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Abstract. This paper presents a new block-based motion estimation al-
gorithm that employs motion-vector prediction to locate an initial search
point, which is called a search center, and an outward spiral search
pattern with motion-vector refinement, to speed up the motion estimation
process. It is found that the proposed algorithm is only slightly slower
than cross search, but has a peak signal-to-noise ratio (PSNR) very
close to that of full search (FS). Our research shows the motion vector of
a target block can be predicted from the motion vectors of its neighboring
blocks. The predicted motion vector can be used to locate a search
center in the search window. This approach has two distinct merits. First,
as the search center is closer to the optimum motion vector, the possi-
bility of finding it is substantially higher. Second, it takes many less
search points to achieve this. Results show that the proposed algorithm
can achieve 99.7% to 100% of the average PSNR of FS, while it only
requires 1.40% to 4.07% of the computation time of FS. When compared
with six other fast motion estimation algorithms, it offers the best trade-
off between two objective measures: average PSNR and search time.
© 2001 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1367865]
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1 Introduction

Motion estimation has been a hot research topic for ye
It is the most important part of video compression and c
ing, as it exploits as much temporal redundancy as poss
to reduce the size of the data required in digital video s
age and transmission. Low-bit-rate video transmission
therefore impossible without the use of motion estimati
Although motion estimation is such a useful method in
ducing the size of a coded video sequence, it is comp
tionally intensive, which makes real-time video codin
though not impossible, a difficult task. Parallelization m
help, but motion estimation often lies on the critical path.
a typical video encoding system, motion estimation~full-
search block matching! can take 50%~Ref. 1! to 75%~Ref.
2! of the computation time.

In the past two decades, there has been extensive
search into motion estimation techniques. Many such te
niques, including pel-recursive techniques,3–5 gradient
techniques,6–8 frequency-domain techniques,9,10 and block-
based matching techniques, have evolved. Among th
block-based matching has been widely adopted for inte
tional standards such as the H.261,11 H.263,12 MPEG-1,13

and MPEG-2,14 due to its effectiveness and robustne
Therefore, most of the research work has been concentr
on optimizing the block-based motion estimation tec
nique.

As the demand for real-time video coding increases
different applications~video recording, video conferencing
video phone, etc.!, fast video encoding with good compre
sion ratio as well as high signal-to-noise ratio is essen
952 Opt. Eng. 40(6) 952–963 (June 2001) 0091-3286/2001/$15.
.
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Good compression ratio means reducing the size of
coded video with graceful degradation of quality. Motio
estimation is a technique designed exactly to achieve g
compression ratio in video compression. However, sp
and quality are often conflicting goals. Nowadays,
searchers are still actively seeking an optimum trade
between these two factors.

Most of the motion estimation algorithms proposed te
to be biased towards achieving speed by sacrificing vis
quality. In view of this, we were motivated to find a goo
trade-off between speed and quality, that is, to increase
speed as much as is consistent with good visual results.
focused on the block-based motion estimation techniq
since it is widely adopted in international standards.

In this paper we propose a model to formulate a meth
to predict the search center~initial probe point in the search
space! by using the spatial information in the current fram
to reduce the search space for motion estimation. A sea
pattern biased towards the search center can also he
reducing the search space. Thus, a search-center-b
search pattern can speed up the searching process in m
estimation. In general, the proposed algorithm has a p
signal-to-noise ratio~PSNR! very close to that of full
search~FS! with substantial speedup. Four sequences, ‘‘S
sie,’’ ‘‘Football,’’ ‘‘Flower Garden,’’ and ‘‘Mobile and
Calendar,’’ were used to test the proposed method. F
our results, it is found that our method is able to achie
99.7% to 100% of the average PSNR of FS while on
requiring 1.40% to 4.07% of the computation time. In com
parison with three-step search~TSS!, one of the most popu-
00 © 2001 Society of Photo-Optical Instrumentation Engineers
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Chung, Yung, and Cheung: Fast motion estimation . . .
lar motion estimation algorithms, our proposed method
achieve better quality~0.8% to 4% better! while requiring
39.3% to 55% less computation.

2 Block-Based Motion Estimation

2.1 Overview

The principle of block-based motion estimation in most
the video standards is that the video image frame is pa
tioned into blocks, and each block is an elementary u
Motion estimation is performed by matching each block
the current frame against a region in a reference fram
find the best match. The criterion for the best match is w
accepted to be the minimum error, or energy, of the resi
obtained from the subtraction of corresponding pixels
tween the blocks, which is given by the followin
equation15:

E~B,v!5 (
rPB

uI cur~r !2I ref~r1v!un, ~1!

whereB contains all the pixels in the current block,v is a
displacement vector that addresses the reference bloc
cation inI ref , I cur(r ) is the intensity of the pixel atr of the
current frameI cur, andI ref(r ) is the intensity of the pixel a
r of the reference frameI ref . Whenn51, Eq. ~1!, evalu-
ates the sum of absolute differences~SAD!, and whenn
52, it evaluates the total energy instead. It is more sens
to haven52, since if the total energy is lower, the numb
of bits required to code the residue is smaller. Howeven
is usually set to 1 in practice, since that involves no mu
plication and hence lower computation cost. In particu
whenE(B,v) is divided by the total number of pixels in th
block, the resultant quantity will be the mean absolute er
~MAE! or mean squared error~MSE!.15 By using one of
these matching criteria, the best match can be located. T
the motion vector~MV ! obtained for the blockB can be
generally formulated as follows:

MV ~B!5arg min
vPS

E~B,v!, ~2!

whereS is the search area, which consists of all possi
motion vectors.

MV (B) is well accepted to be the optimal solution b
cause it is the motion vector that yields the lowest MAE
MSE, which in turns result in the highest PSNR. One o
vious way of findingMV (B) is to do an exhaustive searc
i.e., the FS algorithm. Although FS is computationally i
tensive, it can always guarantee an optimum solution to
~2!. In view of this, many researchers have tried to fi
ways of cutting corners in order to speed up the proces
finding the desired MV. A lot of fast motion estimatio
algorithms have been proposed.16–35 Most of them have
successfully reduced the computation complexity of find
the MV, but few of them can guarantee an optimum so
tion. These proposed algorithms can be generally class
into two categories: fast matching and fast search a
rithms.
-

n

.

f

2.2 Fast Matching Algorithms

Fast matching methods use a matching criterionE8(B,v)
other thanE(B,v) in Eq. ~1! for finding a best match. The
reason is that some pixels in a block contribute most of
error or energy to the residue. Therefore, it is believed t
not all the pixels are needed in the matching criterio
Thus, fast matching methods use another matching crite
derived from a subset of pixels:

E8~B,v!5 (
rPB8

uI cur~r !2I ref~r1v!un, where B8,B.

~3!

The selection of the pixels inB8 can be either static16–18

or dynamic.19–21 Standard subsampling16–17 is an example
of static pixel selection. Some other algorithms select p
els that possess special features, such as the edge pix
the block19–21 or those with the largest gradien
magnitude.22 These constitute dynamic pixel selectio
Both static and dynamic selection can reduce the numbe
pixels needed for evaluating the matching function. T
amount of computation saved can be increased by adjus
the subsampling ratio or by limiting the number of pixels
be selected from the block, and hence can be chosen to
the problem. However, subsampling can lead to severe d
radation in quality, since the error contributed by the d
carded pixels may be high. Dynamic selection of pixels
better at preserving the quality, though at the cost of m
computation, since preprocessing~such as edge detection o
gradient evaluation! must be done before the selection pr
cess can begin.

2.3 Fast Search Algorithms

Fast search methods do not modify the matching criter
E(B,v) as such. They speed up the search by reducing
number of search points in the search area. This basic
reduces the search space of the whole searching pro
Fast search can be described by the following equation

MV 8~B!5arg min
vPS8

E~B,v!, where S8,S. ~4!

WhenS8 is a constant set, it means that the search areS
has been subsampled by a constant pattern. WhenS8 is a
dynamic set, it can be determined by the MV’s of th
neighboring blocks, or the MVs of the blocks in the prev
ous frames. Some fast search algorithms find the MVs
iterative steps where the search space is determined by
previous iteration. They can be formulated as follows:

MV n~B!5arg min
vPS8~MV n21~B!,n!

E~B,v!, where S8,S. ~5!

In the above equation,S8(•,•) is a function of the current
iteration number and the MV of the previous iteratio
Some fast search algorithms set the number of iteration
a constant, as in the TSS,23 cross search CS,24 and one-
dimensional FS~1DFS!.25 Some make it dynamic and jus
iterate until a termination rule is satisfied. One-at-a-tim
search~OTS!,26 new three-step search~NTSS!,27 four-step
search~FSS!,28 and diamond search~DS!29 are examples of
953Optical Engineering, Vol. 40 No. 6, June 2001
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Chung, Yung, and Cheung: Fast motion estimation . . .
this kind of fast search algorithms. Among all these alg
rithms, TSS is the most widely used due to its simplicit

Fast search algorithms like those mentioned above
reduce the computation cost a great deal. The reductio
the number of search points is usually justified by the
sumption that the matching functionE(B,v) ~or the MAE
or MSE! increases monotonically when the distance
tween the search points and the absolute minimumuv
2MV( B)u, increases. By using this assumption, ma
other fast search algorithms30,31 successfully reduce th
number of search points by using differentS8. However,
when E(B,v) is plotted on the plane spanned byv, the
surface is neither unimodal nor smooth. AlthoughS8 varies
among these algorithms, they all suffer from the possibi
of being trapped in a local minimum, resulting in nonop
mal solutions.

On the other hand, some fast search algorithms m
use of the temporal and spatial information to reduce
number of search points. To utilize temporal informatio
some algorithms32–34 perform MV prediction based on th
motion vectors of the neighboring blocks in the previo
frame. By doing so, the number of search points to be
ited can be reduced.

On the other hand, some algorithms32–35 use spatial in-
formation to speed up the MV estimation. Statistically, t
MV of a block is highly correlated with the MVs of the
neighboring blocks in the current frame. This may be e
plained by the assumption that objects usually span thro
several blocks and hence the MVs of the blocks will n
differ too much when translational motion is considere
Therefore, only a portion of the search points need to
visited, and hence the process can be sped up.

In these algorithms, MVs of adjacent or neighbori
blocks in the current frame or previous frame are used
the MV determination. However, they suffer from one m
jor problem: they always select the MVs of the neighbori
blocks in the current or previous frame as candidate M
of the current block. This assumes that the MV of the c
rent block must have relationship with the MVs of th
neighboring blocks, which is not always the case. So
algorithms, like PSA,35 predict the MV from the weighted
average of the MVs of the neighboring blocks. This inh
ently assumes that the relationship between the MVs
weighted average. In reality, these assumptions may no
true. The MV of a block may not be equal to one of t
MVs of neighboring blocks or to the weighted average
the MVs of neighboring blocks.

In our research, we focus on the issues concerning
MV prediction based on the spatial information. Tempo
information is important, but we believe that spatial info
mation should be considered first.

3 Proposed Fast Motion Estimation

3.1 Initial Considerations

In a typical video sequence, there are many objects~includ-
ing the background as an object! that span a group o
blocks. Thus, the MVs of the blocks within this group mu
have some relationship between them. If the relations
between the MVs of the group of blocks can be identifie
it is then possible to predict the target MV from the MVs
the group of blocks to which the target block belongs.
954 Optical Engineering, Vol. 40 No. 6, June 2001
e

determine this relationship, object extraction may help,
it usually involves edge detection or segmentation, wh
makes it a computationally complex and time-consum
process. On the other hand, the MVs of the blocks can
considered to see if they belong to the same object. F
thermore, if the predicted MV is accurate enough, we o
need to search for the MV candidates that do not dif
much from the predicted MV, and hence the search sp
can be reduced.

3.2 Assumptions

As in block-based motion estimation, we assume that:

1. The motion in a typical video sequence consists
mainly translational and rotational motion.

2. The motion vector of a block represents the over
motion of the block.

In a typical video sequence, there are motions other t
translational and rotational motion. The first assumpt
says that these kinds of motion can be modeled by blo
based motion estimation. The second assumption says
the MV can well approximate most of the motion of th
pixels within a block. Both assumptions are considered r
sonable in a block-based sense.

3.3 Approach Overview

To find the MV, one first predicts it with the MV prediction
model. The prediction model tests whether neighbor
blocks lie on the same object, and if so, the MV is predic
from the MVs of the neighboring blocks. There can
more than one predicted MV; in this case the MV that giv
the minimum MAE will be selected. The final predicte
MV will be used to address a search center in the sea
window. After that, a search-center-biased search pat
will be used to locate the best match. An MV refineme
technique will then be employed to find the final MV.36

Figure 1 depicts the conceptual flow of the approach.

3.4 Model for Motion Vector Prediction

3.4.1 Relationship of motion vectors of the blocks
lying on the same object

Consider two blocksA and B at two distinct respective
locationsA and B initially ( t50), as depicted in Fig. 2
Suppose at timet, block A and blockB are estimated to
have moved toA8 andB8, respectively.

If block A and blockB lie on the same object,

iABW i5iA8B8W i

⇔ iABW i25iA8B8W i2

⇔ XAB
2 1YAB

2 5iA8AW 1ABW1BB8W i2

⇔ XAB
2 1YAB

2 5i2ax~ t !i2ay~ t !j1XABi1YABj1bx~ t !i

1by~ t !j i2
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Fig. 1 Conceptual diagram
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⇔ XAB
2 1YAB

2 5@bx~ t !2ax~ t !1XAB#2

1@by~ t !2ay~ t !1YAB#2.

The above equation is true for all positive values oft. How-
ever, we are only interested in small values oft, because
the frame time is usually small.

Call the right-hand sideR(t). Then, for smallt5Dt,

R~Dt !5R~0!1Ṙ~0! Dt1h.o.t.'XAB
2 1YAB

2 1Ṙ~0! Dt

{ Ṙ~ t !52@bx~ t !2ax~ t !1XAB#@ ḃx~ t !2ȧx~ t !#

12@by~ t !2ay~ t !1YAB#@ ḃy~ t !2ȧy~ t !#.

[ Ṙ~0!52XAB@ ḃx~0!2ȧx~0!#12YAB@ ḃy~0!2ȧy~0!#.

[ R~Dt !5XAB
2 1YAB

2 12$XAB@ ḃx~0!2ȧx~0!#

1YAB@ ḃy~0!2ȧy~0!#% Dt.

EquatingR(t) with the left-hand side, we have

XAB@ ḃx~0!2ȧx~0!#1YAB@ ḃy~0!2ȧy~0!#50. ~6!

If the frame timeDt is small enough,

ȧx~0!'
ax~Dt !2ax~0!

Dt
, ȧy~0!'

ay~Dt !2ay~0!

Dt
, ~7!

ḃx~0!'
bx~Dt !2bx~0!

Dt
, ḃy~0!'

by~Dt !2by~0!

Dt
. ~8!

Substituting Eqs.~7!, ~8! into Eq. ~6! yields

Fig. 2 Prediction model
XAB@bx~Dt !2ax~Dt !#1YAB@by~Dt !2ay~Dt !#50. ~9!

For smallDt, any two blocks that satisfy the above co
dition lie on the same object. Therefore, Eq.~9! can be used
to test whether two blocks lie on the same object, and
predict the MV of the target block. Equations~7! and ~8!
actually attempt to approximate the velocities of the bloc
by the their respective average velocities. For a typi
video sequence, the frame timeDt is about 1/25 to 1/30 s
which is usually small enough.

3.4.2 Prediction of target motion vector

Consider a target blockT and the neighboring blocks,A, B,
C, D as depicted in Fig. 3. Let the

MV of A be ax(Dt) i1ay(Dt) j
MV of B be bx(Dt) i1by(Dt) j
MV of C be cx(Dt) i1cy(Dt) j
MV of D be dx(Dt) i1dy(Dt) j
MV of T be tx(Dt) i1ty(Dt) j .

If T lies on the same object asA, B, C, or D, the MV of
T can be predicted from the MVs of A, B, C, or D. Al
thoughT may be predicted from blocks other than A, B, C
and D, which are not necessarily neighboring blocks, it
more likely thatT and its neighboring blocks lie on th
same object.

Consider four neighboring blocks. There are altoget
10 possible combinations ofT lying on the same objec
together with one or a pair of the four neighboring block
There are also cases whereT lies on the same object a
more than two neighboring blocks. However, these ca
can always be decomposed into two or more of the ab
cases. We first consider the case whenT lies on the same
object with one and only one of its neighboring block
Figure 4 explains each case and describes how the pre
tion of the MV is done in each.

Fig. 3 Target block (T) and neighboring blocks (A, B, C, and D).
955Optical Engineering, Vol. 40 No. 6, June 2001
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Chung, Yung, and Cheung: Fast motion estimation . . .
In each of the above cases, the MV ofT,
(tx(Dt),ty(Dt)), lies on a straight line defined by the co
responding equation in Fig. 4. Then, ifT lies on the same
object as one and only one of the block pa
(A, B), (A, C), (A, D), (B, C), (B, D), and (C, D),
the MV of T will be the intersection of the lines defined
the corresponding cases.

This idea can be extended to other cases as well. Fig
5 summarizes the cases whereT lies on the same object a
two neighboring blocks.

When T lies on the same object as three of the neig
boring blocks, it can be decomposed into cases 5 to 1
Fig. 5. For example, ifT lies on the same object as block
A, B, C, this can be decomposed into cases 5, 6, and 8
depicted in Fig. 6.

When none of cases 5 to 10 holds~that is, there does no
exist a pair of neighboring blocks that lie on the same
ject!, we have no way to explicitly predict the MV ofT, and

Fig. 4 MV prediction when T lies on the same object with one and
only one neighboring block.
956 Optical Engineering, Vol. 40 No. 6, June 2001
e

s

in that case the predicted MVs are considered to be
MVs of the neighboring blocks and~0,0!. Figure 7 depicts
one possibility where this happens.

3.4.3 Further considerations

First, although it is assumed that the two blocks lie on
same object whenever the MVs of two blocks satisfy E
~9! ~because it is not a conformal mapping!, even if the
MVs satisfy Eq.~9!, there is a small possibility that corre
sponding blocks may not lie on the same object.

Second, it is required to know which block lies on th
same object as the target block. We may use Eq.~9! to do
the testing for the different pairs of blocks involved. F

Fig. 5 MV prediction when T lies on the same object with one and
only one of the neighboring block pair.
Fig. 6 Prediction of Search Points when T lies on the same object as more than two neighboring
blocks.
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Fig. 7 Search points when there exists no pair of adjacent blocks lie on the same object.
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example, if we need to know whether blockA, B, or C lies
on the same object, we may use Eq.~9! to test whether any
of the block pairs (A,B), (B,C), and (C,A) lie on the
same object. But since the test is not a conformal mapp
we actually cannot conclude thatA, B, or C lies on the same
object even if all the three tests are positive. In this case,
can only conclude that it is likely that at least one blo
pair (A,B), (B,C), or (C,A) lies on the same object
Therefore, we should consider all the cases involved
take all the three MVs predicted in each case as poss
MVs of T. The MV that gives the minimum MAE should
be chosen as the predicted MV ofT.

Third, for the testing the condition itself, the left-han
side of Eq.~9! does not necessarily equal zero even if t
block pair involved really lies on the same object. The
fore, for practical applications, the testing conditions giv
in Eq. ~9! should be modified as follows:

uXAB@bx~Dt !2ax~Dt !#1YAB@by~Dt !2ay~Dt !#u

<e~XAB ,YAB!, ~10!

wheree~•,•! is the error tolerance function, which is alway
the upper bound of the error of the right-hand side of E
~9!, and depends onXAB andYAB .

Let De be the error of left-hand side of Eq.~9!. Then

uDeu<uXABu@ uDbx~Dt !u1uDax~Dt !u#

1uYABu@ uDby~Dt !u1uDay~Dt !u#.

For full-pixel precision, uDbx(Dt)u<0.5, uDax(Dt)u
<0.5, uDby(Dt)u<0.5, uDay(Dt)u<0.5, we have
,

uDeu<uXABu~0.510.5!1uYABu~0.510.5!5uXABu1uYABu.

Therefore, we have to makee(XAB ,YAB)5uXABu1uYABu to
ensure it is an upper bound of the errorDe. For half-pixel
precision,uDbx(Dt)u<0.25, uDax(Dt)u<0.25, uDby(Dt)u
<0.25, uDay(Dt)u<0.25, we have

uDeu<uXABu~0.2510.25!1uYABu~0.2510.25!

50.5~ uXABu1uYABu!.

Therefore, we have to makee(XAB ,YAB)50.5(uXABu
1uYABu) to ensure it is an upper bound of errorDe.

Finally, we do not know whetherT lies on the same
object as one of its neighboring blocks, since the MV oT
is unknown. In a typical video sequence, there is a la
chance that a block lies on the same object as one o
neighboring blocks. Therefore, the proposed algorithm
ways assumes thatT lies on the same object when we kno
that at least one pair of the neighboring blocks lie on
same object.

3.5 Search-Point Pattern

The distribution of MVs in a typical video sequence
highly biased towards the central region20,21 of the search
window. Thus, it is reasonable to place more search po
in the central region of the search window to obtain mo
samples. However, that is true only when video sequen
all consists of gentle motion. This may not be the ca
when there is a lot of fast motion or panning motion in t
sequence. On the other hand, with accurate MV predict
the distribution of actual MVs should be highly biased t
957Optical Engineering, Vol. 40 No. 6, June 2001
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Fig. 8 Search Center Biased Search Pattern with search center (22,3), sx57, and sy57.
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wards the predicted MV even without restricting the s
quences to mainly gentle and mild motion. It is therefo
reasonable to place more search points near the pred
search center, which is the search-point position in
search window addressed by the predicted MV.

3.5.1 General search pattern

The general search-pattern set at a search-point loca
( i , j ) is defined as follows:

SP~ i , j ,n!5$~x,y!:x5 i 12np, y5 j 12nq

where

p,qP$21,0,1%, upu1uquÞ0, and

2sx<x<sx ,2sy<y<sy%, ~11!

wheresx and sy are the half width and half height of th
search window.

The general search patterns with different parame
can be combined to form more complex search patte
With the general search pattern, we can proceed to de
the search-center-biased search pattern.

3.5.2 Search-center-biased search pattern

The search-center-biased pattern around a search c
( i , j ) is defined as

CBSP~ i , j !5$~ i , j !%ø0<n< log2
ø bmax~sx1u i u,sy1u j u!cSP~ i , j ,n!

~12!

The search-center-biased pattern is the union of gen
search patterns of different step sizes around the se
center (i , j ) plus the search center itself. In the definition
CBSP(i , j ), the expression log2bmax(sx1uiu,sy1uju)c deter-
neering, Vol. 40 No. 6, June 2001
d

n

.
e
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h

mines the maximum possible value ofn, so that 2n is the
maximum possible step size. Figure 8 shows the sea
center-biased search pattern whensx5sy57 with search
center (i , j )5(22,3).

As shown in the example, the density of search point
high in the region close to the search center and decre
with increasing distance from the search center.

The searching begins at the search center and then
ceeds to SP(i , j ,n) with increasingn. This makes an out-
ward spiral search, and whenever the minimum is fou
within the spiral, the search will terminate. Figure 9 depi
the outward spiral search pattern used in our impleme
tion. After searching with the search-center-biased sea
pattern, a position with minimum MAE is located. Th
gives a preliminary MV, from which MV refinement is
required to find the final MV. The refinement process is t
same as that in TSS. But the refinement will take a sma
initial step size when the minimum position is closer to t
search center.

3.6 MV Refinement

After the search with CBSP(i c ,i c), the preliminary MV
has been obtained. It is only a coarse MV, and hence
refinement is needed. Since the search pattern in the
step search is a center-biased one, the preliminary MV
corresponds to search points closer to the search cent
less coarse than those that correspond to search points
ther away from the search center. Thus, the step size wil
smaller if the minimum search-point position is closer
the predicted search center. The MV refinement proces
actually the same as that in TSS. Figure 10 shows
possible refinement with search center at~22,1!.

If the preliminary MV found in the first step lies at on
of the corner points of the central 333 region around the
search center (i c , j c), two more search points are visite
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Fig. 9 Outward Spiral Search Pattern with a search center (2,21).
ctly
th-
ha
o
ctly
e o

o
,’’

bit-

go-

r-
e
-

That is because at corner points there are only two dire
neighboring search points, compared with four at the o
ers. Therefore, we cannot guarantee that a corner point
minimum MAE among all its direct neighbors. The tw
additional search points are the corresponding dire
neighboring search points. Figure 11 shows an exampl
this.

After this MV refinement, the final MV is obtained.

4 Results and Analysis

The algorithm was implemented and has been tested
four 90-frame MPEG test sequences: ‘‘Football,’’ ‘‘Susie
s

f

n

‘‘Flower Garden,’’ and ‘‘Mobile and Calendar.’’ The im-
age size of ‘‘Football’’ and ‘‘Susie’’ is 7203480, whereas
that of ‘‘Flower Garden’’ and ‘‘Mobile and Calendar’’ is
3523240. All the sequences are encoded into MPEG2
streams using the MPEG2 encoder from MSSG37 with the
motion estimation algorithm changed to the proposed al
rithm. Each group of pictures~GOP! in ‘‘Football’’ and
‘‘Susie’’ contains 15 frames, while those in ‘‘Flower Ga
den’’ and ‘‘Mobile and Calendar’’ contain 12 frames. Th
block size is 16316, and 2 two-frame interpolation struc
ture was used. The search range is231 to 31 pixels for
‘‘Football’’ and ‘‘Susie,’’ and 215 to 15 for ‘‘Flower Gar-
Fig. 10 Possible refinement of predicted MV with search center (22,1).
959Optical Engineering, Vol. 40 No. 6, June 2001
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960 Optical Engi
Fig. 11 Possible search pattern if the preliminary MV determined in the first step lies on the corner
points in the central 333 region.
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den’’ and ‘‘Mobile and Calendar.’’ Other fast search alg
rithms such as TSS, NTSS, FSS, CS, 1DFS, and DS h
also been implemented for comparing their performa
with the algorithm proposed in this paper. The performan
is evaluated on four counts: average PSNR, average M
the total number of search points~TNSP! visited, and the
total time taken in the process of motion estimation~TME!
for the whole sequence. The total number of search po
is the sum of all the search points visited by the algorith
both in forward and in backward prediction. The TME
were measured on a Pentium II 333 machine running Lin
in single-user mode. The TME of each algorithm shown
Table 1 is the average of five experiments.

As shown in Table 1 for the ‘‘Flower Garden’’ se
quence, the proposed algorithm can achieve an ave
PSNR very close to that of FS. It achieves 99.77% of
latter PSNR. Similar results have been obtained in the o
sequences, the proposed algorithm achieving 99.77%
99.94% of the PSNR of FS. On the other hand, FSS
1DFS can only achieve 96.36% to 99.79% and 98.52%
99.79% of the PSNR of FS, respectively.

The proposed algorithm only requires 1.40% and 1.3
of the TNSP of FS for the sequences ‘‘Football’’ and ‘‘S
sie,’’ respectively, and 4.07% and 3.54% for the sequen
‘‘Flower Garden’’ and ‘‘Mobile and Calendar.’’ Compare

Table 1 Average PSNR, average MSE, and TNSP for the test se-
quence ‘‘Flower Garden.’’

Algorithm PSNR MSE TNSP TME (ms)

FS 26.319 155.656 16,337,910 95,325,491

Proposed 26.259 157.930 664,860 4,932,502

TSS 25.250 198.210 1,218,592 8,629,149

NTSS 25.180 200.969 1,095,426 7,823,985

FSS 25.361 193.336 909,991 6,641,623

1DFS 26.240 158.744 2,441,837 16,182,176

CS 22.666 355.600 609,177 4,104,747

DS 25.297 196.142 824,566 5,818,942
neering, Vol. 40 No. 6, June 2001
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with CS, the proposed algorithm uses a 9.14% to 128.6
larger TNSP. Although the proposed algorithm is not
fast as CS in general for the sequences tested, it achi
much better PSNR.

As shown in the above, most algorithms have been s
cessful in optimizing one objective measure like avera
PSNR, average MSE, TNSP, or TME. However, it is n
fair to use just one objective measure to rank the al
rithms. It is necessary to establish a metric to evaluate
performance of each algorithm. We proposed to norma
the average PSNR and TME of each algorithm to those
FS and plot the normalized average PSNR~NPSNR! versus
the normalized TME~NTME!. We plot the NTME instead
of the NTNSP because the NTNSP does not include
overhead of search-center prediction and search-pa
generation. The results are given in Table 2.

Figure 12 depicts the performance of each algorithm
the ‘‘Flower Garden’’ sequence. In this diagram, the b
algorithm would reside in the top left corner, and the wo
in the bottom right corner. On the other hand, algorith
that optimize for quality by sacrificing speed would lie
the top right corner, whereas those that optimize for sp
by sacrificing quality would lie in the bottom left corner.

As shown, CS is the fastest algorithm. However, it h
the poorest PSNR among all the algorithms evaluated.

Table 2 Normalized average PSNR, TNSP, and TME for ‘‘Flower
Garden.’’

Algorithm NPSNR NTNSP NTME

Proposed 0.9977 0.0407 0.0517

FS 1.0000 1.0000 1.0000

TSS 0.9594 0.0746 0.0905

NTSS 0.9567 0.0671 0.0821

FSS 0.9636 0.0557 0.0697

1DFS 0.9970 0.1495 0.1698

CS 0.8612 0.0373 0.0431

DS 0.9612 0.0505 0.0610
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the other hand, FS achieves the best PSNR, but is the s
est algorithm in the group. Thus algorithms that optim
either on speed or on quality do not come close to the
left corner. A good trade-off has to be made in order
place an algorithm close to the top left corner. Other al
rithms like TSS, NTSS, FSS, and 1DFS lie closer to the
left corner, indicating that they have made better trade-o
But among all the algorithms, the proposed algorithm is
closest to the top left corner. This shows that the propo
algorithm performs better than all the other algorithms,
least for this particular sequence.

The PSNR behavior of the proposed algorithm over
whole sequence is also important for evaluating its per
mance. To investigate this, the PSNR of the proposed
gorithm, FS, and FSS are plotted versus the frame num
FS and FSS are chosen for comparison because FS i
common reference for PSNR comparison and FSS is
next best algorithm among the group of algorithms eva
ated. Figure 13 depicts the PSNR of ‘‘Flower Garden’’ f
the proposed algorithm, FS, and FSS.

Besides the objective measures, we are also interest
the subjective measure of the algorithms. Selected fra
in the sequence ‘‘Flower Garden’’ are used to perform t
subjective comparison. The proposed algorithm, FS, T
NTSS, FSS, CS, 1DFS, and DS are then applied to
selected frames to perform the motion estimation to ext
the MVs first, and then reconstruct the frames from

Fig. 12 Overall quality of each algorithm for the ‘‘Flower Garden’’
sequence.

Fig. 13 PSNR behavior for the ‘‘Flower Garden’’ sequence.
-

-
.
e

n
s

,

t

MVs determined by each algorithm without error compe
sation. The reconstructed frames are then compared
each other. Figure 14 shows the frames in ‘‘Flower G
den’’ as reconstructed by all the algorithms.

From these reproductions, it can be seen that the fra
reconstructed by FS, the proposed algorithm, and 1D
resemble to the original frame most, although some of
details are missed. As for the other algorithms, they can
preserve the details of the roof and the edges of the t
showing that they can be easily trapped by a nonoptim
solution. Although 1DFS shows almost the same vis
performance as the proposed algorithm, it is much slow
This shows that the proposed search-center predic
method can help in putting the initial search point suf

Fig. 14 Original and reconstructed frames by each algorithm: (a)
original, (b) FS, (c) proposed, (d) FSS, (c) 1DFS, (f) NTSS, (g) TSS,
(h) CS, (i) DS.
961Optical Engineering, Vol. 40 No. 6, June 2001
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ciently close to the optimum solution to reduce the cha
of being trapped in a local minimum, and hence a lot le
search points are required.

5 Conclusion and Future Directions

In this paper, a fast motion estimation algorithm based
search-center prediction and a search-center-biased pa
has been proposed. The algorithm predicts the search c
by using a model, which formulates the relationship b
tween the MVs of neighboring blocks lying on the sam
object, before the MV search process. It is found that
predicted search center is sufficient close to the optim
solution so that a search-center-biased search pattern c
used to speed up the MV searching process.

We have evaluated the proposed algorithm with fo
video sequences, and its performance has been comp
with six other motion estimation algorithms. The resu
give strong support to the belief that our proposed al
rithm offers a good trade-off between speed and qua
The proposed algorithm can achieve a PSNR very clos
FS with a lot less search points. From the test results on
four sequences it is found that the proposed algorithm
able to achieve over 99.7% of the PSNR of FS while
quiring less than 4.1% of the computation time. When co
pared with the other six algorithms, the proposed algorit
achieves the best PSNR performance. Although the p
posed algorithm is not as fast as CS on three of the
quences, its PSNR performance is far better than tha
CS.

Future research will be focused on improving both t
prediction model and the search pattern so that even gre
speedup and better PSNR performance can be achie
We shall consider incorporating different kinds of motio
such as zooming and the motions that originate from
formable objects, so that better MV prediction can
achieved. Also, the search pattern will be refined to furt
reduce the number of search points, which should lea
greater speedup.
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