
Reverse Nearest Neighbors in Large Graphs 
Man Lung Yiu 

Department of Computer Science and Information Systems 
University of Hong Kong  

Pokfulam Road, Hong Kong 
mlyiu2@csis.hku.hk 

Dimitris Papadias 
Department of Computer Science 

Hong Kong University of Science and Technology 
Clearwater Bay, Hong Kong 

dimitris@cs.ust.hk  

Nikos Mamoulis 
Department of Computer Science and Information Systems 

University of Hong Kong  
Pokfulam Road, Hong Kong 

nikos@csis.hku.hk 

Yufei Tao 
Department of Computer Science 

City University of Hong Kong 
Tat Chee Avenue, Hong Kong 

taoyf@cityu.edu.hk  
 

Abstract 
A reverse nearest neighbor query returns the data objects 
that have a query point as their nearest neighbor. 
Although such queries have been studied quite extensively 
in Euclidean spaces, there is no previous work in the 
context of large graphs. In this paper, we propose 
algorithms and optimization techniques for RNN queries 
by utilizing some characteristics of networks.  

Introduction-Motivation 
Given a multi-dimensional dataset P and a point q, a 
(monochromatic) reverse nearest neighbor (RNN) query 
retrieves all the points p∈P that have q as their nearest 
neighbor. Given two datasets P and Q and a point q, a 
bichromatic (bRNN) query retrieves all the points p∈P 
that are closer to q than to any point of Q. The problem 
has received considerable attention the last few years 
[KM00, SRAA01, TPL04] due to its relevance in several 
applications involving decision support, resource 
allocation, profile-based marketing, etc. However, all the 
existing work focuses exclusively on Euclidean spaces, 
whereas in several domains the data are represented as 
large disk-based graphs.  
As an example, consider a P2P network, where each point 
(i.e., peer) p∈P lies on a node n∈V, but some nodes may 
not contain relevant peers to a specific query. We call 
such graphs restricted. For instance, in Figure 1a, assume 
that a new user q interested in music enters the system. A 
(monochromatic) RNN query retrieves among the existing 
users also interested in music (p1 to p3), the ones for 
which q will become their new NN. On the other hand, 
nodes such as n1 and n2 are irrelevant to the user (e.g., 
they may represent peers with other types of content) and 
they are considered empty. Given the edge costs of Figure 
1a, RNN(q) = {p1,p2}, i.e., q is most beneficial to p1 and 
p2 since it is their closest NN in terms of network cost and 
shares the same interests.  

p
1

n
1

n
3

3

5 6

n
4

4

6 6

n
7

p
3

n
2

n
5

n
6

4

5

3

q

p
2

 
p

1

n
1

n
3

3

2 3

n
4 3

6 6

n
7

p
3

n
2

n
5

n
6

4

5

3

q

p
2

p
4

1

q
1

p
5

3
3

q
2

 
(a) RNN in restricted graph (b) bRNN in unrestricted graph 

Figure 1 Examples of RNN queries in graphs 

In unrestricted networks, the query and the data points 
can reside anywhere on the edges of the graph. Figure 1b 
shows an example of a bichromatic query in a road 
network, where points p1 to p5 stand for residential blocks 
and q1, q2 indicate restaurants. Nodes n1 and n3 are empty 
road junctions (i.e., they do not contain residential blocks 
or restaurants). Given several choices for the location of a 
new restaurant, the query bRNN(q) may be used to 
evaluate the benefit of q in terms of the customers that it 
may attract from rival restaurants based on proximity. 
Specifically, the set bRNN(q) = {p4,p5} represents the 
blocks that are closer to q than to any other competitor. 
Similarly, bRNN(q1) = {p1,p3} and bRNN(q2) ={p2}.  

Algorithms-Optimizations 
We propose algorithms for monochromatic and 
bichromatic queries involving an arbitrary number k of 
RNNs in restricted or unrestricted graphs. Due to space 
constraints, in the following description we assume 
restricted networks and that k=1. Our algorithms use the 
following lemma for pruning the search space.  
Lemma 1 Let q be a query point, n a graph node and p a 
data point satisfying d(q,n) > d(p,n). For any point p′≠p 
whose shortest path to q passes through n, it holds that 
d(q,p′) > d(p,p′), i.e., p' ∉ RNN(q).  



Proof. d(q,p′)= d(q,n)+d(n,p')>d(p,n)+d(n,p')≥ d(p,p′). [¯ ] 
For instance, in Figure 1a, d(q,n3)=4 > d(p1,n3)=3. Thus, 
any data point (other than p1) whose shortest path to q 
passes from n3 cannot be a RNN of q because it is closer 
to p1 (than q). On the other hand, p1 ∈ RNN(q) if there is 
not other data point within distance d(p1,q) from p1 
(which is true in this example).  
The first algorithm, called eager, initializes a heap H and 
inserts the source node. When a node n is de-heaped, 
eager applies Lemma 1 in order to determine whether the 
expansion should proceed. In particular, it first retrieves 
the NN of n by expanding the network around n (we use a 
technique similar to Dijkstra's algorithm). If no data point 
is discovered within distance d(n,q) from n, the algorithm 
en-heaps the adjacent nodes of n. If there is a point p, 
such that d(n,q)>d(n,p), the expansion does not proceed 
further because (according to Lemma 1) n cannot lead to a 
RNN of q. In this case, however, we need to verify (by 
another network expansion around p) if p ∈ RNN(q), in 
which case p is added to the result. Furthermore, p is 
marked as verified in order not to be expanded, if it is 
found again in the future through another node.  
As an example consider the RNN query of Figure 1a 
initiated at node n4, which is inserted into H=<n4,0>. 
Then, n4 is de-heaped and its adjacent nodes are added to 
H=<n3,4>,<n1,5>. The subsequent removal (from H) of n3 
triggers an expansion around n3 for finding potential data 
points closer than the query. In this case, d(n3,p1)=3 < 
d(n3,q), meaning (by Lemma 1) that we do not search 
farther, i.e., the adjacent nodes of n3 are not inserted to H. 
Since q=NN(p1), p1 is an actual result. Next, n1 is de-
heaped, its NN p2 is discovered and the search for RNNs 
terminates because d(n1,q)=5 > d(n1,p2)=3. The final step 
simply verifies p2 as an actual result because q=NN(p2).  
Although eager minimizes the number of nodes inserted 
into the heap, it may perform numerous local network 
expansions for (i) retrieving the nearest point p of a de-
heaped node n and (ii) for verifying whether p ∈ RNN(q). 
The lazy algorithm delays pruning until a point is visited. 
In particular, assuming single RNN retrieval, when the 
de-heaped node n does not contain a point, lazy simply 
inserts its adjacent nodes into H. If n contains a point p, 
the expansion stops since every subsequent node is closer 
to p than to q. Figure 2 illustrates an example where the 
first data point (p1) is discovered when node n4 is de-
heaped. Unlike eager, lazy does not have to retrieve the 
NN of n4. However, it still has to verify whether 
p1∈RNN(q) by an expansion that visits nodes n5, n2 and 
n3 before determining that q=NN(p1).  
Lazy takes advantage of verification queries to prune the 
search space. Specifically, let n be a node visited by the 
verification phase of a data point p. If n has not been 
visited by the expansion around the query, it means that 
d(n,p)<d(n,q) since nodes are visited in ascending order of 
their distances and the verification query has maximum 

range d(p,q) (i.e., d(n,p)<d(p,q)≤ d(n,q)). Therefore, (by 
Lemma 1) n cannot lead to any RNNs of q. For instance, 
in Figure 2 the verification of p1 will encounter n5; thus, 
when n5 is de-heaped later it will be immediately 
discarded. On the other hand, if n has already been visited 
by the expansion around q, we compare the distances 
d(n,p) and d(n,q). If d(n,p) < d(n,q), all nodes that were 
inserted into H by the expansion of n can also be 
eliminated. In Figure 2, since d(n2,p1) < d(n2,q), node n7 
(inserted during the processing of n2) cannot lead to a 
RNN. Similarly, n6 (inserted during the processing of n3) 
does not need to be expanded because d(n3,p1) < d(n3,q) 
and lazy terminates with RNN(q)={p1}. 

n
2

n
1

q

20

15

10

3

6

n34
n

64

p
1

n
4

n
5

9

n
7

 
Figure 2 Example of single RNN by lazy 

In addition, we propose two optimized versions of the 
basic algorithms. In particular, eager-M materializes the 
KNNs of each node n, where K is the maximum number 
of RNNs to be requested by any query (typically, K<<|P| 
where |P| is the dataset cardinality). This choice supports 
efficient updates in the presence of object insertions and 
deletions. The lazy-EP algorithm (EP stands for extended 
pruning) expands the network in parallel using an 
additional heap that applies the pruning effect of the 
discovered points. All versions can be extended for 
arbitrary values of k and retrieval of bichromatic queries. 
Extensive experiments with various datasets show that the 
problem characteristics have a significant effect on the 
behavior of the algorithms. Lazy has lower CPU overhead 
than eager in most settings (therefore, it may be 
preferable in the presence of large buffers), but it is very 
expensive for graphs (i.e., computer networks) that incur 
exponential expansion. Lazy-EP usually provides 
improvements over the basic algorithm. Eager has a more 
balanced behavior than both lazy and lazy-EP, but the best 
choice for all settings is eager-M, which, however, 
requires the materialization of the NN points of all nodes. 

References 
[KM00] Korn, F., Muthukrishnan, S. Influence Sets Based 

on Reverse Nearest Neighbor Queries. SIGMOD, 
2000. 

[SRAA01] Stanoi, I., Riedewald, M., Agrawal, D., Abbadi, 
A. Discovery of Influence Sets in Frequently 
Updated Databases. VLDB, 2001. 

[TPL04] Tao, Y., Papadias, D. Lian, X. Reverse kNN 
Search in Arbitrary Dimensionality. VLDB, 2004. 


