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Abstract. This paper presents a new block-based motion estimation al-
gorithm that employs motion-vector prediction to locate an initial search
point, which is called a search center, and an outward spiral search
pattern with motion-vector refinement, to speed up the motion estimation
process. It is found that the proposed algorithm is only slightly slower
than cross search, but has a peak signal-to-noise ratio (PSNR) very
close to that of full search (FS). Our research shows the motion vector of
a target block can be predicted from the motion vectors of its neighboring
blocks. The predicted motion vector can be used to locate a search

center in the search window. This approach has two distinct merits. First,
as the search center is closer to the optimum motion vector, the possi-
bility of finding it is substantially higher. Second, it takes many less
search points to achieve this. Results show that the proposed algorithm
can achieve 99.7% to 100% of the average PSNR of FS, while it only
requires 1.40% to 4.07% of the computation time of FS. When compared
with six other fast motion estimation algorithms, it offers the best trade-
off between two objective measures: average PSNR and search time.
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1 Introduction Good compression ratio means reducing the size of the

Motion estimation has been a hot research topic for years.coded video with graceful degradation of quality. Motion
It is the most important part of video compression and cod- €Stimation is a technique designed exactly to achieve good
ing, as it exploits as much temporal redundancy as possibleCOmpression ratio in video compression. However, speed
to reduce the size of the data required in digital video stor- @nd quality are often conflicting goals. Nowadays, re-
age and transmission. Low-bit-rate video transmission is Searchers are still actively seeking an optimum trade-off
therefore impossible without the use of motion estimation. Petween these two factors. _
Although motion estimation is such a useful method in re- ~ Most of the motion estimation algorithms proposed tend
ducing the size of a coded video sequence, it is computa-t0 be biased towards achieving speed by sacrificing visual
tionally intensive, which makes real-time video coding, 9uality. In view of this, we were motivated to find a good
though not impossible, a difficult task. Parallelization may {trade-off between speed and quality, that is, to increase the
help, but motion estimation often lies on the critical path. In SPeed as much as is consistent with good visual results. We
a typical video encoding system, motion estimatiéuil- fo.cusefd. on _the block—bas.ed. motion estimation technique,
search block matchingan take 50%Ref. 1) to 75%(Ref. since it is widely adopted in international standards.
2) of the computation time. In this paper we propose a model to formulate a method
In the past two decades, there has been extensive relo predict the search centénitial probe point in the search
search into motion estimation techniques. Many such tech-spacg by using the spatial information in the current frame,
niques, including pel-recursive techniques, gradient to reduce the search space for motion estimation. A search
technique$; 8 frequency-domain techniqu%»gt} and block- pattern biased towards the search center can also help in
based matching techniques, have evolved. Among thesereducing the search space. Thus, a search-center-biased
block-based matching has been widely adopted for interna-Search pattern can speed up the searching process in motion
tional standards such as the H.281H.2631° MPEG-11° estimation. In general, the proposed algorithm has a peak
and MPEG-2* due to its effectiveness and robustness. signal-to-noise ratio(PSNR very close to that of full
Therefore, most of the research work has been concentrategsearch(FS) with substantial speedup. Four sequences, “Su-
on optimizing the block-based motion estimation tech- sie,” “Football,” “Flower Garden,” and “Mobile and
nigue. Calendar,” were used to test the proposed method. From
As the demand for real-time video coding increases for our results, it is found that our method is able to achieve
different applicationgvideo recording, video conferencing, 99.7% to 100% of the average PSNR of FS while only
video phone, etg, fast video encoding with good compres- requiring 1.40% to 4.07% of the computation time. In com-
sion ratio as well as high signal-to-noise ratio is essential. parison with three-step sear€hSS), one of the most popu-
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lar motion estimation algorithms, our proposed method can 2.2 Fast Matching Algorithms

achieve better quality0.8% to 4% betterwhile requiring
39.3% to 55% less computation.

2 Block-Based Motion Estimation

2.1 Overview
The principle of block-based motion estimation in most of

the video standards is that the video image frame is parti-
tioned into blocks, and each block is an elementary unit.

Motion estimation is performed by matching each block in

the current frame against a region in a reference frame to

find the best match. The criterion for the best match is well

Fast matching methods use a matching criteigiiB, V)
other thanE(B,v) in Eq. (1) for finding a best match. The
reason is that some pixels in a block contribute most of the
error or energy to the residue. Therefore, it is believed that
not all the pixels are needed in the matching criterion.
Thus, fast matching methods use another matching criterion
derived from a subset of pixels:

where B’'CB.
©)

The selection of the pixels iB’ can be either statté 18

E'(BV)= 2 [leudn)—lefr+v)|",

reB’

- 19-21 617
accepted to be the minimum error, or energy, of the residue 9" dynamic:®~*" Standard subsamplify*’is an example

obtained from the subtraction of corresponding pixels be-

tween the blocks, which is given by the following
equatior®

E(B,v>=§B w1 = el T+ V)|, (1)

whereB contains all the pixels in the current blockjs a

of static pixel selection. Some other algorithms select pix-
els that possess special features, such as the edge pixels in
block®2! or those with the largest gradient
magnitude’> These constitute dynamic pixel selection.
Both static and dynamic selection can reduce the number of
pixels needed for evaluating the matching function. The
amount of computation saved can be increased by adjusting
the subsampling ratio or by limiting the number of pixels to
be selected from the block, and hence can be chosen to suit

displacement vector that addresses the reference block lothe problem. However, subsampling can lead to severe deg-

cation inl ¢, 1,{r) is the intensity of the pixel at of the
current framd .,;, andl (r) is the intensity of the pixel at
r of the reference framég. Whenn=1, Eq. (1), evalu-
ates the sum of absolute differendé$AD), and whenn

radation in quality, since the error contributed by the dis-
carded pixels may be high. Dynamic selection of pixels is
better at preserving the quality, though at the cost of more
computation, since preprocessifsgich as edge detection or

=2, it evaluates the total energy instead. It is more sensible 9radient evaluationmust be done before the selection pro-

to haven=2, since if the total energy is lower, the number
of bits required to code the residue is smaller. Howexer,
is usually set to 1 in practice, since that involves no multi-
plication and hence lower computation cost. In particular,
whenE(B,V) is divided by the total number of pixels in the

block, the resultant quantity will be the mean absolute error

(MAE) or mean squared errdMSE).® By using one of
q y g

the motion vectoMV) obtained for the blockB can be
generally formulated as follows:

MV (B)=arg minE(B,v),
veS

2

cess can begin.

2.3 Fast Search Algorithms

Fast search methods do not modify the matching criterion

E(B,v) as such. They speed up the search by reducing the
number of search points in the search area. This basically
reduces the search space of the whole searching process.

"Fast search can be described by the following equation:

MV '(B)=arg minE(B,v), where S'CS.

veS'

(4)

WhenS' is a constant set, it means that the search 8rea
has been subsampled by a constant pattern. V@iens a

where S is the search area, which consists of all possible dynamic set, it can be determined by the MV's of the

motion vectors.

MV (B) is well accepted to be the optimal solution be-
cause it is the motion vector that yields the lowest MAE or
MSE, which in turns result in the highest PSNR. One ob-
vious way of findingMV (B) is to do an exhaustive search,
i.e., the FS algorithm. Although FS is computationally in-

tensive, it can always guarantee an optimum solution to Eq.

(2). In view of this, many researchers have tried to find

neighboring blocks, or the MVs of the blocks in the previ-
ous frames. Some fast search algorithms find the MVs in
iterative steps where the search space is determined by the
previous iteration. They can be formulated as follows:

MV "(B)=arg min (5)
veS (MV"1(B),n)

E(B,v), where S'CS.

ways of cutting corners in order to speed up the process ofIn the above equatior§’(-,-) is a function of the current

finding the desired MV. A lot of fast motion estimation
algorithms have been propos®a® Most of them have
successfully reduced the computation complexity of finding
the MV, but few of them can guarantee an optimum solu-

iteration number and the MV of the previous iteration.
Some fast search algorithms set the number of iterations to
a constant, as in the T$% cross search C%,and one-
dimensional F§1DFS.? Some make it dynamic and just

tion. These proposed algorithms can be generally classifiediterate until a termination rule is satisfied. One-at-a-time

into two categories: fast matching and fast search algo-

rithms.

search(OT9),% new three-step seardNTS9),?’ four-step
searchFS9,?® and diamond searaiDS)? are examples of
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this kind of fast search algorithms. Among all these algo- determine this relationship, object extraction may help, but

rithms, TSS is the most widely used due to its simplicity. it usually involves edge detection or segmentation, which
Fast search algorithms like those mentioned above canmakes it a computationally complex and time-consuming

reduce the computation cost a great deal. The reduction inprocess. On the other hand, the MVs of the blocks can be

the number of search points is usually justified by the as- considered to see if they belong to the same object. Fur-

sumption that the matching functide(B,v) (or the MAE thermore, if the predicted MV is accurate enough, we only

or MSE) increases monotonically when the distance be- need to search for the MV candidates that do not differ

tween the search points and the absolute minimpm, much from the predicted MV, and hence the search space

—~MV(B)|, increases. By using this assumption, many can be reduced.

other fast search algorithii’s’ successfully reduce the

number of search points by using differe®t. However, 3.2 Assumptions

when E(B,V) is plotted on the plane spanned by the

surface is neither unimodal nor smooth. Althoughvaries

among these algorithms, they all suffer from the possibility 1. The motion in a typical video sequence consists of
of being trapped in a local minimum, resulting in nonopti- mainly translational and rotational motion.

mal solutions. .
. 2. The motion vector of a block represents the overall
On the other hand, some fast search algorithms make motion of the block.

use of the temporal and spatial information to reduce the

number of _search E)oints. To utilize tgmporal information, In a typical video sequence, there are motions other than
some algorithnt§~** perform MV prediction based on the  transiational and rotational motion. The first assumption
motion vectors of the neighboring blocks in the previous gays that these kinds of motion can be modeled by block-
frame. By doing so, the number of search points to be Vis- pased motion estimation. The second assumption says that
ited can be reduced. the MV can well approximate most of the motion of the

H 35 H H . . . .
On the other hand, some algorithifis® use spatial in- pixels within a block. Both assumptions are considered rea-
formation to speed up the MV estimation. Statistically, the ggnaple in a block-based sense.

MV of a block is highly correlated with the MVs of the
neighboring blocks in the current frame. This may be ex- ]
plained by the assumption that objects usually span through3.3  Approach Overview

several blocks and hence the MVs of the blocks will not To find the MV, one first predicts it with the MV prediction

differ too much when translational motion is considered. model. The prediction model tests whether neighboring

Therefore, only a portion of the search points need to be pjocks lie on the same object, and if so, the MV is predicted

visited, and hence the process can be sped up. ~ from the MVs of the neighboring blocks. There can be
In these algorithms, MVs of adjacent or neighboring more than one predicted MV; in this case the MV that gives

blocks in the current frame or previous frame are used in the minimum MAE will be selected. The final predicted

the MV determination. However, they suffer from one ma- Mv will be used to address a search center in the search

jor problem: they always select the MVs of the neighboring window. After that, a search-center-biased search pattern

blocks in the current or previous frame as candidate MVs wj|| be used to locate the best match. An MV refinement

of the current block. This assumes that the MV of the cur- technique will then be employed to find the final M%.

rent block must have relationShip with the MVs of the Figure 1 depicts the Conceptuai flow of the approach_

neighboring blocks, which is not always the case. Some

algorithms, like PSA? predict the MV from the weighted _ o

average of the MVs of the neighboring blocks. This inher- 3.4 Model for Motion Vector Prediction

ently assumes that the relationship between the MVs is a

weighted average. In reality, these assumptions may not beg 4 Relationship of motion vectors of the blocks

true. The MV of a block may not be equal to one of the lying on the same object

MVs of neighboring blocks or to the weighted average of ) o )

the MVs of neighboring blocks. Conglder two bIogk_sA and B at two dlstinct r_espeptwe
In our research, we focus on the issues concerning thelocationsA and B initially (t=0), as depicted in Fig. 2.

MV prediction based on the spatial information. Temporal Suppose at time, block A and blockB are estimated to

information is important, but we believe that spatial infor- have moved tA’ andB’, respectively.

mation should be considered first. If block A and blockB lie on the same object,

As in block-based motion estimation, we assume that:

3 Proposed Fast Motion Estimation ||AT)B||=||ATE’||

3.1 Initial Considerations

In a typical video sequence, there are many objéotdud-
ing the background as an objgdhat span a group of .
blocks. Thus, the MVs of the blocks within this group must < X%,+Y2,=||A’A+AB+BB'||?

have some relationship between them. If the relationship

between the MVs of the group of blocks can be identified, 2 2 |- i i i i i
it is then possible to predict the target MV from the MVs of Ko+ Ya=l=adVi=ay(Dj+ Xagi +Yagi DV
the group of blocks to which the target block belongs. To +by(1)j]|?

< |AB[*=[A"B"|?
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Image Sequence

==

L ok AT

Searching with search

Search center prediction center biased pattern and Final motion vector

refinement

Fig. 1 Conceptual diagram

& Xigt Yas=[bu(t)—at)+Xap]?
+[by(t) —ay(t)+ Yap]?.

The above equation is true for all positive values.dfow-

ever, we are only interested in small valuestobecause

the frame time is usually small.
Call the right-hand sid&(t). Then, for smallt=At,

R(At)=R(0)+R(0) At+h.0.t~X25+ Y25+ R(0) At
" R(1)=2[b,(t) — ay(t) + Xa][ by(t) —ax(t)]
+2[b,(t) —a,(t)+ Yasl[by(t) —a,(t)].
. R(0)=2Xag[by(0) — a,(0)]+2Y og[ by(0) — &,(0)].
. R(AD)=XZg+ Yag+2{Xag[ by(0) — a,(0)]
+Yag[by(0)—a,(0)]} At.
EquatingR(t) with the left-hand side, we have
Xag[04(0) —8,(0)]+ Y e[ b,(0) —&,(0)]=0. 6)
If the frame timeAt is small enough,

a,(At)—a,(0) ay(At)—ay(0)

. b, (At)—b,(0 b,(At)—hb,(0
bx(o)m%, y %%ty() (8)

Substituting Eqs(7), (8) into Eq. (6) yields

B._.
j BlockB| )
7 A4 = a (0 +a, ()]
, | B _ ; ’
A | BB =b,()i +b,()]
ay(l) ; Initial Condition (¢ =0)
" AB . -
A4 =0
Y Xup (- B0 F_G
A
Block A
<—>

a()

Fig. 2 Prediction model

Xaglbx(At) —a,(At) ]+ Yap[by(At) —a, (A1) ]=0.  (9)

For smallAt, any two blocks that satisfy the above con-
dition lie on the same object. Therefore, E8). can be used
to test whether two blocks lie on the same object, and to
predict the MV of the target block. Equatioiig) and (8)
actually attempt to approximate the velocities of the blocks
by the their respective average velocities. For a typical
video sequence, the frame timé is about 1/25 to 1/30 s,
which is usually small enough.

3.4.2 Prediction of target motion vector

Consider a target block and the neighboring blocks, B,
C, D as depicted in Fig. 3. Let the

MV of Abe a (At)i+a,(At)]
MV of Bbe b,(At)i+b,(At)]
MV of Cbe c,(At)i+c,(At)]
MV of D be d,(At)i+d,(At)]
MV of The t(At)i+t,(At);.

If T lies on the same object & B, C, or D, the MV of
T can be predicted from the MVs of A, B, C, or D. Al-
thoughT may be predicted from blocks other than A, B, C,
and D, which are not necessarily neighboring blocks, it is
more likely thatT and its neighboring blocks lie on the
same object.

Consider four neighboring blocks. There are altogether
10 possible combinations ofF lying on the same object
together with one or a pair of the four neighboring blocks.
There are also cases whefelies on the same object as
more than two neighboring blocks. However, these cases
can always be decomposed into two or more of the above
cases. We first consider the case wielies on the same
object with one and only one of its neighboring blocks.
Figure 4 explains each case and describes how the predic-
tion of the MV is done in each.

B| c| D
WIAT
<+
W

Fig. 3 Target block (T) and neighboring blocks (A, B, C, and D).
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Case | Blocks Pair MY Prediction
t{Ay= a (A1) 10)

Case | Blocks Pair MY Prediction
: (A1), 6,(AD) = (aAr), by(AD) - b{(AD) + alA) (14

A0 = 5(81) = b1 - by{AD an 0D, 5B0) = (@B, 56 (E)

t(At) = c)(Ar) 12)

(1(A), 1,(80) = (a(A), d(At) + d(A1) - afdr))  (16)

t(Af) + t,(Ar) = di(Ar) + dy(A1) (13)

(0d80), 1,(A1) = (b(AD) - By(AD) + 6(A0), efAn)) (1)

9 B D (A1), (A1)

Fig. 4 MV prediction when T lies on the same object with one and = ((b(Ad) + d(At) + d(AL) - BAAD) / 2, (BAAL + d)(Ar)
only one neighboring block. ! + d{An—b(A1) / 2) (18)
0 C il (608, 1,(A0) = (dBD) + (A — (8D, e(Ar)  (19)

In each of the above cases, the MV of,
(tX(At),ty(At)), lies on a straight line defined by the cor- Fig. 5 MV prediction when T lies on the same object with one and
responding equation in Fig. 4. Then,Tiflies on the same  ©nly one of the neighboring block pair.
object as one and only one of the block pair

A, B A A, D B B, D D
(A, B), (A, C), (A D), (B C) (B D), and(, D), in that case the predicted MVs are considered to be the

the MV of T will be the intersection of the lines defined in MVs of the neighboring blocks ank®.0). Figure 7 depicts

the corresponding cases. ibil h his N
This idea can be extended to other cases as well. Figure®"€ Possibility where this happens.

5 summarizes the cases whéréies on the same object as . )
two neighboring blocks. 3.4.3 Further considerations

WhenT lies on the same object as three of the neigh- First, although it is assumed that the two blocks lie on the
boring blocks, it can be decomposed into cases 5 to 10 insame object whenever the MVs of two blocks satisfy Eq.
Fig. 5. For example, ifl lies on the same object as blocks (9) (because it is not a conformal mappipng@ven if the
A, B, C, this can be decomposed into cases 5, 6, and 8, asMVs satisfy Eq.(9), there is a small possibility that corre-
depicted in Fig. 6. sponding blocks may not lie on the same object.

When none of cases 5 to 10 holdhkat is, there does not Second, it is required to know which block lies on the
exist a pair of neighboring blocks that lie on the same ob- same object as the target block. We may use(Bgto do
ject), we have no way to explicitly predict the MV a@f and the testing for the different pairs of blocks involved. For

Locus of search — | Predicted Search Point by
Locus of search points defined by (17) in case 8.
points defined by 13)
12 Predicted Search Point
by (14) in case 5.

B Predicted Search Point
Prt?dlcted Searcfh by (15) in case 6.
Point by (19) in
case 10.

<+ &

< dtd

by-bx
Predicted Predicted Search Point
Search Point by (16) in case 7.
by (18) in
case 9.
] Locus of search

Locus of search 2 points defined by
points defined by T 10)
(1)

A

by—b, ditd, a

Fig. 6 Prediction of Search Points when T lies on the same object as more than two neighboring
blocks.
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Locus of search
points defined by

Locus of search

13

points defined by

Search point correspond to

12) MYV of the top block
—— | Search point
o correspond  to
MV of the top-
Search point right block
(0,0) added for «C
safety purpose. Y
y purpo < d+d
by -bs » [ | Search point

correspond to -

Search point

MV  of the

correspond to

left block

MV  of the

top-left block

Locus of search

points defined by

Locus of search

n

*

by—by

points defined by
(10)

o4

detd, ax

Fig. 7 Search points when there exists no pair of adjacent blocks lie on the same object.

example, if we need to know whether blodkB, or C lies
on the same object, we may use E9).to test whether any
of the block pairs A,B), (B,C), and (C,A) lie on the

|Ae|<[Xag|(0.5+ 0.5 +[Yap|(0.5+ 0.5 = Xap| +|Yag|.

Therefore, we have to mak€X,g,Y ag) =|Xag| +|Yag| tO

same object. But since the test is not a conformal mapping, ensure it is an upper bound of the errbe. For half-pixel

we actually cannot conclude that B, or C lies on the same

precision,|Ab,(At)[<0.25, |Aa,(At)|<0.25, |Aby(At)]

object even if all the three tests are positive. In this case, we . 55 |Aa,(At)|<0.25, we have

can only conclude that it is likely that at least one block
pair (A,B), (B,C), or (C,A) lies on the same object.

Therefore, we should consider all the cases involved and
take all the three MVs predicted in each case as possible

MVs of T. The MV that gives the minimum MAE should
be chosen as the predicted MV ©f

Third, for the testing the condition itself, the left-hand
side of Eq.(9) does not necessarily equal zero even if the
block pair involved really lies on the same object. There-
fore, for practical applications, the testing conditions given
in Eq. (9) should be modified as follows:

|Xag[bx(At) —a,(At)]+ Yag[by(At) —ay(At)]|
= G(XAB ,YAB), (10)

wheree(-,-) is the error tolerance function, which is always

the upper bound of the error of the right-hand side of Eq.

(9), and depends oK g andY a5 .
Let Ae be the error of left-hand side of E(). Then

|Ae|$|XAB|[|Abx(At)| + |Aax(At)|]
+1Yagl[|Aby(At)|+[Aay(AD)[].

For full-pixel precision, |Ab,(At)|<0.5, |Aa,(At)]
<0.5, [Aby(At)|<0.5, [Aa,(At)|<0.5, we have

|Ae]<|Xxp|(0.25+0.25) +| Y 15/ (0.25+0.25)
=0.5(|Xap|+|YasD.

Therefore, we have to make(Xag,Yag)=0.5(Xxg|
+|Yag|) to ensure it is an upper bound of eruve.

Finally, we do not know whethel lies on the same
object as one of its neighboring blocks, since the MVTof
is unknown. In a typical video sequence, there is a large
chance that a block lies on the same object as one of its
neighboring blocks. Therefore, the proposed algorithm al-
ways assumes thatlies on the same object when we know
that at least one pair of the neighboring blocks lie on the
same object.

3.5 Search-Point Pattern

The distribution of MVs in a typical video sequence is
highly biased towards the central regiBf! of the search
window. Thus, it is reasonable to place more search points
in the central region of the search window to obtain more
samples. However, that is true only when video sequences
all consists of gentle motion. This may not be the case
when there is a lot of fast motion or panning motion in the
sequence. On the other hand, with accurate MV prediction,
the distribution of actual MVs should be highly biased to-
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‘ Search center in (j, j)

@ Search points in SP(;, j,0)

Search points in SP(i, j, 1)

N\ P i=3 @ Search points in SP(i, j,2)
\/

O Search points in SP(, j,3)

210g2Lmax(sx+IiI, syHit = 8
) M)
N j—
sy+1il=10

sx+1i]=9

Fig. 8 Search Center Biased Search Pattern with search center (—2,3), sx=7, and sy=7.

wards the predicted MV even without restricting the se- mines the maximum possible value f so that 2 is the
quences to mainly gentle and mild motion. It is therefore maximum possible step size. Figure 8 shows the search-
reasonable to place more search points near the predictedenter-biased search pattern whes s,=7 with search
search center, which is the search-point position in the center (,j)=(-2,3).
search window addressed by the predicted MV. As shown in the example, the density of search points is
high in the region close to the search center and decreases
3.5.1 General search pattern with increasing distance from the search center.
The general search-pattern set at a search-point location The searching begins at the search center and then pro-
(i,j) is defined as follows: ceeds to SR(j,n) with increasingn. This makes an out-
ward spiral search, and whenever the minimum is found
SRi,j,n)={(x,y):x=i+2"p, y=j+2"q within the spiral, the search will terminate. Figure 9 depicts
the outward spiral search pattern used in our implementa-
where tion. After searching with the search-center-biased search
pattern, a position with minimum MAE is located. This
p.qe{—-1,0,3, |p|+|g[+#0, and gives a preliminary MV, from which MV refinement is
required to find the final MV. The refinement process is the
same as that in TSS. But the refinement will take a smaller
initial step size when the minimum position is closer to the
search center.

—S,SXSS,, —S,SYS<S}, (11

wheres, ands, are the half width and half height of the
search window.

The general search patterns with different parameters
can be combined to form more complex search patterns.3.6 MV Refinement

With the general search pattern, we can proceed to deflneAfter the search with CBSR(,i.), the preliminary MV

the search-center-biased search pattern. has been obtained. It is only a coarse MV, and hence MV

3.5.2 Search-center-biased search pattern refinement is needed. Since the search pattern in the first
) step search is a center-biased one, the preliminary MV that

The search-center-biased pattern around a search centegorresponds to search points closer to the search center is

(i,j) is defined as less coarse than those that correspond to search points fur-
ther away from the search center. Thus, the step size will be

CBSRi,j)={(1,])}Uo=n=og,U|maxs,+ il.s, + /i) SRI.J,N) smaller if the minimum search-point position is closer to
(12 the predicted search center. The MV refinement process is

actually the same as that in TSS. Figure 10 shows one
The search-center-biased pattern is the union of generalpossible refinement with search centef-ag,1).

search patterns of different step sizes around the search If the preliminary MV found in the first step lies at one
center (,j) plus the search center itself. In the definition of of the corner points of the centralx® region around the
CBSP(,j), the expression lofmax(+|i|.s,+|j[)] deter- search centerif,j.), two more search points are visited.
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Minimum found within the spiral
and the search terminate. i.e. the
search terminate after all the
search points in SP(i., j., n) been
/ visited and the minimum MAE
occurs at one of the search points
in SP(ic, jc, n-1).

. Search Center (i, ji.)

@ Search  point  with
B current minimum MAE

Fig. 9 Outward Spiral Search Pattern with a search center (2,—1).

That is because at corner points there are only two directly “Flower Garden,” and “Mobile and Calendar.” The im-
neighboring search points, compared with four at the oth- age size of “Football” and “Susie” is 728480, whereas
ers. Therefore, we cannot guarantee that a corner point hashat of “Flower Garden” and “Mobile and Calendar” is
minimum MAE among all its direct neighbors. The two 352x240. All the sequences are encoded into MPEG2 bit-
additional search points are the corresponding directly streams using the MPEG2 encoder from MS5@ith the
neighboring search points. Figure 11 shows an example ofmotion estimation algorithm changed to the proposed algo-

this. ) ) ) ) ) rithm. Each group of picture§GOP in “Football” and
After this MV refinement, the final MV is obtained. “Susie” contains 15 frames, while those in “Flower Gar-
] den” and “Mobile and Calendar” contain 12 frames. The
4 Results and Analysis block size is 1616, and 2 two-frame interpolation struc-
The algorithm was implemented and has been tested onture was used. The search range-i81 to 31 pixels for
four 90-frame MPEG test sequences: “Football,” “Susie,” “Football” and “Susie,” and —15 to 15 for “Flower Gar-

Search point with mini Search point with minimum
earch point with minimum MAE in second step

MAE after all refinement. It refinement. It is (2, 3) in
is (1, 3) in this example. this exampie ’

First Step search with
CBSP

Second Step Refinement

about (2, 1)

@ Third Step Refinement
about (2, 3)

. Final Winning Search
Point at (1, 3)

@ \

®.

Search point  with
minimum MAE | in
first step search. It is
(2, 1) in this example.

Fig. 10 Possible refinement of predicted MV with search center (—2,1).
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“ é Two additional search

/ points which are the

direct neighbors of the

corner point at which

/ @ the minimum MAE

, W occur in the first step
¢

search

@

Search  point  with
Minimum MAE in first
step search.

Fig. 11 Possible search pattern if the preliminary MV determined in the first step lies on the corner
points in the central 3X3 region.

den” and “Mobile and Calendar.” Other fast search algo- with CS, the proposed algorithm uses a 9.14% to 128.67%
rithms such as TSS, NTSS, FSS, CS, 1DFS, and DS havearger TNSP. Although the proposed algorithm is not as
also been implemented for comparing their performance fast as CS in general for the sequences tested, it achieves
with the algorithm proposed in this paper. The performance much better PSNR.
is evaluated on four counts: average PSNR, average MSE, As shown in the above, most algorithms have been suc-
the total number of search poinfENSP visited, and the cessful in optimizing one objective measure like average
total time taken in the process of motion estimati®iVIE) PSNR, average MSE, TNSP, or TME. However, it is not
for the whole sequence. The total number of search pointsfair to use just one objective measure to rank the algo-
is the sum of all the search points visited by the algorithm, rithms. It is necessary to establish a metric to evaluate the
both in forward and in backward prediction. The TMEs performance of each algorithm. We proposed to normalize
were measured on a Pentium Il 333 machine running Linux the average PSNR and TME of each algorithm to those of
in single-user mode. The TME of each algorithm shown in FS and plot the normalized average PSRM®PSNR versus
Table 1 is the average of five experiments. the normalized TMENTME). We plot the NTME instead

As shown in Table 1 for the “Flower Garden” se- of the NTNSP because the NTNSP does not include the
quence, the proposed algorithm can achieve an averageoverhead of search-center prediction and search-pattern
PSNR very close to that of FS. It achieves 99.77% of the generation. The results are given in Table 2.
latter PSNR. Similar results have been obtained in the other  Figure 12 depicts the performance of each algorithm for
sequences, the proposed algorithm achieving 99.77% tothe “Flower Garden” sequence. In this diagram, the best
99.94% of the PSNR of FS. On the other hand, FSS and algorithm would reside in the top left corner, and the worst
1DFS can only achieve 96.36% to 99.79% and 98.52% to in the bottom right corner. On the other hand, algorithms
99.79% of the PSNR of FS, respectively. that optimize for quality by sacrificing speed would lie in

The proposed algorithm only requires 1.40% and 1.34% the top right corner, whereas those that optimize for speed
of the TNSP of FS for the sequences “Football” and “Su- by sacrificing quality would lie in the bottom left corner.
sie,” respectively, and 4.07% and 3.54% for the sequences As shown, CS is the fastest algorithm. However, it has
“Flower Garden” and “Mobile and Calendar.” Compared the poorest PSNR among all the algorithms evaluated. On

Table 1 Average PSNR, average MSE, and TNSP for the test se- Table 2 Normalized average PSNR, TNSP, and TME for “Flower

guence “Flower Garden.” Garden.”
Algorithm PSNR MSE TNSP TME (us) Algorithm NPSNR NTNSP NTME
FS 26.319 155.656 16,337,910 95,325,491 Proposed 0.9977 0.0407 0.0517
Proposed 26.259 157.930 664,860 4,932,502 FS 1.0000 1.0000 1.0000
TSS 25.250 198.210 1,218,592 8,629,149 TSS 0.9594 0.0746 0.0905
NTSS 25.180  200.969 1,095,426 7,823,985 NTSS 0.9567 0.0671 0.0821
FSS 25.361 193.336 909,991 6,641,623 FSS 0.9636 0.0557 0.0697
1DFS 26.240 158.744 2,441,837 16,182,176 1DFS 0.9970 0.1495 0.1698
CS 22.666  355.600 609,177 4,104,747 Cs 0.8612 0.0373 0.0431
DS 25.297 196.142 824,566 5,818,942 DS 0.9612 0.0505 0.0610
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Overall quality for 'Flower Garden'

1.02

&FS
OProposed
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Fig. 12 Overall quality of each algorithm for the “Flower Garden”
sequence.

the other hand, FS achieves the best PSNR, but is the slow-

est algorithm in the group. Thus algorithms that optimize

either on speed or on quality do not come close to the top
left corner. A good trade-off has to be made in order to

place an algorithm close to the top left corner. Other algo-

rithms like TSS, NTSS, FSS, and 1DFS lie closer to the top
left corner, indicating that they have made better trade-offs.
But among all the algorithms, the proposed algorithm is the
closest to the top left corner. This shows that the proposed
algorithm performs better than all the other algorithms, at

least for this particular sequence.

The PSNR behavior of the proposed algorithm over the
whole sequence is also important for evaluating its perfor-
mance. To investigate this, the PSNR of the proposed al-
gorithm, FS, and FSS are plotted versus the frame number.

FS and FSS are chosen for comparison because FS is the

common reference for PSNR comparison and FSS is the
next best algorithm among the group of algorithms evalu-
ated. Figure 13 depicts the PSNR of “Flower Garden” for
the proposed algorithm, FS, and FSS.

Besides the objective measures, we are also interested in
the subjective measure of the algorithms. Selected frames

in the sequence “Flower Garden” are used to perform this
subjective comparison. The proposed algorithm, FS, TSS,
NTSS, FSS, CS, 1DFS, and DS are then applied to the
selected frames to perform the motion estimation to extract
the MVs first, and then reconstruct the frames from the

PSNR for Flower Garden

BErEnandnd

Fig. 13 PSNR behavior for the “Flower Garden” sequence.

Fig. 14 Original and reconstructed frames by each algorithm: (a)
original, (b) FS, (c) proposed, (d) FSS, (c) 1DFS, (f) NTSS, (g) TSS,
(h) Cs, (i) DS.

MVs determined by each algorithm without error compen-
sation. The reconstructed frames are then compared with
each other. Figure 14 shows the frames in “Flower Gar-
den” as reconstructed by all the algorithms.

From these reproductions, it can be seen that the frames
reconstructed by FS, the proposed algorithm, and 1DFS
resemble to the original frame most, although some of the
details are missed. As for the other algorithms, they cannot
preserve the details of the roof and the edges of the tree,
showing that they can be easily trapped by a nonoptimum
solution. Although 1DFS shows almost the same visual
performance as the proposed algorithm, it is much slower.
This shows that the proposed search-center prediction
method can help in putting the initial search point suffi-
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ciently close to the optimum solution to reduce the chance 11.
of being trapped in a local minimum, and hence a lot less

search points are required. 12.

5 Conclusion and Future Directions

In this paper, a fast motion estimation algorithm based on 13-
search-center prediction and a search-center-biased pattern
has been proposed. The algorithm predicts the search centeyy.
by using a model, which formulates the relationship be-
tween the MVs of neighboring blocks lying on the same
object, before the MV search process. It is found that the
predicted search center is sufficient close to the optimum
solution so that a search-center-biased search pattern can bes.
used to speed up the MV searching process.

We have evaluated the proposed algorithm with four
video sequences, and its performance has been compare
with six other motion estimation algorithms. The results
give strong support to the belief that our proposed algo- 18.
rithm offers a good trade-off between speed and quality.
The proposed algorithm can achieve a PSNR very close to
FS with a lot less search points. From the test results on the
four sequences it is found that the proposed algorithm is
able to achieve over 99.7% of the PSNR of FS while re- 20.
quiring less than 4.1% of the computation time. When com-
pared with the other six algorithms, the proposed algorithm ,,;
achieves the best PSNR performance. Although the pro-
posed algorithm is not as fast as CS on three of the se-22.
quences, its PSNR performance is far better than that of
Cs.

Future research will be focused on improving both the 23
prediction model and the search pattern so that even greateps.
speedup and better PSNR performance can be achieved.
We shall consider incorporating different kinds of motion 25
such as zooming and the motions that originate from de-
formable objects, so that better MV prediction can be 6.
achieved. Also, the search pattern will be refined to further
reduce the number of search points, which should lead to?27:
greater speedup.

a7.
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