
1

M-JavaMPI:
A Java-MPI Binding with Process

Migration Support

Ricky K.K. Ma, Cho-Li Wang, and Francis C.M. Lau
Department of Computer Science and Information Systems

The University of Hong Kong

Presented by: Cho-Li Wang

C.L. Wang, CCGrid2002, Berlin (5/24/02) 2

Outline of Presentation
Introduction

Why Java MPI Binding ?
Our Research Objectives
Our Approach
Java Virtual Machine Debugger Interface

M-JavaMPI System Architecture
Java Process State Capturing and Restoring
Restorable MPI Communication

Performance Evaluation
Related Works
Conclusions and Future Works

C.L. Wang, CCGrid2002, Berlin (5/24/02) 3

Introduction: Why Java+MPI ?

Java
Emerging as a major language for distributed and
parallel programming.
Almost for all platforms: Sun’s J2SE, J2EE, J2ME.
But…Client-Server Model, No SPMD

Sockets and the Remote Method Invocation (RMI)
Both communication models are optimized for client-server
programming, whereas the parallel computing world is mainly
concerned with ``symmetric'' (peer-to-peer) communication,
occurring in groups of interacting peers.

C.L. Wang, CCGrid2002, Berlin (5/24/02) 4

Introduction: Why Java+MPI?

Message Passing Interface (MPI)
Standard message-passing communication
library (Has been implemented on many parallel
machines).
Directly supports the Single Program Multiple
Data (SPMD) model of parallel computing.
Natural model on distributed-memory machines
such as clusters
Possible to do special problem partitioning, initial
assignment of application data to machines, and
intelligent runtime data movement to achieve
high performance.

C.L. Wang, CCGrid2002, Berlin (5/24/02) 5

Java MPI Binding: Existing
Solutions

Direct bindings to the native MPI library
mpiJava [Baker, et. al., 1998] :

through JNI wrappers to native MPI software

JavaMPI [Mintchev: 1997] :
through JNI wrappers to native MPI software
(wrappers were automatically generated by a
special-purpose code generator)

C.L. Wang, CCGrid2002, Berlin (5/24/02) 6

Java MPI Binding: Existing
Solutions

MPI libraries entirely written in Java.
JMPI : [MPI Software Technology :1997]
Jmpi : [Dincer: 1998]
MPIJ : [DOGMA project : 1999]
PJMPI: [Tong et. al.: 2000]
MPJ : [MPI Software Technology : 2000]

C.L. Wang, CCGrid2002, Berlin (5/24/02) 7

Discussion: Java MPI Binding

Direct Java-MPI binding
(O) Efficient MPI communication through calling native
MPI methods
(X) Low-level conflicts between the Java runtime and
the interrupt mechanisms used in MPI implementations

Pure Java implementation
(O) Provides a portable MPI implementation
(X) MPI communication is less efficient

C.L. Wang, CCGrid2002, Berlin (5/24/02) 8

Our Research Objectives
Application Fault-tolerant:

Many scientific applications run for a very long time
(days or even months at a time).
System failures (e.g., hardware or network failures) can
be expected to occur during the run of applications.
The system aborts the job early because of a planned
downtime.

Dynamic Load Balancing:
Computation patterns of irregularly structured problems
can not be expected in the algorithm design phase.
Most programmers are lack of skills to design efficient
algorithms in message passing programming.
Time-shared computing environment.

C.L. Wang, CCGrid2002, Berlin (5/24/02) 9

Our Approach
Fault Tolerance and Dynamic Load-balancing

Transparent Java process migration without
programmer’s involvement or modification of their codes.
Automatic message redirection and communication
handoff

High Portability
No modification of OS, JVM, and MPI
Java Virtual Machine Debugger Interface (JVMDI)

Efficient Messaging Support (MPI) for Java
Minimize the overheads for binding MPI with Java
Avoid low-level resource conflicts between MPI and JVM

C.L. Wang, CCGrid2002, Berlin (5/24/02) 10

Java Virtual Machine Debugger
Interface (JVMDI)

Standard interface for JVM:
Define standard services that a JVM must provide for
debugging.
Available since Java 2.

Enough support to capture Java process state:
Able to obtain runtime information of threads, stack frames,
local variables, classes, objects and methods.
It can be used to control threads, set local variables,
receive notification of events.

C.L. Wang, CCGrid2002, Berlin (5/24/02) 11

M-JavaMPI Overview
Java Debugger Interface (JVMDI)

Used to capture execution context
Eager(all) strategy to reduce residual dependency

Object serialization
Java process context is saved in a platform-independent
format

Exception handler inserted at pre-processing
Cope with the migration layer to restore the processes

Client-server based Java-MPI interface
Provides restorable MPI communications

C.L. Wang, CCGrid2002, Berlin (5/24/02) 12

A Layered View of M-JavaMPI

Native MPINative MPI

JVMJVM

HardwareHardware

JavaJava--MPI APIMPI API

Java MPI program Java MPI program (Java(Java bytecodebytecode))

Java APIJava API

OSOS

JVMDI JVMDI (Debugger interface in Java 2)(Debugger interface in Java 2)

Restorable MPI layerRestorable MPI layer

Migration layerMigration layer
(Save and restore process)(Save and restore process)

Preprocessing layer Preprocessing layer
(Insert exception handlers)(Insert exception handlers)

Support low-latency and
high-bandwidth
data communication

Provide MPI wrapper
for Java program

Save and restore process.
Process and object
information are saved
and restored by using
object serialization,
reflection and exception
through JVMDI

Java .class files are
modified by inserting an
exception handler in each
method of each class. The
handler is used to restore
the process state.

Provide restorable MPI
communication through
MPI daemons

Debugger interface in Java 2.
Used to retrieve and restore
process state

Native MPINative MPI

JVMJVM

HardwareHardware

JavaJava--MPI APIMPI API

Java MPI program Java MPI program (Java(Java bytecodebytecode))

Java APIJava API

OSOS

JVMDI JVMDI (Debugger interface in Java 2)(Debugger interface in Java 2)

Restorable MPI layerRestorable MPI layer

Migration layerMigration layer
(Save and restore process)(Save and restore process)

Preprocessing layer Preprocessing layer
(Insert exception handlers)(Insert exception handlers)

Support low-latency and
high-bandwidth
data communication

Provide MPI wrapper
for Java program

Save and restore process.
Process and object
information are saved
and restored by using
object serialization,
reflection and exception
through JVMDI

Java .class files are
modified by inserting an
exception handler in each
method of each class. The
handler is used to restore
the process state.

Provide restorable MPI
communication through
MPI daemons

Debugger interface in Java 2.
Used to retrieve and restore
process state

Native MPINative MPI

JVMJVM

HardwareHardware

JavaJava--MPI APIMPI API

Java MPI program Java MPI program (Java(Java bytecodebytecode))

Java APIJava API

OSOS

JVMDI JVMDI (Debugger interface in Java 2)(Debugger interface in Java 2)

Restorable MPI layerRestorable MPI layer

Migration layerMigration layer
(Save and restore process)(Save and restore process)

Preprocessing layer Preprocessing layer
(Insert exception handlers)(Insert exception handlers)

Support low-latency and
high-bandwidth
data communication

Provide MPI wrapper
for Java program

Save and restore process.
Process and object
information are saved
and restored by using
object serialization,
reflection and exception
through JVMDI

Java .class files are
modified by inserting an
exception handler in each
method of each class. The
handler is used to restore
the process state.

Provide restorable MPI
communication through
MPI daemons

Debugger interface in Java 2.
Used to retrieve and restore
process state

Bytecode
rearrangement and

introduction of special
local variables

C.L. Wang, CCGrid2002, Berlin (5/24/02) 13

Migration Granularity

At the Java source code level
Migration can only happen after the complete
execution of all Java bytecode corresponding
to a single Java source code line.

Migration is postponed until the end of the
executing Java source line
Similarly for a migration request that is received in
the middle of the execution of a native method

C.L. Wang, CCGrid2002, Berlin (5/24/02) 14

State Capturing and Restoring
1. Program code: re-used in the destination nodes.
2. Data: captured and restored using the object

serialization mechanism.
3. Execution context: captured by using JVMDI and

restored by the exception handlers which are inserted
during the pre-processing of bytecode.

Eager(all) strategy : For each frame, local variables,
referenced objects, the name of the class and class
method, and program counter are saved using object
serialization

C.L. Wang, CCGrid2002, Berlin (5/24/02) 15

State Capturing using JVMDI

public class A {

int a;

char b;
…

}

public class A {

try {

…
} catch (RestorationException e) {

a = saved value of local variable a;

b = saved value of local variable b;

pc = saved value of program counter

when the program is suspended

jump to the location where the program

is suspended

}

}

C.L. Wang, CCGrid2002, Berlin (5/24/02) 16

Restorable MPI Layer
MPI daemon run on each node of the cluster to support
message passing between distributed java processes.
IPC between Java program and MPI daemon in the same
node is done through shared memory and semaphores.

Java Program

Java-MPI API

MPI Daemon
(linked with native MPI library)

Java Program

Java-MPI API

MPI Daemon
(linked with native MPI library)

MPI communication

Network

IPC IPC

Node 1 Node 2

client-server
model

client-server
model

C.L. Wang, CCGrid2002, Berlin (5/24/02) 17

migration layer
(source node)

MPI daemon
(source node)

MPI daemon
(destination node)

migration client
(destination node)

suspend user
process

send migration
request

broadcast mig.
info. to all MPI

daemons
start an instance

of JVM with
JVMDI client

capture
process state

send buffered
messages

notify MPI
daemon of the
completion of

capturing send notification
message

(and captured
process data if

central file system
is not used)

send notification
of the readiness of
captured process

data execution of
migrated

process is
restored

LEGENDS Migration events

Event triggers

Restoration
of execution
state starts

process is
restarted and
suspended

JVM and
process quit

Process migration steps

Source Node
Destination Node

C.L. Wang, CCGrid2002, Berlin (5/24/02) 18

Performance Evaluation

Experimental Setting
PC Cluster

16-node cluster
Pentium II 300 MHz with 128MB of memory
Linux 2.2.14 with Sun JDK 1.3.0 + MPICH
Connected by 100Mb/s fast Ethernet

All Java programs were executed without JIT
compilation mode enabled

C.L. Wang, CCGrid2002, Berlin (5/24/02) 19

0

2

4

6

8

10

12

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

7

message size (byte)

ba
nd

w
id

th
 (M

by
te

/s

native MPI direct Java-MPI binding migratable Java-MPI

Bandwidth: PingPong Test

Native MPI (C+MPI): 10.5 MB/s
Direct Java-MPI binding: 9.2 MB/s
Restorable MPI layer: 7.6 MB/s

C.L. Wang, CCGrid2002, Berlin (5/24/02) 20

0
0.0001

0.0002
0.0003
0.0004

0.0005
0.0006

0.0007
0.0008

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

message size (byte)

la
te

nc
y(

s)

native MPI direct Java-MPI binding migratable Java-MPI

Native MPI (C+MPI): 0.2 ms
Direct Java-MPI binding: 0.23 ms
Restorable MPI layer: 0.26 ms

Latency: PingPong Test

C.L. Wang, CCGrid2002, Berlin (5/24/02) 21

Migration Cost : capturing and restoring objects

1

10

100

1000

10000

0 10 10
0

10
00 10

K

10
0K

10
00

K

data size (# of integers)

tim
e

sp
en

t (
m

s)

capturing time restoring time

Minimum Overhead:
– Capturing: 54 ms (JVMDI)
– Restoring: 1 ms (Reception)

C.L. Wang, CCGrid2002, Berlin (5/24/02) 22

0

1000

2000

3000

4000

0 200 400 600
number of frames

tim
e

sp
en

t (
m

s)

capture time (ms) restore time (ms)

Migration Cost : capturing and restoring frames

(Empty Java frame: No local variables are defined in each frame)

C.L. Wang, CCGrid2002, Berlin (5/24/02) 23

Performance Evaluation

Application Performance
PI Calculation (computational intensive)
Recursive ray-tracing (computational intensive)
NAS integer sort (comp. + comm. intensive)
Parallel SOR (comp. + comm. intensive)

C.L. Wang, CCGrid2002, Berlin (5/24/02) 24

Execution Time of PI and Ray-tracing
with and without migration layer

(Debugging Mode vs. Interpretation Mode; Binding Overhead)

0
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0

0 1 2 3 4 5 6 7 8 9
n o . o f n o des

ex
ec

ut
io

n
tim

e
(s

ec
)

P I (w /o m ig r a tion la y e r) r a y - tr a c in g (w /o m ig r a tion la y e r)
P I (w / m ig r a tion la y e r) r a y - tr a c in g (w / m ig r a tion la y e r)

C.L. Wang, CCGrid2002, Berlin (5/24/02) 25

Execution time of NAS program with
different problem sizes

Problem
size
(no. of
integers)

Time (sec) :
Direct Java-MPI Binding

(Interpretation Mode)

Time (sec) :
M-JavaMPI

(Debugging Mode)

Slowdown introduced
by M-JavaMPI (in %)

Total Comp Comm Total Comp Comm Total Comm

Class S:
65536 0.023 0.009 0.014 0.026 0.009 0.017 13% 21%

Class
W:1048576 0.393 0.182 0.212 0.424 0.182 0.242 7.8% 14%

Class A:
8388608 3.206 1.545 1.66 3.387 1.546 1.840 5.6% 11%

No noticeable overhead introduced in the computation part when running in
debugging mode using 2 nodes; while in the communication part, an overhead

of about 10-20% was induced.

C.L. Wang, CCGrid2002, Berlin (5/24/02) 26

Execution time of SOR

No. of nodes No migration (sec) One migration (sec)
1 1013 1016
2 518 521
4 267 270
6 176 178
8 141 144

Execution time of SOR on an array of size 256x256
(Process migration adds extra 2-3 sec).

0
200
400
600
800

1000
1200

0 1 2 3 4 5 6 7 8 9
no. of nodes

ex
ec

ut
io

n
tim

e
(s

ec
)

SOR (w/o migration layer) SOR (w/ migration layer)

• Execution time of SOR
using different
numbers of nodes with
and without migration
layer (No Migration)

C.L. Wang, CCGrid2002, Berlin (5/24/02) 27

Applications Average migration time

PI 2 sec

Ray-tracing 3 sec

NAS 2 sec

SOR 3 sec

Average Process Migration
Time

** Mainly dominated by the startup time of JVM and loading
time of the Java process in the destination node

C.L. Wang, CCGrid2002, Berlin (5/24/02) 28

Dynamic Load Balancing
A Simple Test:

SOR program was executed using 6 nodes with one
of the nodes executing a computationally intensive
program.

Without migration : 319s.
With migration: 180s.

C.L. Wang, CCGrid2002, Berlin (5/24/02) 29

Related Works : Fault Tolerance
Support for MPI

CoCheck MPI (Technische Universität München) :
Restart the virtual machine every time a node failure
occurs (Heavy Penalty)

MPI-TM (Mississippi State U.):
MPI with task migration.

LA-MPI (ACL at LANL):
Support end-to-end network fault-tolerant message
passing without aborting the application.

MPI/FT (MPI Software Technology: 2000)

C.L. Wang, CCGrid2002, Berlin (5/24/02) 30

Related Works : Java
Process/Thread Migration

JESSICA (HKU:1999):
Java Thread Migration in interpretation mode. Modification of JVM.

JESSICA2 (HKU:2002):
Java Thread Migration in JIT compiler mode. Modification of JVM.

MERPATI :
entire run-time information of the Java virtual machine (JVM)

Checkpointing Java (University of Tennessee)
Jthread (Utah) :

thread migration based on the Voyager framework
Mobile Agent related : Brakes, JavaGo, Class File Translation (U. of
Tokyo), MOBA, MobileThread (Inria), etc.

C.L. Wang, CCGrid2002, Berlin (5/24/02) 31

Java Process/Thread Migration

Bytecode instrument:
Insert code into programs, which can be done
manually, or via some pre-processors.

JVM Extension:
Make thread state accessible from Java programs.
Non-transparent to applications. Modifications of JVM
are required

Checkpoint the whole JVM process:
Very powerful but heavy penalty

Modification of JVM :
Totally transparent to the applications, efficient but
very difficult to implement -- JESSICA and JESSICA2

C.L. Wang, CCGrid2002, Berlin (5/24/02) 32

Conclusions
M-JavaMPI’s Main Features:

JVMDI is used to capture execution states
Exception handler is used to restore process state
Restorable MPI is provided for transparent message
redirection and communication handoff.

Acceptable migration overheads for long-run
scientific applications.
Dynamic load balancing with the support of
process migration -- Good for inexperienced
programmers
A good base for achieving fault tolerance
Simple!! No need to modify OS, JVM and MPI

C.L. Wang, CCGrid2002, Berlin (5/24/02) 33

Future Works
1. M-JavaMPI in JIT compiler mode
2. Develop system modules for automatic

dynamic load balancing
3. Develop system modules for effective fault-

tolerant supports
4. M-JavaMPI on the Grid ??

