
www.elsevier.com/locate/jss

The Journal of Systems and Software 75 (2005) 227–234
A generic anti-spyware solution by access control list at kernel level

Sherman S.M. Chow *, Lucas C.K. Hui, S.M. Yiu, K.P. Chow, Richard W.C. Lui

Department of Computer Science and Information Systems, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong

Received 8 November 2003; received in revised form 30 April 2004; accepted 20 May 2004

Available online 15 July 2004
Abstract

Spyware refers to programs that steal the user information stored in the user�s computer and transmit this information via the
Internet to a designated home server without the user being aware of this transmission. Existing anti-spyware solutions are not gen-

eric and flexible. These solutions either check for the existence of known spyware or try to block the transmission of the private infor-

mation at the packet level. In this paper, we propose a more generic and flexible anti-spyware solution by utilizing an access control

list in kernel mode of the operating system. The major difference between our approach and the existing approaches is that instead of

asking a guard to look for the theft (spyware) or control the exit of the computer (and hence giving the spyware enough time to hide

the information to be transmitted), we put a guard besides the treasure (the private information) and carefully control the access to it

in the kernel mode. We also show the details of an implementation that realizes our proposed solution.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Background

Spyware refers to programs that steal the user infor-

mation stored in the user�s computer and transmit this
information via the Internet to a designated home server

without the user being aware of this transmission. These

malware compromise every Internet user�s privacy by
collecting detailed user profiles that can be used for com-

mercial or any other purposes. The stolen information

includes the user�s e-mail address, geographic location,
web-surfing habits, etc.

Users may not be aware that there is a lot of private

information stored in their computers, or they cannot

see the value of information from the point of view of

marketing companies. For example, a user�s name and
affiliation may enable a company to globally and un-

iquely identify the user and ‘‘offer’’ tailored marketing
0164-1212/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2004.05.027

* Corresponding author. Tel.: +852 28578263; fax: +852 29155702.

E-mail addresses: smchow@csis.hku.hk (S.S.M. Chow), hui@

csis.hku.hk (L.C.K. Hui), smyiu@csis.hku.hk (S.M. Yiu), chow@

csis.hku.hk (K.P. Chow), wclui@csis.hku.hk (R.W.C. Lui).
plan for the user. Web-surfing behavior and recently ac-

cessed files also reveal the user�s interests and provide a
good source of valuable marketing information. For

example, a user who accesses LaTeX files very often is
either a publisher or a researcher with high probability.
1.2. Working mechanism

The working mechanism of common spyware is

rather simple. They try to find out their interested infor-

mation from your files in the hard disk and system�s set-
tings (e.g. Microsoft Windows�s registry), according to
the predefined list of locations. More ‘‘intelligent’’ spy-

ware can do so by getting instructions from a central ser-

ver depending on the system information collected (e.g.

version of operating systems). After they have collected

enough information, they will transfer the stolen data

back to the home server.
1.3. Spreading media

The popularity of the Internet speeds up the wide-

spread of spyware. Nowadays, many Internet companies

mailto:smchow@csis.hku.hk 
mailto:hui@ 
mailto:smyiu@csis.hku.hk 
mailto:chow@ 
mailto:wclui@csis.hku.hk 


228 S.S.M. Chow et al. / The Journal of Systems and Software 75 (2005) 227–234
offer free services or free download of shareware to at-

tract customers or visitors. The spyware usually embed

itself in some of these free utilities such as Peer-to-Peer

(P2P) file sharing programs, desktop customization

tools, etc. They may also hide themselves in run-time

libraries used by the utilities. By installing these pro-
grams into the computer, the bundled spyware is

planted into the system too. These unethical shareware

perform spyware activities that compromise the user�s
privacy apart from the advertised function. In order to

make the communication with the home server as

stealthy as possible, the program in which the spyware

is attached is usually some program that requires access

of the Internet such as P2P file sharing utility. Although
there are no formal statistics, we believe that a signifi-

cant proportion of spyware exists as an embedded com-

ponent of Internet tools.
2. Related work

2.1. Existing anti-spyware techniques

There are many anti-spyware products in the mar-

ket. 1 The mechanism of these anti-spyware products

can mainly be classified into two categories: Signature

scanning and Network filtering.

2.1.1. Signature scanning

The technique of signature scanning is similar to the
same technique applied in the anti-virus software. 2,3

Basically, for each known spyware, a sequence of bytes,

called the spyware signature, is identified. These signa-

tures are stored in a database. The anti-spyware pro-

gram checks the suspected software against this

database. If the software matches any signature, it is

considered to be a spyware. Signature scanning can only

identify known spyware and users have to update the
database frequently.

A related anti-virus technique is called heuristics scan-

ning (Skormin et al., 2003), 2, 3 which searches for spe-

cific instructions within a program instead of specific

signatures. However, heuristic scanning is not directly

applicable in the anti-spyware software. For anti-virus,

instructions like writing the boot sector may be used

as an indicator of virus. For anti-spyware, one cannot
easily determine whether the access of private informa-

tion (for examples, accessing Microsoft Windows�s reg-
istry, a large repository of system settings as well as

private information) is a legitimate operation or not.
1 Spychecker––download anti-spyware and privacy related freeware

and shareware. http://www.spychecker.com (accessed on 30/04/2004).
2 PC-Cillin. http://www.antivirus.com (accessed on 30/04/2004).
3 Symantec AntiVirus. http://www.symantec.com (accessed on 30/

04/2004).
Moreover, in case these spyware scanning tools are

not executed in the kernel�s mode, their processes may
be stopped by the spyware. An example (McWilliams,

2002) is RadLight Player, 4 a multimedia player comes

with spyware. It detects and removes a popular anti-spy-

ware tool called AdAware. 5 Despite of the above facts,
most existing anti-spyware tools adopt the scanning ap-

proach.

2.1.2. Network filtering

Firewall is for protecting and controlling the interface

between a private network and an insecure, public net-

work. Packet sniffer enables users to view the packet

being transported out of the computer. In these years,
network filtering technologies such as personal firewall

and packet sniffer are also used as an anti-spyware solu-

tion. 6 Personal firewall enables users to know which

process is accessing the Internet and disallows some of

the Internet operations. However, they may not be good

anti-spyware solutions. Packet sniffers do not offer any

protection, but only monitoring. Some personal fire-

walls lack packet sniffing facilities. Besides, to effectively
use the firewall as an anti-spyware tool, one has to

understand the mechanism of the Internet and also the

packet level data, which is often difficult to be compre-

hended by normal users. If the spyware scrambles the

data to be transmitted, it is not easily detectable. In

addition, flexible control of the Internet access operation

is difficult to achieve. For a network program that has

spyware embedded, disallowing its Internet access may
disallow the normal functioning of the program too.

To summarize, existing products are not generic and

flexible. They either can only check for the existence of

known spyware or it is difficult to only block the spy-

ware-related activities rather than all related Internet ac-

cess activities from the program in which the spyware is

embedded. Some anti-spyware tools simply remove the

programs with spyware attached from the system, and
hence users suffer from losing the original ‘‘good’’ func-

tions of the program.

2.2. Our contributions

In this paper, we propose a new generic and flexible

anti-spyware solution. The core of the solution is based

on the concept of access control list (ACL) at kernel le-
vel to safeguard the private information. Basically,

whenever a process tries to access the private informa-

tion, we check this access against the ACL. To avoid

our process being stopped by the spyware, the checking

is executed in the kernel mode of the operating system.
4 RadLight.net. http://www.radlight.net (accessed on 30/04/2004).
5 Ad-Aware, http://www.lavasoftusa.com/software/adaware

(accessed on 30/04/2004).
6 ZoneAlarm. http://www.zonelabs.com (accessed on 30/04/2004).

http://www.computeruser.com/news/02/04/24
http://www.computeruser.com/news/02/04/24
http://www.computeruser.com/news/02/04/24
http://www.computeruser.com/news/02/04/24
http://www.computeruser.com/news/02/04/24
http://www.computeruser.com/news/02/04/24


7 Counterexploitation: Foistware/Spyware: WebHancer. http://

www.cexx.org/webhancer.htm (accessed on 30/04/2004).
8 Microsoft COM Technologies. http://www.microsoft.com/com/

tech/ActiveX.asp (accessed on 30/04/2004).
9 Spywarelnfo: Browser Helper Objects (BHOs). http://www.spy-

wareinfo.com/articles/bho (accessed on 30/04/2004).
10 P3P: Platform for Privacy Preferences Project. http://

www.w3.org/P3P (accessed on 30/04/2004).

S.S.M. Chow et al. / The Journal of Systems and Software 75 (2005) 227–234 229
A major difference between our approach and the exist-

ing solutions is that we control the access to the private

information to make sure that the spyware cannot ac-

cess the information while existing solutions can only

look for known spyware or control the exit of the com-

puter which is shown to be ineffective. In other words,
we adopt a behavior-based approach instead of a signa-

ture-based approach to fight against spyware. Com-

pared with built-in access control functionalities

provided by the operating system, we block the request

in a stealthy way such that the access returns zero byte

data instead of an error, and hence successfully ‘‘cheat-

ing’’ the spyware.

2.3. Other related works

Our idea of using ACL is similar to the Rule Set

Based Access Control (RSBAC) system (Ott, 2001).

The RSBAC system is motivated by the need of a high

granularity mandatory control of the system. In the

RSBAC system, the Generalized Framework for Access

Control (GFAC) (Ott et al., 1998) approach is imple-
mented. One of the applications of RSBAC system is

to do virus detection. In our solution, we use Access

Control List (ACL) in Kernel mode to implement

anti-spyware function. Besides, we considered files ac-

cess, registry access (we borrow the term from Micro-

soft�s paradigm for system�s settings) and the Internet
access at the same time.

Our idea also has a certain degree of resemblance to
the WindowBox model (Balfanz and Simon, 2000), a

mechanism supporting the complete separation of work-

ing environments (desktop in their terms) and each

working environment can only access the resources asso-

ciated with it. Our system can be considered as one large

desktop containing many different sandboxes (Wahbe

et al., 1993), while in the WindowBox model, there are

many desktops, and each desktop contains a large sand-
box. If users want to use WindowBox to protect their

computer against spyware, they need to know exactly

what each program is doing since one malicious pro-

gram in a desktop compromises the security of the

whole system. Besides, users need to make many deci-

sions such as putting which applications into which

desktop, what are the authenticated Internet connection

for each desktop, and what files are accessible in each
desktop, etc. If users made wrong decision in setting

up their desktops, they may found that the necessary

files are missing during the course of their work, or they

cannot find the necessary information from the Internet

since general browsing of Internet may not be possible

in each desktop. An over-restrictive desktop may even

make the applications malfunction since the files re-

quired are isolated in another desktop. In short, the flex-
ibility and the security of the system are highly

dependent on the user�s domain knowledge. Most
importantly, their solution does not address the problem

that the spyware activity is performed with normal func-

tions of the program. Using our tool, only the spyware

activity is blocked but not the original good function

of the program, e.g. you can still download files from

a P2P network with a spyware attached P2P file sharing
program.

The rest of the paper is organized as follows. Our

proposed solution is presented in Section 3. Section 4

shows an implementation that realizes our approach, to-

gether with an experiment validating and verifying our

implementation. Analysis of our proposed solution is

presented in Section 5. We conclude our paper and give

possible research directions in Section 6.
3. Our proposed solution

3.1. Scope

In our discussion, we limit our scope to only execut-

able or library form of spyware. We do not consider the
type of spyware that modifies and hence spoils the sys-

tem library such as WebHancer. 7 Infectious behavior

of spyware can be dealt with anti-virus techniques.

Apart from executable or library of some programs,

spyware also exists in other forms such as Active X con-

trol, 8 web page (with the help of cookies and web bugs),

and browser helper objects, etc., 9 all of them are related

to web access. For users to gain more control over their
privacy information web sites they visit, initiative like

Platform for Privacy Preferences Project 10 has been

implemented already.

As discussed in Section 2, it is difficult to determine

whether the access of private information is a legitimate

operation or not. By behavior-based approach, we detect

spyware by its behavior of attempting to access private

information and sending out the data, but not based
on the semantics of the operations prepared by a pro-

gram, i.e. knowing the usage that the program will do

with the data collected.

3.2. The framework

We observe that for a spyware to work, they must

perform three kinds of functions: accessing the system�s
data, accessing files with sensitive information, and

http://www.computeruser.com/news/02/04/24
http://www.computeruser.com/news/02/04/24
http://www.computeruser.com/news/02/04/24
http://www.computeruser.com/news/02/04/24
http://www.computeruser.com/news/02/04/24
http://www.computeruser.com/news/02/04/24
http://www.computeruser.com/news/02/04/24
http://www.computeruser.com/news/02/04/24


Fig. 1. Conceptual architecture of our proposed anti-spyware tool.

230 S.S.M. Chow et al. / The Journal of Systems and Software 75 (2005) 227–234
calling back their server for transmission of stolen data.

Hence our goal is to monitor and block these access

according to the predefined ACL.

In our anti-spyware tool, two types of access control

lists, the white list and the black list, are maintained.

Basically, if a process is allowed to access a piece of pri-
vate information, then an entry corresponding to this

process and the private information will be stored in

the white list. For example, the e-mail client should be

allowed to access the user�s e-mail, so a corresponding
entry can be found in the white list. The black list, on

the other hand, stores the information of black-listed

processes so as to prevent process(es) from accessing

sensitive private information. For example, known spy-
ware attached in the downloaded program will be put in

the black list. In our design, the white list takes prece-

dence over the black list, as there will only be a limited

number of programs that are allowed to access the pri-

vate resources.

We maintain a separate white list and a separate

black list for file access, registry access, and the Internet

access. Each entry in the list is a three-tuple: (Program/
Process,Resources,Action). Resources refers to the file/

directory/drive name, registry entry / branches, and IP

address/network address; for file, registry and the Inter-

net ACL respectively. A special value ALL is used to de-

note all files/registry entries/IP addresses. ALL can be

used in Program/Process to denote all programs/proc-

esses too. In white list, Action can only takes the value

of allow. In black list, Action can take the value of block
and ask. If an ask value appears in the entry�s Action
field, it means that our program will ask for the user�s
permission to accept/deny the operation whenever the

specified process is accessing the specified resources.

As an example, if we found (Spyware.exe, C:/windows/

cookies/index.dat, block) in the black list, then the file

reading request issued by the process Spyware.exe on

the file C:/windows/cookies/index.dat will be denied.
Notice that we are not merely combing a file system

locker and firewall into a two-in-one anti-spyware tool.

If we use firewall, the spyware embedded process get

blocked from Internet access and hence cannot perform

legitimate functions. While using our solution, the spy-

ware embedded process cannot get the privacy data at

the first place, so it is harmless to let it to have Internet

access and hence the legitimate functions can be per-
formed perfectly. In other words, our solution not only

protects against spyware that exists as a separate execut-

able that accompany otherwise legitimate applications,

but also spyware that has been embedded with another

originally reliable program.

Fig. 1 shows the conceptual architecture of our pro-

posed anti-spyware tool. We implement the access con-

trol module of our anti-spyware tool as a filter driver on
top of the file access, registry access and the Internet ac-

cess driver in order to block the respective requests. By
doing so, private information will not be leaked to out-

side. At the same time, spyware bundled with the pro-

gram that requires Internet access can still work.

Consider the situation that you finally found a semi-
nal paper in privacy protection you searched for a long

time using a P2P program ProcP. However, this P2P

program is attached with spyware ProcA which aims at

stealing your browser�s cookies FileC. By its design,
ProcP calls ProcA before you download any located ob-

ject. In this case, you can simply block the process ProcA
from accessing the file FileC in the black list, and not

putting ProcP in the black list. Since only the file reading
request is blocked, but not the file open request, the pro-

gram ProcP will not hang and wait indefinitely, but it

can only send out zero-size data to the home server

and starts downloading the useful paper for you. Notice

that our solution works for the case ProcP=ProcA.

This above mentioned feature is possible only when

using filter driver but not the underlying access control

module of the system (e.g. in Balfanz and Simon,
2000). Our solution blocks the request in a stealthy

way, while the latter will block the access of the pro-

tected resource and notify the program about the fail-

ure.
4. Implementation and experiments

We implemented our proof-of-concept anti-spyware

tool that works in the Microsoft Windows platform

(98/2000/ME/XP/2003) for the purposes of experimenta-

tion and validation.

The tool is composed of five parts:

1. Graphical user interface (GUI): The user can setup

the black list/white list in GUI. Process with sus-
pected spyware actions will be displayed. The user



S.S.M. Chow et al. / The Journal of Systems and Software 75 (2005) 227–234 231
can also view the information related to the re-

sources, and decide whether to allow/block the access

or kill the process. (See Fig. 2)

2. User-Kernel mode communication module: This

module is responsible for the communication between

filter drivers and GUI.
3. Registry filter: Device driver that employs the

technique of system-call hooking to intercept any

registry access operation, implemented in kernel

mode.

4. File I/O filter: Filter device driver in kernel mode,

intercepts any file I/O Request Packet (IRP).

5. TDI filter: Filter device driver in kernel mode, inter-

cepts any packet of transport driver interface (TDI)
protocol in network stack of Windows. (The net-

working components of Windows are integrated with

the I/O system and the Win32 API, and the network

stack adopted is not the same as the OSI reference

model defined by ISO.)

A device driver is a set of routines that the operating

system can call upon to perform various functions re-
lated to a particular kind of hardware device. Our device

drivers are implemented in the Windows Driver Model

(WDM) platform (Oney, 1999). Windows Driver Model

(WDM) is the unified driver architecture which supports

Windows 98, Windows ME, Windows 2000, Windows

XP and Windows 2003. WDM adopts a layered driver

architecture, in which we can insert filter driver above
Fig. 2. Proof-of-conc
and below functional device driver. Kernel-mode drivers

are packet-driven, i.e. all I/O requests are submitted

using IRP. When filter driver is used, each IRP that goes

down or up the driver stack will be processed by the fil-

ter drivers. By installing TDI filter, file I/O filter and

Register filter, all the running processes in Windows
are monitored.

4.1. Experiments

To the best of authors� knowledge, there is no other
tools providing the same set of functions, so we devised

our own experiments.

To show our tool�s capability, we implemented a sim-
ple program SpywareX to test the registry filter. Spywa-

reX reads the web-surfing behavior of the user by

reading the entries in the registry HKey_Current_User/

Software/Microsoft/InternetExplorer/TypedUrl (which

store URL typed by the user in Microsoft Internet Ex-

plorer) and saves them in a local text file. We also use

ftp.exe provided in the Windows package to test our file

I/O filter driver and TDI filter driver.
We set our black list as follows.We disallowed Spywa-

reX from reading the entry url1 of the above mentioned

registry branches (i.e. all typed URLs except the most re-

cently typed one can be accessed). We also disallowed

ftp.exe from reading cookies.dat (storing information re-

lated to cookies) and accessing gatekeeper (gateway to

the Internet) in csis.hku.hk domain. The first experiment
ept prototype.



Fig. 3. Result of experiments.

232 S.S.M. Chow et al. / The Journal of Systems and Software 75 (2005) 227–234
tests the blocking ability of registry filter. We executed

SpywareX, and found that the recently typed URLs were

saved in the text files, except the most recently entered

one. The second experiment tests the file access blocking

ability of file I/O filter. We executed ftp.exe to upload

cookies.dat. We found that the upload operation was re-

ported as ‘‘successful’’ by ftp.exe; however, only zero by-

tes were transferred, which means our file I/O filter
blocked the access of the file successfully. The third

experiment tests the Internet access blocking ability of

the Internet filter. We used ftp.exe to access gate-

keeper.csis.hku.hk, as expected, connection fails. The re-

sults of the second and the third experiments are shown

in Fig. 3. To conclude, all experiments show positive re-

sults and our filters are successfully implemented.

Regarding the performance issue, we believe that our
anti-spyware process is an economic method since the

loading of one more filter driver and the checking of

ACLs at kernel level will not make notable performance

degradation.

4.2. A more realistic example

In the above experiments, we demonstrate that our
anti-spyware tool can actually filter out illegal opera-

tions. So, the black list works properly. In the follow-

ing, we further demonstrate how to use the white list

and black list together to allow legitimate process to

access private information while blocking other proc-

esses from accessing the information. In this example,

we use the message dialogue history of ICQ (a popular

Internet instant messenger) 11 as an illustration. The
11 ICQ.com. http://www.icq.com (accessed on 30/04/2004).
user wants to maintain his privacy regarding his mes-

sage dialogue history of ICQ. Suppose his ICQ number

is 763092, he firstly add the file entries (ALL, C:/Pro-

gram Files/ICQ/2003a/763092.dat, block) and (ALL,

C:/Program Files/ICQ/2003a/763092.idx, block), to-

gether with the registry list entry (ALL, HKEY_CUR-

RENT_USER/Software/Mirabilis/ICQ, block) to the

black list, where the .dat and .idx files stores ICQ�s
message dialogue history. Then, the corresponding

files entries (icq.exe, C:/Program Files/ICQ/2003a/

763092.dat, allow), (icq.exe, C:/Program Files/ICQ/

2003a/763092.idx, allow), and the registry list entry

(icq.exe, HKEY_CURRENT_USER/Software/Mirabil-

is/ICQ, allow) are added to the white list. Since the

white list takes precedence over the black list, all pro-

grams except icq.exe is not allowed to access this user
message dialogue history and ICQ�s setting. No spy-
ware can steal his ICQ message dialogue history from

his computer successfully.
4.3. Extra features

In our implementation of the anti-spyware, we imple-

mented the following extra features.
4.3.1. Integrity checking

Suppose icq.exe is allowed to access the file storing

your ICQ�s message dialogue, a spyware knowing this
fact may attach itself to icq.exe to steal your message di-

alog, i.e. a good process is no longer reliable now. To

address this attack, we employ integrity checking on

the executable in the white list. Any unmatched hash va-
lue of the executable is detected.

http://www.computeruser.com/news/02/04/24


S.S.M. Chow et al. / The Journal of Systems and Software 75 (2005) 227–234 233
4.3.2. Protection of privacy information

Apart from specific files and registry entries to be pro-

tected, we also filter the packets containing the user

specified string like credit card number; preventing the

situation that there is some private information stored

in a location not protected by the ACL. However, this
approach gives a new line of attack that the spyware

can directly access the file storing these user specified

strings. We solve this problem by disallowing programs

other than our tool to access the file.

4.3.3. Wizard mode for setting ACL

Usually the user only needs to protect a few set of

files, so a wizard mode is provided to aid the user in set-
ting up the ACL quickly. In the wizard mode, the user

can specify the set of sensitive files (e.g. e-mail in mail

client, work related data of the user�s enterprise, etc.)
and the corresponding legitimate programs, then ACL

entries that deny the access to these files by all other pro-

grams are automatically added.
5. Analysis

5.1. Usability analysis

The use of predefined ACL is not the same as the use

of signature database. In the signature database, we

store the signatures of all known spyware. Updating

the signature database requires the help of domain ex-
pert. On the other hand, using ACL in our system, we

store the private information to be protected, which is

under control of the information creator, who is the user

himself/herself. Basically, our scheme can protect the

private information from new or unknown spyware pro-

vided the ACL is set appropriately. In practice, one con-

cern is the location of these private information. As

raised by (Balfanz and Simon, 2000), maintaining
ACL is a complicated task for the average user. How-

ever, a rule-of-thumb is to allow only the program cre-

ating/ modifying the file to access the file, e.g. only

icq.exe can access file under the folder C:/Program

Files/ICQ/2003a. Moreover, the number of files storing

sensitive data is not large for common applications.

(For examples, ICQ stores the message dialogue in the

above two mentioned files, Microsoft Outlook stores
the personal e-mail in a single file called Outlook.pst. 12

We hope that every software vendor to publish this

information together with their software so that users

can set the ACL accordingly, or making the process of

setup ACL automated. Indeed, in today�s networked
computing environment, it is essential for the software

vendor to tell users what data its program stored for
12 http://www.microsoft.com/outlook (accessed on 30/04/2004).
them, as normal users may face the threat that an innoc-

uous looking file is being stolen by social engineer (Mit-

nick and Simon, 2002).

5.2. Security analysis

We give a security analysis similar to that of (Balfanz

and Simon, 2000) here. We define an implementation of

our idea is secure if there is no covert channel for bypass-

ing our access control, In our implementation, a covert

channel is an I/O request that is not conveyed by using

IRP, for example, accessing the file by physical access

according to the file�s physical location in the hard
disk. 13 We considered a number of covert channels like
renaming the filename of the protected file before read

access, fast I/O (performed if the file is cached, the data

will be accessed directly from the system cache by the

Cache Manager, instead of creating IRP) and paging

I/O (I/O about page swapping) in our prototype, but

we cannot give a formal assurance that no other danger-

ous channels exists since Windows is not a open source

system. However, we try to assure the security of our
solution by implementing it as ‘‘low’’ level as possible.

As suggested by (Balfanz and Simon, 2000), every pro-

gram has to go through certain path of the kernel to

do anything useful. In view of this, we implement our

anti-spyware solution as a kernel filter driver.

Moreover, implementing access control at kernel le-

vel means the ACL is also stored in kernel level. Normal

processes at user level are not capable to tamper the ker-
nel memory, which ensure the efficacy of our method.

Indeed, the efficacy of our solution also depends on

the design of the underlying operating systems. Win-

dows�s registry is a system-wide place for storing system�s
settings, some privacy information like the name and

organization of the registered user is placed inside regis-

try. It may be inconvenient for the user if most programs

are blocked from the accessing of this information. We
sincerely hope that the design of operating systems in

the future will have solution to address this kind of

potential privacy problems, like classifying the system

settings which contain privacy info into different classes.
6. Conclusion and future work

To conclude, we proposed a generic anti-spyware tool

which is based on the execution behavior of the spyware,

but not any predefined or collected signatures on the

spyware programs� files. Our solution is also flexible
than other anti-spyware solutions such as firewall in

the sense that normal functions of a program will not
13 To solve this problem, we may try to prevent the process from

querying the physical location of the protected file.

http://www.computeruser.com/news/02/04/24


234 S.S.M. Chow et al. / The Journal of Systems and Software 75 (2005) 227–234
be affected even its spyware activities are blocked. As a

final note, many ‘‘user-friendly’’ malicious hacking tools

like NetBus, SubSeven are easily available nowadays

and many script-kiddies use these tools to hack into

friends� computer to steal files such as diary, photos,
assignments, business documents, ID card number,
credit card number, etc. Using our anti-spyware tool,

users can easily specify what processes can read these

sensitive files and enable a better control of private

information using our anti-spyware tool, thus prevent-

ing the script-kiddies from compromising their privacy.

We notice that a poor user interface may jeopardize

the security of the system (Whitten and Tygar, 1999).

In our prototype, we employ ACL, a simple data struc-
ture to implement the security policy. The use of simple

ACL makes the user interface as simple as possible. A

possible research direction is to choose between the

complexity of security model and the complexity of

the user interfaces so that a user with the least computer

knowledge can still use our tool effectively.

Other future works include devising an experiment to

find out the performance information of our tool, and
studying the semantic of the program to devise a more

intelligent behavior-based approach against spyware.
References

Dirk, B., Simon, D.R., 2000. WindowBox: a simple security model for

the connected desktop. In Proceedings of the 4th USENIX

Windows System Symposium.

McWilliams, B., 2002. ComputerUser.com News: Anti-spyware pro-

gram targeted by multimedia player. Available from <http://

www.computeruser.com/news/02/04/24>.

Mitnick, K.D., Simon, W.L., 2002. The Art of Deception. Wiley

Publishing, Inc.

Oney, W., 1999. Programming the Microsoft Windows Driver Model.

Microsoft Press.

Ott, A., 2001. The rule set based access control (RSBAC) Linux kernel

security extension. In: Proceedings of the 8th International Linux

Kongress, 2001.

Ott, A., Hübner, S.F., Swimmer, M., 1998. Approaches to integrated

malware detection and avoidance. In: Proceedings of the 3rd

Nordic Workshop on Secure IT Systems, Trondheim.

Skormin, V.A., Summerville, D.H., Moronski, J.S., 2003. Detecting

malicious codes by the presence of their gene of self-replication. In:

Computer Network Security, MMM-ACNS 2003, Russia, Pro-

ceedings, Lecture Notes in Computer Science, vol. 2776. Springer.

Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L., 1993. Efficient

software-based fault isolation. In: Proceedings of the Symposium

on Operating System Principles.

Whitten, A., Tygar, J.D., 1999. Why Johnny Can�t Encrypt: A
Usability Evaluation of POP 5.0. In: Proceedings of the 8th

USENIX Security Symposium.

http://www.computeruser.com/news/02/04/24
http://www.computeruser.com/news/02/04/24

	A generic anti-spyware solution by access control list at kernel level
	Introduction
	Background
	Working mechanism
	Spreading media

	Related work
	Existing anti-spyware techniques
	Signature scanning
	Network filtering

	Our contributions
	Other related works

	Our proposed solution
	Scope
	The framework

	Implementation and experiments
	Experiments
	A more realistic example
	Extra features
	Integrity checking
	Protection of privacy information
	Wizard mode for setting ACL


	Analysis
	Usability analysis
	Security analysis

	Conclusion and future work
	References


