defined by RðC;DÞ ¼

P
x2C distDðx;XðCÞÞ=jCj. A small

spread means that subspace D is good for cluster C and
vice-versa. As a distance measure, we use the Manhattan
segmental distance [1]. Given two records p and q, their
distance with respect to the subspace D is defined as
distDðp; qÞ ¼ ð

P
i2D jpi � qijÞ=jDj, where jDj is the number of

dimensions in D. In order for all dimensions to have the
same effect in the distance measure, we first normalize all
values of a numerical attribute to be in the interval ½0; 1�.

The skewness measure reflects the relevance of each
attribute to the cluster. The relevance of each attribute is
defined by comparing its local distribution in the clusterwith
the global one; an attribute with dense regions in the cluster
may not be relevant if its global distribution is also dense.We
use the skew ratio measure to describe the relevance of the
attributes. For a numerical attribute i, the skew ratio is
defined as SkewRatioði; CÞ ¼ variance of dimension i in S0

variance of dimension i in C , where S0

is the initial data set.

182 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 2, FEBRUARY 2005

Our first refinement heuristic attempts to recover some
marginally missed dimensions in the projected clusters
discovered by FPC, CFPC, or DOC. In other words, a more
relaxed projected cluster model than in Definition 1 is used.
Fig. 10 illustrates such a case. Assume that the relevant
attributes for this cluster are a3, a5, and a7, and the medoid
is the first record. FPC would return the subspace fa7g, if
the minimum support is set to 9. The supports of a3 and a5
are slightly smaller than 9 so they cannot be in a frequent
itemset. The missing relevant dimensions can be discovered
as follows: Given a cluster C and its original subspace D,
the refined subspace D0 is defined as

D0 ¼ fzjSkewRatioðz; CÞ � min
j2D

ðSkewRatioðj; CÞÞg:

A dimension is relevant if its skew ratio is at least the
minimum skew ratio of the original subspace. In Fig. 10, the
refined subspace would include those attributes provided
a3 and a5 that their skew ratios are no smaller than that of
a7. This is possible when a3 and a5 have lower global
skewness than a7. After refining the subspace, the medoid p

may not be at the center of the cluster, but close to its
boundary (see Fig. 11a). Thus, the centroid is used as the
representative of the cluster instead. Another potential
problem is that the resulting cluster may be part of a large
cluster that spreads in higher ranges than the bounding box.
In Fig. 11a, the bounding box indicates the boundaries of a
discovered cluster. According to the definition, only the
points inside the bounding box belong to the discovered
cluster. However, some points near the boundary are
missed by the definition, although they are part of the
natural cluster. The boundary constraints are then relaxed
by including records having distance at mostmax dist from
the cluster centroid XðCiÞ where max dist is the distance of

the farthest point in the discovered Ci from the centroid. For
simplicity, XðCiÞ and max dist does not change throughout
the assignment process. The set of these assigned points is
denoted by �C. Then, we update Ci to C0

i that includes �C.
Formally,

C0
i ¼ Ci [fqjq 2 S ^ distD0 ðp; qÞ � max distg;

where p is the medoid and max dist ¼ maxq2Ci
distD0 ðp; qÞ.

The discovered cluster is removed from S and the iterative
phase continues until no �-dense clusters can be discovered.

As a second refinement, we can prune clusters having
� values significantly lower than the rest. First, we sort the
clusters according to their � values in descending order.
After sorting, we have �ðjCij; jDijÞ > �ðjCiþ1j; jDiþ1jÞ. Then,
we find the position pos such that �pos=�posþ1 � �i=�iþ1 8i.
This position divides the clusters into the set strong clusters
Ci ði � posÞ and the set of weak clusters Ci ði > posÞ. Since
the target number of clusters is k, no pruning is performed
when pos < k� 1. Otherwise, the weak clusters are pruned
and their records are added back to S. The target number k
of clusters is optional. Since k is only used in the pruning
and merging phases, the user can set k to a huge value in
order to skip these phases.

At a final refinement, clusters close together with similar
subspaces can be merged. Fig. 11b shows a case where
cluster merging is needed. In this case, the natural cluster is
a projected cluster spanned in the subspace fa1; a2g where
a1 is the horizontal axis and a2 is the vertical axis.
FASTDOC may split the cluster into two projected clusters
spanned also in the subspace fa1; a2g. Procopiuc et al. [12]
attempted to solve this problem by using a larger �, which
tends to discover large clusters with smaller subspaces.
However, with this method it is possible that some relevant
dimensions (e.g., a1 in this case) will remain undiscovered.
Like FASTDOC, the FPC algorithm may also split large
clusters. Therefore, we hope to merge these two clusters
without losing too much subspace information. We need to
merge small clusters, which are close to each other and have
similar subspaces, in order to recover the original, larger
ones. Clusters are merged following the agglomerative
hierarchical clustering paradigm until k clusters remain.
Given clusters Cx and Cy, the merged cluster is Cx [Cy, its
subspace is Dx \Dy, its spread is RðCx [Cy;Dx \DyÞ, and
its � value is �ðjCx [Cyj; jDx \DyjÞ. A good merged cluster
should have small spread and large � value (large sub-
space) and we use both measures to determine the next pair
to merge. We consider two rankings of the cluster pairs; one

YIU AND MAMOULIS: ITERATIVE PROJECTED CLUSTERING BY SUBSPACE MINING 183

Fig. 10. Losing relevant dimensions, w ¼ 2.

Fig. 11. Refining the clusters. (a) Assigning nearby points. (b) Merging clusters.

with respect to spread and one with respect to � value.
Then, the pair with the highest sum of ranks in both
orderings is merged first.

4 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the effectiveness

and efficiency of our method by comparing it with

FASTDOC and PROCLUS, under various experimental

settings, for synthetic and real data.
The synthetic data used in our experiments was

generated by randomly creating a number of synthetic

clusters and their associated subspaces, as in [1]. The data

generation parameters that we use are the same as in [12].

The domain of values of each dimension are ½0; 100�. Unless

otherwise stated, the number of records N of the data set is

100K and the dimensionality is 100. The average number of

relevant attributes per cluster is 40. Five percent outliers are

generated and the remaining points are distributed to

k ¼ 5 clusters. The ratio of smallest cluster size to largest

cluster size is set to 0.5. Clusters of imbalanced sizes

generated as clusters having similar sizes are not likely in a

real-life case. The cluster Ciþ1 has 50 percent of its relevant

dimensions chosen from those of cluster Ci. This models the

fact that different clusters are likely to have common

dimensions.

For FASTDOC, we set MAXITER ¼ d2, as suggested in

[12]. For the randomly generated data (unless otherwise

stated), parameters � and � were tuned to � ¼ 0:10 and

� ¼ 0:25, after using the heuristics of [12]. For fairness, we

provide as input to PROCLUS the correct values for the

parameters k number of clusters and l number of average

relevant dimensions per cluster. w is tuned using a similar

heuristic to that of [12]. For each dimension i, we sort the

values pi for each p 2 S and slide a window of �jSj elements

along the sorted sequence of values. From each position of

the window, we compute the value difference between the

first and the last element of the window, and average this

difference over all window positions in wi. w is then

computed by averaging wi over all dimensions i. This

technique gives good accuracy on both synthetic and real

data sets. For the synthetic data, it results in a value close to

10, which is the optimal value for w, as all clusters were

generated in projected hyperboxes of width 10 in all

dimensions.
In the comparison study, we use the same definition of

accuracy as in [12]. For each output cluster Ci, we identify
the input (natural) cluster which shares with Ci the largest
number of points. These points are considered correctly
labeled in Ci, whereas the remaining points in Ci are
considered incorrectly labeled. The output and input outlier
sets are processed similarly. Then, accuracy is defined as
the percentage of points correctly labeled. In the experi-
ments that involve synthetic data, the results of all
algorithms are averaged over 10 runs in order to smooth
the effects of randomness in the data input. All algorithms
were implemented in C++. The experiments were run on a
PC with a Pentium 4 CPU of 2.3GHz and 512MB RAM.

4.1 Effectiveness and Efficiency of Sampling

In the first experiment, we test the effects of applying FPC
on a database sample instead of the whole database. Fig. 12a
shows the effects of the sample size on the execution time of
the algorithm. As expected, the execution time is linearly
proportional to the number of sample points. Fig. 12b
shows the effects of the sample size on accuracy. The
accuracy remains 100 percent even for low sample size
(200). In the subsequent experiments, we use 1,000 as the
sample size. For fairness, unless otherwise stated, we also
use sampling-based versions of all algorithms in the
comparison study that follows.

4.2 Efficiency of Subspace Mining Methods

Our next experiment compares the efficiency of the
�Growth and �dEclat subspace mining techniques. For
each experimental instance, we choose a medoid and then
construct a set of itemsets as in Fig. 5b. To avoid effects of
different medoids, the same set of itemsets (from the same
medoid) is passed to the subspace mining algorithms
�Growth and �dEclat. Four data sets of subspace dimen-
sionality from 20 to 80 were tested.

Fig. 13 shows the running time of �Growth and �dEclat
as a function of subspace dimensionality. �dEclat becomes
slower compared to �Growth as the dimensionality of the
discovered cluster increases. As discussed in Section 3.4,
�dEclat constructs at least quadratic number of diffsets in

184 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 2, FEBRUARY 2005

Fig. 12. Effects of sampling on FPC. (a) Effect on execution time. (b) Effect on accuracy percentage.

terms of subspace dimensionality, so it is expensive for
mining large subspaces. On the other hand, �Growth is fast
and robust to subspace dimensionality.

4.3 Accuracy on Synthetic Data

In the next set of experiments, we compare the accuracy of
FPC, CFPC, FASTDOC, and PROCLUS for various types of
generated data and input parameter values.

Fig. 14 compares the accuracies of FPC, CFPC,
FASTDOC, and PROCLUS when the standard generator
parameters are used. FPC, CFPC, and FASTDOC discover
the clusters with 100 percent accuracy; however, FPC and
CFPC are one order of magnitude faster than FASTDOC.
PROCLUS, on the other hand, has lower accuracy but is
faster than FASTDOC. As CFPC is faster than FPC but it
has similar accuracy to FPC, we use CFPC instead of FPC
in the following experiments.

In the next experiment, we test the sensitivity of CFPC
and FASTDOC to the input parameters �, �, and w (Fig. 15).
Fig. 15a shows how the accuracy varies with � on the same
synthetic data set. The accuracies of both CFPC and
FASTDOC decrease as the value of � increases to values
larger than 0:1. This happens because small clusters are
missed for large values of �. Fig. 15b shows how the

accuracy varies with � on the same synthetic data set. CFPC
is not sensitive to � because the �Growth algorithm is
employed to discover the best subspace in a deterministic
way. The accuracy of FASTDOC is sensitive to �. It
decreases significantly for values of � larger than 0:25
because a larger discriminating set needs to be picked. It is
more likely for a large discriminating set to have records
from different clusters. As a result, only small subspaces
can be discovered, which are usually common subspaces of
some clusters. Fig. 15c shows how w affects accuracy on the
same synthetic data set. Recall that the best value for w is
w ¼ 10. Note that both CFPC and FASTDOC have high
accuracy for a wide range of w, especially for values larger
than 10. When w is too small, the original clusters become
non �-dense, thus CFPC chooses smaller subspaces that are
common and close in different clusters, which causes the
accuracy to decrease. Although FASTDOC does not check
whether the discovered clusters are �-dense, it chooses
subspaces of smaller size which cause some clusters to be
mixed at low w. In order to avoid too small values for w, it is
safe to multiply the estimated value of w by a small factor
(e.g., � 1:5), as suggested in [12].

The next experiment compares the accuracy of CFPC,
FASTDOC, and PROCLUS for various values of the data set
dimensionality d. For each tested value of d, we generated
five data sets with the average number of relevant attributes
per cluster as d � 40 percent. Fig. 16 shows the comparative
results. All of them are insensitive to dimensionality in
terms of accuracy. PROCLUS has lower accuracy because
the outlier detection mechanism cannot remove all the
outliers.

YIU AND MAMOULIS: ITERATIVE PROJECTED CLUSTERING BY SUBSPACE MINING 185

Fig. 13. Running time as a function of subspace dimensionality.

Fig. 14. Comparison of projected clustering algorithms.

Fig. 15. Effect of �, �, and w on accuracy. (a) Dependency on �. (b) Dependency on �. (c) Dependency on w.

Fig. 16. Accuracy, varying dimensionality.

Fig. 17 shows how accuracy is affected by the average
number of relevant dimensions in the generated clusters.
five data sets were generated. Only PROCLUS has lower
accuracy for small subspace sizes. When the subspace size
is small and if a few (e.g., one or two) of the relevant
dimensions are not discovered, the identified subspace may
be too small to distinguish records from different original
clusters. On the other hand, for large subspace sizes, even if
some of the relevant dimensions are not selected, the
identified subspace is large enough to differentiate records
from different clusters.

Fig. 18 shows how accuracy is affected by the number of
clusters k. Again, five data sets were tested for values of k
from 5 to 11. As k increases, the average size of a cluster
decreases. CFPC discovers all clusters correctly, as opposed
to PROCLUS and FASTDOC. The accuracy of FASTDOC
decreases fast as k increases because for large k, the
probability of common subspaces between clusters becomes
large. Therefore, FASTDOC has increased the probability of
selecting incorrect subspaces common to more than one
original cluster and merge their contents. CFPC does not
have this problem because it does not rely on random
discriminating sets in order to identify the best subspace
around a medoid p. For PROCLUS, it becomes more
difficult to choose the correct set of medoids as k increases.

Fig. 19 shows how the ratio of smallest to largest cluster
size affects the accuracy of the algorithms. This ratio is also
related to the size of the smallest cluster. To ensure that

smallest clusters are not missed, we tune the values of �

accordingly for CFPC and FASTDOC in each case. Observe

that CFPC and FASTDOC have high accuracy. PROCLUS is

not accurate when the ratio is small. It is possible that many

medoids are chosen from large clusters and few or no

medoids are chosen from small clusters. In this case, large

clusters may be split and small clusters may be missed. For

CFPC and FASTDOC, clusters discovered early are re-

moved from the data set. The density of small clusters with

respect to the data set increases and they are more likely to

be discovered in later rounds.
Fig. 20 shows how accuracy is affected by the percentage

of outliers in the data set. Similar to the previous

experiment, we set the appropriate values for � accordingly

for CFPC and FASTDOC in each instance. Both CFPC and

FASTDOC are not affected by the outliers. On the other

hand, the accuracy of PROCLUS decreases as the outlier

percentage increases. This shows that the outlier removal

mechanism of PROCLUS is not effective.
Fig. 21 shows the percentage of relevant dimensions

discovered for all clusters as a function of number of

examined medoids p on the same data set. Given the same

number of medoids p tested, CFPC can mine more relevant

dimensions than FASTDOC. The figure has step-like

structure. A rise of a step happens when a better subspace

is discovered. A level of a step corresponds to a medoid for

which no better subspace is discovered.

186 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 2, FEBRUARY 2005

Fig. 17. Accuracy, varying cluster subspace.

Fig. 18. Accuracy, varying number of clusters.

Fig. 19. Accuracy, varying cluster sizes.

Fig. 20. Accuracy, varying outlier percentage.

4.4 Efficiency and Scalability

In the next experiment, we compare the efficiency and
scalability of the algorithms on synthetic data of various
sizes (N > ¼ 20K � 500K). Fig. 22 shows their running
time in seconds. All algorithms are scalable to the database
size. FASTDOC is the most expensive as it spends much
time on choosing the best relevant dimensions of a cluster
by Monte-Carlo techniques. Also, it needs to process each
record at least once in each iteration. PROCLUS is more
expensive than CFPC as it needs many iterations to
converge to the optimal solution; however, it is much
cheaper than FASTDOC as it needs less time for computing
the subspace. CFPC is the fastest method due to its efficient
heuristics for discovering the best cluster and subspace for a
given medoid p.

Fig. 23 compares the cost of the three methods as a
function of the data dimensionality. The cost of CFPC and
PROCLUS is linear to the number of dimensions. On the
other hand, FASTDOC is not scalable as it needs to perform
d2 inner iterations in order to achieve high accuracy.
Overall, CFPC is faster and more accurate compared to
FASTDOC and PROCLUS for various data characteristics.

4.5 Application to Image Recognition

In order to test the applicability of our approach and
projected clustering algorithms, we compared the effective-
ness of CFPC, FASTDOC, and PROCLUS on real data
clustering problems. In the comparison, we also included

k-medoids (denoted by KMED), a partitioning algorithm that
considers all dimensions in clustering. In the first experi-
ment, we used a real data set with image features from the
UCI Machine Learning Repository [7]. This data set (Image
Segmentation Data) contains 19-dimensional features of
2,100 outdoor images of seven types (classes): brickface, sky,
foliage, cement, window, path, and grass. The number of
records in different classes are roughly the same. Before
clustering, we scale all attribute values to the range ½0; 1�
using min-max normalization.

As this data set is not large, we do not use the sampling
technique in this experiment. In addition, as there are no
outliers, we turn off the outlier handling mechanism in
PROCLUS. For PROCLUS, the number of clusters k is set to
the number of classes and the average subspace dimension-
ality l is set to 15, the average subspace dimensionality of
the projected clusters found by CFPC. For CFPC and
FASTDOC, we tuned � ¼ 0:13, � ¼ 0:25, and w ¼ 0:25. In
order to have fair comparison with PROCLUS, � was set to
a value such that the number of clusters found is similar to
the number of classes. The accuracy of each of the methods
is shown in Fig. 24. k-medoids is less accurate than the
projected clustering algorithms because some dimensions
are not relevant for some clusters. Observe that CFPC is
more accurate than PROCLUS and FASTDOC; however,
the accuracy is not as high as in the synthetic data case. The
reason is that the class labels do not always reflect the
cluster properties. In other words, the features do not
always determine the class labels of the objects.

To illustrate this, we show the confusion matrix of
CFPC in Fig. 25. Next to the label (C1-C6) of each
discovered cluster we enclose its dimensionality in brackets.
O corresponds to the class of unclustered images (outliers).
Note that the discovered clusters are indeed projected, since
on the average the subspace size is less than the data
dimensionality. For instance, 295 out of 300 sky images
were correctly identified considering only 14 out of the
19 features. Although the accuracy of CFPC is not very high,

YIU AND MAMOULIS: ITERATIVE PROJECTED CLUSTERING BY SUBSPACE MINING 187

Fig. 22. Efficiency, varying database.

Fig. 23. Efficiency, varying dimensionality.

Fig. 24. Accuracy on a real image data set.

Fig. 21. Progress of CFPC and FASTDOC.

we can discover some interesting properties about the real
data sets from the confusion matrix. For the image data set,
grass and sky classes are accurately discovered in clusters
C1 and C3, respectively. Clusters C0, C2, C4, and C6 contain
a large percentage of instances from their class labels and, in
general, only instances of few (two or three) classes are
confused in the same cluster. Thus, mainly window and
cement images are mixed in C0, mainly window and foliage
images are mixed in C4 and C5, and path, cement, and
foliage instances are mixed in C6. The small number of
outliers implies that the discovered projected clusters cover
most of the instances.

Next, we demonstrate a real application of projected
clustering. Facial rotation estimators can be used to approxi-
mately determine the degree by which a face is rotated.
Procopiuc et al. [12] demonstrate how projected clustering
can be used to train a facial rotation estimator.We performed
a similar experiment to compare the effectiveness of CFPC,
FASTDOC, PROCLUS, and k-medoids

For this experiment, we use 1,521 facial gray-scale
images from the BioID Face Database [8], available at
http://www.humanscan.de. From each image, we extract
the face and scale it to a fixed size image (16 � 16 pixels).
The domain of a pixel is ½0; 255�. Then, we discretize the
rotation angle into eight classes, each spanning 45 degrees.
The original images are frontal upright face images (class 0).
The other seven classes are generated by rotating the
corresponding upright images by c� 45 degrees, where c is
the class label. For each rotation class, 90 percent of the
images (training set) are distributed in 10 projected clusters.
Note that images in the same cluster always belong to the
same rotation class independently of the algorithm used.
Each cluster in a rotation class captures some relevant
dimensions of the images (e.g., people with mustaches),

which cannot easily be captured by a full dimensional
cluster. Now, for a given query image, we can estimate its
rotation class by checking in which cluster it belongs and
then using the class label of the cluster.

A total of 10� 8 projected clusters are computed. For
efficient storage and query processing, each cluster is
represented by minimum hyperbox that encloses its
contents in all relevant dimensions. This representation is
also applicable for the clusters discovered by PROCLUS
and k-medoids.

For fairness to both PROCLUS and k-medoids, CFPC and
FASTDOC are tuned to compute disjoint clusters. We set
� ¼ 0:1, � ¼ 0:25, and w ¼ 62:5 for both CFPC and
FASTDOC. The average dimensionality of the projected
clusters found by CFPC is 40 (out of 256), which is also used
as the average subspace dimensionality l of PROCLUS.

The remaining 10 percent of the images are used as
queries to test the effectiveness of clustering. To estimate
the rotation class of a test image, we find the projected
clusters containing it (if any) and label it as the rotation class
with the most clusters whose hyperbox contains the
corresponding point. Accuracy is measured as follows: If
a face in rotation class i is estimated as in the rotation class
ðiþ �Þ mod 8, the error is �. Fig. 26a shows accuracy when
using 10 clusters per rotation class. Test images not found in
any clusters could not be classified, thus they are shown
over the “out” label. Observe that CFPC and FASTDOC are
more accurate than PROCLUS and k-medoids, although
FASTDOC is slightly less accurate than CFPC and cannot
classify a significant portion of test images. This can be
attributed to the fact that FASTDOC does not check whether
the discovered clusters are �-dense, thus it may discover too
small clusters which cannot easily contain the test images.

We also tested the effect of using 20 clusters per rotation
class. Fig. 26b shows that the accuracy of all algorithms
increases. In general, more clusters per rotation class can
capture finer properties of the images and improve the
accuracy of rotation class estimation. On the other hand,
many clusters also imply higher cost towards class
estimation for a query image. Note that in both experiments
of Fig. 26a and Fig. 26b, the projected clustering algorithms
perform much better than k-medoids, a conventional full-
dimensional clustering algorithm. Finally, we validate the
accuracy of CFPC for various values of w around the
estimated one (w ¼ 62:5). Fig. 26c shows that the result of

188 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 2, FEBRUARY 2005

Fig. 26. Accuracy of face rotation estimation based on projected clustering. (a) Ten clusters/rotation class. (b) Twenty clusters/rotation class.

(c) Twenty clusters/class, varying w.

Fig. 25. Confusion matrix of CFPC on the image data set.

CFPC is not affected too much by w taking values around

the estimated one, especially for larger values (similar

conclusions can be derived from Fig. 15c).

5 CONCLUSION

In this paper, we presented an efficient and effective

projected clustering algorithm. FPC is built on DOC/

FASTDOC, a Monte-Carlo algorithm, but it replaces the

inner randomized part of the algorithm by a systematic

search method based on mining frequent itemsets.
We first identified the similarity between mining

frequent itemsets and discovering the best projected cluster

that includes a random point p. Then, we proposed an

adaptation of FP-growth [9], called �Growth, that gracefully

exploits the properties of the � function to efficiently

discover the projected cluster for a given p. This technique

employs branch-and-bound to reduce the search space of

the original mining algorithm significantly.
We showed how �Growth can be embedded into an

iterative process, called FPC (for Frequent-Pattern-based

Clustering), which efficiently finds the best projected cluster

among a number of medoids p. FPC is extended to CFPC, a

method that concurrently finds multiple clusters at a single

instance of the iterative process. Both FPC and CFPC

employ branch and bound to utilize the best clusters found

so far in order to reduce the space of future search.
We discussed how another mining algorithm based on

diffsets [17] can be adapted for our problem; however, we

showed experimentally that adapting this method is not as

appropriate for the optimization problem of finding the

best subspace cluster around p, compared to �Growth.

Next, we discussed heuristics that may improve the quality

of the discovered clusters by 1) assigning points close to

some cluster, 2) pruning small clusters of low quality, and

3) merging clusters close to each other with similar

subspaces.
Finally, we evaluated the efficiency and effectiveness of

our technique by comparing it with FASTDOC [12] and

PROCLUS [1], using synthetic and real data, under various

problem conditions. Our method can discover clusters of

high quality since it systematically finds the best cluster that

encloses the current p. In addition, it is much faster than

previous approaches due to the branch-and-bound techni-

que employed.

ACKNOWLEDGMENTS

This work was supported by grant HKU 7380/02E from

Hong Kong RGC.

REFERENCES

[1] C.C. Aggarwal, J.L. Wolf, P.S. Yu, C. Procopiuc, and J.S. Park,
“Fast Algorithms for Projected Clustering,” Proc. ACM SIGMOD,
1999.

[2] C.C. Aggarwal and P.S. Yu, “Finding Generalized Projected
Clusters in High Dimensional Spaces,” Proc. ACM SIGMOD, 2000.

[3] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan,
“Automatic Subspace Clustering of High Dimensional Data for
Data Mining Applications,” Proc. ACM SIGMOD, 1998.

[4] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules in Large Databases,” Proc. Int’l Conf. Very Large
Data Bases (VLDB ’94), 1994.

[5] F. Beil, M. Ester, and X. Xu, “Frequent Term-Based Text
Clustering,” Proc. ACM SIGKDD, 2002.

[6] K.S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is
’Nearest Neighbor’ Meaningful?” Proc. Int’l Conf. Database Theory
(ICDT ’99), 1999.

[7] C. Blake and C. Merz, “UCI Repository of Machine Learning
Databases,” Univ. of Calif., Irvine, Dept. of Information and Computer
Sciences, http://www.ics.uci.edu/~mlearn/MLRepository.html,
1998.

[8] R. Frischholz and U. Dieckmann, “BioID: A Multimodal Biometric
Identification System,” Computer, vol. 33, no. 2, Feb. 2000.

[9] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without
Candidate Generation,” Proc. ACM SIGMOD, 2000.

[10] A. Hinneburg, C.C. Aggarwal, and D.A. Keim, “What is the
Nearest Neighbor in High Dimensional Spaces?” Proc. Int’l Conf.
Very Large Data Bases (VLDB ’00), 2000.

[11] J. Pei, X. Zhang, M. Cho, H. Wang, and P.S. Yu, “Maple: A Fast
Algorithm for Maximal Pattern-Based Clustering,” Proc. Int’l Conf.
Data Mining (ICDM ’03), 2003.

[12] C.M. Procopiuc, M. Jones, P.K. Agarwal, and T.M. Murali, “A
Monte Carlo Algorithm for Fast Projective Clustering,” Proc. ACM
SIGMOD, 2002.

[13] H. Toivonen, “Sampling Large Databases for Association Rules,”
Proc. Int’l Conf. Very Large Data Bases (VLDB ’96), 1996.

[14] H. Wang, W. Wang, J. Yang, and P.S. Yu, “Clustering by Pattern
Similarity in Large Data Sets,” Proc. ACM SIGMOD, 2002.

[15] J. Yang, W. Wang, H. Wang, and P.S. Yu, “�-Clusters: Capturing
Subspace Correlation in a Large Data Set,” Proc. Int’l Conf. Data
Eng. (ICDE ’00), 2002.

[16] M.L. Yiu and N. Mamoulis, “Frequent-Pattern Based Iterative
Projected Clustering,” Proc. Third IEEE Int’l Conf. Data Mining
(ICDM ’03), Nov. 2003.

[17] M.J. Zaki and K. Gouda, “Fast Vertical Mining Using Diffsets,”
Proc. ACM SIGKDD, 2003.

[18] M.J. Zaki, S. Parthasarathy, W. Li, and M. Ogihara, “Evaluation of
Sampling for Data Mining of Association Rules,” Research Issues in
Data Eng. (RIDE), 1997.

Man Lung Yiu received the BEng degree in
computer engineering from the University of
Hong Kong, China, in 2002. He is currently a
PhD candidate in the Department of Computer
Science at the University of Hong Kong. His
research interests include databases and data
mining.

Nikos Mamoulis received the BS degree in
computer engineering and informatics from the
University of Patras, Greece, in 1995 and the
PhD degree in computer science from the Hong
Kong University of Science and Technology in
2000. He is an assistant professor in the
Department of Computer Science at the Uni-
versity of Hong Kong. In the past, he worked as
a research and development engineer at the
Computer Technology Institute, Patras, Greece,

and as a post doctoral researcher at the Centrum voor Wiskunde en
Informatica (CWI), Netherlands. His research interests include spatial,
spatio-temporal, multimedia, object-oriented, semi structured data-
bases, and constraint satisfaction problems.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YIU AND MAMOULIS: ITERATIVE PROJECTED CLUSTERING BY SUBSPACE MINING 189

