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Abstract—This paper introduces a scalable approach for probabilistic top-k similarity ranking on uncertain vector data. Each uncertain
object is represented by a set of vector instances that are assumed to be mutually-exclusive. The objective is to rank the uncertain
data according to their distance to a reference object. We propose a framework that incrementally computes for each object instance
and ranking position, the probability of the object falling at that ranking position. The resulting rank probability distribution can serve as
input for several state-of-the-art probabilistic ranking models. Existing approaches compute this probability distribution by applying the
Poisson binomial recurrence technique of quadratic complexity. In this paper we theoretically as well as experimentally show that our
framework reduces this to a linear-time complexity while having the same memory requirements, facilitated by incremental accessing
of the uncertain vector instances in increasing order of their distance to the reference object. Furthermore, we show how the output
of our method can be used to apply probabilistic top-k ranking for the objects, according to different state-of-the-art definitions. We
conduct an experimental evaluation on synthetic and real data, which demonstrates the efficiency of our approach.
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1 INTRODUCTION

In the past two decades, there has been a great deal
of interest in developing efficient and effective methods
for similarity search and mining in spatial, temporal,
multimedia and sensor databases. At the same time,
improvements in our ability to capture and store data
has lead to massive datasets with complex structured
data, which require special methodologies for efficient
and effective data exploration tasks. In this work, we
introduce a scalable approach for probabilistic similarity
ranking on uncertain vector data.

Similarity ranking is a hot topic in database research
because it plays a major role in a large number of emerg-
ing applications, such as data retrieval, decision sup-
port systems, and data mining that require exploratory
querying on the aforementioned databases. For example,
clustering and ranking have a mutual reinforcement
property for search engines. While search engines use
clustering to identify groups of relevant objects, ranking
is used to report the most important first. A ranking
query orders the objects in a database with respect to
their similarity to a reference object. In a spatial database
context, nearest neighbor queries rank the contents of a
spatial object set (e.g., restaurants) in increasing order
of their distance to a reference location. In a database
of images, a similarity query ranks the feature vectors
of images in increasing order of their distance (i.e.,
dissimilarity) to a query image. Such type of similar-
ity queries are in particular important for many data
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mining applications including classification, clustering
and outlier detection. One direct use of such queries in
data mining is in classification tasks where k-NN queries
are often used for classifying data items of unknown
labels to class labels corresponding to the most similar
labelled item. Clustering is also a relevant application,
where nearest neighbor search is used for assignment to
clusters, e.g. k-medoids. In addition, a number of outlier
detection methods are based on similarity queries, e.g.
the detection of k-NN outliers which are defined as
objects having the highest k-NN distances.

More recently, it has been recognized that many appli-
cations dealing with spatial, temporal, multimedia, and
sensor data have to cope with uncertain or imprecise
data. Uncertainty in the data can be caused due to a
number of reasons. First, recording data involves un-
certainty by nature either caused by imprecise sensors
or by imprecision induced by the discretization which
is necessary to record the data. For instance, positions
of moving individuals concurrently tracked by multiple
sensor devices are usually inconsistent. This problem is
also inherent in sensor networks collecting data such as
temperature, humidity, etc. Often, objects in relational
databases are redundantly represented by multiple tu-
ples due to inconsistent data observations or to ensure
privacy protection. One approach to achieve more re-
liable information from the data recording process is
to record the data based on multiple observations, e.g.
observations derived from multiple (preferably indepen-
dent) sensors. Consequently, the observed object or state
of a process is recorded as a set of possible instances, e.g.
a set of images or a set of alternative positions. Secondly,
uncertainty obviously occurs in prediction tasks, e.g.
weather forecasting, stock market prediction and traffic
jam prediction. Here again, the consideration of a num-
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ber of possible instances, i.e. alternative prediction re-
sults may help to improve the reliability of implications
based on the predictions. For example, the traffic density
on a single road segment can be well predicted for a
given time in the future if we predict and incorporate
all possible locations of all individuals at that time as
proposed in [16]. The third motivation for uncertain data
are privacy preserving issues. In contrast to the above
reasons, privacy preserving applications often require
uncertainty in the data in order to shield the exact infor-
mation of objects or individuals. For example, often some
digits of credit card numbers on receipts are hidden in
order to avoid that the complete number is visible to a
third party. As a consequence, there is a need to adapt
storage models and indexing/search techniques to deal
with uncertainty. There is already a volume of research
on probabilistic data models [3], [20], [21], [2].

In this paper, we focus on similarity ranking of uncer-
tain vector data. Prior work in this direction includes [7],
[9], [24], [6], [14], [15], [10], [22]. In a nutshell, there are
two models for capturing uncertainty of objects in a high
dimensional space. In the continuous uncertainty model,
the uncertain values of an object are represented by a
continuous probability distribution function (pdf) within
the vector space. This type of representation is often used
in applications where the uncertain values are assumed
to follow a specific probability density function (pdf), e.g.
a Gaussian distribution [6]. Similarity search methods
based on this model involve expensive integrations of
the pdf’s, thus special approximation techniques for
efficient query processing are typically employed [24]. In
the discrete uncertainty model, each object is represented
by a discrete set of alternative values, and each value is
associated with a probability [14]. The main motivation
of this representation is that, in most real applications,
data are collected in a discrete form (e.g., information
derived from sensor devices). In this paper, we adopt the
discrete uncertainty model which also complies with the
x-relations model used in the Trio system [1].

Consider, for example, a set of three two-dimensional
objects A, B, and C (e.g., locations of mobile users),
and their corresponding uncertain instances {a1, a2},
{b1, b2, b3}, and {c1, c2, c3}, as shown in Figure 1(a).
Each instance carries a probability (shown in brackets)
and instances of the same object are mutually-exclusive.
In addition, the sum of probabilities of each object’s
instances cannot exceed 1. Assume that we wish to rank
the objects A, B, and C according to their distances
to the query point q shown in the figure. Clearly, sev-
eral rankings are possible. In specific, each combination
of object instances defines an order. For example, for
combination {a1, b1, c1} the object ranking is (B, A, C)
while for combination {a2, b3, c1} the object ranking is
(A, B,C). Each combination corresponds to a possible
world [1], whose probability can be computed by mul-
tiplying the probabilities of the instances that comprise
it, assuming independent existence probabilities between
the instances of different objects.
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Fig. 1. Object Instances and Rank Probability Graph

The example illustrates the ambiguity of ranking in
uncertain data. On the other hand, most applications
require the definition of a non-ambiguous object rank-
ing. For example, assume that a robbery took place at
location q and the objects correspond to the positions
of suspects that are sampled around the time that the
robbery took place. The probabilities of the samples
depend on various factors (e.g., time-difference of the
sample to the robbery event, errors of capturing devices,
etc.). As an application, we may want to define a definite
probabilistic proximity ordering of the suspects to the
event, in order to prioritize interrogations.

Various top-k query approaches have been proposed
generating un-ambiguous rankings from probabilistic
data. Examples are U-topk [23], U-kRanks [23], PT-k [13],
Global top-k [29], and expected rank [10]. A summary of
these ranking models can be found in [10]. All of them
attempt to weigh the objects based on their probability
to be in each of the first k ranks, but they use different
ways to define the weights.

A common module in most of these approaches is the
computation for each object instance x the probability
Pi that i objects are closer to q than x for all 1 ≤ i ≤ k.
The resulting probabilities are aggregated to build the
probability of each object at each rank. For example,
the U-kRanks query reports the ith result as the object
that is the most likely to be ranked ith over all possible
worlds. For this computation, we obviously need the
probabilities of all instances to be ranked ith over all
possible worlds. The probability that an object is ranked
at a specific position i can be computed by summing
the probabilities of the possible worlds that support this
occurrence. In our example, the probability that object
A occurs as first one is 0.46 and the probability that
object B is the first is 0.54. All possible occurrences and
the corresponding probabilities are represented by the
object-rank bipartite graph which is shown in Figure
1(b). Non-existing edges imply zero probability, i.e. it is
not possible that the object occurs at the corresponding
ranking position. In this example, all instances of A
precede all those of C, so C cannot occur as first object
and A cannot be ranked to the last position.

In this paper, we propose a framework that, given
a database with uncertain vector objects, computes the
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rank probabilities of the object instances (e.g., a1) in
linear time to the total number of instances of all ob-
jects. Here we assume that the instances are accessed in
increasing distance order to the query object q (e.g., with
the help of a nearest neighbor search algorithm [12]). As
these can be aggregated on-the-fly, our framework also
computes the rank probabilities of the objects (e.g., A)
at the same cost. This is a great improvement, over the
state-of-the-art [27], which computes these probabilities
in quadratic time.

Analogously to the Trio [1] system, we define an
uncertain database as a set of uncertain objects (x-tuples),
each including a number of alternatives associated with
probabilities. Here, we consider uncertain vector objects
in a d-dimensional vector space, i.e., each object is as-
signed to multiple alternative positions associated with
a probability value. Let us note that this model assumes
independence among the uncertain objects.

Definition 1 (Uncertain Vector Objects): An uncertain
vector object X corresponds to a finite set of
points in a d-dimensional vector space, called
object instances, each associated with a probability
value, i.e., X = {(x, P (X = x)), where x ∈ Rd, and
P (X = x) ∈ [0, 1]} is the probability that X has position
x. The probabilities of the object instances represent a
discrete probability distribution of the alternative points,
such that the condition

∑
(X,P (X=x))∈X P (X = x) ≤ 1

holds. The collection of instances of all objects forms
the uncertain database D.1

Since the number of possible worlds is exponential
in the number of uncertain objects, it is impractical
to enumerate all of them in order to find the rank
probabilities of all object instances. Recently, it has been
shown in [26] that we can compute the probabilities
between all object instances and ranks in O(kn2) time,
where n is the number of object instances required to be
accessed until the solution is confirmed. This solution
can be applied to all problems that comply to the x-
relation model (including our problem). In this paper,
we propose a significant improvement of this approach,
which reduces the time complexity to O(kn).

In Section 5, we discuss in detail how our method
can be used as a module in various models that rank
the objects according to the rank probabilities of their
instances.

Although in the paper, we focus on databases of
uncertain vector objects as in Definition 1, our results
apply in general to x-relations as defined in [1], which
model mutual-exclusiveness constraints between exis-
tentially uncertain tuples (i.e., object instances in our
model)2. Thus, our method is general and it can be
used irrespectively to whether we have uncertain ob-
jects or existentially uncertain tuples with exclusiveness
constraints, expressed by x-tuples.

1. Note that the condition
∑

(x,P (X=x))∈X P (X = x) < 1 implies
existential uncertainty, meaning that the object may not exist at all.

2. The general model based on uncertain tuples uses a score function
instead of a distance function in order to define an order of the tuples.

1.1 Contributions and Outline
The main contributions of this paper can be summarized
as follows:
• We propose a framework based on iterative distance

browsing that efficiently supports probabilistic sim-
ilarity ranking in uncertain vector databases.

• We present a novel and theoretically founded ap-
proach for computing the rank probabilities of each
object. We prove that our method reduces the com-
putational cost of the rank probabilities from O(kn2),
achieved by the best currently known method, to
O(kn).

• We show how diverse state-of-the-art probabilistic
ranking models can use our framework to accelerate
computation.

• We conduct an experimental evaluation, using real
and synthetic data, which demonstrates the applica-
bility of our framework and verifies our theoretical
findings.

The rest of the paper is organized as follows: In the
next section, we survey existing work in the field of
managing and querying uncertain data. In Section 3,
we introduce our framework for computing the rank
probabilities of uncertain object instances, followed by
the details regarding the efficient incremental rank prob-
ability computation for each object instance.

The complete algorithm for computing the rank prob-
abilities for all instances and the corresponding objects
is presented in Section 4. We experimentally evaluate the
efficiency of our approach in Section 6 and conclude the
paper in Section 7.

2 RELATED WORK

The potential of uncertain data processing has achieved
increasing interest in diverse application fields, e.g.,
sensor monitoring [8], traffic analysis and location-based
services [25], etc. By now, uncertain data management
has been established as an important branch of research
within the database community, with increasing ten-
dency. Existing approaches in this field of modelling of,
managing of and query processing on uncertain data
can be categorized into diverse directions, including
probabilistic databases [3], [20], [21], [2], indexing of
uncertain data [9], [24], [6], [28] and probabilistic query
processing [7], [11], [6], [14], [5], [27], [23].

In [6], the Gauss-tree is introduced, which is an in-
dex for managing large amounts of uncertain objects
with their uncertain attribute represented by a Gaus-
sian distribution function. Objects which have the high-
est probability of being located inside a given query
range are reported efficiently. Note that this definition
is semantically different than the problem studied in
this paper. In contrast, the approaches for managing
uncertain vector objects proposed in [7], [9], [24] support
arbitrarily shaped probability distribution functions for
uncertain object attributes. Since the above mentioned
approaches focus on probability computations based
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on query predicates according to a given query range,
they are not applicable for our problem. Although [28]
studies probabilistic ranking of objects according to their
distance from a reference query point, the solutions are
limited to existentially uncertain spatial data with a
single alternative.

To the best of our knowledge, only [5] addresses prob-
abilistic ranking according to our problem definition.
There, a divide and conquer method for accelerating the
computation of the ranking probabilities is proposed.
Although the proposed approach achieves a significant
speed-up compared to the naive solution incorporating
each possible database instance, its runtime is still ex-
ponential. Related to our ranking problem, significant
work has been done in the field of probabilistic top-k
query processing. Soliman et al. [23] were the first who
studied such problems on the x-relations model of [3].
They proposed two ways of ranking uncertain tuples. In
the first, uncertain top-k (U-Topk) query, the objective is to
find the k-permutation of the most likely tuples to be the
top-k. In our setting, this corresponds to finding the top-
k most probable object instances (belonging to different
objects) in all possible worlds. The uncertain k-ranks query
(U-kRanks) reports a probabilistic ranking of the tuples
(again, not the x-tuples). However, an efficient approach
for this problem is only given for the case where the
tuples are mutually independent which does not hold
for the x-relation model. At the same time Re et al. pro-
posed in [20] an efficient but approximative probabilistic
ranking based on the concept of Monte-Carlo simulation.
Later, Yi et al. proposed in [27] the first efficient exact
probabilistic ranking approach for the x-relation model,
for both cases of single-alternative x-tuples only, i.e.
x-tuples with only one uncertain instance, and multi-
alternative x-tuples. They proposed dynamic program-
ming based methods for the computation of uncertain
ranking queries, which have much lower costs than
the previously best known results. Furthermore, they
proposed early stopping conditions for accessing the
tuples. Their methods for U-Topk and U-kRanks queries
have O(nlogk) and O(kn2) time complexity, respectively.
The cost of the U-kRanks algorithm is dominated by the
computation of the probability of each accessed tuple to
be in each of the k first ranks. In this paper, we also use
this as a module of finding the object-rank probabilities.
However, we propose an improvement of their O(kn2)
algorithm that does the same work in O(kn) without
increasing the memory requirements.

In a recent paper, Cormode et al. [10] reviewed al-
ternative top-k ranking approaches for uncertain data,
including the U-Topk and U-kRanks queries, and argued
for a more robust definition of ranking, namely the
expected rank for each tuple (or x-tuple). This is defined
by the weighted sum of the ranks of the tuple in all
possible worlds, where each world in the sum is weighed
by its probability. The k tuples with the lowest expected
ranks are argued to be a more appropriate definition of a
top-k query than previous approaches. Nevertheless, we

found by experimentation that such a definition may not
be appropriate for ranking objects (i.e., x-tuples), whose
instances have large variance (i.e., they are scattered
far from each other in space). In general, the result
of this ranking method is similar to the brute-force
approach that would take the mean of the instances
for each object and rank these means. On the other
hand, approaches that take into consideration the rank
probabilities (e.g., U-kRanks) would be more suitable
for such data. This is the reason why we focus on the
computation of rank probabilities in this paper. Another
piece of recent related work is [22], where the goal is
to rank uncertain objects (i.e., x-tuples) whose score is
uncertain and can be described by a range of values.
Based on these ranges, the authors define a graph that
captures the partial orders among objects. This graph is
then processed to compute U-kRanks and other queries.
Although this work has similar objectives to ours, it
operates on a different input, where the distribution
of uncertain scores is already known, as opposed to
our work which dynamically computes this distribution
by performing a linear scan over the ordered object
instances.

3 PROBABILISTIC RANKING FRAMEWORK

Our framework basically consists of two modules which
are performed in an iterative way:
• The first module (distance browsing) incrementally

retrieves the instances of all objects in order of their
distance to q. This can be achieved with the help
of a multi-dimensional index (e.g., an R∗-tree index
[17]), using an incremental nearest neighbor search
algorithm [12].

• The second module computes the probabilistic rank-
ing Pi(x) of each object instance x reported from the
distance browsing for all 1 ≤ i ≤ k. This step is the
main focus of this paper, because of its potentially
high computational cost. A naive solution would
take into account all possible worlds that include the
instance and update the probabilities accordingly,
however, as discussed before, there already exists
an efficient solution which can perform this com-
putation in quadratic time and linear space [26]. In
this paper, we improve this method to a linear time
and space complexity algorithm. The key idea is to
use the probabilistic ranks of the previous object
instance to derive those of the currently accessed
one in O(k) time. Section 3.2 has the details of this
improvement.

Our framework is illustrated in Figure 2. The com-
putation of the probability distributions is iteratively
processed within a loop. First, we initialize a distance
browsing among the object instances starting from a
given query point q. Other orders used for the instance
browsing, e.g. descending probability as discussed in
[27], might possibly lead to faster algorithms if the prob-
ability distribution favors them. However, the distance
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based order is somewhat natural for NN search around
a query point, as there exist efficient search modules
that support it. Furthermore, the distance based sorting
supports spatial pruning techniques in order to reduce
the candidate set as far as possible due to restricted
memory. For each object instance fetched from the dis-
tance browsing (Module 1), we compute the correspond-
ing rank probabilities (Module 2) and update the rank
probability distributions generated from the probabilistic
ranking routine.

Note that the rank probabilities of the object instances
(i.e., tuples in the x-relations model) reported from the
second module can be optionally aggregated into rank
probabilities of the objects (i.e., x-tuples in the x-relations
model). The probability that an uncertain vector object
X = {(x1, P (X = x1)), . . . , (xs, P (X = xs))} is at the ith

ranking position according to the distance to a reference
query object q (or generally according to a score function
s(x)) is

Pi(X) =
∑
x∈X

P (X = x) · Pi(x).

Our framework can be used to compute the object-
based rank probabilities by maintaining a list of objects
from which instances have been seen so far and suc-
cessively aggregate the rank probabilities by means of
the instance-based rank probabilities reported from the
framework.

Finally, in a postprocessing step, the rank probability
distributions computed by our framework can be used
to generate a definite ranking of the objects or object
instances. The objective is to find a non-ambiguous
ranking where each object or object instance is uniquely
assigned to one rank. Here, one can plug-in any user-
defined ranking method that requires rank probability
distributions of objects in order to compute unique po-
sitions. In Section 5, we illustrate this for several well-
known probabilistic ranking queries that make use of
such distributions. In particular, we demonstrate that by
using our framework we can process such queries in
O(nlogn+k ·n) time3, as opposed to existing approaches
that require O(k · n2) time.

3.1 Dynamic Probability Computation
Consider an uncertain object X , defined by m proba-
bilistic instances X = {(x1, P (X = x1)), . . . , (xm, P (X =
xm))}. The probability that X is assigned to a given
ranking position i is equal to the chance that exactly i−1
objects Z ∈ (D \X) are closer to the query object q than
the object X . This can be computed by aggregating the
probabilities over all instances (x, P (X = x)) of X that
exactly i − 1 objects Z are closer to q than the instance
(x, P (X = x)). Formally,

3. Note that the O(nlogn) factor is due to pre-sorting the object
instances according to their distances to the query object. If we assume
that the instances are already sorted then our framework can compute
the probability distributions for the first k rank positions in O(k · n)
time.
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Fig. 2. Framework for probabilistic similarity ranking.

Table of Notations
D an uncertain database
N the cardinality of D
q a query vector in respect to which a prob-

abilistic ranking is computed
k the ranking depth that determines the

number of ranking positions of the ranking
query result

D a distance browsing of D with respect to q
X ,Y ,Z uncertain vector objects, each correspond-

ing to a finite set of alternative vector point
instances

x,y,z vector point instances belonging to objects
X ,Y ,Z respectively.

P (X = x) the probability that an uncertain vector
object X matches a given vector point in-
stance x.

Pi(X) the probability that object X is assigned to
the i-th ranking position i, i.e. the proba-
bility that exactly (i-1) objects in (D\{X})
are closer to q than X

Pi(x) the probability that an instance x of object
X is assigned to the i-th ranking position i,
i.e. the probability that exactly i−1 objects
in (D \ {X}) are closer to q than x

AOL Active Object List
S a set of objects that have already been seen,

i.e. the set that contains an object X iff at
least one instance of X has already been
returned by the distance browsing D

Pi,S,x the probability that exactly i objects X ∈ S
are closer to q than an object instance x

Px(Z) the probability that object Z is closer to
query point q than the vector point x;
computable using Lemma 1

TABLE 1
Table of notations used in this work.

Pi(X) =
∑

(x,P (X=x))∈X

(Pi(x) · P (X = x)). (1)

Based on the above formula we can compute the
probabilities for an object X to be assigned to each of
the ranking positions i ∈ {1, . . . , k} by computing the
probabilities Pi(x) for all instances (x, P (X = x)) of X .
As mentioned above, we perform this computation in
an iterative way, i.e., whenever we fetch a new object
instance (x, P (X = x)) we compute all probabilities
Pi(x) · P (X = x) for all i ∈ {1, . . . , k}. Thereby, in a
list we store the current probability state according to all
ranking positions i ∈ {1, . . . , k} for each object for which
we already have accessed some instances and for which
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we expect to obtain further instances in the remaining
iterations. Whenever the probabilities according to a new
object instance are computed, we update the list by
adding the new probabilities to the current probability
state.

In the following, we show how to compute the prob-
abilities Pi(x) ·P (X = x) for all i ∈ {1, . . . , k} for a given
object instance (x, P (X = x)) of an uncertain object
X which is assumed to be currently fetched from the
distance browsing (Step 1). For this computation we first
need, for all uncertain objects Z ∈ D, the probability
Px(Z) that Z is closer to q than the current object instance
x. These probabilities are stored in an active object list
AOL, which can easily be kept updated due to the
following obvious lemma:

Lemma 1: Let q be the query object and (x, p(X = x))
be the object instance of an object X fetched from the
distance browsing in the current processing iteration.
The probability that an object Z 6= X is closer to q than
x is

Px(Z) =
∑

(z,P (Z=z))∈Z

P (Z = z),

where (z, P (Z = z)) are the instances fetched in previous
processing iterations.

Lemma 1 says that we can accumulate in overall linear
space the sums of probabilities of all instances for each
object, which have been seen so far and use them to
compute Px(Z) given the current instance x and any
object Z in D. In fact, we only need to manage in the list
the probabilities of those objects for which we already
have accessed an instance and for which we expect to
access further instances in the remaining iterations.

Now let us see how we can use list AOL to effi-
ciently compute the probabilities Pi(x). Assume that
(x, P (X = x)) ∈ X is the current object instance reported
from distance browsing. Let S = {Z1, . . . , Zj} be the set
of objects which have been seen so far, i.e. for which
we already have seen at least one object instance. The
probability that an object X ∈ S appears at ranking
position i of the first j objects seen so far only depends
on the event that i − 1 of the remaining j − 1 objects
Z ∈ S (Z 6= X) appear before X , no matter which of
these objects fulfill this criterion. Let S denote the set
of objects except for object X seen so far, i.e. X /∈ S.
Furthermore, let Pi,S,x denote the probability that exactly
i objects of S are closer to q than the object instance x.
Now, we can formulate the recursive function:

Pi,S,x = Pi−1,S\{Z},x · Px(Z) + Pi,S\{Z},x · (1− Px(Z)),

where

P0,∅,x = 1 and Pi,S,x = 0, iff i > |S| ∨ i < 0. (2)

Let us note that the above recursion is also known as
Poisson binomial recurrence4 and has been used in this
context by [26], [27], [13]. The approach in [13] applies

4. To the best of our knowledge, the Poisson binomial recurrence
was first introduced by [18].

the above recurrence on a slightly different problem
where independence is assumed among all tuples.

The correctness of Equation 2 can be shown by the
following intuition: the event that i objects of S are closer
to q than x occurs if one of the following conditions
holds. In the case that an object Z ∈ S is closer to q
than x, then i− 1 objects of S \ {Z} must be closer to q.
Otherwise, if we assume that object Z ∈ S is farther to
q than x, then i objects of S \ {X} must be closer to q.

For each object instance (x, P (X = x)) reported from
the distance browsing, we have to apply the recursive
function as defined above. Specifically, we have to com-
pute for each instance (x, P (X = x)) the probabilities
Pi,S,x for all i ∈ {0, . . . ,min{k, |S|}} and for j = |S|
subsets of S. If n = |D|, this has a cost factor of O(k · n)
per object instance retrieved from the distance browsing,
leading to a total cost of O(k · n2). Assuming that k is a
small constant, we have an overall runtime of O(n2).

In the following, we show how we can compute
each Pi,S,x in constant time by utilizing the probabilities
computed for the previously accessed instance.

3.2 Incremental Probability Computation

Let (x, P (X = x)) ∈ X and (y, P (Y = y)) ∈ Y be
two object instances consecutively returned from the
distance browsing. W.l.o.g. let (x, P (X = x)) be re-
turned before (y, P (Y = y)). Each of the probabilities
Pi,S\{Y },y (i ∈ {0, . . . , |S \ {Y }|}) can be computed from
the probabilities Pi,S\{X},x in constant time. In fact, the
probabilities Pi,S\{Y },y can be computed by considering
at most one recursion step backward.

The following three cases have to be considered. The
first two are easy to tackle and the third one is the most
common and challenging one.

Case 1: Both instances belong to the same ob-
ject, i.e. X = Y .
Case 2: Both instances belong to different ob-
jects, i.e. X 6= Y and (y, P (Y = y)) is the first
returned instance of object Y .
Case 3: Both instances belong to different ob-
jects, i.e. X 6= Y and (y, P (Y = y)) is not the
first returned instance of object Y .

Now, we show how the probabilities Pi,S\{Y },y for
i ∈ {0, . . . , |S \ {Y }|} can be computed in constant
time considering the above cases which are illustrated
in Figure 3.

In the first case (cf. Figure 3(a)), the probabilities Px(Z)
and Py(Z) of all objects in Z ∈ S\{X} are equal, because
the instances of objects in S \{X} that appear within the
distance range of q of y and within the distance range
of x are identical. Since the probabilities Pi,S\{Y },y and
Pi,S\{X},x only depend on Px(Z) for all objects Z ∈ S \
{X}, it is obvious that Pi,S\{Y },y = Pi,S\{X},x for all i.

In the second case (cf. Figure 3(b)) we can exploit
the fact that Pi,S\{X},x does not depend on Y . Thus,
given the probabilities Pi,S\{X},x, we can easily compute
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(a) Case 1: Previous instance x and current
instance y belong to the same object.

C
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B

A

(b) Case 2: Instance y is the first returned
instance of object Y .

q
x

y
C

X

Y

B

A

(c) Case 3: Instance y is not the first returned
instance of object Y and X 6= Y .

Fig. 3. Cases when updating the probabilities, assuming x was the last processed instance and y is the current one.

the probability Pi,S\{Y },y by incorporating the object X
using the recursive Equation 2:

Pi,S\{Y },y =

Pi−1,S\{Y,X},y · Py(X) + Pi,S\{Y,X},y · (1− Py(X)).

Since S \ {Y,X} = S \ {X, Y } and no instance of any
object in S \{X, Y } appears within the distance range of
q according to y but not within the range according to x
(cf. Figure 3(b)), the following equation holds:

Pi,S\{Y },y =

Pi−1,S\{X,Y },x · Py(X) + Pi,S\{X,Y },x · (1− Py(X)).

Furthermore, Pi−1,S\{X,Y },x = Pi−1,S\{X},x, because Y is
not in the distance range according to x and, thus, Y /∈
S \ {X}. Now, the above equation can be reformulated:

Pi,S\{Y },y =

Pi−1,S\{X},x · Py(X) + Pi,S\{X},x · (1− Py(X)). (3)

All probabilities of the term on the right hand side
in Equation 3 are known and, thus, Pi,S\{Y },y can be
computed in constant time assuming that the probabili-
ties Pi,S\{X},x computed in the previous step have been
stored for all i ∈ {0, . . . , |S \ {X}|}.

The third case (cf. Figure 3(c)) is the general case which
is not as straightforward as the previous two cases and
requires special techniques. Again, we assume that the
probabilities Pi,S\{X},x computed in the previous step
for all i ∈ {0, . . . , |S \ {X}|} are known. Similar to Case
2, the probability Pi,S\{Y },y is equal to:

Pi,S\{Y },y =

Pi−1,S\{X,Y },x · Py(X) + Pi,S\{X,Y },x · (1− Py(X)). (4)

Since the probability Py(X) is assumed to be known,
now we are left with the computation of Pi,S\{X,Y },x for
all i ∈ {0, . . . , |S \ {X, Y }|} by again exploiting Equation
2:

Pi,S\{X},x =

Pi−1,S\{X,Y },x · Px(Y ) + Pi,S\{X,Y },x · (1− Px(Y ))

which can be resolved to

Pi,S\{X,Y },x =

Pi,S\{X},x − Pi−1,S\{X,Y },x · Px(Y )
1− Px(Y )

. (5)

With i = 0 we have

P0,S\{X,Y },x =
P0,S\{X},x − P−1,S\{X,Y },x · Px(Y )

1− Px(Y )
=

P0,S\{X},x

1− Px(Y )
,

because the probability P−1,S\{X,Y },x = 0 by definition
(cf. Equation 2). The case i = 0 can be solved assuming
that P0,S\{X},x is known from the previous iteration step.

With the assumption that all probabilities Pi,S\{X},x
for all i ∈ {1, . . . , |S \ {X}|} and Px(Y ) are available
from the previous iteration step, we can use Equation 5
to recursively compute Pi,S\{X,Y },x (1 ≤ i ≤ |S \{X,Y }|)
using the previously computed Pi−1,S\{X,Y },x. Based on
this recursive computation we obtain all probabilities
Pi,S\{X,Y },x (0 ≤ i ≤ |S \ {X, Y }|) which can used
to compute the probabilities Pi,S\{Y },y for all 0 ≤ i ≤
|S \ {X, Y }| according to Equation 4.

3.3 Runtime Analysis

Building on this case-based analysis for the cost of
computing Pi,S\{X},x for the currently accessed instance
x of an object o, we now prove that we can compute the
rank probabilities of all objects at cost O(nk), where n is
the number of object instances accessed. The following
lemma suggests that the incremental cost per object
instance access is O(k).

Lemma 2: Let (x, P (X = x)) ∈ X and (y, P (Y = y)) ∈
Y be two object instances consecutively returned from
the distance browsing. W.l.o.g., let us assume that the
instance (x, P (X = x)) was returned in the last iteration
in which we computed the probabilities Pi,S\{X},x for
all 0 ≤ i ≤ |S \ {X}|. The next iteration, in which we
fetch (y, P (Y = y)) the probabilities Pi,S\{Y },y for all
0 ≤ i ≤ min{k, |S \ {Y }|}, can be computed in O(k) time
and space.
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Proof: In Case 1, the probabilities Pi,S\{X},x and
Pi,S\{Y },y are equal for all 0 ≤ i ≤ min{k, |S \ {Y })|}.
No computation is required (O(1) time) and the result
can be stored using at most O(k) space.

In Case 2, the probabilities Pi,S\{Y },y for all 0 ≤ i ≤
min{k, |S \ {Y })|} can be computed according to Equa-
tion 3 taking O(k) time. This assumes that the Pi,S\{X},x
have to be stored for all 0 ≤ i ≤ min{k, |S \ {Y }|},
requiring at most O(k) space.

In Case 3, we first have to compute and store the
probabilities Pi,S\{X,Y },x for all 0 ≤ i ≤ min{k, |S \
{X,Y })|} using the recursive function in Equation 5.
This can be done in O(min{k, |S \ {X,Y })|}) time and
space. Next, the computed probabilities can be used to
compute Pi,S\{Y },y for all 0 ≤ i ≤ min{k, |S \ {Y })|}
according to Equation 4 which again takes at most
O(min{k, |S \ {X, Y })|}) time and space.

After giving the runtime evaluation of the processing
of one single object instance, we are now able to extend
the cost model for the whole query process. According
to Lemma 2, we can assume that each object instance
can be processed in constant time if we assume that
k is constant. If we assume that the total number of
object instances in our database is linear to the number
of database objects we would get a runtime complexity
which is linear in the number of database objects, more
exactly particular O(kn) where n is the size of the
database and k the specified depth of the ranking. Up
to now, our model assumes that the preprocessing step
and the postprocessing step of our framework requires
at most linear runtime. Since the postprocessing step
only includes an aggregation of the results generated
in Step 2 the linear runtime complexity of Step 3 is
guaranteed. Now, we want to examine the runtime of
the object instance ranking in Step 1. Similar to the
assumptions that hold for our competitors [23], [26], [5]
we can also assume that the object instances are already
sorted, which would involve linear runtime cost also
for Step 1. However, for the general case where we
have to initialize a distance browsing first, the runtime
complexity of Step 1 would increase to O(nlogn). As
a consequence, the total runtime cost of our approach
(including distance browsing) sums up to O(nlogn+kn).
An overview of the computation cost is given in Table
2.5

Regarding the space complexity of our approach, we
have to store, for each object in the database, a vector of
length k for the probabilistic ranking of size O(kn). In
addition, we have to store the AOL of at most size O(n),
yielding a total space complexity of O(kn + n) = O(kn).
Note that [26] computes a different ranking (cf. Section 5
for details) with a space complexity of O(n). To compute
a probabilistic ranking according to our definition, [26]
requires O(kn) space as well.

5. Note that the approach proposed in [23] uses a more general
correlation model than the x-relational model. It allows more types
of correlation between tuples, thus making the given problem harder.

runtime table no precomputed D precomputed D
ours O(nlogn+kn) O(kn)
[26] O(kn2) O(kn2)
[5] exponential exponential
[23] exponential exponential

TABLE 2
Runtime complexity comparison of the best-known

approaches to our own approach.

Probabilistic Ranking(D,q)

Input: Database D, Query Vector q
1 AOL = ∅
2 result = Matrix of zeros // size: |instances|*k
3 Pi(x) = [0,. . . ,0] // Length k
4 Pi(y) = [0,. . . ,0] // Length k
5
6 y = D.next
7 updateAOL(y)
8 Pi(x)[0]=1
9 Add Pi(x) to the first line of result.
10 FOR (D is not empty AND ∃p ∈ Pi(x): p > 0)
11 x = y
12 y = D.next
13 updateAOL(y)
14
15 CASE 1: (c.f. Figure 3(a))
16 IF (Y = X)
17 Pi(y) = Pi(x)
18 END-IF
19
20 CASE 2: (c.f. Figure 3(b))
21 ELS-IF (Y 6∈ AOL)
22 P (X)=AOL.getProb(X)
23 Pi(y) = dynamicRound(Pi(x),Py(X))])
24 END-IF
25
26 CASE 3: (c.f. Figure 3(c))
27 ELSE // (Y != X)
28 P (X)=AOL.getProb(X)
29 P (Y )=AOL.getProb(Y )
30 adjustedProbs = adjustProbs(Pi(x),Py(Y ))
31 p-rank y = dynamicRound(adjustedProbs,Py(X))
32 END-IF
33
34 Add Pi(y) to the next line of result.
35 Pi(x) = Pi(y)
36 END-FOR
37 return result
38 END Probabilistic Ranking.
Output: Probabilistic Ranking (c.f. Definition )

Fig. 4. Pseudocode of our ranking algorithm.

4 PROBABILISTIC RANKING ALGORITHM

The pseudocode of the algorithm for the probabilistic
ranking is illustrated in Figure 4, providing the imple-
mentation details of the previously discussed steps. Our
algorithm requires a query object q and a distance brows-
ing operator D (cf. [12]), that allows us to iteratively
access the object instances sorted in ascending order of
their similarity distance to a query object.

First, we initialize the active Object List (AOL) , a
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dynamicRound(oldRanking,Py(X))

Input: oldRanking: Intermediate result without object X
Py(X): Prob. that object X is closer to q than instance y.

1 newRanking = [0,. . . ,0] // Length k
2 newRanking[0] =
3 oldRanking[0]*(1-Py(X))
4 FOR i = 1,. . . ,k-1
5 newRanking[i] =
6 oldRanking[i-1]*Py(X)
7 +oldRanking[i]*(1-Py(X))
8 END-FOR
9 return newRanking
10 END dynamicRound.
Output: Result including object X

Fig. 5. Pseudocode of a dynamic Iteration at instance y

adjustProbs(oldRanking,Py(Y ))
Input: oldRanking: Intermediate result including object Y

Py(X): Prob. that another instance of object Y is closer
to q than instance y.

1 adjustedRanking = [0,. . . ,0] // Length k
2 adjustedProbs[0] =
3 oldRanking[0] / Py(Y )
4 FOR i = 1,. . . ,k-1
5 adjustedProbs[i ] = oldRanking[i]−oldRanking[i−1]∗Py(Y )

(1−Py(Y ))

6 END-FOR
7 return adjustedProbs
8 END adjustProbs.
Output: Intermediate result at instace y excluding object Y

Fig. 6. Pseudocode of the algorithm that excludes one
object Y from the current result at instance y ∈ Y .

data structure that contains one tuple (X, P (X)) for each
object X that
• has previously been found in D, i.e. at least one

instance of X has been processed and
• has not yet been completely processed, i.e. at least

one instance of X has yet to be found,
associated with the sum P (X) of probabilities of all its
instances that have been found. The AOL offers two
functionalities:
• updateAOL(instance x): Adds the probability of x

(P (X = x)) to P (X), where X is the object that x
belongs to.

• getProb(object X): Returns P (X).
Note that it is mandatory that the position of a tuple

(X, P (X)) can be found in constant time, in order to
sustain the constant time complexity of an iteration. This
can be
• approached by means of hashing or
• reached by giving each object X the information

about the location of its corresponding instances
(P (X)) at an additional space cost of O(n).

We also keep the result, a matrix that contains, for
each object instance x that has been found and each
ranking position i, the probability Pi(x) that x is located

at ranking position i. Note that this result is instance-
based. In order to get an object-based rank probability,
we can aggregate instances belonging to the same object,
using Equation 1. Additionally, we initialize two arrays
p-rank x and p-rank y, each of length k, which contain, at
any iteration of the algorithm, the probabilities Pi,S\{X},x
and Pi,S\{Y },y respectively, for all 0 ≤ i ≤ k. x ∈ X is
the instance found in the previous iteration and y ∈ Y
is the instance found in the current iteration (see Figure
3).

In line 6, the algorithm starts by fetching the first object
instance, which is closest to the query q in the database.
A tuple containing the corresponding object as well as
the probability of this instance is added to the AOL.

Then, the first position of p-rank x is set to 1 while all
other k − 1 positions remain at 0, because

P1,S\{y},y = P1,∅,y = 1

and
Pi,S\{y},y = Pi,∅,y = 0

for i > 1 by definition (see Equation 2). This simply
reflects the fact that the first instance is always on rank
1. Note that p-rank y is implicitly assigned to p-rank x
here.

Then, the first iteration of the main algorithm begins
by fetching the next object instance from D. Now, we
have to distinguish the three cases explained in Section
3.

In the first case (line 16), both the previous and the
current instance refer to the same object. As explained
in Section 3, we have nothing to do in this case, since
Pi,S\{X},x=Pi,S\{Y },y for all 0 ≤ i ≤ k − 1.

In the second case (line 21), the current instance refers
to an object that has not been seen yet. As explained in
Section 3, we only have to apply an additional iteration
of the DP algorithm (cf. Equation 2). This dynamicRound
algorithm is shown in Figure 5 and is used here to
incorporate the probability that X is closer to y into p-
rank y in a single iteration of the dynamic algorithm.

In the third case (line 27), the current instance re-
lates to an object that has already been seen. Thus the
probabilities Pi,S\{X},x depend on Y . As explained in
Section 3, we first have to filter out the influence of Y on
Pi,S\{X},x and compute Pi,S\{X,Y },x. This is performed
by the adjustProbs algorithm in Figure 6 utilizing the
technique explained in Section 3. Using the Pi,S\{X,Y },x,
the algorithm then computes the Pi,S\{Y },y using a single
iteration of the dynamic algorithm like in case two.

At line 35, the computed ranking for instance y is
added to the result. If the application (i.e. the ranking
method) requires objects to be ranked instead of in-
stances, then p-rank y is used to incrementally update
the probabilities of Y for each rank.

The algorithm continues fetching object instances from
the distance browsing operator D and repeats this case
analysis until either no more samples are left in D or
until an object instance is found, for the probability zero
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for each of the first k positions. In the later case, there
exist k objects, that are closer to k with a probability
of one and the computation can be stoped, because
the same k objects must be closer to all further object
instances in the database that have not yet been found.

5 PROBABILISTIC RANKING APPROACHES

The method proposed in Section 3 efficiently computes
for each uncertain object instance xj and each ranking
position i (0 ≤ i ≤ k − 1) the probability that xj has the
ith rank. However, most applications require an unique
object ranking, i.e. each object (or object instance) is
uniquely assigned to exactly one rank. Various top-k
query approaches have been proposed generating de-
terministic rankings from probabilistic data which we
call probabilistic ranking queries. The question at issue
is how our framework can be exploited in order to
significantly accelerate probabilistic ranking queries. In
the remainder, we show that our framework is able to
support and significantly boost the performance of the
state-of-the-art probabilistic ranking queries. Specifically,
we demonstrate this by applying state-of-the-art ranking
approaches including, U-kRanks, PT-k and Global top-k.

Note, that the following ranking approaches are based
on the x-relation model [3], [1]. As mentioned before, the
x-relation model conceptionally corresponds to our un-
certainty model, where the object instances correspond
to the tuples and the uncertain vector objects correspond
to the x-tuples. In the following, we use the terms object
instance and object.

5.1 Expected Score and Expected Ranks
The Expected Score and Expected Ranks [10] compute for
each object instance its expected score (rank) and rank
the instances by this expected score (rank). Expected
Ranks runs in O(n · log(n))-time, thus outperforming
exact approaches that do not use any estimation. The
main drawback of this approach is that by using the
expected value estimator, information is lost about the
distribution of the objects. In the following, we will
show how our framework can be used to accelerate
the remaining state-of-the-art approaches, including U-
kRanks, PT-k and Global top-k, to O(n·logn+kn) runtime.

5.2 U-kRanks
The U-kRanks [23] approach reports the most likely
object instance at each rank i, i.e. the instance that is most
likely to be ranked i-th over all possible worlds. This is
essentially the same definition as proposed in PRank
in [19] in the context of distributions over spatial data.
The approach proposed in [23] has exponential runtime.
The runtime has been reduced to O(n2k) time in [27].
Using our framework, the problem of U-kRanks can be
solved in O(n · log(n) + nk) time using the same space
complexity as follows:
Use the framework to create the probabilistic ranking
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Fig. 7. Small example extract of a probabilistic ranking as
produced by our framework.

in O(n · log(n) + nk) as explained in the previous sec-
tion. Then, for each rank i, find the object instance
argmaxj(p rankq(Xj , i)) that has the highest probability
of appearing at rank i in O(nk). This is performed by
(cf. Figure 7) finding for each rank i the object instance
which has the highest probability to be assigned to rank
i. Obviously, a problem of this problem definition is that
a single object instance oj may appear at more than one
ranking position, or at no ranking position at all. For
example in 7, object instance A is ranked on both ranks
1 and 2, while object instance B is ranked nowhere. The
total runtime for U-kRanks has thus been reduced from
O(n2) to O(nlog(n) + kn), that is O(n ∗ log(n)) if k is
assumed to be constant.

5.3 PT-k
The probabilistic threshold top-k query (PT-k) [13] prob-
lem fixes the problem of the previous definition by
aggregating the probabilities of an object instance xj

appearing at rank k or better. Given a user-specified
probability threshold p, PT-k returns all instances, that
have a probability of at least p of being at rank k or better.
Note that in this definition, the number of results is not
limited to k and depends on the threshold parameter p.
The model of PT-k consists of a set of instances and a set
of generation rules that define mutually exclusiveness
of instances. Each object instance occurs in one and
only one generation rule. This model conceptionally
corresponds to the x-relation model (with disjoint x-
tupels). PT-k computes all result instances in O(nk) time
while also assuming that the instances are already pre-
sorted, thus having a total runtime of O(nlog(n) + kn).
The framework can be used to solve the PT-k problem
in the following way:
We create the probabilistic ranking in O(nk) as explained
in the previous section. For each object instance x, we
compute the probability that x appears at position k or
better (in O(nk)). Formally, we return all instances x ∈ D
for which:

{x ∈ D|
k∑

i=1

Pi(x) > p}
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As seen in Figure 7, this probability can simply be
computed by aggregating all probabilities of an object
instance to be ranked at k or better. For example, for
k = 2 and p = 0.5, we get A and B as results. Note
that for p = 0.1, further object instances may be in the
result, because there must be further object instances
(from object instances that are left out here for simplicity)
with a probability greater than zero to rank 1 and rank
2, since the probability of their respective edges does not
sum up to 1.0 yet.

Note that our framework is only able to match, not to
beat the runtime of PT-k. However, using our approach,
we can additionally return the ranking order, instead of
just the top-k set.

5.4 Global top-k
Global top-k [29] is very similar to PT-k and ranks the
object instances by their top-k probability, and then takes
the top-k of these. This approach has a runtime of
O(n2k). The advantage here is that, unlike in PT-k, the
number of results is fixed, and there is no user-specified
threshold parameter. Here we can exploit the ranking
order information that we acquired in the PT-k using
our framework to solve Global top-k in O(n · log(n) + kn)
time:
We use the framework to create the probabilistic ranking
in O(n · log(n)+kn) as explained in the previous section.
For each object instance x, we compute the probability
that x appears at position k or better (in O(nk)) like
in PT-k. Then, we find the k object instances with the
highest probability in O(k · log(k)).

6 EXPERIMENTAL EVALUATION

We have performed extensive experiments to evaluate
the performance of our proposed probabilistic ranking
approach proposed in Section 3 w.r.t. the database size
(|D|) measured in the number of uncertain vector objects,
ranking depth (k) and degree of uncertainty (UD) as
defined below. In the following, the ranking framework
is briefly denoted by PSR.

6.1 Datasets and Experimental Setup
The probabilistic ranking was applied to a scientific real-
world dataset SCI and several artificial datasets ART X
of varying size and degree of uncertainty. All datasets
are based on the discrete uncertainty model, i.e. each
object is represented by a collection of vector samples.

The SCI dataset is a set of 1600 objects where each
object consists of 48 10-dimensional instances. Each in-
stance corresponds to a set of environmental sensor
measurements of one single day (one per 30 minutes)
that consist of ten dimensions (attributes): Temperature,
humidity, speed and direction of wind w.r.t. degree
and sector, as well as concentrations of CO, SO2, NO,
NO2 and O3. These attributes are normalized within the
interval [0,1] to give each attribute the same weight.

The ART 1 dataset consists of 1,000,000 objects, each
consisting of 20 object instances for the scalability ex-
periments. For the evaluation of the performance w.r.t.
the ranking depth and the degree of uncertainty we
applied a collection ART 2 of datasets each composing
10,000 objects. Each object is represented by a set of
20 3-dimensional instances. The ART 2 datasets differs
in the degree of uncertainty (UD) the corresponding
objects have. The degree of uncertainty (UD) reflects the
following distribution of object instances: each uncertain
vector object is assumed to be located within an 3-
dimensional hyper-rectangle. The object instances are
uniformly distributed within the corresponding rectan-
gle. In the following, we will refer to the side length of
the rectangles as degree of uncertainty (UD). The rectan-
gles are uniformly distributed within a 10×10×10 vector
space. The ART 3 datasets are very similar to ART 3
datasets, except that the instances of object (again 10,000
objects uniformly distributed in the vector space with
20 instances each ) follow a three dimensional normal
distribution. The datasets of ART 3 vary in the degree
of uncertain as well. For this dataset, the degree of
uncertain simply denotes the standard deviation of the
normal distribution of the objects.

The degree of uncertainty is interesting in our per-
formance evaluation since it is expected to have a sig-
nificant influence on the runtime. The reason is that
a higher degree of uncertainty obviously leads to an
higher overlap between the objects which influences the
size of the active object list (AOL) (cf. Section 4) during
the distance browsing. The higher the object overlap
the more objects are expected to be in the AOL at a
time. Since the size of the AOL influences the runtime
of the rank probability computation, a higher degree of
uncertainty is expected to lead to a higher runtime. This
is experimentally evaluated in Section 6.4.

6.2 Scalability

In this section, we give an overview of our experiments
regarding the scalability of PSR. We compare our results
to the dynamic programming based rank probability
computation used for the U-kRanks method as proposed
by Yi et al. in [26]. This method, in the following denoted
by YLKS, is the best approach currently known for
solving the (instance-based) rank probability problem
(cf. Table 2). For a fair comparison, we used the PSR
framework to compute the same (instance-based) rank
probability problem as described in Section 3. Let us
note that the cost required to solve the object-based rank
probability problem is similar to that required to solve
the instance-based rank probability problem. This is
because the former problem additionally only requires to
build the sum over all instance-based rank probabilities
which can be done on-the-fly without additional cost.
Furthermore, we can neglect the cost required to build
a final definite ranking (e.g. the rankings proposed in
Section 5) from the rank probabilities, because they can
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Fig. 8. Scalability evaluated on SCI for different k values.

be also computed on-the-fly by simple aggregations of
the corresponding (instance-based) rank probabilities.

For the sorting of the distances of the instances to the
query point, we used a tuned quicksort adapted from
[4]. This algorithm offers O(n · log(n)) performance on
many data sets that cause other quicksort algorithms to
degrade to quadratic runtime.

The results of our first scalability tests on the real-data
set SCI are depicted in Figure 8. It can be observed in
Figure 8(b) that the runtime of the probabilistic rank-
ing using the PSR framework increases linearly in the
database size, whereas YLKS has a runtime quadratic
in the database size in the same parameter settings (cf.
Figure 8(a)). We can also see that this effect persists
for different settings of k. Note that the effect of the
O(n · log(n)) sorting of the distances of the instances is
insignificant on this relatively small dataset. The direct
speed-up of the rank probability computation using PSR
in comparison to YLKS is depicted in Figure 8(c). It
shows for different values of k, the speed-up factor,
that is defined as the ratio runtime(YLKS)

runtime(PSR) describing the
performance gain of PSR vs. YLKS. It can be observed
that, for a constant number of objects in the database
(|DB| = 1600), the ranking depth k has no impact
on the speed-up factor. This can be explained by the
observation that both approaches scale linear in k.

Next, we evaluate the scalability of the database size
based on the ART 1 dataset. The results of this experi-
ment are depicted in Figure 9. Figure 9(b) shows that we
are able to perform ranking queries in a reasonable time
of less than 120 seconds, even for very large database
containing 1,000,000 and more objects, each having 20
instances (thus having a total of 20,000,000 instances
(tuples)). Note that an almost perfect linear scaleup can
be seen in Figure 9 despite of the O(n · log(n)) cost for
sorting the database. This is due to the very efficient
quicksort implementation in [4] that our experiments
have shown to require only slightly worse than linear
time.

In Figure 9(a), it can be observed, that due to the
quadratic scaling of the YLKS algorithm, it is inappli-
cable for relatively small databases of size 5000 or more.
The direct speed-up of the rank probability computation

using PSR in comparison to YLKS for varying database
size is depicted in Figure 9(c). Here, we can see that
the speed-up of our approach in comparison to YLKS
increases linear with the size of the database which is
consistent with our runtime analysis in Section 3.
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6.3 Ranking Depth k

The influence of the ranking depth k on the runtime
performance of our probabilistic ranking method PSR is
studied in the next experiment. As depicted in Figure 10,
where the experiments were performed using both the
SCI and the ART dataset, the influence of an increasing
k yields a linear effect on the runtime of PSR, but does
not depend on the type of the dataset. This effect can be
explained by taking into consideration that each iteration
of Case 2 or Case 3 requires a probability computation
for each ranking position 0 ≤ i ≤ k.

6.4 Influence of the Degree of Uncertainty
In the next experiment, we varied the uncertainty degree
of objects using the ART 2 and ART 3 datasets. In the
following experiments, the ranking depth is set to a fixed
value of k = 100. As previously discussed, a varying
degree of uncertainty leads to an increase of the overlap
between the instances of the objects and thus, objects
will remain in the AOL for a longer time. The influence
of the degree of uncertainty depends on the probabilistic
ranking algorithm. This statement is underlined by the
experiments shown in Figure 11. It can be seen in



IEEE TKDE, VOL. X, NO. X, XXXXX 20XX 13

700

500

600
k = 100

400

500

e
[s
]

k = 50

300

un
ti
m
e k = 50

200

Ru

100

k = 1

k = 10

0

0 2.000

k = 1

0

Database size
2,000          4,000            6,000          8,000          10,000

(a) YLKS

0

20

40

60

80

100

120

0 200,000 400,000 600,000 800,000 1,000,000

Ru
nt

im
e

[s
]

Database size

k = 1

k = 100

k = 50

k = 10

(b) PSR

1

10

100

1000

Sp
ee

d
U

p
fa

ct
or

YL
KS

/
PS

R

Database size

k = 100

(c) Speed-up factor

Fig. 9. Scalability evaluated on ART 1 for different k values.

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

R
un

tim
e 

[s
]

Degree of uncertainty

uniform

gaussian

(a) Evaluation of PSR by an increasing uncer-
tainty degree.

0.001

0.01

0.1

1

10

100

1000

10000

71 184 1075 2607 5189

R
un

tim
e 

[s
]

Degree of uncertainty (corresponding Ø|AOL|)

PSR uniform PSR Gaussian YLKS uniform YLKS Gaussian

(b) YLKS vs. PSR in a logarithmic scale w.r.t.
different ∅(|AOL|) values.

Fig. 11. Runtime w.r.t. the degree of uncertainty.

Figure 11(a) that PSR scales superlinear in the degree
of uncertainty at first, until a maximal value is reached.
This maximal value is reached, when the degree of un-
certainty becomes so large that the instances of an object
cover the whole vector space. In this case, objects remain
on the AOL until almost the whole database is processed
in most cases due to the increased overlap of object
instances. In this case of extremely high uncertainty,
almost no spatial pruning can be performed, slowing
down the algorithm by several orders of magnitude. It
is also worth noting, that in our setting, the algorithm
performs worse on gaussian distributed data than on
uniformly distributed data. This is explained by the fact
that the space covered by a normal distribution with
standard deviation x in each dimension, is generally
larger than a hyper-rectangle with a side length of x in
each dimension. A comparison of the runtime of YLKS
and PSR w.r.t. the average AOL size is depicted in Figure
11(b) for both the uniform and the normal distributed
datasets. The degree of uncertain has a similar influence
on both YLKSand PSR.

6.5 Summary
The experiments presented in this section show that the
theoretical analysis of our approach given in Section
5 can be confirmed empirically on both artificial and
real-world data. The performance studies showed that
our framework computing the rank probabilities indeed
reduces the quadratic runtime complexity of state-of-
the-art approaches to linear. Note that the cost required
to pre-sort the object instances are neglected in our

settings. It could be shown that our approach scales
very well even for large databases. The speed-up gain
of our approach w.r.t. the rank depth k has shown to
be constant, which proofs that both approaches scale
linear in k. Furthermore, we could observe that our
approach is applicable for databases with a high degree
of uncertainty (i.e. the degree of variance of the instance
distribution).

7 CONCLUSIONS

In this paper, we proposed a framework for efficient
computation of probabilistic similarity ranking queries
in uncertain vector databases. We introduced a novel
concept that achieves a log-linear runtime complexity in
contrast to the best-known existing approach that solve
the same problem with quadratic runtime complexity.
Our concepts are theoretically and empirically proved to
be superior to all existing approaches. In an experimental
evaluation, we showed that our approach scales very
well and, thus, is applicable even for large databases. As
future work, we plan to extend the concepts proposed
in this paper to further uncertainty models.
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